md.c 95 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/config.h>
  28. #include <linux/linkage.h>
  29. #include <linux/raid/md.h>
  30. #include <linux/raid/bitmap.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/devfs_fs_kernel.h>
  33. #include <linux/buffer_head.h> /* for invalidate_bdev */
  34. #include <linux/suspend.h>
  35. #include <linux/init.h>
  36. #include <linux/file.h>
  37. #ifdef CONFIG_KMOD
  38. #include <linux/kmod.h>
  39. #endif
  40. #include <asm/unaligned.h>
  41. #define MAJOR_NR MD_MAJOR
  42. #define MD_DRIVER
  43. /* 63 partitions with the alternate major number (mdp) */
  44. #define MdpMinorShift 6
  45. #define DEBUG 0
  46. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  47. #ifndef MODULE
  48. static void autostart_arrays (int part);
  49. #endif
  50. static mdk_personality_t *pers[MAX_PERSONALITY];
  51. static DEFINE_SPINLOCK(pers_lock);
  52. /*
  53. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  54. * is 1000 KB/sec, so the extra system load does not show up that much.
  55. * Increase it if you want to have more _guaranteed_ speed. Note that
  56. * the RAID driver will use the maximum available bandwith if the IO
  57. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  58. * speed limit - in case reconstruction slows down your system despite
  59. * idle IO detection.
  60. *
  61. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  62. */
  63. static int sysctl_speed_limit_min = 1000;
  64. static int sysctl_speed_limit_max = 200000;
  65. static struct ctl_table_header *raid_table_header;
  66. static ctl_table raid_table[] = {
  67. {
  68. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  69. .procname = "speed_limit_min",
  70. .data = &sysctl_speed_limit_min,
  71. .maxlen = sizeof(int),
  72. .mode = 0644,
  73. .proc_handler = &proc_dointvec,
  74. },
  75. {
  76. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  77. .procname = "speed_limit_max",
  78. .data = &sysctl_speed_limit_max,
  79. .maxlen = sizeof(int),
  80. .mode = 0644,
  81. .proc_handler = &proc_dointvec,
  82. },
  83. { .ctl_name = 0 }
  84. };
  85. static ctl_table raid_dir_table[] = {
  86. {
  87. .ctl_name = DEV_RAID,
  88. .procname = "raid",
  89. .maxlen = 0,
  90. .mode = 0555,
  91. .child = raid_table,
  92. },
  93. { .ctl_name = 0 }
  94. };
  95. static ctl_table raid_root_table[] = {
  96. {
  97. .ctl_name = CTL_DEV,
  98. .procname = "dev",
  99. .maxlen = 0,
  100. .mode = 0555,
  101. .child = raid_dir_table,
  102. },
  103. { .ctl_name = 0 }
  104. };
  105. static struct block_device_operations md_fops;
  106. /*
  107. * Enables to iterate over all existing md arrays
  108. * all_mddevs_lock protects this list.
  109. */
  110. static LIST_HEAD(all_mddevs);
  111. static DEFINE_SPINLOCK(all_mddevs_lock);
  112. /*
  113. * iterates through all used mddevs in the system.
  114. * We take care to grab the all_mddevs_lock whenever navigating
  115. * the list, and to always hold a refcount when unlocked.
  116. * Any code which breaks out of this loop while own
  117. * a reference to the current mddev and must mddev_put it.
  118. */
  119. #define ITERATE_MDDEV(mddev,tmp) \
  120. \
  121. for (({ spin_lock(&all_mddevs_lock); \
  122. tmp = all_mddevs.next; \
  123. mddev = NULL;}); \
  124. ({ if (tmp != &all_mddevs) \
  125. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  126. spin_unlock(&all_mddevs_lock); \
  127. if (mddev) mddev_put(mddev); \
  128. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  129. tmp != &all_mddevs;}); \
  130. ({ spin_lock(&all_mddevs_lock); \
  131. tmp = tmp->next;}) \
  132. )
  133. static int md_fail_request (request_queue_t *q, struct bio *bio)
  134. {
  135. bio_io_error(bio, bio->bi_size);
  136. return 0;
  137. }
  138. static inline mddev_t *mddev_get(mddev_t *mddev)
  139. {
  140. atomic_inc(&mddev->active);
  141. return mddev;
  142. }
  143. static void mddev_put(mddev_t *mddev)
  144. {
  145. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  146. return;
  147. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  148. list_del(&mddev->all_mddevs);
  149. blk_put_queue(mddev->queue);
  150. kfree(mddev);
  151. }
  152. spin_unlock(&all_mddevs_lock);
  153. }
  154. static mddev_t * mddev_find(dev_t unit)
  155. {
  156. mddev_t *mddev, *new = NULL;
  157. retry:
  158. spin_lock(&all_mddevs_lock);
  159. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  160. if (mddev->unit == unit) {
  161. mddev_get(mddev);
  162. spin_unlock(&all_mddevs_lock);
  163. kfree(new);
  164. return mddev;
  165. }
  166. if (new) {
  167. list_add(&new->all_mddevs, &all_mddevs);
  168. spin_unlock(&all_mddevs_lock);
  169. return new;
  170. }
  171. spin_unlock(&all_mddevs_lock);
  172. new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
  173. if (!new)
  174. return NULL;
  175. memset(new, 0, sizeof(*new));
  176. new->unit = unit;
  177. if (MAJOR(unit) == MD_MAJOR)
  178. new->md_minor = MINOR(unit);
  179. else
  180. new->md_minor = MINOR(unit) >> MdpMinorShift;
  181. init_MUTEX(&new->reconfig_sem);
  182. INIT_LIST_HEAD(&new->disks);
  183. INIT_LIST_HEAD(&new->all_mddevs);
  184. init_timer(&new->safemode_timer);
  185. atomic_set(&new->active, 1);
  186. spin_lock_init(&new->write_lock);
  187. init_waitqueue_head(&new->sb_wait);
  188. new->queue = blk_alloc_queue(GFP_KERNEL);
  189. if (!new->queue) {
  190. kfree(new);
  191. return NULL;
  192. }
  193. blk_queue_make_request(new->queue, md_fail_request);
  194. goto retry;
  195. }
  196. static inline int mddev_lock(mddev_t * mddev)
  197. {
  198. return down_interruptible(&mddev->reconfig_sem);
  199. }
  200. static inline void mddev_lock_uninterruptible(mddev_t * mddev)
  201. {
  202. down(&mddev->reconfig_sem);
  203. }
  204. static inline int mddev_trylock(mddev_t * mddev)
  205. {
  206. return down_trylock(&mddev->reconfig_sem);
  207. }
  208. static inline void mddev_unlock(mddev_t * mddev)
  209. {
  210. up(&mddev->reconfig_sem);
  211. if (mddev->thread)
  212. md_wakeup_thread(mddev->thread);
  213. }
  214. mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  215. {
  216. mdk_rdev_t * rdev;
  217. struct list_head *tmp;
  218. ITERATE_RDEV(mddev,rdev,tmp) {
  219. if (rdev->desc_nr == nr)
  220. return rdev;
  221. }
  222. return NULL;
  223. }
  224. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  225. {
  226. struct list_head *tmp;
  227. mdk_rdev_t *rdev;
  228. ITERATE_RDEV(mddev,rdev,tmp) {
  229. if (rdev->bdev->bd_dev == dev)
  230. return rdev;
  231. }
  232. return NULL;
  233. }
  234. inline static sector_t calc_dev_sboffset(struct block_device *bdev)
  235. {
  236. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  237. return MD_NEW_SIZE_BLOCKS(size);
  238. }
  239. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  240. {
  241. sector_t size;
  242. size = rdev->sb_offset;
  243. if (chunk_size)
  244. size &= ~((sector_t)chunk_size/1024 - 1);
  245. return size;
  246. }
  247. static int alloc_disk_sb(mdk_rdev_t * rdev)
  248. {
  249. if (rdev->sb_page)
  250. MD_BUG();
  251. rdev->sb_page = alloc_page(GFP_KERNEL);
  252. if (!rdev->sb_page) {
  253. printk(KERN_ALERT "md: out of memory.\n");
  254. return -EINVAL;
  255. }
  256. return 0;
  257. }
  258. static void free_disk_sb(mdk_rdev_t * rdev)
  259. {
  260. if (rdev->sb_page) {
  261. page_cache_release(rdev->sb_page);
  262. rdev->sb_loaded = 0;
  263. rdev->sb_page = NULL;
  264. rdev->sb_offset = 0;
  265. rdev->size = 0;
  266. }
  267. }
  268. static int super_written(struct bio *bio, unsigned int bytes_done, int error)
  269. {
  270. mdk_rdev_t *rdev = bio->bi_private;
  271. if (bio->bi_size)
  272. return 1;
  273. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
  274. md_error(rdev->mddev, rdev);
  275. if (atomic_dec_and_test(&rdev->mddev->pending_writes))
  276. wake_up(&rdev->mddev->sb_wait);
  277. return 0;
  278. }
  279. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  280. sector_t sector, int size, struct page *page)
  281. {
  282. /* write first size bytes of page to sector of rdev
  283. * Increment mddev->pending_writes before returning
  284. * and decrement it on completion, waking up sb_wait
  285. * if zero is reached.
  286. * If an error occurred, call md_error
  287. */
  288. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  289. bio->bi_bdev = rdev->bdev;
  290. bio->bi_sector = sector;
  291. bio_add_page(bio, page, size, 0);
  292. bio->bi_private = rdev;
  293. bio->bi_end_io = super_written;
  294. atomic_inc(&mddev->pending_writes);
  295. submit_bio((1<<BIO_RW)|(1<<BIO_RW_SYNC), bio);
  296. }
  297. static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
  298. {
  299. if (bio->bi_size)
  300. return 1;
  301. complete((struct completion*)bio->bi_private);
  302. return 0;
  303. }
  304. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  305. struct page *page, int rw)
  306. {
  307. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  308. struct completion event;
  309. int ret;
  310. rw |= (1 << BIO_RW_SYNC);
  311. bio->bi_bdev = bdev;
  312. bio->bi_sector = sector;
  313. bio_add_page(bio, page, size, 0);
  314. init_completion(&event);
  315. bio->bi_private = &event;
  316. bio->bi_end_io = bi_complete;
  317. submit_bio(rw, bio);
  318. wait_for_completion(&event);
  319. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  320. bio_put(bio);
  321. return ret;
  322. }
  323. static int read_disk_sb(mdk_rdev_t * rdev)
  324. {
  325. char b[BDEVNAME_SIZE];
  326. if (!rdev->sb_page) {
  327. MD_BUG();
  328. return -EINVAL;
  329. }
  330. if (rdev->sb_loaded)
  331. return 0;
  332. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, READ))
  333. goto fail;
  334. rdev->sb_loaded = 1;
  335. return 0;
  336. fail:
  337. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  338. bdevname(rdev->bdev,b));
  339. return -EINVAL;
  340. }
  341. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  342. {
  343. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  344. (sb1->set_uuid1 == sb2->set_uuid1) &&
  345. (sb1->set_uuid2 == sb2->set_uuid2) &&
  346. (sb1->set_uuid3 == sb2->set_uuid3))
  347. return 1;
  348. return 0;
  349. }
  350. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  351. {
  352. int ret;
  353. mdp_super_t *tmp1, *tmp2;
  354. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  355. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  356. if (!tmp1 || !tmp2) {
  357. ret = 0;
  358. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  359. goto abort;
  360. }
  361. *tmp1 = *sb1;
  362. *tmp2 = *sb2;
  363. /*
  364. * nr_disks is not constant
  365. */
  366. tmp1->nr_disks = 0;
  367. tmp2->nr_disks = 0;
  368. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  369. ret = 0;
  370. else
  371. ret = 1;
  372. abort:
  373. kfree(tmp1);
  374. kfree(tmp2);
  375. return ret;
  376. }
  377. static unsigned int calc_sb_csum(mdp_super_t * sb)
  378. {
  379. unsigned int disk_csum, csum;
  380. disk_csum = sb->sb_csum;
  381. sb->sb_csum = 0;
  382. csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
  383. sb->sb_csum = disk_csum;
  384. return csum;
  385. }
  386. /*
  387. * Handle superblock details.
  388. * We want to be able to handle multiple superblock formats
  389. * so we have a common interface to them all, and an array of
  390. * different handlers.
  391. * We rely on user-space to write the initial superblock, and support
  392. * reading and updating of superblocks.
  393. * Interface methods are:
  394. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  395. * loads and validates a superblock on dev.
  396. * if refdev != NULL, compare superblocks on both devices
  397. * Return:
  398. * 0 - dev has a superblock that is compatible with refdev
  399. * 1 - dev has a superblock that is compatible and newer than refdev
  400. * so dev should be used as the refdev in future
  401. * -EINVAL superblock incompatible or invalid
  402. * -othererror e.g. -EIO
  403. *
  404. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  405. * Verify that dev is acceptable into mddev.
  406. * The first time, mddev->raid_disks will be 0, and data from
  407. * dev should be merged in. Subsequent calls check that dev
  408. * is new enough. Return 0 or -EINVAL
  409. *
  410. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  411. * Update the superblock for rdev with data in mddev
  412. * This does not write to disc.
  413. *
  414. */
  415. struct super_type {
  416. char *name;
  417. struct module *owner;
  418. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  419. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  420. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  421. };
  422. /*
  423. * load_super for 0.90.0
  424. */
  425. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  426. {
  427. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  428. mdp_super_t *sb;
  429. int ret;
  430. sector_t sb_offset;
  431. /*
  432. * Calculate the position of the superblock,
  433. * it's at the end of the disk.
  434. *
  435. * It also happens to be a multiple of 4Kb.
  436. */
  437. sb_offset = calc_dev_sboffset(rdev->bdev);
  438. rdev->sb_offset = sb_offset;
  439. ret = read_disk_sb(rdev);
  440. if (ret) return ret;
  441. ret = -EINVAL;
  442. bdevname(rdev->bdev, b);
  443. sb = (mdp_super_t*)page_address(rdev->sb_page);
  444. if (sb->md_magic != MD_SB_MAGIC) {
  445. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  446. b);
  447. goto abort;
  448. }
  449. if (sb->major_version != 0 ||
  450. sb->minor_version != 90) {
  451. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  452. sb->major_version, sb->minor_version,
  453. b);
  454. goto abort;
  455. }
  456. if (sb->raid_disks <= 0)
  457. goto abort;
  458. if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
  459. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  460. b);
  461. goto abort;
  462. }
  463. rdev->preferred_minor = sb->md_minor;
  464. rdev->data_offset = 0;
  465. if (sb->level == LEVEL_MULTIPATH)
  466. rdev->desc_nr = -1;
  467. else
  468. rdev->desc_nr = sb->this_disk.number;
  469. if (refdev == 0)
  470. ret = 1;
  471. else {
  472. __u64 ev1, ev2;
  473. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  474. if (!uuid_equal(refsb, sb)) {
  475. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  476. b, bdevname(refdev->bdev,b2));
  477. goto abort;
  478. }
  479. if (!sb_equal(refsb, sb)) {
  480. printk(KERN_WARNING "md: %s has same UUID"
  481. " but different superblock to %s\n",
  482. b, bdevname(refdev->bdev, b2));
  483. goto abort;
  484. }
  485. ev1 = md_event(sb);
  486. ev2 = md_event(refsb);
  487. if (ev1 > ev2)
  488. ret = 1;
  489. else
  490. ret = 0;
  491. }
  492. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  493. abort:
  494. return ret;
  495. }
  496. /*
  497. * validate_super for 0.90.0
  498. */
  499. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  500. {
  501. mdp_disk_t *desc;
  502. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  503. rdev->raid_disk = -1;
  504. rdev->in_sync = 0;
  505. if (mddev->raid_disks == 0) {
  506. mddev->major_version = 0;
  507. mddev->minor_version = sb->minor_version;
  508. mddev->patch_version = sb->patch_version;
  509. mddev->persistent = ! sb->not_persistent;
  510. mddev->chunk_size = sb->chunk_size;
  511. mddev->ctime = sb->ctime;
  512. mddev->utime = sb->utime;
  513. mddev->level = sb->level;
  514. mddev->layout = sb->layout;
  515. mddev->raid_disks = sb->raid_disks;
  516. mddev->size = sb->size;
  517. mddev->events = md_event(sb);
  518. if (sb->state & (1<<MD_SB_CLEAN))
  519. mddev->recovery_cp = MaxSector;
  520. else {
  521. if (sb->events_hi == sb->cp_events_hi &&
  522. sb->events_lo == sb->cp_events_lo) {
  523. mddev->recovery_cp = sb->recovery_cp;
  524. } else
  525. mddev->recovery_cp = 0;
  526. }
  527. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  528. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  529. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  530. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  531. mddev->max_disks = MD_SB_DISKS;
  532. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  533. mddev->bitmap_file == NULL) {
  534. if (mddev->level != 1) {
  535. /* FIXME use a better test */
  536. printk(KERN_WARNING "md: bitmaps only support for raid1\n");
  537. return -EINVAL;
  538. }
  539. mddev->bitmap_offset = (MD_SB_BYTES >> 9);
  540. }
  541. } else if (mddev->pers == NULL) {
  542. /* Insist on good event counter while assembling */
  543. __u64 ev1 = md_event(sb);
  544. ++ev1;
  545. if (ev1 < mddev->events)
  546. return -EINVAL;
  547. } else if (mddev->bitmap) {
  548. /* if adding to array with a bitmap, then we can accept an
  549. * older device ... but not too old.
  550. */
  551. __u64 ev1 = md_event(sb);
  552. if (ev1 < mddev->bitmap->events_cleared)
  553. return 0;
  554. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  555. return 0;
  556. if (mddev->level != LEVEL_MULTIPATH) {
  557. rdev->faulty = 0;
  558. desc = sb->disks + rdev->desc_nr;
  559. if (desc->state & (1<<MD_DISK_FAULTY))
  560. rdev->faulty = 1;
  561. else if (desc->state & (1<<MD_DISK_SYNC) &&
  562. desc->raid_disk < mddev->raid_disks) {
  563. rdev->in_sync = 1;
  564. rdev->raid_disk = desc->raid_disk;
  565. }
  566. } else /* MULTIPATH are always insync */
  567. rdev->in_sync = 1;
  568. return 0;
  569. }
  570. /*
  571. * sync_super for 0.90.0
  572. */
  573. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  574. {
  575. mdp_super_t *sb;
  576. struct list_head *tmp;
  577. mdk_rdev_t *rdev2;
  578. int next_spare = mddev->raid_disks;
  579. /* make rdev->sb match mddev data..
  580. *
  581. * 1/ zero out disks
  582. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  583. * 3/ any empty disks < next_spare become removed
  584. *
  585. * disks[0] gets initialised to REMOVED because
  586. * we cannot be sure from other fields if it has
  587. * been initialised or not.
  588. */
  589. int i;
  590. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  591. sb = (mdp_super_t*)page_address(rdev->sb_page);
  592. memset(sb, 0, sizeof(*sb));
  593. sb->md_magic = MD_SB_MAGIC;
  594. sb->major_version = mddev->major_version;
  595. sb->minor_version = mddev->minor_version;
  596. sb->patch_version = mddev->patch_version;
  597. sb->gvalid_words = 0; /* ignored */
  598. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  599. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  600. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  601. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  602. sb->ctime = mddev->ctime;
  603. sb->level = mddev->level;
  604. sb->size = mddev->size;
  605. sb->raid_disks = mddev->raid_disks;
  606. sb->md_minor = mddev->md_minor;
  607. sb->not_persistent = !mddev->persistent;
  608. sb->utime = mddev->utime;
  609. sb->state = 0;
  610. sb->events_hi = (mddev->events>>32);
  611. sb->events_lo = (u32)mddev->events;
  612. if (mddev->in_sync)
  613. {
  614. sb->recovery_cp = mddev->recovery_cp;
  615. sb->cp_events_hi = (mddev->events>>32);
  616. sb->cp_events_lo = (u32)mddev->events;
  617. if (mddev->recovery_cp == MaxSector)
  618. sb->state = (1<< MD_SB_CLEAN);
  619. } else
  620. sb->recovery_cp = 0;
  621. sb->layout = mddev->layout;
  622. sb->chunk_size = mddev->chunk_size;
  623. if (mddev->bitmap && mddev->bitmap_file == NULL)
  624. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  625. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  626. ITERATE_RDEV(mddev,rdev2,tmp) {
  627. mdp_disk_t *d;
  628. if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
  629. rdev2->desc_nr = rdev2->raid_disk;
  630. else
  631. rdev2->desc_nr = next_spare++;
  632. d = &sb->disks[rdev2->desc_nr];
  633. nr_disks++;
  634. d->number = rdev2->desc_nr;
  635. d->major = MAJOR(rdev2->bdev->bd_dev);
  636. d->minor = MINOR(rdev2->bdev->bd_dev);
  637. if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
  638. d->raid_disk = rdev2->raid_disk;
  639. else
  640. d->raid_disk = rdev2->desc_nr; /* compatibility */
  641. if (rdev2->faulty) {
  642. d->state = (1<<MD_DISK_FAULTY);
  643. failed++;
  644. } else if (rdev2->in_sync) {
  645. d->state = (1<<MD_DISK_ACTIVE);
  646. d->state |= (1<<MD_DISK_SYNC);
  647. active++;
  648. working++;
  649. } else {
  650. d->state = 0;
  651. spare++;
  652. working++;
  653. }
  654. }
  655. /* now set the "removed" and "faulty" bits on any missing devices */
  656. for (i=0 ; i < mddev->raid_disks ; i++) {
  657. mdp_disk_t *d = &sb->disks[i];
  658. if (d->state == 0 && d->number == 0) {
  659. d->number = i;
  660. d->raid_disk = i;
  661. d->state = (1<<MD_DISK_REMOVED);
  662. d->state |= (1<<MD_DISK_FAULTY);
  663. failed++;
  664. }
  665. }
  666. sb->nr_disks = nr_disks;
  667. sb->active_disks = active;
  668. sb->working_disks = working;
  669. sb->failed_disks = failed;
  670. sb->spare_disks = spare;
  671. sb->this_disk = sb->disks[rdev->desc_nr];
  672. sb->sb_csum = calc_sb_csum(sb);
  673. }
  674. /*
  675. * version 1 superblock
  676. */
  677. static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
  678. {
  679. unsigned int disk_csum, csum;
  680. unsigned long long newcsum;
  681. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  682. unsigned int *isuper = (unsigned int*)sb;
  683. int i;
  684. disk_csum = sb->sb_csum;
  685. sb->sb_csum = 0;
  686. newcsum = 0;
  687. for (i=0; size>=4; size -= 4 )
  688. newcsum += le32_to_cpu(*isuper++);
  689. if (size == 2)
  690. newcsum += le16_to_cpu(*(unsigned short*) isuper);
  691. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  692. sb->sb_csum = disk_csum;
  693. return cpu_to_le32(csum);
  694. }
  695. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  696. {
  697. struct mdp_superblock_1 *sb;
  698. int ret;
  699. sector_t sb_offset;
  700. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  701. /*
  702. * Calculate the position of the superblock.
  703. * It is always aligned to a 4K boundary and
  704. * depeding on minor_version, it can be:
  705. * 0: At least 8K, but less than 12K, from end of device
  706. * 1: At start of device
  707. * 2: 4K from start of device.
  708. */
  709. switch(minor_version) {
  710. case 0:
  711. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  712. sb_offset -= 8*2;
  713. sb_offset &= ~(sector_t)(4*2-1);
  714. /* convert from sectors to K */
  715. sb_offset /= 2;
  716. break;
  717. case 1:
  718. sb_offset = 0;
  719. break;
  720. case 2:
  721. sb_offset = 4;
  722. break;
  723. default:
  724. return -EINVAL;
  725. }
  726. rdev->sb_offset = sb_offset;
  727. ret = read_disk_sb(rdev);
  728. if (ret) return ret;
  729. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  730. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  731. sb->major_version != cpu_to_le32(1) ||
  732. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  733. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  734. sb->feature_map != 0)
  735. return -EINVAL;
  736. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  737. printk("md: invalid superblock checksum on %s\n",
  738. bdevname(rdev->bdev,b));
  739. return -EINVAL;
  740. }
  741. if (le64_to_cpu(sb->data_size) < 10) {
  742. printk("md: data_size too small on %s\n",
  743. bdevname(rdev->bdev,b));
  744. return -EINVAL;
  745. }
  746. rdev->preferred_minor = 0xffff;
  747. rdev->data_offset = le64_to_cpu(sb->data_offset);
  748. if (refdev == 0)
  749. return 1;
  750. else {
  751. __u64 ev1, ev2;
  752. struct mdp_superblock_1 *refsb =
  753. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  754. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  755. sb->level != refsb->level ||
  756. sb->layout != refsb->layout ||
  757. sb->chunksize != refsb->chunksize) {
  758. printk(KERN_WARNING "md: %s has strangely different"
  759. " superblock to %s\n",
  760. bdevname(rdev->bdev,b),
  761. bdevname(refdev->bdev,b2));
  762. return -EINVAL;
  763. }
  764. ev1 = le64_to_cpu(sb->events);
  765. ev2 = le64_to_cpu(refsb->events);
  766. if (ev1 > ev2)
  767. return 1;
  768. }
  769. if (minor_version)
  770. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  771. else
  772. rdev->size = rdev->sb_offset;
  773. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  774. return -EINVAL;
  775. rdev->size = le64_to_cpu(sb->data_size)/2;
  776. if (le32_to_cpu(sb->chunksize))
  777. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  778. return 0;
  779. }
  780. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  781. {
  782. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  783. rdev->raid_disk = -1;
  784. rdev->in_sync = 0;
  785. if (mddev->raid_disks == 0) {
  786. mddev->major_version = 1;
  787. mddev->patch_version = 0;
  788. mddev->persistent = 1;
  789. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  790. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  791. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  792. mddev->level = le32_to_cpu(sb->level);
  793. mddev->layout = le32_to_cpu(sb->layout);
  794. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  795. mddev->size = le64_to_cpu(sb->size)/2;
  796. mddev->events = le64_to_cpu(sb->events);
  797. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  798. memcpy(mddev->uuid, sb->set_uuid, 16);
  799. mddev->max_disks = (4096-256)/2;
  800. if ((le32_to_cpu(sb->feature_map) & 1) &&
  801. mddev->bitmap_file == NULL ) {
  802. if (mddev->level != 1) {
  803. printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
  804. return -EINVAL;
  805. }
  806. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  807. }
  808. } else if (mddev->pers == NULL) {
  809. /* Insist of good event counter while assembling */
  810. __u64 ev1 = le64_to_cpu(sb->events);
  811. ++ev1;
  812. if (ev1 < mddev->events)
  813. return -EINVAL;
  814. } else if (mddev->bitmap) {
  815. /* If adding to array with a bitmap, then we can accept an
  816. * older device, but not too old.
  817. */
  818. __u64 ev1 = le64_to_cpu(sb->events);
  819. if (ev1 < mddev->bitmap->events_cleared)
  820. return 0;
  821. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  822. return 0;
  823. if (mddev->level != LEVEL_MULTIPATH) {
  824. int role;
  825. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  826. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  827. switch(role) {
  828. case 0xffff: /* spare */
  829. rdev->faulty = 0;
  830. break;
  831. case 0xfffe: /* faulty */
  832. rdev->faulty = 1;
  833. break;
  834. default:
  835. rdev->in_sync = 1;
  836. rdev->faulty = 0;
  837. rdev->raid_disk = role;
  838. break;
  839. }
  840. } else /* MULTIPATH are always insync */
  841. rdev->in_sync = 1;
  842. return 0;
  843. }
  844. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  845. {
  846. struct mdp_superblock_1 *sb;
  847. struct list_head *tmp;
  848. mdk_rdev_t *rdev2;
  849. int max_dev, i;
  850. /* make rdev->sb match mddev and rdev data. */
  851. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  852. sb->feature_map = 0;
  853. sb->pad0 = 0;
  854. memset(sb->pad1, 0, sizeof(sb->pad1));
  855. memset(sb->pad2, 0, sizeof(sb->pad2));
  856. memset(sb->pad3, 0, sizeof(sb->pad3));
  857. sb->utime = cpu_to_le64((__u64)mddev->utime);
  858. sb->events = cpu_to_le64(mddev->events);
  859. if (mddev->in_sync)
  860. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  861. else
  862. sb->resync_offset = cpu_to_le64(0);
  863. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  864. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  865. sb->feature_map = cpu_to_le32(1);
  866. }
  867. max_dev = 0;
  868. ITERATE_RDEV(mddev,rdev2,tmp)
  869. if (rdev2->desc_nr+1 > max_dev)
  870. max_dev = rdev2->desc_nr+1;
  871. sb->max_dev = cpu_to_le32(max_dev);
  872. for (i=0; i<max_dev;i++)
  873. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  874. ITERATE_RDEV(mddev,rdev2,tmp) {
  875. i = rdev2->desc_nr;
  876. if (rdev2->faulty)
  877. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  878. else if (rdev2->in_sync)
  879. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  880. else
  881. sb->dev_roles[i] = cpu_to_le16(0xffff);
  882. }
  883. sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
  884. sb->sb_csum = calc_sb_1_csum(sb);
  885. }
  886. static struct super_type super_types[] = {
  887. [0] = {
  888. .name = "0.90.0",
  889. .owner = THIS_MODULE,
  890. .load_super = super_90_load,
  891. .validate_super = super_90_validate,
  892. .sync_super = super_90_sync,
  893. },
  894. [1] = {
  895. .name = "md-1",
  896. .owner = THIS_MODULE,
  897. .load_super = super_1_load,
  898. .validate_super = super_1_validate,
  899. .sync_super = super_1_sync,
  900. },
  901. };
  902. static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
  903. {
  904. struct list_head *tmp;
  905. mdk_rdev_t *rdev;
  906. ITERATE_RDEV(mddev,rdev,tmp)
  907. if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
  908. return rdev;
  909. return NULL;
  910. }
  911. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  912. {
  913. struct list_head *tmp;
  914. mdk_rdev_t *rdev;
  915. ITERATE_RDEV(mddev1,rdev,tmp)
  916. if (match_dev_unit(mddev2, rdev))
  917. return 1;
  918. return 0;
  919. }
  920. static LIST_HEAD(pending_raid_disks);
  921. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  922. {
  923. mdk_rdev_t *same_pdev;
  924. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  925. if (rdev->mddev) {
  926. MD_BUG();
  927. return -EINVAL;
  928. }
  929. same_pdev = match_dev_unit(mddev, rdev);
  930. if (same_pdev)
  931. printk(KERN_WARNING
  932. "%s: WARNING: %s appears to be on the same physical"
  933. " disk as %s. True\n protection against single-disk"
  934. " failure might be compromised.\n",
  935. mdname(mddev), bdevname(rdev->bdev,b),
  936. bdevname(same_pdev->bdev,b2));
  937. /* Verify rdev->desc_nr is unique.
  938. * If it is -1, assign a free number, else
  939. * check number is not in use
  940. */
  941. if (rdev->desc_nr < 0) {
  942. int choice = 0;
  943. if (mddev->pers) choice = mddev->raid_disks;
  944. while (find_rdev_nr(mddev, choice))
  945. choice++;
  946. rdev->desc_nr = choice;
  947. } else {
  948. if (find_rdev_nr(mddev, rdev->desc_nr))
  949. return -EBUSY;
  950. }
  951. list_add(&rdev->same_set, &mddev->disks);
  952. rdev->mddev = mddev;
  953. printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
  954. return 0;
  955. }
  956. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  957. {
  958. char b[BDEVNAME_SIZE];
  959. if (!rdev->mddev) {
  960. MD_BUG();
  961. return;
  962. }
  963. list_del_init(&rdev->same_set);
  964. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  965. rdev->mddev = NULL;
  966. }
  967. /*
  968. * prevent the device from being mounted, repartitioned or
  969. * otherwise reused by a RAID array (or any other kernel
  970. * subsystem), by bd_claiming the device.
  971. */
  972. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  973. {
  974. int err = 0;
  975. struct block_device *bdev;
  976. char b[BDEVNAME_SIZE];
  977. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  978. if (IS_ERR(bdev)) {
  979. printk(KERN_ERR "md: could not open %s.\n",
  980. __bdevname(dev, b));
  981. return PTR_ERR(bdev);
  982. }
  983. err = bd_claim(bdev, rdev);
  984. if (err) {
  985. printk(KERN_ERR "md: could not bd_claim %s.\n",
  986. bdevname(bdev, b));
  987. blkdev_put(bdev);
  988. return err;
  989. }
  990. rdev->bdev = bdev;
  991. return err;
  992. }
  993. static void unlock_rdev(mdk_rdev_t *rdev)
  994. {
  995. struct block_device *bdev = rdev->bdev;
  996. rdev->bdev = NULL;
  997. if (!bdev)
  998. MD_BUG();
  999. bd_release(bdev);
  1000. blkdev_put(bdev);
  1001. }
  1002. void md_autodetect_dev(dev_t dev);
  1003. static void export_rdev(mdk_rdev_t * rdev)
  1004. {
  1005. char b[BDEVNAME_SIZE];
  1006. printk(KERN_INFO "md: export_rdev(%s)\n",
  1007. bdevname(rdev->bdev,b));
  1008. if (rdev->mddev)
  1009. MD_BUG();
  1010. free_disk_sb(rdev);
  1011. list_del_init(&rdev->same_set);
  1012. #ifndef MODULE
  1013. md_autodetect_dev(rdev->bdev->bd_dev);
  1014. #endif
  1015. unlock_rdev(rdev);
  1016. kfree(rdev);
  1017. }
  1018. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1019. {
  1020. unbind_rdev_from_array(rdev);
  1021. export_rdev(rdev);
  1022. }
  1023. static void export_array(mddev_t *mddev)
  1024. {
  1025. struct list_head *tmp;
  1026. mdk_rdev_t *rdev;
  1027. ITERATE_RDEV(mddev,rdev,tmp) {
  1028. if (!rdev->mddev) {
  1029. MD_BUG();
  1030. continue;
  1031. }
  1032. kick_rdev_from_array(rdev);
  1033. }
  1034. if (!list_empty(&mddev->disks))
  1035. MD_BUG();
  1036. mddev->raid_disks = 0;
  1037. mddev->major_version = 0;
  1038. }
  1039. static void print_desc(mdp_disk_t *desc)
  1040. {
  1041. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1042. desc->major,desc->minor,desc->raid_disk,desc->state);
  1043. }
  1044. static void print_sb(mdp_super_t *sb)
  1045. {
  1046. int i;
  1047. printk(KERN_INFO
  1048. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1049. sb->major_version, sb->minor_version, sb->patch_version,
  1050. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1051. sb->ctime);
  1052. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1053. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1054. sb->md_minor, sb->layout, sb->chunk_size);
  1055. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1056. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1057. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1058. sb->failed_disks, sb->spare_disks,
  1059. sb->sb_csum, (unsigned long)sb->events_lo);
  1060. printk(KERN_INFO);
  1061. for (i = 0; i < MD_SB_DISKS; i++) {
  1062. mdp_disk_t *desc;
  1063. desc = sb->disks + i;
  1064. if (desc->number || desc->major || desc->minor ||
  1065. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1066. printk(" D %2d: ", i);
  1067. print_desc(desc);
  1068. }
  1069. }
  1070. printk(KERN_INFO "md: THIS: ");
  1071. print_desc(&sb->this_disk);
  1072. }
  1073. static void print_rdev(mdk_rdev_t *rdev)
  1074. {
  1075. char b[BDEVNAME_SIZE];
  1076. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1077. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1078. rdev->faulty, rdev->in_sync, rdev->desc_nr);
  1079. if (rdev->sb_loaded) {
  1080. printk(KERN_INFO "md: rdev superblock:\n");
  1081. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1082. } else
  1083. printk(KERN_INFO "md: no rdev superblock!\n");
  1084. }
  1085. void md_print_devices(void)
  1086. {
  1087. struct list_head *tmp, *tmp2;
  1088. mdk_rdev_t *rdev;
  1089. mddev_t *mddev;
  1090. char b[BDEVNAME_SIZE];
  1091. printk("\n");
  1092. printk("md: **********************************\n");
  1093. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1094. printk("md: **********************************\n");
  1095. ITERATE_MDDEV(mddev,tmp) {
  1096. if (mddev->bitmap)
  1097. bitmap_print_sb(mddev->bitmap);
  1098. else
  1099. printk("%s: ", mdname(mddev));
  1100. ITERATE_RDEV(mddev,rdev,tmp2)
  1101. printk("<%s>", bdevname(rdev->bdev,b));
  1102. printk("\n");
  1103. ITERATE_RDEV(mddev,rdev,tmp2)
  1104. print_rdev(rdev);
  1105. }
  1106. printk("md: **********************************\n");
  1107. printk("\n");
  1108. }
  1109. static void sync_sbs(mddev_t * mddev)
  1110. {
  1111. mdk_rdev_t *rdev;
  1112. struct list_head *tmp;
  1113. ITERATE_RDEV(mddev,rdev,tmp) {
  1114. super_types[mddev->major_version].
  1115. sync_super(mddev, rdev);
  1116. rdev->sb_loaded = 1;
  1117. }
  1118. }
  1119. static void md_update_sb(mddev_t * mddev)
  1120. {
  1121. int err;
  1122. struct list_head *tmp;
  1123. mdk_rdev_t *rdev;
  1124. int sync_req;
  1125. repeat:
  1126. spin_lock(&mddev->write_lock);
  1127. sync_req = mddev->in_sync;
  1128. mddev->utime = get_seconds();
  1129. mddev->events ++;
  1130. if (!mddev->events) {
  1131. /*
  1132. * oops, this 64-bit counter should never wrap.
  1133. * Either we are in around ~1 trillion A.C., assuming
  1134. * 1 reboot per second, or we have a bug:
  1135. */
  1136. MD_BUG();
  1137. mddev->events --;
  1138. }
  1139. mddev->sb_dirty = 2;
  1140. sync_sbs(mddev);
  1141. /*
  1142. * do not write anything to disk if using
  1143. * nonpersistent superblocks
  1144. */
  1145. if (!mddev->persistent) {
  1146. mddev->sb_dirty = 0;
  1147. spin_unlock(&mddev->write_lock);
  1148. wake_up(&mddev->sb_wait);
  1149. return;
  1150. }
  1151. spin_unlock(&mddev->write_lock);
  1152. dprintk(KERN_INFO
  1153. "md: updating %s RAID superblock on device (in sync %d)\n",
  1154. mdname(mddev),mddev->in_sync);
  1155. err = bitmap_update_sb(mddev->bitmap);
  1156. ITERATE_RDEV(mddev,rdev,tmp) {
  1157. char b[BDEVNAME_SIZE];
  1158. dprintk(KERN_INFO "md: ");
  1159. if (rdev->faulty)
  1160. dprintk("(skipping faulty ");
  1161. dprintk("%s ", bdevname(rdev->bdev,b));
  1162. if (!rdev->faulty) {
  1163. md_super_write(mddev,rdev,
  1164. rdev->sb_offset<<1, MD_SB_BYTES,
  1165. rdev->sb_page);
  1166. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1167. bdevname(rdev->bdev,b),
  1168. (unsigned long long)rdev->sb_offset);
  1169. } else
  1170. dprintk(")\n");
  1171. if (mddev->level == LEVEL_MULTIPATH)
  1172. /* only need to write one superblock... */
  1173. break;
  1174. }
  1175. wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
  1176. /* if there was a failure, sb_dirty was set to 1, and we re-write super */
  1177. spin_lock(&mddev->write_lock);
  1178. if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
  1179. /* have to write it out again */
  1180. spin_unlock(&mddev->write_lock);
  1181. goto repeat;
  1182. }
  1183. mddev->sb_dirty = 0;
  1184. spin_unlock(&mddev->write_lock);
  1185. wake_up(&mddev->sb_wait);
  1186. }
  1187. /*
  1188. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1189. *
  1190. * mark the device faulty if:
  1191. *
  1192. * - the device is nonexistent (zero size)
  1193. * - the device has no valid superblock
  1194. *
  1195. * a faulty rdev _never_ has rdev->sb set.
  1196. */
  1197. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1198. {
  1199. char b[BDEVNAME_SIZE];
  1200. int err;
  1201. mdk_rdev_t *rdev;
  1202. sector_t size;
  1203. rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
  1204. if (!rdev) {
  1205. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1206. return ERR_PTR(-ENOMEM);
  1207. }
  1208. memset(rdev, 0, sizeof(*rdev));
  1209. if ((err = alloc_disk_sb(rdev)))
  1210. goto abort_free;
  1211. err = lock_rdev(rdev, newdev);
  1212. if (err)
  1213. goto abort_free;
  1214. rdev->desc_nr = -1;
  1215. rdev->faulty = 0;
  1216. rdev->in_sync = 0;
  1217. rdev->data_offset = 0;
  1218. atomic_set(&rdev->nr_pending, 0);
  1219. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1220. if (!size) {
  1221. printk(KERN_WARNING
  1222. "md: %s has zero or unknown size, marking faulty!\n",
  1223. bdevname(rdev->bdev,b));
  1224. err = -EINVAL;
  1225. goto abort_free;
  1226. }
  1227. if (super_format >= 0) {
  1228. err = super_types[super_format].
  1229. load_super(rdev, NULL, super_minor);
  1230. if (err == -EINVAL) {
  1231. printk(KERN_WARNING
  1232. "md: %s has invalid sb, not importing!\n",
  1233. bdevname(rdev->bdev,b));
  1234. goto abort_free;
  1235. }
  1236. if (err < 0) {
  1237. printk(KERN_WARNING
  1238. "md: could not read %s's sb, not importing!\n",
  1239. bdevname(rdev->bdev,b));
  1240. goto abort_free;
  1241. }
  1242. }
  1243. INIT_LIST_HEAD(&rdev->same_set);
  1244. return rdev;
  1245. abort_free:
  1246. if (rdev->sb_page) {
  1247. if (rdev->bdev)
  1248. unlock_rdev(rdev);
  1249. free_disk_sb(rdev);
  1250. }
  1251. kfree(rdev);
  1252. return ERR_PTR(err);
  1253. }
  1254. /*
  1255. * Check a full RAID array for plausibility
  1256. */
  1257. static void analyze_sbs(mddev_t * mddev)
  1258. {
  1259. int i;
  1260. struct list_head *tmp;
  1261. mdk_rdev_t *rdev, *freshest;
  1262. char b[BDEVNAME_SIZE];
  1263. freshest = NULL;
  1264. ITERATE_RDEV(mddev,rdev,tmp)
  1265. switch (super_types[mddev->major_version].
  1266. load_super(rdev, freshest, mddev->minor_version)) {
  1267. case 1:
  1268. freshest = rdev;
  1269. break;
  1270. case 0:
  1271. break;
  1272. default:
  1273. printk( KERN_ERR \
  1274. "md: fatal superblock inconsistency in %s"
  1275. " -- removing from array\n",
  1276. bdevname(rdev->bdev,b));
  1277. kick_rdev_from_array(rdev);
  1278. }
  1279. super_types[mddev->major_version].
  1280. validate_super(mddev, freshest);
  1281. i = 0;
  1282. ITERATE_RDEV(mddev,rdev,tmp) {
  1283. if (rdev != freshest)
  1284. if (super_types[mddev->major_version].
  1285. validate_super(mddev, rdev)) {
  1286. printk(KERN_WARNING "md: kicking non-fresh %s"
  1287. " from array!\n",
  1288. bdevname(rdev->bdev,b));
  1289. kick_rdev_from_array(rdev);
  1290. continue;
  1291. }
  1292. if (mddev->level == LEVEL_MULTIPATH) {
  1293. rdev->desc_nr = i++;
  1294. rdev->raid_disk = rdev->desc_nr;
  1295. rdev->in_sync = 1;
  1296. }
  1297. }
  1298. if (mddev->recovery_cp != MaxSector &&
  1299. mddev->level >= 1)
  1300. printk(KERN_ERR "md: %s: raid array is not clean"
  1301. " -- starting background reconstruction\n",
  1302. mdname(mddev));
  1303. }
  1304. int mdp_major = 0;
  1305. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  1306. {
  1307. static DECLARE_MUTEX(disks_sem);
  1308. mddev_t *mddev = mddev_find(dev);
  1309. struct gendisk *disk;
  1310. int partitioned = (MAJOR(dev) != MD_MAJOR);
  1311. int shift = partitioned ? MdpMinorShift : 0;
  1312. int unit = MINOR(dev) >> shift;
  1313. if (!mddev)
  1314. return NULL;
  1315. down(&disks_sem);
  1316. if (mddev->gendisk) {
  1317. up(&disks_sem);
  1318. mddev_put(mddev);
  1319. return NULL;
  1320. }
  1321. disk = alloc_disk(1 << shift);
  1322. if (!disk) {
  1323. up(&disks_sem);
  1324. mddev_put(mddev);
  1325. return NULL;
  1326. }
  1327. disk->major = MAJOR(dev);
  1328. disk->first_minor = unit << shift;
  1329. if (partitioned) {
  1330. sprintf(disk->disk_name, "md_d%d", unit);
  1331. sprintf(disk->devfs_name, "md/d%d", unit);
  1332. } else {
  1333. sprintf(disk->disk_name, "md%d", unit);
  1334. sprintf(disk->devfs_name, "md/%d", unit);
  1335. }
  1336. disk->fops = &md_fops;
  1337. disk->private_data = mddev;
  1338. disk->queue = mddev->queue;
  1339. add_disk(disk);
  1340. mddev->gendisk = disk;
  1341. up(&disks_sem);
  1342. return NULL;
  1343. }
  1344. void md_wakeup_thread(mdk_thread_t *thread);
  1345. static void md_safemode_timeout(unsigned long data)
  1346. {
  1347. mddev_t *mddev = (mddev_t *) data;
  1348. mddev->safemode = 1;
  1349. md_wakeup_thread(mddev->thread);
  1350. }
  1351. static int do_md_run(mddev_t * mddev)
  1352. {
  1353. int pnum, err;
  1354. int chunk_size;
  1355. struct list_head *tmp;
  1356. mdk_rdev_t *rdev;
  1357. struct gendisk *disk;
  1358. char b[BDEVNAME_SIZE];
  1359. if (list_empty(&mddev->disks))
  1360. /* cannot run an array with no devices.. */
  1361. return -EINVAL;
  1362. if (mddev->pers)
  1363. return -EBUSY;
  1364. /*
  1365. * Analyze all RAID superblock(s)
  1366. */
  1367. if (!mddev->raid_disks)
  1368. analyze_sbs(mddev);
  1369. chunk_size = mddev->chunk_size;
  1370. pnum = level_to_pers(mddev->level);
  1371. if ((pnum != MULTIPATH) && (pnum != RAID1)) {
  1372. if (!chunk_size) {
  1373. /*
  1374. * 'default chunksize' in the old md code used to
  1375. * be PAGE_SIZE, baaad.
  1376. * we abort here to be on the safe side. We don't
  1377. * want to continue the bad practice.
  1378. */
  1379. printk(KERN_ERR
  1380. "no chunksize specified, see 'man raidtab'\n");
  1381. return -EINVAL;
  1382. }
  1383. if (chunk_size > MAX_CHUNK_SIZE) {
  1384. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  1385. chunk_size, MAX_CHUNK_SIZE);
  1386. return -EINVAL;
  1387. }
  1388. /*
  1389. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  1390. */
  1391. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  1392. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  1393. return -EINVAL;
  1394. }
  1395. if (chunk_size < PAGE_SIZE) {
  1396. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  1397. chunk_size, PAGE_SIZE);
  1398. return -EINVAL;
  1399. }
  1400. /* devices must have minimum size of one chunk */
  1401. ITERATE_RDEV(mddev,rdev,tmp) {
  1402. if (rdev->faulty)
  1403. continue;
  1404. if (rdev->size < chunk_size / 1024) {
  1405. printk(KERN_WARNING
  1406. "md: Dev %s smaller than chunk_size:"
  1407. " %lluk < %dk\n",
  1408. bdevname(rdev->bdev,b),
  1409. (unsigned long long)rdev->size,
  1410. chunk_size / 1024);
  1411. return -EINVAL;
  1412. }
  1413. }
  1414. }
  1415. #ifdef CONFIG_KMOD
  1416. if (!pers[pnum])
  1417. {
  1418. request_module("md-personality-%d", pnum);
  1419. }
  1420. #endif
  1421. /*
  1422. * Drop all container device buffers, from now on
  1423. * the only valid external interface is through the md
  1424. * device.
  1425. * Also find largest hardsector size
  1426. */
  1427. ITERATE_RDEV(mddev,rdev,tmp) {
  1428. if (rdev->faulty)
  1429. continue;
  1430. sync_blockdev(rdev->bdev);
  1431. invalidate_bdev(rdev->bdev, 0);
  1432. }
  1433. md_probe(mddev->unit, NULL, NULL);
  1434. disk = mddev->gendisk;
  1435. if (!disk)
  1436. return -ENOMEM;
  1437. spin_lock(&pers_lock);
  1438. if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
  1439. spin_unlock(&pers_lock);
  1440. printk(KERN_WARNING "md: personality %d is not loaded!\n",
  1441. pnum);
  1442. return -EINVAL;
  1443. }
  1444. mddev->pers = pers[pnum];
  1445. spin_unlock(&pers_lock);
  1446. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  1447. /* before we start the array running, initialise the bitmap */
  1448. err = bitmap_create(mddev);
  1449. if (err)
  1450. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  1451. mdname(mddev), err);
  1452. else
  1453. err = mddev->pers->run(mddev);
  1454. if (err) {
  1455. printk(KERN_ERR "md: pers->run() failed ...\n");
  1456. module_put(mddev->pers->owner);
  1457. mddev->pers = NULL;
  1458. bitmap_destroy(mddev);
  1459. return err;
  1460. }
  1461. atomic_set(&mddev->writes_pending,0);
  1462. mddev->safemode = 0;
  1463. mddev->safemode_timer.function = md_safemode_timeout;
  1464. mddev->safemode_timer.data = (unsigned long) mddev;
  1465. mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
  1466. mddev->in_sync = 1;
  1467. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1468. if (mddev->sb_dirty)
  1469. md_update_sb(mddev);
  1470. set_capacity(disk, mddev->array_size<<1);
  1471. /* If we call blk_queue_make_request here, it will
  1472. * re-initialise max_sectors etc which may have been
  1473. * refined inside -> run. So just set the bits we need to set.
  1474. * Most initialisation happended when we called
  1475. * blk_queue_make_request(..., md_fail_request)
  1476. * earlier.
  1477. */
  1478. mddev->queue->queuedata = mddev;
  1479. mddev->queue->make_request_fn = mddev->pers->make_request;
  1480. mddev->changed = 1;
  1481. return 0;
  1482. }
  1483. static int restart_array(mddev_t *mddev)
  1484. {
  1485. struct gendisk *disk = mddev->gendisk;
  1486. int err;
  1487. /*
  1488. * Complain if it has no devices
  1489. */
  1490. err = -ENXIO;
  1491. if (list_empty(&mddev->disks))
  1492. goto out;
  1493. if (mddev->pers) {
  1494. err = -EBUSY;
  1495. if (!mddev->ro)
  1496. goto out;
  1497. mddev->safemode = 0;
  1498. mddev->ro = 0;
  1499. set_disk_ro(disk, 0);
  1500. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  1501. mdname(mddev));
  1502. /*
  1503. * Kick recovery or resync if necessary
  1504. */
  1505. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1506. md_wakeup_thread(mddev->thread);
  1507. err = 0;
  1508. } else {
  1509. printk(KERN_ERR "md: %s has no personality assigned.\n",
  1510. mdname(mddev));
  1511. err = -EINVAL;
  1512. }
  1513. out:
  1514. return err;
  1515. }
  1516. static int do_md_stop(mddev_t * mddev, int ro)
  1517. {
  1518. int err = 0;
  1519. struct gendisk *disk = mddev->gendisk;
  1520. if (mddev->pers) {
  1521. if (atomic_read(&mddev->active)>2) {
  1522. printk("md: %s still in use.\n",mdname(mddev));
  1523. return -EBUSY;
  1524. }
  1525. if (mddev->sync_thread) {
  1526. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1527. md_unregister_thread(mddev->sync_thread);
  1528. mddev->sync_thread = NULL;
  1529. }
  1530. del_timer_sync(&mddev->safemode_timer);
  1531. invalidate_partition(disk, 0);
  1532. if (ro) {
  1533. err = -ENXIO;
  1534. if (mddev->ro)
  1535. goto out;
  1536. mddev->ro = 1;
  1537. } else {
  1538. if (mddev->ro)
  1539. set_disk_ro(disk, 0);
  1540. blk_queue_make_request(mddev->queue, md_fail_request);
  1541. mddev->pers->stop(mddev);
  1542. module_put(mddev->pers->owner);
  1543. mddev->pers = NULL;
  1544. if (mddev->ro)
  1545. mddev->ro = 0;
  1546. }
  1547. if (!mddev->in_sync) {
  1548. /* mark array as shutdown cleanly */
  1549. mddev->in_sync = 1;
  1550. md_update_sb(mddev);
  1551. }
  1552. if (ro)
  1553. set_disk_ro(disk, 1);
  1554. }
  1555. bitmap_destroy(mddev);
  1556. if (mddev->bitmap_file) {
  1557. atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
  1558. fput(mddev->bitmap_file);
  1559. mddev->bitmap_file = NULL;
  1560. }
  1561. /*
  1562. * Free resources if final stop
  1563. */
  1564. if (!ro) {
  1565. struct gendisk *disk;
  1566. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  1567. export_array(mddev);
  1568. mddev->array_size = 0;
  1569. disk = mddev->gendisk;
  1570. if (disk)
  1571. set_capacity(disk, 0);
  1572. mddev->changed = 1;
  1573. } else
  1574. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  1575. mdname(mddev));
  1576. err = 0;
  1577. out:
  1578. return err;
  1579. }
  1580. static void autorun_array(mddev_t *mddev)
  1581. {
  1582. mdk_rdev_t *rdev;
  1583. struct list_head *tmp;
  1584. int err;
  1585. if (list_empty(&mddev->disks))
  1586. return;
  1587. printk(KERN_INFO "md: running: ");
  1588. ITERATE_RDEV(mddev,rdev,tmp) {
  1589. char b[BDEVNAME_SIZE];
  1590. printk("<%s>", bdevname(rdev->bdev,b));
  1591. }
  1592. printk("\n");
  1593. err = do_md_run (mddev);
  1594. if (err) {
  1595. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  1596. do_md_stop (mddev, 0);
  1597. }
  1598. }
  1599. /*
  1600. * lets try to run arrays based on all disks that have arrived
  1601. * until now. (those are in pending_raid_disks)
  1602. *
  1603. * the method: pick the first pending disk, collect all disks with
  1604. * the same UUID, remove all from the pending list and put them into
  1605. * the 'same_array' list. Then order this list based on superblock
  1606. * update time (freshest comes first), kick out 'old' disks and
  1607. * compare superblocks. If everything's fine then run it.
  1608. *
  1609. * If "unit" is allocated, then bump its reference count
  1610. */
  1611. static void autorun_devices(int part)
  1612. {
  1613. struct list_head candidates;
  1614. struct list_head *tmp;
  1615. mdk_rdev_t *rdev0, *rdev;
  1616. mddev_t *mddev;
  1617. char b[BDEVNAME_SIZE];
  1618. printk(KERN_INFO "md: autorun ...\n");
  1619. while (!list_empty(&pending_raid_disks)) {
  1620. dev_t dev;
  1621. rdev0 = list_entry(pending_raid_disks.next,
  1622. mdk_rdev_t, same_set);
  1623. printk(KERN_INFO "md: considering %s ...\n",
  1624. bdevname(rdev0->bdev,b));
  1625. INIT_LIST_HEAD(&candidates);
  1626. ITERATE_RDEV_PENDING(rdev,tmp)
  1627. if (super_90_load(rdev, rdev0, 0) >= 0) {
  1628. printk(KERN_INFO "md: adding %s ...\n",
  1629. bdevname(rdev->bdev,b));
  1630. list_move(&rdev->same_set, &candidates);
  1631. }
  1632. /*
  1633. * now we have a set of devices, with all of them having
  1634. * mostly sane superblocks. It's time to allocate the
  1635. * mddev.
  1636. */
  1637. if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
  1638. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  1639. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  1640. break;
  1641. }
  1642. if (part)
  1643. dev = MKDEV(mdp_major,
  1644. rdev0->preferred_minor << MdpMinorShift);
  1645. else
  1646. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  1647. md_probe(dev, NULL, NULL);
  1648. mddev = mddev_find(dev);
  1649. if (!mddev) {
  1650. printk(KERN_ERR
  1651. "md: cannot allocate memory for md drive.\n");
  1652. break;
  1653. }
  1654. if (mddev_lock(mddev))
  1655. printk(KERN_WARNING "md: %s locked, cannot run\n",
  1656. mdname(mddev));
  1657. else if (mddev->raid_disks || mddev->major_version
  1658. || !list_empty(&mddev->disks)) {
  1659. printk(KERN_WARNING
  1660. "md: %s already running, cannot run %s\n",
  1661. mdname(mddev), bdevname(rdev0->bdev,b));
  1662. mddev_unlock(mddev);
  1663. } else {
  1664. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  1665. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  1666. list_del_init(&rdev->same_set);
  1667. if (bind_rdev_to_array(rdev, mddev))
  1668. export_rdev(rdev);
  1669. }
  1670. autorun_array(mddev);
  1671. mddev_unlock(mddev);
  1672. }
  1673. /* on success, candidates will be empty, on error
  1674. * it won't...
  1675. */
  1676. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  1677. export_rdev(rdev);
  1678. mddev_put(mddev);
  1679. }
  1680. printk(KERN_INFO "md: ... autorun DONE.\n");
  1681. }
  1682. /*
  1683. * import RAID devices based on one partition
  1684. * if possible, the array gets run as well.
  1685. */
  1686. static int autostart_array(dev_t startdev)
  1687. {
  1688. char b[BDEVNAME_SIZE];
  1689. int err = -EINVAL, i;
  1690. mdp_super_t *sb = NULL;
  1691. mdk_rdev_t *start_rdev = NULL, *rdev;
  1692. start_rdev = md_import_device(startdev, 0, 0);
  1693. if (IS_ERR(start_rdev))
  1694. return err;
  1695. /* NOTE: this can only work for 0.90.0 superblocks */
  1696. sb = (mdp_super_t*)page_address(start_rdev->sb_page);
  1697. if (sb->major_version != 0 ||
  1698. sb->minor_version != 90 ) {
  1699. printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
  1700. export_rdev(start_rdev);
  1701. return err;
  1702. }
  1703. if (start_rdev->faulty) {
  1704. printk(KERN_WARNING
  1705. "md: can not autostart based on faulty %s!\n",
  1706. bdevname(start_rdev->bdev,b));
  1707. export_rdev(start_rdev);
  1708. return err;
  1709. }
  1710. list_add(&start_rdev->same_set, &pending_raid_disks);
  1711. for (i = 0; i < MD_SB_DISKS; i++) {
  1712. mdp_disk_t *desc = sb->disks + i;
  1713. dev_t dev = MKDEV(desc->major, desc->minor);
  1714. if (!dev)
  1715. continue;
  1716. if (dev == startdev)
  1717. continue;
  1718. if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
  1719. continue;
  1720. rdev = md_import_device(dev, 0, 0);
  1721. if (IS_ERR(rdev))
  1722. continue;
  1723. list_add(&rdev->same_set, &pending_raid_disks);
  1724. }
  1725. /*
  1726. * possibly return codes
  1727. */
  1728. autorun_devices(0);
  1729. return 0;
  1730. }
  1731. static int get_version(void __user * arg)
  1732. {
  1733. mdu_version_t ver;
  1734. ver.major = MD_MAJOR_VERSION;
  1735. ver.minor = MD_MINOR_VERSION;
  1736. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  1737. if (copy_to_user(arg, &ver, sizeof(ver)))
  1738. return -EFAULT;
  1739. return 0;
  1740. }
  1741. static int get_array_info(mddev_t * mddev, void __user * arg)
  1742. {
  1743. mdu_array_info_t info;
  1744. int nr,working,active,failed,spare;
  1745. mdk_rdev_t *rdev;
  1746. struct list_head *tmp;
  1747. nr=working=active=failed=spare=0;
  1748. ITERATE_RDEV(mddev,rdev,tmp) {
  1749. nr++;
  1750. if (rdev->faulty)
  1751. failed++;
  1752. else {
  1753. working++;
  1754. if (rdev->in_sync)
  1755. active++;
  1756. else
  1757. spare++;
  1758. }
  1759. }
  1760. info.major_version = mddev->major_version;
  1761. info.minor_version = mddev->minor_version;
  1762. info.patch_version = MD_PATCHLEVEL_VERSION;
  1763. info.ctime = mddev->ctime;
  1764. info.level = mddev->level;
  1765. info.size = mddev->size;
  1766. info.nr_disks = nr;
  1767. info.raid_disks = mddev->raid_disks;
  1768. info.md_minor = mddev->md_minor;
  1769. info.not_persistent= !mddev->persistent;
  1770. info.utime = mddev->utime;
  1771. info.state = 0;
  1772. if (mddev->in_sync)
  1773. info.state = (1<<MD_SB_CLEAN);
  1774. info.active_disks = active;
  1775. info.working_disks = working;
  1776. info.failed_disks = failed;
  1777. info.spare_disks = spare;
  1778. info.layout = mddev->layout;
  1779. info.chunk_size = mddev->chunk_size;
  1780. if (copy_to_user(arg, &info, sizeof(info)))
  1781. return -EFAULT;
  1782. return 0;
  1783. }
  1784. static int get_bitmap_file(mddev_t * mddev, void * arg)
  1785. {
  1786. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  1787. char *ptr, *buf = NULL;
  1788. int err = -ENOMEM;
  1789. file = kmalloc(sizeof(*file), GFP_KERNEL);
  1790. if (!file)
  1791. goto out;
  1792. /* bitmap disabled, zero the first byte and copy out */
  1793. if (!mddev->bitmap || !mddev->bitmap->file) {
  1794. file->pathname[0] = '\0';
  1795. goto copy_out;
  1796. }
  1797. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  1798. if (!buf)
  1799. goto out;
  1800. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  1801. if (!ptr)
  1802. goto out;
  1803. strcpy(file->pathname, ptr);
  1804. copy_out:
  1805. err = 0;
  1806. if (copy_to_user(arg, file, sizeof(*file)))
  1807. err = -EFAULT;
  1808. out:
  1809. kfree(buf);
  1810. kfree(file);
  1811. return err;
  1812. }
  1813. static int get_disk_info(mddev_t * mddev, void __user * arg)
  1814. {
  1815. mdu_disk_info_t info;
  1816. unsigned int nr;
  1817. mdk_rdev_t *rdev;
  1818. if (copy_from_user(&info, arg, sizeof(info)))
  1819. return -EFAULT;
  1820. nr = info.number;
  1821. rdev = find_rdev_nr(mddev, nr);
  1822. if (rdev) {
  1823. info.major = MAJOR(rdev->bdev->bd_dev);
  1824. info.minor = MINOR(rdev->bdev->bd_dev);
  1825. info.raid_disk = rdev->raid_disk;
  1826. info.state = 0;
  1827. if (rdev->faulty)
  1828. info.state |= (1<<MD_DISK_FAULTY);
  1829. else if (rdev->in_sync) {
  1830. info.state |= (1<<MD_DISK_ACTIVE);
  1831. info.state |= (1<<MD_DISK_SYNC);
  1832. }
  1833. } else {
  1834. info.major = info.minor = 0;
  1835. info.raid_disk = -1;
  1836. info.state = (1<<MD_DISK_REMOVED);
  1837. }
  1838. if (copy_to_user(arg, &info, sizeof(info)))
  1839. return -EFAULT;
  1840. return 0;
  1841. }
  1842. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  1843. {
  1844. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1845. mdk_rdev_t *rdev;
  1846. dev_t dev = MKDEV(info->major,info->minor);
  1847. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  1848. return -EOVERFLOW;
  1849. if (!mddev->raid_disks) {
  1850. int err;
  1851. /* expecting a device which has a superblock */
  1852. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  1853. if (IS_ERR(rdev)) {
  1854. printk(KERN_WARNING
  1855. "md: md_import_device returned %ld\n",
  1856. PTR_ERR(rdev));
  1857. return PTR_ERR(rdev);
  1858. }
  1859. if (!list_empty(&mddev->disks)) {
  1860. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  1861. mdk_rdev_t, same_set);
  1862. int err = super_types[mddev->major_version]
  1863. .load_super(rdev, rdev0, mddev->minor_version);
  1864. if (err < 0) {
  1865. printk(KERN_WARNING
  1866. "md: %s has different UUID to %s\n",
  1867. bdevname(rdev->bdev,b),
  1868. bdevname(rdev0->bdev,b2));
  1869. export_rdev(rdev);
  1870. return -EINVAL;
  1871. }
  1872. }
  1873. err = bind_rdev_to_array(rdev, mddev);
  1874. if (err)
  1875. export_rdev(rdev);
  1876. return err;
  1877. }
  1878. /*
  1879. * add_new_disk can be used once the array is assembled
  1880. * to add "hot spares". They must already have a superblock
  1881. * written
  1882. */
  1883. if (mddev->pers) {
  1884. int err;
  1885. if (!mddev->pers->hot_add_disk) {
  1886. printk(KERN_WARNING
  1887. "%s: personality does not support diskops!\n",
  1888. mdname(mddev));
  1889. return -EINVAL;
  1890. }
  1891. rdev = md_import_device(dev, mddev->major_version,
  1892. mddev->minor_version);
  1893. if (IS_ERR(rdev)) {
  1894. printk(KERN_WARNING
  1895. "md: md_import_device returned %ld\n",
  1896. PTR_ERR(rdev));
  1897. return PTR_ERR(rdev);
  1898. }
  1899. /* set save_raid_disk if appropriate */
  1900. if (!mddev->persistent) {
  1901. if (info->state & (1<<MD_DISK_SYNC) &&
  1902. info->raid_disk < mddev->raid_disks)
  1903. rdev->raid_disk = info->raid_disk;
  1904. else
  1905. rdev->raid_disk = -1;
  1906. } else
  1907. super_types[mddev->major_version].
  1908. validate_super(mddev, rdev);
  1909. rdev->saved_raid_disk = rdev->raid_disk;
  1910. rdev->in_sync = 0; /* just to be sure */
  1911. rdev->raid_disk = -1;
  1912. err = bind_rdev_to_array(rdev, mddev);
  1913. if (err)
  1914. export_rdev(rdev);
  1915. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1916. if (mddev->thread)
  1917. md_wakeup_thread(mddev->thread);
  1918. return err;
  1919. }
  1920. /* otherwise, add_new_disk is only allowed
  1921. * for major_version==0 superblocks
  1922. */
  1923. if (mddev->major_version != 0) {
  1924. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  1925. mdname(mddev));
  1926. return -EINVAL;
  1927. }
  1928. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  1929. int err;
  1930. rdev = md_import_device (dev, -1, 0);
  1931. if (IS_ERR(rdev)) {
  1932. printk(KERN_WARNING
  1933. "md: error, md_import_device() returned %ld\n",
  1934. PTR_ERR(rdev));
  1935. return PTR_ERR(rdev);
  1936. }
  1937. rdev->desc_nr = info->number;
  1938. if (info->raid_disk < mddev->raid_disks)
  1939. rdev->raid_disk = info->raid_disk;
  1940. else
  1941. rdev->raid_disk = -1;
  1942. rdev->faulty = 0;
  1943. if (rdev->raid_disk < mddev->raid_disks)
  1944. rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
  1945. else
  1946. rdev->in_sync = 0;
  1947. err = bind_rdev_to_array(rdev, mddev);
  1948. if (err) {
  1949. export_rdev(rdev);
  1950. return err;
  1951. }
  1952. if (!mddev->persistent) {
  1953. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  1954. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1955. } else
  1956. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  1957. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  1958. if (!mddev->size || (mddev->size > rdev->size))
  1959. mddev->size = rdev->size;
  1960. }
  1961. return 0;
  1962. }
  1963. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  1964. {
  1965. char b[BDEVNAME_SIZE];
  1966. mdk_rdev_t *rdev;
  1967. if (!mddev->pers)
  1968. return -ENODEV;
  1969. rdev = find_rdev(mddev, dev);
  1970. if (!rdev)
  1971. return -ENXIO;
  1972. if (rdev->raid_disk >= 0)
  1973. goto busy;
  1974. kick_rdev_from_array(rdev);
  1975. md_update_sb(mddev);
  1976. return 0;
  1977. busy:
  1978. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  1979. bdevname(rdev->bdev,b), mdname(mddev));
  1980. return -EBUSY;
  1981. }
  1982. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  1983. {
  1984. char b[BDEVNAME_SIZE];
  1985. int err;
  1986. unsigned int size;
  1987. mdk_rdev_t *rdev;
  1988. if (!mddev->pers)
  1989. return -ENODEV;
  1990. if (mddev->major_version != 0) {
  1991. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  1992. " version-0 superblocks.\n",
  1993. mdname(mddev));
  1994. return -EINVAL;
  1995. }
  1996. if (!mddev->pers->hot_add_disk) {
  1997. printk(KERN_WARNING
  1998. "%s: personality does not support diskops!\n",
  1999. mdname(mddev));
  2000. return -EINVAL;
  2001. }
  2002. rdev = md_import_device (dev, -1, 0);
  2003. if (IS_ERR(rdev)) {
  2004. printk(KERN_WARNING
  2005. "md: error, md_import_device() returned %ld\n",
  2006. PTR_ERR(rdev));
  2007. return -EINVAL;
  2008. }
  2009. if (mddev->persistent)
  2010. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  2011. else
  2012. rdev->sb_offset =
  2013. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2014. size = calc_dev_size(rdev, mddev->chunk_size);
  2015. rdev->size = size;
  2016. if (size < mddev->size) {
  2017. printk(KERN_WARNING
  2018. "%s: disk size %llu blocks < array size %llu\n",
  2019. mdname(mddev), (unsigned long long)size,
  2020. (unsigned long long)mddev->size);
  2021. err = -ENOSPC;
  2022. goto abort_export;
  2023. }
  2024. if (rdev->faulty) {
  2025. printk(KERN_WARNING
  2026. "md: can not hot-add faulty %s disk to %s!\n",
  2027. bdevname(rdev->bdev,b), mdname(mddev));
  2028. err = -EINVAL;
  2029. goto abort_export;
  2030. }
  2031. rdev->in_sync = 0;
  2032. rdev->desc_nr = -1;
  2033. bind_rdev_to_array(rdev, mddev);
  2034. /*
  2035. * The rest should better be atomic, we can have disk failures
  2036. * noticed in interrupt contexts ...
  2037. */
  2038. if (rdev->desc_nr == mddev->max_disks) {
  2039. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  2040. mdname(mddev));
  2041. err = -EBUSY;
  2042. goto abort_unbind_export;
  2043. }
  2044. rdev->raid_disk = -1;
  2045. md_update_sb(mddev);
  2046. /*
  2047. * Kick recovery, maybe this spare has to be added to the
  2048. * array immediately.
  2049. */
  2050. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2051. md_wakeup_thread(mddev->thread);
  2052. return 0;
  2053. abort_unbind_export:
  2054. unbind_rdev_from_array(rdev);
  2055. abort_export:
  2056. export_rdev(rdev);
  2057. return err;
  2058. }
  2059. /* similar to deny_write_access, but accounts for our holding a reference
  2060. * to the file ourselves */
  2061. static int deny_bitmap_write_access(struct file * file)
  2062. {
  2063. struct inode *inode = file->f_mapping->host;
  2064. spin_lock(&inode->i_lock);
  2065. if (atomic_read(&inode->i_writecount) > 1) {
  2066. spin_unlock(&inode->i_lock);
  2067. return -ETXTBSY;
  2068. }
  2069. atomic_set(&inode->i_writecount, -1);
  2070. spin_unlock(&inode->i_lock);
  2071. return 0;
  2072. }
  2073. static int set_bitmap_file(mddev_t *mddev, int fd)
  2074. {
  2075. int err;
  2076. if (mddev->pers)
  2077. return -EBUSY;
  2078. mddev->bitmap_file = fget(fd);
  2079. if (mddev->bitmap_file == NULL) {
  2080. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  2081. mdname(mddev));
  2082. return -EBADF;
  2083. }
  2084. err = deny_bitmap_write_access(mddev->bitmap_file);
  2085. if (err) {
  2086. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  2087. mdname(mddev));
  2088. fput(mddev->bitmap_file);
  2089. mddev->bitmap_file = NULL;
  2090. } else
  2091. mddev->bitmap_offset = 0; /* file overrides offset */
  2092. return err;
  2093. }
  2094. /*
  2095. * set_array_info is used two different ways
  2096. * The original usage is when creating a new array.
  2097. * In this usage, raid_disks is > 0 and it together with
  2098. * level, size, not_persistent,layout,chunksize determine the
  2099. * shape of the array.
  2100. * This will always create an array with a type-0.90.0 superblock.
  2101. * The newer usage is when assembling an array.
  2102. * In this case raid_disks will be 0, and the major_version field is
  2103. * use to determine which style super-blocks are to be found on the devices.
  2104. * The minor and patch _version numbers are also kept incase the
  2105. * super_block handler wishes to interpret them.
  2106. */
  2107. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  2108. {
  2109. if (info->raid_disks == 0) {
  2110. /* just setting version number for superblock loading */
  2111. if (info->major_version < 0 ||
  2112. info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
  2113. super_types[info->major_version].name == NULL) {
  2114. /* maybe try to auto-load a module? */
  2115. printk(KERN_INFO
  2116. "md: superblock version %d not known\n",
  2117. info->major_version);
  2118. return -EINVAL;
  2119. }
  2120. mddev->major_version = info->major_version;
  2121. mddev->minor_version = info->minor_version;
  2122. mddev->patch_version = info->patch_version;
  2123. return 0;
  2124. }
  2125. mddev->major_version = MD_MAJOR_VERSION;
  2126. mddev->minor_version = MD_MINOR_VERSION;
  2127. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  2128. mddev->ctime = get_seconds();
  2129. mddev->level = info->level;
  2130. mddev->size = info->size;
  2131. mddev->raid_disks = info->raid_disks;
  2132. /* don't set md_minor, it is determined by which /dev/md* was
  2133. * openned
  2134. */
  2135. if (info->state & (1<<MD_SB_CLEAN))
  2136. mddev->recovery_cp = MaxSector;
  2137. else
  2138. mddev->recovery_cp = 0;
  2139. mddev->persistent = ! info->not_persistent;
  2140. mddev->layout = info->layout;
  2141. mddev->chunk_size = info->chunk_size;
  2142. mddev->max_disks = MD_SB_DISKS;
  2143. mddev->sb_dirty = 1;
  2144. /*
  2145. * Generate a 128 bit UUID
  2146. */
  2147. get_random_bytes(mddev->uuid, 16);
  2148. return 0;
  2149. }
  2150. /*
  2151. * update_array_info is used to change the configuration of an
  2152. * on-line array.
  2153. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  2154. * fields in the info are checked against the array.
  2155. * Any differences that cannot be handled will cause an error.
  2156. * Normally, only one change can be managed at a time.
  2157. */
  2158. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  2159. {
  2160. int rv = 0;
  2161. int cnt = 0;
  2162. if (mddev->major_version != info->major_version ||
  2163. mddev->minor_version != info->minor_version ||
  2164. /* mddev->patch_version != info->patch_version || */
  2165. mddev->ctime != info->ctime ||
  2166. mddev->level != info->level ||
  2167. /* mddev->layout != info->layout || */
  2168. !mddev->persistent != info->not_persistent||
  2169. mddev->chunk_size != info->chunk_size )
  2170. return -EINVAL;
  2171. /* Check there is only one change */
  2172. if (mddev->size != info->size) cnt++;
  2173. if (mddev->raid_disks != info->raid_disks) cnt++;
  2174. if (mddev->layout != info->layout) cnt++;
  2175. if (cnt == 0) return 0;
  2176. if (cnt > 1) return -EINVAL;
  2177. if (mddev->layout != info->layout) {
  2178. /* Change layout
  2179. * we don't need to do anything at the md level, the
  2180. * personality will take care of it all.
  2181. */
  2182. if (mddev->pers->reconfig == NULL)
  2183. return -EINVAL;
  2184. else
  2185. return mddev->pers->reconfig(mddev, info->layout, -1);
  2186. }
  2187. if (mddev->size != info->size) {
  2188. mdk_rdev_t * rdev;
  2189. struct list_head *tmp;
  2190. if (mddev->pers->resize == NULL)
  2191. return -EINVAL;
  2192. /* The "size" is the amount of each device that is used.
  2193. * This can only make sense for arrays with redundancy.
  2194. * linear and raid0 always use whatever space is available
  2195. * We can only consider changing the size if no resync
  2196. * or reconstruction is happening, and if the new size
  2197. * is acceptable. It must fit before the sb_offset or,
  2198. * if that is <data_offset, it must fit before the
  2199. * size of each device.
  2200. * If size is zero, we find the largest size that fits.
  2201. */
  2202. if (mddev->sync_thread)
  2203. return -EBUSY;
  2204. ITERATE_RDEV(mddev,rdev,tmp) {
  2205. sector_t avail;
  2206. int fit = (info->size == 0);
  2207. if (rdev->sb_offset > rdev->data_offset)
  2208. avail = (rdev->sb_offset*2) - rdev->data_offset;
  2209. else
  2210. avail = get_capacity(rdev->bdev->bd_disk)
  2211. - rdev->data_offset;
  2212. if (fit && (info->size == 0 || info->size > avail/2))
  2213. info->size = avail/2;
  2214. if (avail < ((sector_t)info->size << 1))
  2215. return -ENOSPC;
  2216. }
  2217. rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
  2218. if (!rv) {
  2219. struct block_device *bdev;
  2220. bdev = bdget_disk(mddev->gendisk, 0);
  2221. if (bdev) {
  2222. down(&bdev->bd_inode->i_sem);
  2223. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2224. up(&bdev->bd_inode->i_sem);
  2225. bdput(bdev);
  2226. }
  2227. }
  2228. }
  2229. if (mddev->raid_disks != info->raid_disks) {
  2230. /* change the number of raid disks */
  2231. if (mddev->pers->reshape == NULL)
  2232. return -EINVAL;
  2233. if (info->raid_disks <= 0 ||
  2234. info->raid_disks >= mddev->max_disks)
  2235. return -EINVAL;
  2236. if (mddev->sync_thread)
  2237. return -EBUSY;
  2238. rv = mddev->pers->reshape(mddev, info->raid_disks);
  2239. if (!rv) {
  2240. struct block_device *bdev;
  2241. bdev = bdget_disk(mddev->gendisk, 0);
  2242. if (bdev) {
  2243. down(&bdev->bd_inode->i_sem);
  2244. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2245. up(&bdev->bd_inode->i_sem);
  2246. bdput(bdev);
  2247. }
  2248. }
  2249. }
  2250. md_update_sb(mddev);
  2251. return rv;
  2252. }
  2253. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  2254. {
  2255. mdk_rdev_t *rdev;
  2256. if (mddev->pers == NULL)
  2257. return -ENODEV;
  2258. rdev = find_rdev(mddev, dev);
  2259. if (!rdev)
  2260. return -ENODEV;
  2261. md_error(mddev, rdev);
  2262. return 0;
  2263. }
  2264. static int md_ioctl(struct inode *inode, struct file *file,
  2265. unsigned int cmd, unsigned long arg)
  2266. {
  2267. int err = 0;
  2268. void __user *argp = (void __user *)arg;
  2269. struct hd_geometry __user *loc = argp;
  2270. mddev_t *mddev = NULL;
  2271. if (!capable(CAP_SYS_ADMIN))
  2272. return -EACCES;
  2273. /*
  2274. * Commands dealing with the RAID driver but not any
  2275. * particular array:
  2276. */
  2277. switch (cmd)
  2278. {
  2279. case RAID_VERSION:
  2280. err = get_version(argp);
  2281. goto done;
  2282. case PRINT_RAID_DEBUG:
  2283. err = 0;
  2284. md_print_devices();
  2285. goto done;
  2286. #ifndef MODULE
  2287. case RAID_AUTORUN:
  2288. err = 0;
  2289. autostart_arrays(arg);
  2290. goto done;
  2291. #endif
  2292. default:;
  2293. }
  2294. /*
  2295. * Commands creating/starting a new array:
  2296. */
  2297. mddev = inode->i_bdev->bd_disk->private_data;
  2298. if (!mddev) {
  2299. BUG();
  2300. goto abort;
  2301. }
  2302. if (cmd == START_ARRAY) {
  2303. /* START_ARRAY doesn't need to lock the array as autostart_array
  2304. * does the locking, and it could even be a different array
  2305. */
  2306. static int cnt = 3;
  2307. if (cnt > 0 ) {
  2308. printk(KERN_WARNING
  2309. "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
  2310. "This will not be supported beyond 2.6\n",
  2311. current->comm, current->pid);
  2312. cnt--;
  2313. }
  2314. err = autostart_array(new_decode_dev(arg));
  2315. if (err) {
  2316. printk(KERN_WARNING "md: autostart failed!\n");
  2317. goto abort;
  2318. }
  2319. goto done;
  2320. }
  2321. err = mddev_lock(mddev);
  2322. if (err) {
  2323. printk(KERN_INFO
  2324. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  2325. err, cmd);
  2326. goto abort;
  2327. }
  2328. switch (cmd)
  2329. {
  2330. case SET_ARRAY_INFO:
  2331. {
  2332. mdu_array_info_t info;
  2333. if (!arg)
  2334. memset(&info, 0, sizeof(info));
  2335. else if (copy_from_user(&info, argp, sizeof(info))) {
  2336. err = -EFAULT;
  2337. goto abort_unlock;
  2338. }
  2339. if (mddev->pers) {
  2340. err = update_array_info(mddev, &info);
  2341. if (err) {
  2342. printk(KERN_WARNING "md: couldn't update"
  2343. " array info. %d\n", err);
  2344. goto abort_unlock;
  2345. }
  2346. goto done_unlock;
  2347. }
  2348. if (!list_empty(&mddev->disks)) {
  2349. printk(KERN_WARNING
  2350. "md: array %s already has disks!\n",
  2351. mdname(mddev));
  2352. err = -EBUSY;
  2353. goto abort_unlock;
  2354. }
  2355. if (mddev->raid_disks) {
  2356. printk(KERN_WARNING
  2357. "md: array %s already initialised!\n",
  2358. mdname(mddev));
  2359. err = -EBUSY;
  2360. goto abort_unlock;
  2361. }
  2362. err = set_array_info(mddev, &info);
  2363. if (err) {
  2364. printk(KERN_WARNING "md: couldn't set"
  2365. " array info. %d\n", err);
  2366. goto abort_unlock;
  2367. }
  2368. }
  2369. goto done_unlock;
  2370. default:;
  2371. }
  2372. /*
  2373. * Commands querying/configuring an existing array:
  2374. */
  2375. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  2376. * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
  2377. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  2378. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
  2379. err = -ENODEV;
  2380. goto abort_unlock;
  2381. }
  2382. /*
  2383. * Commands even a read-only array can execute:
  2384. */
  2385. switch (cmd)
  2386. {
  2387. case GET_ARRAY_INFO:
  2388. err = get_array_info(mddev, argp);
  2389. goto done_unlock;
  2390. case GET_BITMAP_FILE:
  2391. err = get_bitmap_file(mddev, (void *)arg);
  2392. goto done_unlock;
  2393. case GET_DISK_INFO:
  2394. err = get_disk_info(mddev, argp);
  2395. goto done_unlock;
  2396. case RESTART_ARRAY_RW:
  2397. err = restart_array(mddev);
  2398. goto done_unlock;
  2399. case STOP_ARRAY:
  2400. err = do_md_stop (mddev, 0);
  2401. goto done_unlock;
  2402. case STOP_ARRAY_RO:
  2403. err = do_md_stop (mddev, 1);
  2404. goto done_unlock;
  2405. /*
  2406. * We have a problem here : there is no easy way to give a CHS
  2407. * virtual geometry. We currently pretend that we have a 2 heads
  2408. * 4 sectors (with a BIG number of cylinders...). This drives
  2409. * dosfs just mad... ;-)
  2410. */
  2411. case HDIO_GETGEO:
  2412. if (!loc) {
  2413. err = -EINVAL;
  2414. goto abort_unlock;
  2415. }
  2416. err = put_user (2, (char __user *) &loc->heads);
  2417. if (err)
  2418. goto abort_unlock;
  2419. err = put_user (4, (char __user *) &loc->sectors);
  2420. if (err)
  2421. goto abort_unlock;
  2422. err = put_user(get_capacity(mddev->gendisk)/8,
  2423. (short __user *) &loc->cylinders);
  2424. if (err)
  2425. goto abort_unlock;
  2426. err = put_user (get_start_sect(inode->i_bdev),
  2427. (long __user *) &loc->start);
  2428. goto done_unlock;
  2429. }
  2430. /*
  2431. * The remaining ioctls are changing the state of the
  2432. * superblock, so we do not allow read-only arrays
  2433. * here:
  2434. */
  2435. if (mddev->ro) {
  2436. err = -EROFS;
  2437. goto abort_unlock;
  2438. }
  2439. switch (cmd)
  2440. {
  2441. case ADD_NEW_DISK:
  2442. {
  2443. mdu_disk_info_t info;
  2444. if (copy_from_user(&info, argp, sizeof(info)))
  2445. err = -EFAULT;
  2446. else
  2447. err = add_new_disk(mddev, &info);
  2448. goto done_unlock;
  2449. }
  2450. case HOT_REMOVE_DISK:
  2451. err = hot_remove_disk(mddev, new_decode_dev(arg));
  2452. goto done_unlock;
  2453. case HOT_ADD_DISK:
  2454. err = hot_add_disk(mddev, new_decode_dev(arg));
  2455. goto done_unlock;
  2456. case SET_DISK_FAULTY:
  2457. err = set_disk_faulty(mddev, new_decode_dev(arg));
  2458. goto done_unlock;
  2459. case RUN_ARRAY:
  2460. err = do_md_run (mddev);
  2461. goto done_unlock;
  2462. case SET_BITMAP_FILE:
  2463. err = set_bitmap_file(mddev, (int)arg);
  2464. goto done_unlock;
  2465. default:
  2466. if (_IOC_TYPE(cmd) == MD_MAJOR)
  2467. printk(KERN_WARNING "md: %s(pid %d) used"
  2468. " obsolete MD ioctl, upgrade your"
  2469. " software to use new ictls.\n",
  2470. current->comm, current->pid);
  2471. err = -EINVAL;
  2472. goto abort_unlock;
  2473. }
  2474. done_unlock:
  2475. abort_unlock:
  2476. mddev_unlock(mddev);
  2477. return err;
  2478. done:
  2479. if (err)
  2480. MD_BUG();
  2481. abort:
  2482. return err;
  2483. }
  2484. static int md_open(struct inode *inode, struct file *file)
  2485. {
  2486. /*
  2487. * Succeed if we can lock the mddev, which confirms that
  2488. * it isn't being stopped right now.
  2489. */
  2490. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2491. int err;
  2492. if ((err = mddev_lock(mddev)))
  2493. goto out;
  2494. err = 0;
  2495. mddev_get(mddev);
  2496. mddev_unlock(mddev);
  2497. check_disk_change(inode->i_bdev);
  2498. out:
  2499. return err;
  2500. }
  2501. static int md_release(struct inode *inode, struct file * file)
  2502. {
  2503. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2504. if (!mddev)
  2505. BUG();
  2506. mddev_put(mddev);
  2507. return 0;
  2508. }
  2509. static int md_media_changed(struct gendisk *disk)
  2510. {
  2511. mddev_t *mddev = disk->private_data;
  2512. return mddev->changed;
  2513. }
  2514. static int md_revalidate(struct gendisk *disk)
  2515. {
  2516. mddev_t *mddev = disk->private_data;
  2517. mddev->changed = 0;
  2518. return 0;
  2519. }
  2520. static struct block_device_operations md_fops =
  2521. {
  2522. .owner = THIS_MODULE,
  2523. .open = md_open,
  2524. .release = md_release,
  2525. .ioctl = md_ioctl,
  2526. .media_changed = md_media_changed,
  2527. .revalidate_disk= md_revalidate,
  2528. };
  2529. static int md_thread(void * arg)
  2530. {
  2531. mdk_thread_t *thread = arg;
  2532. lock_kernel();
  2533. /*
  2534. * Detach thread
  2535. */
  2536. daemonize(thread->name, mdname(thread->mddev));
  2537. current->exit_signal = SIGCHLD;
  2538. allow_signal(SIGKILL);
  2539. thread->tsk = current;
  2540. /*
  2541. * md_thread is a 'system-thread', it's priority should be very
  2542. * high. We avoid resource deadlocks individually in each
  2543. * raid personality. (RAID5 does preallocation) We also use RR and
  2544. * the very same RT priority as kswapd, thus we will never get
  2545. * into a priority inversion deadlock.
  2546. *
  2547. * we definitely have to have equal or higher priority than
  2548. * bdflush, otherwise bdflush will deadlock if there are too
  2549. * many dirty RAID5 blocks.
  2550. */
  2551. unlock_kernel();
  2552. complete(thread->event);
  2553. while (thread->run) {
  2554. void (*run)(mddev_t *);
  2555. wait_event_interruptible_timeout(thread->wqueue,
  2556. test_bit(THREAD_WAKEUP, &thread->flags),
  2557. thread->timeout);
  2558. if (current->flags & PF_FREEZE)
  2559. refrigerator(PF_FREEZE);
  2560. clear_bit(THREAD_WAKEUP, &thread->flags);
  2561. run = thread->run;
  2562. if (run)
  2563. run(thread->mddev);
  2564. if (signal_pending(current))
  2565. flush_signals(current);
  2566. }
  2567. complete(thread->event);
  2568. return 0;
  2569. }
  2570. void md_wakeup_thread(mdk_thread_t *thread)
  2571. {
  2572. if (thread) {
  2573. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  2574. set_bit(THREAD_WAKEUP, &thread->flags);
  2575. wake_up(&thread->wqueue);
  2576. }
  2577. }
  2578. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  2579. const char *name)
  2580. {
  2581. mdk_thread_t *thread;
  2582. int ret;
  2583. struct completion event;
  2584. thread = (mdk_thread_t *) kmalloc
  2585. (sizeof(mdk_thread_t), GFP_KERNEL);
  2586. if (!thread)
  2587. return NULL;
  2588. memset(thread, 0, sizeof(mdk_thread_t));
  2589. init_waitqueue_head(&thread->wqueue);
  2590. init_completion(&event);
  2591. thread->event = &event;
  2592. thread->run = run;
  2593. thread->mddev = mddev;
  2594. thread->name = name;
  2595. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  2596. ret = kernel_thread(md_thread, thread, 0);
  2597. if (ret < 0) {
  2598. kfree(thread);
  2599. return NULL;
  2600. }
  2601. wait_for_completion(&event);
  2602. return thread;
  2603. }
  2604. void md_unregister_thread(mdk_thread_t *thread)
  2605. {
  2606. struct completion event;
  2607. init_completion(&event);
  2608. thread->event = &event;
  2609. /* As soon as ->run is set to NULL, the task could disappear,
  2610. * so we need to hold tasklist_lock until we have sent the signal
  2611. */
  2612. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  2613. read_lock(&tasklist_lock);
  2614. thread->run = NULL;
  2615. send_sig(SIGKILL, thread->tsk, 1);
  2616. read_unlock(&tasklist_lock);
  2617. wait_for_completion(&event);
  2618. kfree(thread);
  2619. }
  2620. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  2621. {
  2622. if (!mddev) {
  2623. MD_BUG();
  2624. return;
  2625. }
  2626. if (!rdev || rdev->faulty)
  2627. return;
  2628. /*
  2629. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  2630. mdname(mddev),
  2631. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  2632. __builtin_return_address(0),__builtin_return_address(1),
  2633. __builtin_return_address(2),__builtin_return_address(3));
  2634. */
  2635. if (!mddev->pers->error_handler)
  2636. return;
  2637. mddev->pers->error_handler(mddev,rdev);
  2638. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2639. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2640. md_wakeup_thread(mddev->thread);
  2641. }
  2642. /* seq_file implementation /proc/mdstat */
  2643. static void status_unused(struct seq_file *seq)
  2644. {
  2645. int i = 0;
  2646. mdk_rdev_t *rdev;
  2647. struct list_head *tmp;
  2648. seq_printf(seq, "unused devices: ");
  2649. ITERATE_RDEV_PENDING(rdev,tmp) {
  2650. char b[BDEVNAME_SIZE];
  2651. i++;
  2652. seq_printf(seq, "%s ",
  2653. bdevname(rdev->bdev,b));
  2654. }
  2655. if (!i)
  2656. seq_printf(seq, "<none>");
  2657. seq_printf(seq, "\n");
  2658. }
  2659. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  2660. {
  2661. unsigned long max_blocks, resync, res, dt, db, rt;
  2662. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  2663. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2664. max_blocks = mddev->resync_max_sectors >> 1;
  2665. else
  2666. max_blocks = mddev->size;
  2667. /*
  2668. * Should not happen.
  2669. */
  2670. if (!max_blocks) {
  2671. MD_BUG();
  2672. return;
  2673. }
  2674. res = (resync/1024)*1000/(max_blocks/1024 + 1);
  2675. {
  2676. int i, x = res/50, y = 20-x;
  2677. seq_printf(seq, "[");
  2678. for (i = 0; i < x; i++)
  2679. seq_printf(seq, "=");
  2680. seq_printf(seq, ">");
  2681. for (i = 0; i < y; i++)
  2682. seq_printf(seq, ".");
  2683. seq_printf(seq, "] ");
  2684. }
  2685. seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
  2686. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  2687. "resync" : "recovery"),
  2688. res/10, res % 10, resync, max_blocks);
  2689. /*
  2690. * We do not want to overflow, so the order of operands and
  2691. * the * 100 / 100 trick are important. We do a +1 to be
  2692. * safe against division by zero. We only estimate anyway.
  2693. *
  2694. * dt: time from mark until now
  2695. * db: blocks written from mark until now
  2696. * rt: remaining time
  2697. */
  2698. dt = ((jiffies - mddev->resync_mark) / HZ);
  2699. if (!dt) dt++;
  2700. db = resync - (mddev->resync_mark_cnt/2);
  2701. rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
  2702. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  2703. seq_printf(seq, " speed=%ldK/sec", db/dt);
  2704. }
  2705. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  2706. {
  2707. struct list_head *tmp;
  2708. loff_t l = *pos;
  2709. mddev_t *mddev;
  2710. if (l >= 0x10000)
  2711. return NULL;
  2712. if (!l--)
  2713. /* header */
  2714. return (void*)1;
  2715. spin_lock(&all_mddevs_lock);
  2716. list_for_each(tmp,&all_mddevs)
  2717. if (!l--) {
  2718. mddev = list_entry(tmp, mddev_t, all_mddevs);
  2719. mddev_get(mddev);
  2720. spin_unlock(&all_mddevs_lock);
  2721. return mddev;
  2722. }
  2723. spin_unlock(&all_mddevs_lock);
  2724. if (!l--)
  2725. return (void*)2;/* tail */
  2726. return NULL;
  2727. }
  2728. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2729. {
  2730. struct list_head *tmp;
  2731. mddev_t *next_mddev, *mddev = v;
  2732. ++*pos;
  2733. if (v == (void*)2)
  2734. return NULL;
  2735. spin_lock(&all_mddevs_lock);
  2736. if (v == (void*)1)
  2737. tmp = all_mddevs.next;
  2738. else
  2739. tmp = mddev->all_mddevs.next;
  2740. if (tmp != &all_mddevs)
  2741. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  2742. else {
  2743. next_mddev = (void*)2;
  2744. *pos = 0x10000;
  2745. }
  2746. spin_unlock(&all_mddevs_lock);
  2747. if (v != (void*)1)
  2748. mddev_put(mddev);
  2749. return next_mddev;
  2750. }
  2751. static void md_seq_stop(struct seq_file *seq, void *v)
  2752. {
  2753. mddev_t *mddev = v;
  2754. if (mddev && v != (void*)1 && v != (void*)2)
  2755. mddev_put(mddev);
  2756. }
  2757. static int md_seq_show(struct seq_file *seq, void *v)
  2758. {
  2759. mddev_t *mddev = v;
  2760. sector_t size;
  2761. struct list_head *tmp2;
  2762. mdk_rdev_t *rdev;
  2763. int i;
  2764. struct bitmap *bitmap;
  2765. if (v == (void*)1) {
  2766. seq_printf(seq, "Personalities : ");
  2767. spin_lock(&pers_lock);
  2768. for (i = 0; i < MAX_PERSONALITY; i++)
  2769. if (pers[i])
  2770. seq_printf(seq, "[%s] ", pers[i]->name);
  2771. spin_unlock(&pers_lock);
  2772. seq_printf(seq, "\n");
  2773. return 0;
  2774. }
  2775. if (v == (void*)2) {
  2776. status_unused(seq);
  2777. return 0;
  2778. }
  2779. if (mddev_lock(mddev)!=0)
  2780. return -EINTR;
  2781. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  2782. seq_printf(seq, "%s : %sactive", mdname(mddev),
  2783. mddev->pers ? "" : "in");
  2784. if (mddev->pers) {
  2785. if (mddev->ro)
  2786. seq_printf(seq, " (read-only)");
  2787. seq_printf(seq, " %s", mddev->pers->name);
  2788. }
  2789. size = 0;
  2790. ITERATE_RDEV(mddev,rdev,tmp2) {
  2791. char b[BDEVNAME_SIZE];
  2792. seq_printf(seq, " %s[%d]",
  2793. bdevname(rdev->bdev,b), rdev->desc_nr);
  2794. if (rdev->faulty) {
  2795. seq_printf(seq, "(F)");
  2796. continue;
  2797. }
  2798. size += rdev->size;
  2799. }
  2800. if (!list_empty(&mddev->disks)) {
  2801. if (mddev->pers)
  2802. seq_printf(seq, "\n %llu blocks",
  2803. (unsigned long long)mddev->array_size);
  2804. else
  2805. seq_printf(seq, "\n %llu blocks",
  2806. (unsigned long long)size);
  2807. }
  2808. if (mddev->pers) {
  2809. mddev->pers->status (seq, mddev);
  2810. seq_printf(seq, "\n ");
  2811. if (mddev->curr_resync > 2) {
  2812. status_resync (seq, mddev);
  2813. seq_printf(seq, "\n ");
  2814. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  2815. seq_printf(seq, " resync=DELAYED\n ");
  2816. } else
  2817. seq_printf(seq, "\n ");
  2818. if ((bitmap = mddev->bitmap)) {
  2819. unsigned long chunk_kb;
  2820. unsigned long flags;
  2821. spin_lock_irqsave(&bitmap->lock, flags);
  2822. chunk_kb = bitmap->chunksize >> 10;
  2823. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  2824. "%lu%s chunk",
  2825. bitmap->pages - bitmap->missing_pages,
  2826. bitmap->pages,
  2827. (bitmap->pages - bitmap->missing_pages)
  2828. << (PAGE_SHIFT - 10),
  2829. chunk_kb ? chunk_kb : bitmap->chunksize,
  2830. chunk_kb ? "KB" : "B");
  2831. if (bitmap->file) {
  2832. seq_printf(seq, ", file: ");
  2833. seq_path(seq, bitmap->file->f_vfsmnt,
  2834. bitmap->file->f_dentry," \t\n");
  2835. }
  2836. seq_printf(seq, "\n");
  2837. spin_unlock_irqrestore(&bitmap->lock, flags);
  2838. }
  2839. seq_printf(seq, "\n");
  2840. }
  2841. mddev_unlock(mddev);
  2842. return 0;
  2843. }
  2844. static struct seq_operations md_seq_ops = {
  2845. .start = md_seq_start,
  2846. .next = md_seq_next,
  2847. .stop = md_seq_stop,
  2848. .show = md_seq_show,
  2849. };
  2850. static int md_seq_open(struct inode *inode, struct file *file)
  2851. {
  2852. int error;
  2853. error = seq_open(file, &md_seq_ops);
  2854. return error;
  2855. }
  2856. static struct file_operations md_seq_fops = {
  2857. .open = md_seq_open,
  2858. .read = seq_read,
  2859. .llseek = seq_lseek,
  2860. .release = seq_release,
  2861. };
  2862. int register_md_personality(int pnum, mdk_personality_t *p)
  2863. {
  2864. if (pnum >= MAX_PERSONALITY) {
  2865. printk(KERN_ERR
  2866. "md: tried to install personality %s as nr %d, but max is %lu\n",
  2867. p->name, pnum, MAX_PERSONALITY-1);
  2868. return -EINVAL;
  2869. }
  2870. spin_lock(&pers_lock);
  2871. if (pers[pnum]) {
  2872. spin_unlock(&pers_lock);
  2873. return -EBUSY;
  2874. }
  2875. pers[pnum] = p;
  2876. printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
  2877. spin_unlock(&pers_lock);
  2878. return 0;
  2879. }
  2880. int unregister_md_personality(int pnum)
  2881. {
  2882. if (pnum >= MAX_PERSONALITY)
  2883. return -EINVAL;
  2884. printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
  2885. spin_lock(&pers_lock);
  2886. pers[pnum] = NULL;
  2887. spin_unlock(&pers_lock);
  2888. return 0;
  2889. }
  2890. static int is_mddev_idle(mddev_t *mddev)
  2891. {
  2892. mdk_rdev_t * rdev;
  2893. struct list_head *tmp;
  2894. int idle;
  2895. unsigned long curr_events;
  2896. idle = 1;
  2897. ITERATE_RDEV(mddev,rdev,tmp) {
  2898. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  2899. curr_events = disk_stat_read(disk, read_sectors) +
  2900. disk_stat_read(disk, write_sectors) -
  2901. atomic_read(&disk->sync_io);
  2902. /* Allow some slack between valud of curr_events and last_events,
  2903. * as there are some uninteresting races.
  2904. * Note: the following is an unsigned comparison.
  2905. */
  2906. if ((curr_events - rdev->last_events + 32) > 64) {
  2907. rdev->last_events = curr_events;
  2908. idle = 0;
  2909. }
  2910. }
  2911. return idle;
  2912. }
  2913. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  2914. {
  2915. /* another "blocks" (512byte) blocks have been synced */
  2916. atomic_sub(blocks, &mddev->recovery_active);
  2917. wake_up(&mddev->recovery_wait);
  2918. if (!ok) {
  2919. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  2920. md_wakeup_thread(mddev->thread);
  2921. // stop recovery, signal do_sync ....
  2922. }
  2923. }
  2924. /* md_write_start(mddev, bi)
  2925. * If we need to update some array metadata (e.g. 'active' flag
  2926. * in superblock) before writing, schedule a superblock update
  2927. * and wait for it to complete.
  2928. */
  2929. void md_write_start(mddev_t *mddev, struct bio *bi)
  2930. {
  2931. DEFINE_WAIT(w);
  2932. if (bio_data_dir(bi) != WRITE)
  2933. return;
  2934. atomic_inc(&mddev->writes_pending);
  2935. if (mddev->in_sync) {
  2936. spin_lock(&mddev->write_lock);
  2937. if (mddev->in_sync) {
  2938. mddev->in_sync = 0;
  2939. mddev->sb_dirty = 1;
  2940. md_wakeup_thread(mddev->thread);
  2941. }
  2942. spin_unlock(&mddev->write_lock);
  2943. }
  2944. wait_event(mddev->sb_wait, mddev->sb_dirty==0);
  2945. }
  2946. void md_write_end(mddev_t *mddev)
  2947. {
  2948. if (atomic_dec_and_test(&mddev->writes_pending)) {
  2949. if (mddev->safemode == 2)
  2950. md_wakeup_thread(mddev->thread);
  2951. else
  2952. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  2953. }
  2954. }
  2955. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  2956. #define SYNC_MARKS 10
  2957. #define SYNC_MARK_STEP (3*HZ)
  2958. static void md_do_sync(mddev_t *mddev)
  2959. {
  2960. mddev_t *mddev2;
  2961. unsigned int currspeed = 0,
  2962. window;
  2963. sector_t max_sectors,j, io_sectors;
  2964. unsigned long mark[SYNC_MARKS];
  2965. sector_t mark_cnt[SYNC_MARKS];
  2966. int last_mark,m;
  2967. struct list_head *tmp;
  2968. sector_t last_check;
  2969. int skipped = 0;
  2970. /* just incase thread restarts... */
  2971. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  2972. return;
  2973. /* we overload curr_resync somewhat here.
  2974. * 0 == not engaged in resync at all
  2975. * 2 == checking that there is no conflict with another sync
  2976. * 1 == like 2, but have yielded to allow conflicting resync to
  2977. * commense
  2978. * other == active in resync - this many blocks
  2979. *
  2980. * Before starting a resync we must have set curr_resync to
  2981. * 2, and then checked that every "conflicting" array has curr_resync
  2982. * less than ours. When we find one that is the same or higher
  2983. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  2984. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  2985. * This will mean we have to start checking from the beginning again.
  2986. *
  2987. */
  2988. do {
  2989. mddev->curr_resync = 2;
  2990. try_again:
  2991. if (signal_pending(current)) {
  2992. flush_signals(current);
  2993. goto skip;
  2994. }
  2995. ITERATE_MDDEV(mddev2,tmp) {
  2996. printk(".");
  2997. if (mddev2 == mddev)
  2998. continue;
  2999. if (mddev2->curr_resync &&
  3000. match_mddev_units(mddev,mddev2)) {
  3001. DEFINE_WAIT(wq);
  3002. if (mddev < mddev2 && mddev->curr_resync == 2) {
  3003. /* arbitrarily yield */
  3004. mddev->curr_resync = 1;
  3005. wake_up(&resync_wait);
  3006. }
  3007. if (mddev > mddev2 && mddev->curr_resync == 1)
  3008. /* no need to wait here, we can wait the next
  3009. * time 'round when curr_resync == 2
  3010. */
  3011. continue;
  3012. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  3013. if (!signal_pending(current)
  3014. && mddev2->curr_resync >= mddev->curr_resync) {
  3015. printk(KERN_INFO "md: delaying resync of %s"
  3016. " until %s has finished resync (they"
  3017. " share one or more physical units)\n",
  3018. mdname(mddev), mdname(mddev2));
  3019. mddev_put(mddev2);
  3020. schedule();
  3021. finish_wait(&resync_wait, &wq);
  3022. goto try_again;
  3023. }
  3024. finish_wait(&resync_wait, &wq);
  3025. }
  3026. }
  3027. } while (mddev->curr_resync < 2);
  3028. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3029. /* resync follows the size requested by the personality,
  3030. * which defaults to physical size, but can be virtual size
  3031. */
  3032. max_sectors = mddev->resync_max_sectors;
  3033. else
  3034. /* recovery follows the physical size of devices */
  3035. max_sectors = mddev->size << 1;
  3036. printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
  3037. printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
  3038. " %d KB/sec/disc.\n", sysctl_speed_limit_min);
  3039. printk(KERN_INFO "md: using maximum available idle IO bandwith "
  3040. "(but not more than %d KB/sec) for reconstruction.\n",
  3041. sysctl_speed_limit_max);
  3042. is_mddev_idle(mddev); /* this also initializes IO event counters */
  3043. /* we don't use the checkpoint if there's a bitmap */
  3044. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap)
  3045. j = mddev->recovery_cp;
  3046. else
  3047. j = 0;
  3048. io_sectors = 0;
  3049. for (m = 0; m < SYNC_MARKS; m++) {
  3050. mark[m] = jiffies;
  3051. mark_cnt[m] = io_sectors;
  3052. }
  3053. last_mark = 0;
  3054. mddev->resync_mark = mark[last_mark];
  3055. mddev->resync_mark_cnt = mark_cnt[last_mark];
  3056. /*
  3057. * Tune reconstruction:
  3058. */
  3059. window = 32*(PAGE_SIZE/512);
  3060. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  3061. window/2,(unsigned long long) max_sectors/2);
  3062. atomic_set(&mddev->recovery_active, 0);
  3063. init_waitqueue_head(&mddev->recovery_wait);
  3064. last_check = 0;
  3065. if (j>2) {
  3066. printk(KERN_INFO
  3067. "md: resuming recovery of %s from checkpoint.\n",
  3068. mdname(mddev));
  3069. mddev->curr_resync = j;
  3070. }
  3071. while (j < max_sectors) {
  3072. sector_t sectors;
  3073. skipped = 0;
  3074. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  3075. currspeed < sysctl_speed_limit_min);
  3076. if (sectors == 0) {
  3077. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3078. goto out;
  3079. }
  3080. if (!skipped) { /* actual IO requested */
  3081. io_sectors += sectors;
  3082. atomic_add(sectors, &mddev->recovery_active);
  3083. }
  3084. j += sectors;
  3085. if (j>1) mddev->curr_resync = j;
  3086. if (last_check + window > io_sectors || j == max_sectors)
  3087. continue;
  3088. last_check = io_sectors;
  3089. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  3090. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  3091. break;
  3092. repeat:
  3093. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  3094. /* step marks */
  3095. int next = (last_mark+1) % SYNC_MARKS;
  3096. mddev->resync_mark = mark[next];
  3097. mddev->resync_mark_cnt = mark_cnt[next];
  3098. mark[next] = jiffies;
  3099. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  3100. last_mark = next;
  3101. }
  3102. if (signal_pending(current)) {
  3103. /*
  3104. * got a signal, exit.
  3105. */
  3106. printk(KERN_INFO
  3107. "md: md_do_sync() got signal ... exiting\n");
  3108. flush_signals(current);
  3109. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3110. goto out;
  3111. }
  3112. /*
  3113. * this loop exits only if either when we are slower than
  3114. * the 'hard' speed limit, or the system was IO-idle for
  3115. * a jiffy.
  3116. * the system might be non-idle CPU-wise, but we only care
  3117. * about not overloading the IO subsystem. (things like an
  3118. * e2fsck being done on the RAID array should execute fast)
  3119. */
  3120. mddev->queue->unplug_fn(mddev->queue);
  3121. cond_resched();
  3122. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  3123. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  3124. if (currspeed > sysctl_speed_limit_min) {
  3125. if ((currspeed > sysctl_speed_limit_max) ||
  3126. !is_mddev_idle(mddev)) {
  3127. msleep_interruptible(250);
  3128. goto repeat;
  3129. }
  3130. }
  3131. }
  3132. printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
  3133. /*
  3134. * this also signals 'finished resyncing' to md_stop
  3135. */
  3136. out:
  3137. mddev->queue->unplug_fn(mddev->queue);
  3138. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  3139. /* tell personality that we are finished */
  3140. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  3141. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3142. mddev->curr_resync > 2 &&
  3143. mddev->curr_resync >= mddev->recovery_cp) {
  3144. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3145. printk(KERN_INFO
  3146. "md: checkpointing recovery of %s.\n",
  3147. mdname(mddev));
  3148. mddev->recovery_cp = mddev->curr_resync;
  3149. } else
  3150. mddev->recovery_cp = MaxSector;
  3151. }
  3152. skip:
  3153. mddev->curr_resync = 0;
  3154. wake_up(&resync_wait);
  3155. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  3156. md_wakeup_thread(mddev->thread);
  3157. }
  3158. /*
  3159. * This routine is regularly called by all per-raid-array threads to
  3160. * deal with generic issues like resync and super-block update.
  3161. * Raid personalities that don't have a thread (linear/raid0) do not
  3162. * need this as they never do any recovery or update the superblock.
  3163. *
  3164. * It does not do any resync itself, but rather "forks" off other threads
  3165. * to do that as needed.
  3166. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  3167. * "->recovery" and create a thread at ->sync_thread.
  3168. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  3169. * and wakeups up this thread which will reap the thread and finish up.
  3170. * This thread also removes any faulty devices (with nr_pending == 0).
  3171. *
  3172. * The overall approach is:
  3173. * 1/ if the superblock needs updating, update it.
  3174. * 2/ If a recovery thread is running, don't do anything else.
  3175. * 3/ If recovery has finished, clean up, possibly marking spares active.
  3176. * 4/ If there are any faulty devices, remove them.
  3177. * 5/ If array is degraded, try to add spares devices
  3178. * 6/ If array has spares or is not in-sync, start a resync thread.
  3179. */
  3180. void md_check_recovery(mddev_t *mddev)
  3181. {
  3182. mdk_rdev_t *rdev;
  3183. struct list_head *rtmp;
  3184. if (mddev->bitmap)
  3185. bitmap_daemon_work(mddev->bitmap);
  3186. if (mddev->ro)
  3187. return;
  3188. if (signal_pending(current)) {
  3189. if (mddev->pers->sync_request) {
  3190. printk(KERN_INFO "md: %s in immediate safe mode\n",
  3191. mdname(mddev));
  3192. mddev->safemode = 2;
  3193. }
  3194. flush_signals(current);
  3195. }
  3196. if ( ! (
  3197. mddev->sb_dirty ||
  3198. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  3199. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  3200. (mddev->safemode == 1) ||
  3201. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  3202. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  3203. ))
  3204. return;
  3205. if (mddev_trylock(mddev)==0) {
  3206. int spares =0;
  3207. spin_lock(&mddev->write_lock);
  3208. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  3209. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  3210. mddev->in_sync = 1;
  3211. mddev->sb_dirty = 1;
  3212. }
  3213. if (mddev->safemode == 1)
  3214. mddev->safemode = 0;
  3215. spin_unlock(&mddev->write_lock);
  3216. if (mddev->sb_dirty)
  3217. md_update_sb(mddev);
  3218. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  3219. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  3220. /* resync/recovery still happening */
  3221. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3222. goto unlock;
  3223. }
  3224. if (mddev->sync_thread) {
  3225. /* resync has finished, collect result */
  3226. md_unregister_thread(mddev->sync_thread);
  3227. mddev->sync_thread = NULL;
  3228. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3229. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3230. /* success...*/
  3231. /* activate any spares */
  3232. mddev->pers->spare_active(mddev);
  3233. }
  3234. md_update_sb(mddev);
  3235. /* if array is no-longer degraded, then any saved_raid_disk
  3236. * information must be scrapped
  3237. */
  3238. if (!mddev->degraded)
  3239. ITERATE_RDEV(mddev,rdev,rtmp)
  3240. rdev->saved_raid_disk = -1;
  3241. mddev->recovery = 0;
  3242. /* flag recovery needed just to double check */
  3243. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3244. goto unlock;
  3245. }
  3246. if (mddev->recovery)
  3247. /* probably just the RECOVERY_NEEDED flag */
  3248. mddev->recovery = 0;
  3249. /* no recovery is running.
  3250. * remove any failed drives, then
  3251. * add spares if possible.
  3252. * Spare are also removed and re-added, to allow
  3253. * the personality to fail the re-add.
  3254. */
  3255. ITERATE_RDEV(mddev,rdev,rtmp)
  3256. if (rdev->raid_disk >= 0 &&
  3257. (rdev->faulty || ! rdev->in_sync) &&
  3258. atomic_read(&rdev->nr_pending)==0) {
  3259. if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0)
  3260. rdev->raid_disk = -1;
  3261. }
  3262. if (mddev->degraded) {
  3263. ITERATE_RDEV(mddev,rdev,rtmp)
  3264. if (rdev->raid_disk < 0
  3265. && !rdev->faulty) {
  3266. if (mddev->pers->hot_add_disk(mddev,rdev))
  3267. spares++;
  3268. else
  3269. break;
  3270. }
  3271. }
  3272. if (!spares && (mddev->recovery_cp == MaxSector )) {
  3273. /* nothing we can do ... */
  3274. goto unlock;
  3275. }
  3276. if (mddev->pers->sync_request) {
  3277. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3278. if (!spares)
  3279. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3280. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  3281. /* We are adding a device or devices to an array
  3282. * which has the bitmap stored on all devices.
  3283. * So make sure all bitmap pages get written
  3284. */
  3285. bitmap_write_all(mddev->bitmap);
  3286. }
  3287. mddev->sync_thread = md_register_thread(md_do_sync,
  3288. mddev,
  3289. "%s_resync");
  3290. if (!mddev->sync_thread) {
  3291. printk(KERN_ERR "%s: could not start resync"
  3292. " thread...\n",
  3293. mdname(mddev));
  3294. /* leave the spares where they are, it shouldn't hurt */
  3295. mddev->recovery = 0;
  3296. } else {
  3297. md_wakeup_thread(mddev->sync_thread);
  3298. }
  3299. }
  3300. unlock:
  3301. mddev_unlock(mddev);
  3302. }
  3303. }
  3304. static int md_notify_reboot(struct notifier_block *this,
  3305. unsigned long code, void *x)
  3306. {
  3307. struct list_head *tmp;
  3308. mddev_t *mddev;
  3309. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  3310. printk(KERN_INFO "md: stopping all md devices.\n");
  3311. ITERATE_MDDEV(mddev,tmp)
  3312. if (mddev_trylock(mddev)==0)
  3313. do_md_stop (mddev, 1);
  3314. /*
  3315. * certain more exotic SCSI devices are known to be
  3316. * volatile wrt too early system reboots. While the
  3317. * right place to handle this issue is the given
  3318. * driver, we do want to have a safe RAID driver ...
  3319. */
  3320. mdelay(1000*1);
  3321. }
  3322. return NOTIFY_DONE;
  3323. }
  3324. static struct notifier_block md_notifier = {
  3325. .notifier_call = md_notify_reboot,
  3326. .next = NULL,
  3327. .priority = INT_MAX, /* before any real devices */
  3328. };
  3329. static void md_geninit(void)
  3330. {
  3331. struct proc_dir_entry *p;
  3332. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  3333. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  3334. if (p)
  3335. p->proc_fops = &md_seq_fops;
  3336. }
  3337. static int __init md_init(void)
  3338. {
  3339. int minor;
  3340. printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
  3341. " MD_SB_DISKS=%d\n",
  3342. MD_MAJOR_VERSION, MD_MINOR_VERSION,
  3343. MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
  3344. printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR,
  3345. BITMAP_MINOR);
  3346. if (register_blkdev(MAJOR_NR, "md"))
  3347. return -1;
  3348. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  3349. unregister_blkdev(MAJOR_NR, "md");
  3350. return -1;
  3351. }
  3352. devfs_mk_dir("md");
  3353. blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
  3354. md_probe, NULL, NULL);
  3355. blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
  3356. md_probe, NULL, NULL);
  3357. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3358. devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
  3359. S_IFBLK|S_IRUSR|S_IWUSR,
  3360. "md/%d", minor);
  3361. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3362. devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
  3363. S_IFBLK|S_IRUSR|S_IWUSR,
  3364. "md/mdp%d", minor);
  3365. register_reboot_notifier(&md_notifier);
  3366. raid_table_header = register_sysctl_table(raid_root_table, 1);
  3367. md_geninit();
  3368. return (0);
  3369. }
  3370. #ifndef MODULE
  3371. /*
  3372. * Searches all registered partitions for autorun RAID arrays
  3373. * at boot time.
  3374. */
  3375. static dev_t detected_devices[128];
  3376. static int dev_cnt;
  3377. void md_autodetect_dev(dev_t dev)
  3378. {
  3379. if (dev_cnt >= 0 && dev_cnt < 127)
  3380. detected_devices[dev_cnt++] = dev;
  3381. }
  3382. static void autostart_arrays(int part)
  3383. {
  3384. mdk_rdev_t *rdev;
  3385. int i;
  3386. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  3387. for (i = 0; i < dev_cnt; i++) {
  3388. dev_t dev = detected_devices[i];
  3389. rdev = md_import_device(dev,0, 0);
  3390. if (IS_ERR(rdev))
  3391. continue;
  3392. if (rdev->faulty) {
  3393. MD_BUG();
  3394. continue;
  3395. }
  3396. list_add(&rdev->same_set, &pending_raid_disks);
  3397. }
  3398. dev_cnt = 0;
  3399. autorun_devices(part);
  3400. }
  3401. #endif
  3402. static __exit void md_exit(void)
  3403. {
  3404. mddev_t *mddev;
  3405. struct list_head *tmp;
  3406. int i;
  3407. blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
  3408. blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
  3409. for (i=0; i < MAX_MD_DEVS; i++)
  3410. devfs_remove("md/%d", i);
  3411. for (i=0; i < MAX_MD_DEVS; i++)
  3412. devfs_remove("md/d%d", i);
  3413. devfs_remove("md");
  3414. unregister_blkdev(MAJOR_NR,"md");
  3415. unregister_blkdev(mdp_major, "mdp");
  3416. unregister_reboot_notifier(&md_notifier);
  3417. unregister_sysctl_table(raid_table_header);
  3418. remove_proc_entry("mdstat", NULL);
  3419. ITERATE_MDDEV(mddev,tmp) {
  3420. struct gendisk *disk = mddev->gendisk;
  3421. if (!disk)
  3422. continue;
  3423. export_array(mddev);
  3424. del_gendisk(disk);
  3425. put_disk(disk);
  3426. mddev->gendisk = NULL;
  3427. mddev_put(mddev);
  3428. }
  3429. }
  3430. module_init(md_init)
  3431. module_exit(md_exit)
  3432. EXPORT_SYMBOL(register_md_personality);
  3433. EXPORT_SYMBOL(unregister_md_personality);
  3434. EXPORT_SYMBOL(md_error);
  3435. EXPORT_SYMBOL(md_done_sync);
  3436. EXPORT_SYMBOL(md_write_start);
  3437. EXPORT_SYMBOL(md_write_end);
  3438. EXPORT_SYMBOL(md_register_thread);
  3439. EXPORT_SYMBOL(md_unregister_thread);
  3440. EXPORT_SYMBOL(md_wakeup_thread);
  3441. EXPORT_SYMBOL(md_print_devices);
  3442. EXPORT_SYMBOL(md_check_recovery);
  3443. MODULE_LICENSE("GPL");