pid.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606
  1. /*
  2. * Generic pidhash and scalable, time-bounded PID allocator
  3. *
  4. * (C) 2002-2003 William Irwin, IBM
  5. * (C) 2004 William Irwin, Oracle
  6. * (C) 2002-2004 Ingo Molnar, Red Hat
  7. *
  8. * pid-structures are backing objects for tasks sharing a given ID to chain
  9. * against. There is very little to them aside from hashing them and
  10. * parking tasks using given ID's on a list.
  11. *
  12. * The hash is always changed with the tasklist_lock write-acquired,
  13. * and the hash is only accessed with the tasklist_lock at least
  14. * read-acquired, so there's no additional SMP locking needed here.
  15. *
  16. * We have a list of bitmap pages, which bitmaps represent the PID space.
  17. * Allocating and freeing PIDs is completely lockless. The worst-case
  18. * allocation scenario when all but one out of 1 million PIDs possible are
  19. * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
  20. * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
  21. *
  22. * Pid namespaces:
  23. * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  24. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  25. * Many thanks to Oleg Nesterov for comments and help
  26. *
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/export.h>
  30. #include <linux/slab.h>
  31. #include <linux/init.h>
  32. #include <linux/rculist.h>
  33. #include <linux/bootmem.h>
  34. #include <linux/hash.h>
  35. #include <linux/pid_namespace.h>
  36. #include <linux/init_task.h>
  37. #include <linux/syscalls.h>
  38. #include <linux/proc_fs.h>
  39. #define pid_hashfn(nr, ns) \
  40. hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
  41. static struct hlist_head *pid_hash;
  42. static unsigned int pidhash_shift = 4;
  43. struct pid init_struct_pid = INIT_STRUCT_PID;
  44. int pid_max = PID_MAX_DEFAULT;
  45. #define RESERVED_PIDS 300
  46. int pid_max_min = RESERVED_PIDS + 1;
  47. int pid_max_max = PID_MAX_LIMIT;
  48. #define BITS_PER_PAGE (PAGE_SIZE*8)
  49. #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
  50. static inline int mk_pid(struct pid_namespace *pid_ns,
  51. struct pidmap *map, int off)
  52. {
  53. return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
  54. }
  55. #define find_next_offset(map, off) \
  56. find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
  57. /*
  58. * PID-map pages start out as NULL, they get allocated upon
  59. * first use and are never deallocated. This way a low pid_max
  60. * value does not cause lots of bitmaps to be allocated, but
  61. * the scheme scales to up to 4 million PIDs, runtime.
  62. */
  63. struct pid_namespace init_pid_ns = {
  64. .kref = {
  65. .refcount = ATOMIC_INIT(2),
  66. },
  67. .pidmap = {
  68. [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
  69. },
  70. .last_pid = 0,
  71. .level = 0,
  72. .child_reaper = &init_task,
  73. .user_ns = &init_user_ns,
  74. .proc_inum = PROC_PID_INIT_INO,
  75. };
  76. EXPORT_SYMBOL_GPL(init_pid_ns);
  77. int is_container_init(struct task_struct *tsk)
  78. {
  79. int ret = 0;
  80. struct pid *pid;
  81. rcu_read_lock();
  82. pid = task_pid(tsk);
  83. if (pid != NULL && pid->numbers[pid->level].nr == 1)
  84. ret = 1;
  85. rcu_read_unlock();
  86. return ret;
  87. }
  88. EXPORT_SYMBOL(is_container_init);
  89. /*
  90. * Note: disable interrupts while the pidmap_lock is held as an
  91. * interrupt might come in and do read_lock(&tasklist_lock).
  92. *
  93. * If we don't disable interrupts there is a nasty deadlock between
  94. * detach_pid()->free_pid() and another cpu that does
  95. * spin_lock(&pidmap_lock) followed by an interrupt routine that does
  96. * read_lock(&tasklist_lock);
  97. *
  98. * After we clean up the tasklist_lock and know there are no
  99. * irq handlers that take it we can leave the interrupts enabled.
  100. * For now it is easier to be safe than to prove it can't happen.
  101. */
  102. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
  103. static void free_pidmap(struct upid *upid)
  104. {
  105. int nr = upid->nr;
  106. struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
  107. int offset = nr & BITS_PER_PAGE_MASK;
  108. clear_bit(offset, map->page);
  109. atomic_inc(&map->nr_free);
  110. }
  111. /*
  112. * If we started walking pids at 'base', is 'a' seen before 'b'?
  113. */
  114. static int pid_before(int base, int a, int b)
  115. {
  116. /*
  117. * This is the same as saying
  118. *
  119. * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
  120. * and that mapping orders 'a' and 'b' with respect to 'base'.
  121. */
  122. return (unsigned)(a - base) < (unsigned)(b - base);
  123. }
  124. /*
  125. * We might be racing with someone else trying to set pid_ns->last_pid
  126. * at the pid allocation time (there's also a sysctl for this, but racing
  127. * with this one is OK, see comment in kernel/pid_namespace.c about it).
  128. * We want the winner to have the "later" value, because if the
  129. * "earlier" value prevails, then a pid may get reused immediately.
  130. *
  131. * Since pids rollover, it is not sufficient to just pick the bigger
  132. * value. We have to consider where we started counting from.
  133. *
  134. * 'base' is the value of pid_ns->last_pid that we observed when
  135. * we started looking for a pid.
  136. *
  137. * 'pid' is the pid that we eventually found.
  138. */
  139. static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
  140. {
  141. int prev;
  142. int last_write = base;
  143. do {
  144. prev = last_write;
  145. last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
  146. } while ((prev != last_write) && (pid_before(base, last_write, pid)));
  147. }
  148. static int alloc_pidmap(struct pid_namespace *pid_ns)
  149. {
  150. int i, offset, max_scan, pid, last = pid_ns->last_pid;
  151. struct pidmap *map;
  152. pid = last + 1;
  153. if (pid >= pid_max)
  154. pid = RESERVED_PIDS;
  155. offset = pid & BITS_PER_PAGE_MASK;
  156. map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
  157. /*
  158. * If last_pid points into the middle of the map->page we
  159. * want to scan this bitmap block twice, the second time
  160. * we start with offset == 0 (or RESERVED_PIDS).
  161. */
  162. max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
  163. for (i = 0; i <= max_scan; ++i) {
  164. if (unlikely(!map->page)) {
  165. void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  166. /*
  167. * Free the page if someone raced with us
  168. * installing it:
  169. */
  170. spin_lock_irq(&pidmap_lock);
  171. if (!map->page) {
  172. map->page = page;
  173. page = NULL;
  174. }
  175. spin_unlock_irq(&pidmap_lock);
  176. kfree(page);
  177. if (unlikely(!map->page))
  178. break;
  179. }
  180. if (likely(atomic_read(&map->nr_free))) {
  181. do {
  182. if (!test_and_set_bit(offset, map->page)) {
  183. atomic_dec(&map->nr_free);
  184. set_last_pid(pid_ns, last, pid);
  185. return pid;
  186. }
  187. offset = find_next_offset(map, offset);
  188. pid = mk_pid(pid_ns, map, offset);
  189. } while (offset < BITS_PER_PAGE && pid < pid_max);
  190. }
  191. if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
  192. ++map;
  193. offset = 0;
  194. } else {
  195. map = &pid_ns->pidmap[0];
  196. offset = RESERVED_PIDS;
  197. if (unlikely(last == offset))
  198. break;
  199. }
  200. pid = mk_pid(pid_ns, map, offset);
  201. }
  202. return -1;
  203. }
  204. int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
  205. {
  206. int offset;
  207. struct pidmap *map, *end;
  208. if (last >= PID_MAX_LIMIT)
  209. return -1;
  210. offset = (last + 1) & BITS_PER_PAGE_MASK;
  211. map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
  212. end = &pid_ns->pidmap[PIDMAP_ENTRIES];
  213. for (; map < end; map++, offset = 0) {
  214. if (unlikely(!map->page))
  215. continue;
  216. offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
  217. if (offset < BITS_PER_PAGE)
  218. return mk_pid(pid_ns, map, offset);
  219. }
  220. return -1;
  221. }
  222. void put_pid(struct pid *pid)
  223. {
  224. struct pid_namespace *ns;
  225. if (!pid)
  226. return;
  227. ns = pid->numbers[pid->level].ns;
  228. if ((atomic_read(&pid->count) == 1) ||
  229. atomic_dec_and_test(&pid->count)) {
  230. kmem_cache_free(ns->pid_cachep, pid);
  231. put_pid_ns(ns);
  232. }
  233. }
  234. EXPORT_SYMBOL_GPL(put_pid);
  235. static void delayed_put_pid(struct rcu_head *rhp)
  236. {
  237. struct pid *pid = container_of(rhp, struct pid, rcu);
  238. put_pid(pid);
  239. }
  240. void free_pid(struct pid *pid)
  241. {
  242. /* We can be called with write_lock_irq(&tasklist_lock) held */
  243. int i;
  244. unsigned long flags;
  245. spin_lock_irqsave(&pidmap_lock, flags);
  246. for (i = 0; i <= pid->level; i++) {
  247. struct upid *upid = pid->numbers + i;
  248. struct pid_namespace *ns = upid->ns;
  249. hlist_del_rcu(&upid->pid_chain);
  250. switch(--ns->nr_hashed) {
  251. case 1:
  252. /* When all that is left in the pid namespace
  253. * is the reaper wake up the reaper. The reaper
  254. * may be sleeping in zap_pid_ns_processes().
  255. */
  256. wake_up_process(ns->child_reaper);
  257. break;
  258. case 0:
  259. ns->nr_hashed = -1;
  260. schedule_work(&ns->proc_work);
  261. break;
  262. }
  263. }
  264. spin_unlock_irqrestore(&pidmap_lock, flags);
  265. for (i = 0; i <= pid->level; i++)
  266. free_pidmap(pid->numbers + i);
  267. call_rcu(&pid->rcu, delayed_put_pid);
  268. }
  269. struct pid *alloc_pid(struct pid_namespace *ns)
  270. {
  271. struct pid *pid;
  272. enum pid_type type;
  273. int i, nr;
  274. struct pid_namespace *tmp;
  275. struct upid *upid;
  276. pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
  277. if (!pid)
  278. goto out;
  279. tmp = ns;
  280. pid->level = ns->level;
  281. for (i = ns->level; i >= 0; i--) {
  282. nr = alloc_pidmap(tmp);
  283. if (nr < 0)
  284. goto out_free;
  285. pid->numbers[i].nr = nr;
  286. pid->numbers[i].ns = tmp;
  287. tmp = tmp->parent;
  288. }
  289. if (unlikely(is_child_reaper(pid))) {
  290. if (pid_ns_prepare_proc(ns))
  291. goto out_free;
  292. }
  293. get_pid_ns(ns);
  294. atomic_set(&pid->count, 1);
  295. for (type = 0; type < PIDTYPE_MAX; ++type)
  296. INIT_HLIST_HEAD(&pid->tasks[type]);
  297. upid = pid->numbers + ns->level;
  298. spin_lock_irq(&pidmap_lock);
  299. if (ns->nr_hashed < 0)
  300. goto out_unlock;
  301. for ( ; upid >= pid->numbers; --upid) {
  302. hlist_add_head_rcu(&upid->pid_chain,
  303. &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
  304. upid->ns->nr_hashed++;
  305. }
  306. spin_unlock_irq(&pidmap_lock);
  307. out:
  308. return pid;
  309. out_unlock:
  310. spin_unlock(&pidmap_lock);
  311. out_free:
  312. while (++i <= ns->level)
  313. free_pidmap(pid->numbers + i);
  314. kmem_cache_free(ns->pid_cachep, pid);
  315. pid = NULL;
  316. goto out;
  317. }
  318. struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
  319. {
  320. struct hlist_node *elem;
  321. struct upid *pnr;
  322. hlist_for_each_entry_rcu(pnr, elem,
  323. &pid_hash[pid_hashfn(nr, ns)], pid_chain)
  324. if (pnr->nr == nr && pnr->ns == ns)
  325. return container_of(pnr, struct pid,
  326. numbers[ns->level]);
  327. return NULL;
  328. }
  329. EXPORT_SYMBOL_GPL(find_pid_ns);
  330. struct pid *find_vpid(int nr)
  331. {
  332. return find_pid_ns(nr, task_active_pid_ns(current));
  333. }
  334. EXPORT_SYMBOL_GPL(find_vpid);
  335. /*
  336. * attach_pid() must be called with the tasklist_lock write-held.
  337. */
  338. void attach_pid(struct task_struct *task, enum pid_type type,
  339. struct pid *pid)
  340. {
  341. struct pid_link *link;
  342. link = &task->pids[type];
  343. link->pid = pid;
  344. hlist_add_head_rcu(&link->node, &pid->tasks[type]);
  345. }
  346. static void __change_pid(struct task_struct *task, enum pid_type type,
  347. struct pid *new)
  348. {
  349. struct pid_link *link;
  350. struct pid *pid;
  351. int tmp;
  352. link = &task->pids[type];
  353. pid = link->pid;
  354. hlist_del_rcu(&link->node);
  355. link->pid = new;
  356. for (tmp = PIDTYPE_MAX; --tmp >= 0; )
  357. if (!hlist_empty(&pid->tasks[tmp]))
  358. return;
  359. free_pid(pid);
  360. }
  361. void detach_pid(struct task_struct *task, enum pid_type type)
  362. {
  363. __change_pid(task, type, NULL);
  364. }
  365. void change_pid(struct task_struct *task, enum pid_type type,
  366. struct pid *pid)
  367. {
  368. __change_pid(task, type, pid);
  369. attach_pid(task, type, pid);
  370. }
  371. /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
  372. void transfer_pid(struct task_struct *old, struct task_struct *new,
  373. enum pid_type type)
  374. {
  375. new->pids[type].pid = old->pids[type].pid;
  376. hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
  377. }
  378. struct task_struct *pid_task(struct pid *pid, enum pid_type type)
  379. {
  380. struct task_struct *result = NULL;
  381. if (pid) {
  382. struct hlist_node *first;
  383. first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
  384. lockdep_tasklist_lock_is_held());
  385. if (first)
  386. result = hlist_entry(first, struct task_struct, pids[(type)].node);
  387. }
  388. return result;
  389. }
  390. EXPORT_SYMBOL(pid_task);
  391. /*
  392. * Must be called under rcu_read_lock().
  393. */
  394. struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
  395. {
  396. rcu_lockdep_assert(rcu_read_lock_held(),
  397. "find_task_by_pid_ns() needs rcu_read_lock()"
  398. " protection");
  399. return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
  400. }
  401. struct task_struct *find_task_by_vpid(pid_t vnr)
  402. {
  403. return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
  404. }
  405. struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
  406. {
  407. struct pid *pid;
  408. rcu_read_lock();
  409. if (type != PIDTYPE_PID)
  410. task = task->group_leader;
  411. pid = get_pid(task->pids[type].pid);
  412. rcu_read_unlock();
  413. return pid;
  414. }
  415. EXPORT_SYMBOL_GPL(get_task_pid);
  416. struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
  417. {
  418. struct task_struct *result;
  419. rcu_read_lock();
  420. result = pid_task(pid, type);
  421. if (result)
  422. get_task_struct(result);
  423. rcu_read_unlock();
  424. return result;
  425. }
  426. EXPORT_SYMBOL_GPL(get_pid_task);
  427. struct pid *find_get_pid(pid_t nr)
  428. {
  429. struct pid *pid;
  430. rcu_read_lock();
  431. pid = get_pid(find_vpid(nr));
  432. rcu_read_unlock();
  433. return pid;
  434. }
  435. EXPORT_SYMBOL_GPL(find_get_pid);
  436. pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
  437. {
  438. struct upid *upid;
  439. pid_t nr = 0;
  440. if (pid && ns->level <= pid->level) {
  441. upid = &pid->numbers[ns->level];
  442. if (upid->ns == ns)
  443. nr = upid->nr;
  444. }
  445. return nr;
  446. }
  447. EXPORT_SYMBOL_GPL(pid_nr_ns);
  448. pid_t pid_vnr(struct pid *pid)
  449. {
  450. return pid_nr_ns(pid, task_active_pid_ns(current));
  451. }
  452. EXPORT_SYMBOL_GPL(pid_vnr);
  453. pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
  454. struct pid_namespace *ns)
  455. {
  456. pid_t nr = 0;
  457. rcu_read_lock();
  458. if (!ns)
  459. ns = task_active_pid_ns(current);
  460. if (likely(pid_alive(task))) {
  461. if (type != PIDTYPE_PID)
  462. task = task->group_leader;
  463. nr = pid_nr_ns(task->pids[type].pid, ns);
  464. }
  465. rcu_read_unlock();
  466. return nr;
  467. }
  468. EXPORT_SYMBOL(__task_pid_nr_ns);
  469. pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
  470. {
  471. return pid_nr_ns(task_tgid(tsk), ns);
  472. }
  473. EXPORT_SYMBOL(task_tgid_nr_ns);
  474. struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
  475. {
  476. return ns_of_pid(task_pid(tsk));
  477. }
  478. EXPORT_SYMBOL_GPL(task_active_pid_ns);
  479. /*
  480. * Used by proc to find the first pid that is greater than or equal to nr.
  481. *
  482. * If there is a pid at nr this function is exactly the same as find_pid_ns.
  483. */
  484. struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
  485. {
  486. struct pid *pid;
  487. do {
  488. pid = find_pid_ns(nr, ns);
  489. if (pid)
  490. break;
  491. nr = next_pidmap(ns, nr);
  492. } while (nr > 0);
  493. return pid;
  494. }
  495. /*
  496. * The pid hash table is scaled according to the amount of memory in the
  497. * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
  498. * more.
  499. */
  500. void __init pidhash_init(void)
  501. {
  502. unsigned int i, pidhash_size;
  503. pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
  504. HASH_EARLY | HASH_SMALL,
  505. &pidhash_shift, NULL,
  506. 0, 4096);
  507. pidhash_size = 1U << pidhash_shift;
  508. for (i = 0; i < pidhash_size; i++)
  509. INIT_HLIST_HEAD(&pid_hash[i]);
  510. }
  511. void __init pidmap_init(void)
  512. {
  513. /* bump default and minimum pid_max based on number of cpus */
  514. pid_max = min(pid_max_max, max_t(int, pid_max,
  515. PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
  516. pid_max_min = max_t(int, pid_max_min,
  517. PIDS_PER_CPU_MIN * num_possible_cpus());
  518. pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
  519. init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  520. /* Reserve PID 0. We never call free_pidmap(0) */
  521. set_bit(0, init_pid_ns.pidmap[0].page);
  522. atomic_dec(&init_pid_ns.pidmap[0].nr_free);
  523. init_pid_ns.nr_hashed = 1;
  524. init_pid_ns.pid_cachep = KMEM_CACHE(pid,
  525. SLAB_HWCACHE_ALIGN | SLAB_PANIC);
  526. }