ctree.c 71 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "transaction.h"
  22. #include "print-tree.h"
  23. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  24. *root, struct btrfs_path *path, int level);
  25. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  26. *root, struct btrfs_key *ins_key,
  27. struct btrfs_path *path, int data_size, int extend);
  28. static int push_node_left(struct btrfs_trans_handle *trans,
  29. struct btrfs_root *root, struct extent_buffer *dst,
  30. struct extent_buffer *src);
  31. static int balance_node_right(struct btrfs_trans_handle *trans,
  32. struct btrfs_root *root,
  33. struct extent_buffer *dst_buf,
  34. struct extent_buffer *src_buf);
  35. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  36. struct btrfs_path *path, int level, int slot);
  37. inline void btrfs_init_path(struct btrfs_path *p)
  38. {
  39. memset(p, 0, sizeof(*p));
  40. }
  41. struct btrfs_path *btrfs_alloc_path(void)
  42. {
  43. struct btrfs_path *path;
  44. path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
  45. if (path) {
  46. btrfs_init_path(path);
  47. path->reada = 1;
  48. }
  49. return path;
  50. }
  51. void btrfs_free_path(struct btrfs_path *p)
  52. {
  53. btrfs_release_path(NULL, p);
  54. kmem_cache_free(btrfs_path_cachep, p);
  55. }
  56. void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
  57. {
  58. int i;
  59. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  60. if (!p->nodes[i])
  61. break;
  62. free_extent_buffer(p->nodes[i]);
  63. }
  64. memset(p, 0, sizeof(*p));
  65. }
  66. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  67. struct btrfs_root *root,
  68. struct extent_buffer *buf,
  69. struct extent_buffer **cow_ret, u64 new_root_objectid)
  70. {
  71. struct extent_buffer *cow;
  72. u32 nritems;
  73. int ret = 0;
  74. int level;
  75. struct btrfs_key first_key;
  76. struct btrfs_root *new_root;
  77. new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
  78. if (!new_root)
  79. return -ENOMEM;
  80. memcpy(new_root, root, sizeof(*new_root));
  81. new_root->root_key.objectid = new_root_objectid;
  82. WARN_ON(root->ref_cows && trans->transid !=
  83. root->fs_info->running_transaction->transid);
  84. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  85. level = btrfs_header_level(buf);
  86. nritems = btrfs_header_nritems(buf);
  87. if (nritems) {
  88. if (level == 0)
  89. btrfs_item_key_to_cpu(buf, &first_key, 0);
  90. else
  91. btrfs_node_key_to_cpu(buf, &first_key, 0);
  92. } else {
  93. first_key.objectid = 0;
  94. }
  95. cow = __btrfs_alloc_free_block(trans, new_root, buf->len,
  96. new_root_objectid,
  97. trans->transid, first_key.objectid,
  98. level, buf->start, 0);
  99. if (IS_ERR(cow)) {
  100. kfree(new_root);
  101. return PTR_ERR(cow);
  102. }
  103. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  104. btrfs_set_header_bytenr(cow, cow->start);
  105. btrfs_set_header_generation(cow, trans->transid);
  106. btrfs_set_header_owner(cow, new_root_objectid);
  107. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  108. ret = btrfs_inc_ref(trans, new_root, buf);
  109. kfree(new_root);
  110. if (ret)
  111. return ret;
  112. btrfs_mark_buffer_dirty(cow);
  113. *cow_ret = cow;
  114. return 0;
  115. }
  116. int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  117. struct btrfs_root *root,
  118. struct extent_buffer *buf,
  119. struct extent_buffer *parent, int parent_slot,
  120. struct extent_buffer **cow_ret,
  121. u64 search_start, u64 empty_size)
  122. {
  123. u64 root_gen;
  124. struct extent_buffer *cow;
  125. u32 nritems;
  126. int ret = 0;
  127. int different_trans = 0;
  128. int level;
  129. struct btrfs_key first_key;
  130. if (root->ref_cows) {
  131. root_gen = trans->transid;
  132. } else {
  133. root_gen = 0;
  134. }
  135. WARN_ON(root->ref_cows && trans->transid !=
  136. root->fs_info->running_transaction->transid);
  137. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  138. level = btrfs_header_level(buf);
  139. nritems = btrfs_header_nritems(buf);
  140. if (nritems) {
  141. if (level == 0)
  142. btrfs_item_key_to_cpu(buf, &first_key, 0);
  143. else
  144. btrfs_node_key_to_cpu(buf, &first_key, 0);
  145. } else {
  146. first_key.objectid = 0;
  147. }
  148. cow = __btrfs_alloc_free_block(trans, root, buf->len,
  149. root->root_key.objectid,
  150. root_gen, first_key.objectid, level,
  151. search_start, empty_size);
  152. if (IS_ERR(cow))
  153. return PTR_ERR(cow);
  154. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  155. btrfs_set_header_bytenr(cow, cow->start);
  156. btrfs_set_header_generation(cow, trans->transid);
  157. btrfs_set_header_owner(cow, root->root_key.objectid);
  158. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  159. if (btrfs_header_generation(buf) != trans->transid) {
  160. different_trans = 1;
  161. ret = btrfs_inc_ref(trans, root, buf);
  162. if (ret)
  163. return ret;
  164. } else {
  165. clean_tree_block(trans, root, buf);
  166. }
  167. if (buf == root->node) {
  168. root_gen = btrfs_header_generation(buf);
  169. root->node = cow;
  170. extent_buffer_get(cow);
  171. if (buf != root->commit_root) {
  172. btrfs_free_extent(trans, root, buf->start,
  173. buf->len, root->root_key.objectid,
  174. root_gen, 0, 0, 1);
  175. }
  176. free_extent_buffer(buf);
  177. } else {
  178. root_gen = btrfs_header_generation(parent);
  179. btrfs_set_node_blockptr(parent, parent_slot,
  180. cow->start);
  181. WARN_ON(trans->transid == 0);
  182. btrfs_set_node_ptr_generation(parent, parent_slot,
  183. trans->transid);
  184. btrfs_mark_buffer_dirty(parent);
  185. WARN_ON(btrfs_header_generation(parent) != trans->transid);
  186. btrfs_free_extent(trans, root, buf->start, buf->len,
  187. btrfs_header_owner(parent), root_gen,
  188. 0, 0, 1);
  189. }
  190. free_extent_buffer(buf);
  191. btrfs_mark_buffer_dirty(cow);
  192. *cow_ret = cow;
  193. return 0;
  194. }
  195. int btrfs_cow_block(struct btrfs_trans_handle *trans,
  196. struct btrfs_root *root, struct extent_buffer *buf,
  197. struct extent_buffer *parent, int parent_slot,
  198. struct extent_buffer **cow_ret)
  199. {
  200. u64 search_start;
  201. int ret;
  202. if (trans->transaction != root->fs_info->running_transaction) {
  203. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  204. root->fs_info->running_transaction->transid);
  205. WARN_ON(1);
  206. }
  207. if (trans->transid != root->fs_info->generation) {
  208. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  209. root->fs_info->generation);
  210. WARN_ON(1);
  211. }
  212. if (btrfs_header_generation(buf) == trans->transid) {
  213. *cow_ret = buf;
  214. return 0;
  215. }
  216. search_start = buf->start & ~((u64)BTRFS_BLOCK_GROUP_SIZE - 1);
  217. ret = __btrfs_cow_block(trans, root, buf, parent,
  218. parent_slot, cow_ret, search_start, 0);
  219. return ret;
  220. }
  221. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  222. {
  223. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  224. return 1;
  225. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  226. return 1;
  227. return 0;
  228. }
  229. /*
  230. * compare two keys in a memcmp fashion
  231. */
  232. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  233. {
  234. struct btrfs_key k1;
  235. btrfs_disk_key_to_cpu(&k1, disk);
  236. if (k1.objectid > k2->objectid)
  237. return 1;
  238. if (k1.objectid < k2->objectid)
  239. return -1;
  240. if (k1.type > k2->type)
  241. return 1;
  242. if (k1.type < k2->type)
  243. return -1;
  244. if (k1.offset > k2->offset)
  245. return 1;
  246. if (k1.offset < k2->offset)
  247. return -1;
  248. return 0;
  249. }
  250. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  251. struct btrfs_root *root, struct extent_buffer *parent,
  252. int start_slot, int cache_only, u64 *last_ret,
  253. struct btrfs_key *progress)
  254. {
  255. struct extent_buffer *cur;
  256. struct extent_buffer *tmp;
  257. u64 blocknr;
  258. u64 search_start = *last_ret;
  259. u64 last_block = 0;
  260. u64 other;
  261. u32 parent_nritems;
  262. int end_slot;
  263. int i;
  264. int err = 0;
  265. int parent_level;
  266. int uptodate;
  267. u32 blocksize;
  268. int progress_passed = 0;
  269. struct btrfs_disk_key disk_key;
  270. parent_level = btrfs_header_level(parent);
  271. if (cache_only && parent_level != 1)
  272. return 0;
  273. if (trans->transaction != root->fs_info->running_transaction) {
  274. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  275. root->fs_info->running_transaction->transid);
  276. WARN_ON(1);
  277. }
  278. if (trans->transid != root->fs_info->generation) {
  279. printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
  280. root->fs_info->generation);
  281. WARN_ON(1);
  282. }
  283. parent_nritems = btrfs_header_nritems(parent);
  284. blocksize = btrfs_level_size(root, parent_level - 1);
  285. end_slot = parent_nritems;
  286. if (parent_nritems == 1)
  287. return 0;
  288. for (i = start_slot; i < end_slot; i++) {
  289. int close = 1;
  290. if (!parent->map_token) {
  291. map_extent_buffer(parent,
  292. btrfs_node_key_ptr_offset(i),
  293. sizeof(struct btrfs_key_ptr),
  294. &parent->map_token, &parent->kaddr,
  295. &parent->map_start, &parent->map_len,
  296. KM_USER1);
  297. }
  298. btrfs_node_key(parent, &disk_key, i);
  299. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  300. continue;
  301. progress_passed = 1;
  302. blocknr = btrfs_node_blockptr(parent, i);
  303. if (last_block == 0)
  304. last_block = blocknr;
  305. if (i > 0) {
  306. other = btrfs_node_blockptr(parent, i - 1);
  307. close = close_blocks(blocknr, other, blocksize);
  308. }
  309. if (close && i < end_slot - 2) {
  310. other = btrfs_node_blockptr(parent, i + 1);
  311. close = close_blocks(blocknr, other, blocksize);
  312. }
  313. if (close) {
  314. last_block = blocknr;
  315. continue;
  316. }
  317. if (parent->map_token) {
  318. unmap_extent_buffer(parent, parent->map_token,
  319. KM_USER1);
  320. parent->map_token = NULL;
  321. }
  322. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  323. if (cur)
  324. uptodate = btrfs_buffer_uptodate(cur);
  325. else
  326. uptodate = 0;
  327. if (!cur || !uptodate) {
  328. if (cache_only) {
  329. free_extent_buffer(cur);
  330. continue;
  331. }
  332. if (!cur) {
  333. cur = read_tree_block(root, blocknr,
  334. blocksize);
  335. } else if (!uptodate) {
  336. btrfs_read_buffer(cur);
  337. }
  338. }
  339. if (search_start == 0)
  340. search_start = last_block;
  341. err = __btrfs_cow_block(trans, root, cur, parent, i,
  342. &tmp, search_start,
  343. min(16 * blocksize,
  344. (end_slot - i) * blocksize));
  345. if (err) {
  346. free_extent_buffer(cur);
  347. break;
  348. }
  349. search_start = tmp->start;
  350. last_block = tmp->start;
  351. *last_ret = search_start;
  352. if (parent_level == 1)
  353. btrfs_clear_buffer_defrag(tmp);
  354. free_extent_buffer(tmp);
  355. }
  356. if (parent->map_token) {
  357. unmap_extent_buffer(parent, parent->map_token,
  358. KM_USER1);
  359. parent->map_token = NULL;
  360. }
  361. return err;
  362. }
  363. /*
  364. * The leaf data grows from end-to-front in the node.
  365. * this returns the address of the start of the last item,
  366. * which is the stop of the leaf data stack
  367. */
  368. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  369. struct extent_buffer *leaf)
  370. {
  371. u32 nr = btrfs_header_nritems(leaf);
  372. if (nr == 0)
  373. return BTRFS_LEAF_DATA_SIZE(root);
  374. return btrfs_item_offset_nr(leaf, nr - 1);
  375. }
  376. static int check_node(struct btrfs_root *root, struct btrfs_path *path,
  377. int level)
  378. {
  379. struct extent_buffer *parent = NULL;
  380. struct extent_buffer *node = path->nodes[level];
  381. struct btrfs_disk_key parent_key;
  382. struct btrfs_disk_key node_key;
  383. int parent_slot;
  384. int slot;
  385. struct btrfs_key cpukey;
  386. u32 nritems = btrfs_header_nritems(node);
  387. if (path->nodes[level + 1])
  388. parent = path->nodes[level + 1];
  389. slot = path->slots[level];
  390. BUG_ON(nritems == 0);
  391. if (parent) {
  392. parent_slot = path->slots[level + 1];
  393. btrfs_node_key(parent, &parent_key, parent_slot);
  394. btrfs_node_key(node, &node_key, 0);
  395. BUG_ON(memcmp(&parent_key, &node_key,
  396. sizeof(struct btrfs_disk_key)));
  397. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  398. btrfs_header_bytenr(node));
  399. }
  400. BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
  401. if (slot != 0) {
  402. btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
  403. btrfs_node_key(node, &node_key, slot);
  404. BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
  405. }
  406. if (slot < nritems - 1) {
  407. btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
  408. btrfs_node_key(node, &node_key, slot);
  409. BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
  410. }
  411. return 0;
  412. }
  413. static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
  414. int level)
  415. {
  416. struct extent_buffer *leaf = path->nodes[level];
  417. struct extent_buffer *parent = NULL;
  418. int parent_slot;
  419. struct btrfs_key cpukey;
  420. struct btrfs_disk_key parent_key;
  421. struct btrfs_disk_key leaf_key;
  422. int slot = path->slots[0];
  423. u32 nritems = btrfs_header_nritems(leaf);
  424. if (path->nodes[level + 1])
  425. parent = path->nodes[level + 1];
  426. if (nritems == 0)
  427. return 0;
  428. if (parent) {
  429. parent_slot = path->slots[level + 1];
  430. btrfs_node_key(parent, &parent_key, parent_slot);
  431. btrfs_item_key(leaf, &leaf_key, 0);
  432. BUG_ON(memcmp(&parent_key, &leaf_key,
  433. sizeof(struct btrfs_disk_key)));
  434. BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
  435. btrfs_header_bytenr(leaf));
  436. }
  437. #if 0
  438. for (i = 0; nritems > 1 && i < nritems - 2; i++) {
  439. btrfs_item_key_to_cpu(leaf, &cpukey, i + 1);
  440. btrfs_item_key(leaf, &leaf_key, i);
  441. if (comp_keys(&leaf_key, &cpukey) >= 0) {
  442. btrfs_print_leaf(root, leaf);
  443. printk("slot %d offset bad key\n", i);
  444. BUG_ON(1);
  445. }
  446. if (btrfs_item_offset_nr(leaf, i) !=
  447. btrfs_item_end_nr(leaf, i + 1)) {
  448. btrfs_print_leaf(root, leaf);
  449. printk("slot %d offset bad\n", i);
  450. BUG_ON(1);
  451. }
  452. if (i == 0) {
  453. if (btrfs_item_offset_nr(leaf, i) +
  454. btrfs_item_size_nr(leaf, i) !=
  455. BTRFS_LEAF_DATA_SIZE(root)) {
  456. btrfs_print_leaf(root, leaf);
  457. printk("slot %d first offset bad\n", i);
  458. BUG_ON(1);
  459. }
  460. }
  461. }
  462. if (nritems > 0) {
  463. if (btrfs_item_size_nr(leaf, nritems - 1) > 4096) {
  464. btrfs_print_leaf(root, leaf);
  465. printk("slot %d bad size \n", nritems - 1);
  466. BUG_ON(1);
  467. }
  468. }
  469. #endif
  470. if (slot != 0 && slot < nritems - 1) {
  471. btrfs_item_key(leaf, &leaf_key, slot);
  472. btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
  473. if (comp_keys(&leaf_key, &cpukey) <= 0) {
  474. btrfs_print_leaf(root, leaf);
  475. printk("slot %d offset bad key\n", slot);
  476. BUG_ON(1);
  477. }
  478. if (btrfs_item_offset_nr(leaf, slot - 1) !=
  479. btrfs_item_end_nr(leaf, slot)) {
  480. btrfs_print_leaf(root, leaf);
  481. printk("slot %d offset bad\n", slot);
  482. BUG_ON(1);
  483. }
  484. }
  485. if (slot < nritems - 1) {
  486. btrfs_item_key(leaf, &leaf_key, slot);
  487. btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
  488. BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
  489. if (btrfs_item_offset_nr(leaf, slot) !=
  490. btrfs_item_end_nr(leaf, slot + 1)) {
  491. btrfs_print_leaf(root, leaf);
  492. printk("slot %d offset bad\n", slot);
  493. BUG_ON(1);
  494. }
  495. }
  496. BUG_ON(btrfs_item_offset_nr(leaf, 0) +
  497. btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
  498. return 0;
  499. }
  500. static int noinline check_block(struct btrfs_root *root,
  501. struct btrfs_path *path, int level)
  502. {
  503. return 0;
  504. #if 0
  505. struct extent_buffer *buf = path->nodes[level];
  506. if (memcmp_extent_buffer(buf, root->fs_info->fsid,
  507. (unsigned long)btrfs_header_fsid(buf),
  508. BTRFS_FSID_SIZE)) {
  509. printk("warning bad block %Lu\n", buf->start);
  510. return 1;
  511. }
  512. #endif
  513. if (level == 0)
  514. return check_leaf(root, path, level);
  515. return check_node(root, path, level);
  516. }
  517. /*
  518. * search for key in the extent_buffer. The items start at offset p,
  519. * and they are item_size apart. There are 'max' items in p.
  520. *
  521. * the slot in the array is returned via slot, and it points to
  522. * the place where you would insert key if it is not found in
  523. * the array.
  524. *
  525. * slot may point to max if the key is bigger than all of the keys
  526. */
  527. static int generic_bin_search(struct extent_buffer *eb, unsigned long p,
  528. int item_size, struct btrfs_key *key,
  529. int max, int *slot)
  530. {
  531. int low = 0;
  532. int high = max;
  533. int mid;
  534. int ret;
  535. struct btrfs_disk_key *tmp = NULL;
  536. struct btrfs_disk_key unaligned;
  537. unsigned long offset;
  538. char *map_token = NULL;
  539. char *kaddr = NULL;
  540. unsigned long map_start = 0;
  541. unsigned long map_len = 0;
  542. int err;
  543. while(low < high) {
  544. mid = (low + high) / 2;
  545. offset = p + mid * item_size;
  546. if (!map_token || offset < map_start ||
  547. (offset + sizeof(struct btrfs_disk_key)) >
  548. map_start + map_len) {
  549. if (map_token) {
  550. unmap_extent_buffer(eb, map_token, KM_USER0);
  551. map_token = NULL;
  552. }
  553. err = map_extent_buffer(eb, offset,
  554. sizeof(struct btrfs_disk_key),
  555. &map_token, &kaddr,
  556. &map_start, &map_len, KM_USER0);
  557. if (!err) {
  558. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  559. map_start);
  560. } else {
  561. read_extent_buffer(eb, &unaligned,
  562. offset, sizeof(unaligned));
  563. tmp = &unaligned;
  564. }
  565. } else {
  566. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  567. map_start);
  568. }
  569. ret = comp_keys(tmp, key);
  570. if (ret < 0)
  571. low = mid + 1;
  572. else if (ret > 0)
  573. high = mid;
  574. else {
  575. *slot = mid;
  576. if (map_token)
  577. unmap_extent_buffer(eb, map_token, KM_USER0);
  578. return 0;
  579. }
  580. }
  581. *slot = low;
  582. if (map_token)
  583. unmap_extent_buffer(eb, map_token, KM_USER0);
  584. return 1;
  585. }
  586. /*
  587. * simple bin_search frontend that does the right thing for
  588. * leaves vs nodes
  589. */
  590. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  591. int level, int *slot)
  592. {
  593. if (level == 0) {
  594. return generic_bin_search(eb,
  595. offsetof(struct btrfs_leaf, items),
  596. sizeof(struct btrfs_item),
  597. key, btrfs_header_nritems(eb),
  598. slot);
  599. } else {
  600. return generic_bin_search(eb,
  601. offsetof(struct btrfs_node, ptrs),
  602. sizeof(struct btrfs_key_ptr),
  603. key, btrfs_header_nritems(eb),
  604. slot);
  605. }
  606. return -1;
  607. }
  608. static struct extent_buffer *read_node_slot(struct btrfs_root *root,
  609. struct extent_buffer *parent, int slot)
  610. {
  611. if (slot < 0)
  612. return NULL;
  613. if (slot >= btrfs_header_nritems(parent))
  614. return NULL;
  615. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  616. btrfs_level_size(root, btrfs_header_level(parent) - 1));
  617. }
  618. static int balance_level(struct btrfs_trans_handle *trans,
  619. struct btrfs_root *root,
  620. struct btrfs_path *path, int level)
  621. {
  622. struct extent_buffer *right = NULL;
  623. struct extent_buffer *mid;
  624. struct extent_buffer *left = NULL;
  625. struct extent_buffer *parent = NULL;
  626. int ret = 0;
  627. int wret;
  628. int pslot;
  629. int orig_slot = path->slots[level];
  630. int err_on_enospc = 0;
  631. u64 orig_ptr;
  632. if (level == 0)
  633. return 0;
  634. mid = path->nodes[level];
  635. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  636. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  637. if (level < BTRFS_MAX_LEVEL - 1)
  638. parent = path->nodes[level + 1];
  639. pslot = path->slots[level + 1];
  640. /*
  641. * deal with the case where there is only one pointer in the root
  642. * by promoting the node below to a root
  643. */
  644. if (!parent) {
  645. struct extent_buffer *child;
  646. if (btrfs_header_nritems(mid) != 1)
  647. return 0;
  648. /* promote the child to a root */
  649. child = read_node_slot(root, mid, 0);
  650. BUG_ON(!child);
  651. root->node = child;
  652. path->nodes[level] = NULL;
  653. clean_tree_block(trans, root, mid);
  654. wait_on_tree_block_writeback(root, mid);
  655. /* once for the path */
  656. free_extent_buffer(mid);
  657. ret = btrfs_free_extent(trans, root, mid->start, mid->len,
  658. root->root_key.objectid,
  659. btrfs_header_generation(mid), 0, 0, 1);
  660. /* once for the root ptr */
  661. free_extent_buffer(mid);
  662. return ret;
  663. }
  664. if (btrfs_header_nritems(mid) >
  665. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  666. return 0;
  667. if (btrfs_header_nritems(mid) < 2)
  668. err_on_enospc = 1;
  669. left = read_node_slot(root, parent, pslot - 1);
  670. if (left) {
  671. wret = btrfs_cow_block(trans, root, left,
  672. parent, pslot - 1, &left);
  673. if (wret) {
  674. ret = wret;
  675. goto enospc;
  676. }
  677. }
  678. right = read_node_slot(root, parent, pslot + 1);
  679. if (right) {
  680. wret = btrfs_cow_block(trans, root, right,
  681. parent, pslot + 1, &right);
  682. if (wret) {
  683. ret = wret;
  684. goto enospc;
  685. }
  686. }
  687. /* first, try to make some room in the middle buffer */
  688. if (left) {
  689. orig_slot += btrfs_header_nritems(left);
  690. wret = push_node_left(trans, root, left, mid);
  691. if (wret < 0)
  692. ret = wret;
  693. if (btrfs_header_nritems(mid) < 2)
  694. err_on_enospc = 1;
  695. }
  696. /*
  697. * then try to empty the right most buffer into the middle
  698. */
  699. if (right) {
  700. wret = push_node_left(trans, root, mid, right);
  701. if (wret < 0 && wret != -ENOSPC)
  702. ret = wret;
  703. if (btrfs_header_nritems(right) == 0) {
  704. u64 bytenr = right->start;
  705. u64 generation = btrfs_header_generation(parent);
  706. u32 blocksize = right->len;
  707. clean_tree_block(trans, root, right);
  708. wait_on_tree_block_writeback(root, right);
  709. free_extent_buffer(right);
  710. right = NULL;
  711. wret = del_ptr(trans, root, path, level + 1, pslot +
  712. 1);
  713. if (wret)
  714. ret = wret;
  715. wret = btrfs_free_extent(trans, root, bytenr,
  716. blocksize,
  717. btrfs_header_owner(parent),
  718. generation, 0, 0, 1);
  719. if (wret)
  720. ret = wret;
  721. } else {
  722. struct btrfs_disk_key right_key;
  723. btrfs_node_key(right, &right_key, 0);
  724. btrfs_set_node_key(parent, &right_key, pslot + 1);
  725. btrfs_mark_buffer_dirty(parent);
  726. }
  727. }
  728. if (btrfs_header_nritems(mid) == 1) {
  729. /*
  730. * we're not allowed to leave a node with one item in the
  731. * tree during a delete. A deletion from lower in the tree
  732. * could try to delete the only pointer in this node.
  733. * So, pull some keys from the left.
  734. * There has to be a left pointer at this point because
  735. * otherwise we would have pulled some pointers from the
  736. * right
  737. */
  738. BUG_ON(!left);
  739. wret = balance_node_right(trans, root, mid, left);
  740. if (wret < 0) {
  741. ret = wret;
  742. goto enospc;
  743. }
  744. BUG_ON(wret == 1);
  745. }
  746. if (btrfs_header_nritems(mid) == 0) {
  747. /* we've managed to empty the middle node, drop it */
  748. u64 root_gen = btrfs_header_generation(parent);
  749. u64 bytenr = mid->start;
  750. u32 blocksize = mid->len;
  751. clean_tree_block(trans, root, mid);
  752. wait_on_tree_block_writeback(root, mid);
  753. free_extent_buffer(mid);
  754. mid = NULL;
  755. wret = del_ptr(trans, root, path, level + 1, pslot);
  756. if (wret)
  757. ret = wret;
  758. wret = btrfs_free_extent(trans, root, bytenr, blocksize,
  759. btrfs_header_owner(parent),
  760. root_gen, 0, 0, 1);
  761. if (wret)
  762. ret = wret;
  763. } else {
  764. /* update the parent key to reflect our changes */
  765. struct btrfs_disk_key mid_key;
  766. btrfs_node_key(mid, &mid_key, 0);
  767. btrfs_set_node_key(parent, &mid_key, pslot);
  768. btrfs_mark_buffer_dirty(parent);
  769. }
  770. /* update the path */
  771. if (left) {
  772. if (btrfs_header_nritems(left) > orig_slot) {
  773. extent_buffer_get(left);
  774. path->nodes[level] = left;
  775. path->slots[level + 1] -= 1;
  776. path->slots[level] = orig_slot;
  777. if (mid)
  778. free_extent_buffer(mid);
  779. } else {
  780. orig_slot -= btrfs_header_nritems(left);
  781. path->slots[level] = orig_slot;
  782. }
  783. }
  784. /* double check we haven't messed things up */
  785. check_block(root, path, level);
  786. if (orig_ptr !=
  787. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  788. BUG();
  789. enospc:
  790. if (right)
  791. free_extent_buffer(right);
  792. if (left)
  793. free_extent_buffer(left);
  794. return ret;
  795. }
  796. /* returns zero if the push worked, non-zero otherwise */
  797. static int noinline push_nodes_for_insert(struct btrfs_trans_handle *trans,
  798. struct btrfs_root *root,
  799. struct btrfs_path *path, int level)
  800. {
  801. struct extent_buffer *right = NULL;
  802. struct extent_buffer *mid;
  803. struct extent_buffer *left = NULL;
  804. struct extent_buffer *parent = NULL;
  805. int ret = 0;
  806. int wret;
  807. int pslot;
  808. int orig_slot = path->slots[level];
  809. u64 orig_ptr;
  810. if (level == 0)
  811. return 1;
  812. mid = path->nodes[level];
  813. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  814. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  815. if (level < BTRFS_MAX_LEVEL - 1)
  816. parent = path->nodes[level + 1];
  817. pslot = path->slots[level + 1];
  818. if (!parent)
  819. return 1;
  820. left = read_node_slot(root, parent, pslot - 1);
  821. /* first, try to make some room in the middle buffer */
  822. if (left) {
  823. u32 left_nr;
  824. left_nr = btrfs_header_nritems(left);
  825. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  826. wret = 1;
  827. } else {
  828. ret = btrfs_cow_block(trans, root, left, parent,
  829. pslot - 1, &left);
  830. if (ret)
  831. wret = 1;
  832. else {
  833. wret = push_node_left(trans, root,
  834. left, mid);
  835. }
  836. }
  837. if (wret < 0)
  838. ret = wret;
  839. if (wret == 0) {
  840. struct btrfs_disk_key disk_key;
  841. orig_slot += left_nr;
  842. btrfs_node_key(mid, &disk_key, 0);
  843. btrfs_set_node_key(parent, &disk_key, pslot);
  844. btrfs_mark_buffer_dirty(parent);
  845. if (btrfs_header_nritems(left) > orig_slot) {
  846. path->nodes[level] = left;
  847. path->slots[level + 1] -= 1;
  848. path->slots[level] = orig_slot;
  849. free_extent_buffer(mid);
  850. } else {
  851. orig_slot -=
  852. btrfs_header_nritems(left);
  853. path->slots[level] = orig_slot;
  854. free_extent_buffer(left);
  855. }
  856. return 0;
  857. }
  858. free_extent_buffer(left);
  859. }
  860. right= read_node_slot(root, parent, pslot + 1);
  861. /*
  862. * then try to empty the right most buffer into the middle
  863. */
  864. if (right) {
  865. u32 right_nr;
  866. right_nr = btrfs_header_nritems(right);
  867. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  868. wret = 1;
  869. } else {
  870. ret = btrfs_cow_block(trans, root, right,
  871. parent, pslot + 1,
  872. &right);
  873. if (ret)
  874. wret = 1;
  875. else {
  876. wret = balance_node_right(trans, root,
  877. right, mid);
  878. }
  879. }
  880. if (wret < 0)
  881. ret = wret;
  882. if (wret == 0) {
  883. struct btrfs_disk_key disk_key;
  884. btrfs_node_key(right, &disk_key, 0);
  885. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  886. btrfs_mark_buffer_dirty(parent);
  887. if (btrfs_header_nritems(mid) <= orig_slot) {
  888. path->nodes[level] = right;
  889. path->slots[level + 1] += 1;
  890. path->slots[level] = orig_slot -
  891. btrfs_header_nritems(mid);
  892. free_extent_buffer(mid);
  893. } else {
  894. free_extent_buffer(right);
  895. }
  896. return 0;
  897. }
  898. free_extent_buffer(right);
  899. }
  900. return 1;
  901. }
  902. /*
  903. * readahead one full node of leaves
  904. */
  905. static void reada_for_search(struct btrfs_root *root, struct btrfs_path *path,
  906. int level, int slot, u64 objectid)
  907. {
  908. struct extent_buffer *node;
  909. struct btrfs_disk_key disk_key;
  910. u32 nritems;
  911. u64 search;
  912. u64 lowest_read;
  913. u64 highest_read;
  914. u64 nread = 0;
  915. int direction = path->reada;
  916. struct extent_buffer *eb;
  917. u32 nr;
  918. u32 blocksize;
  919. u32 nscan = 0;
  920. if (level != 1)
  921. return;
  922. if (!path->nodes[level])
  923. return;
  924. node = path->nodes[level];
  925. search = btrfs_node_blockptr(node, slot);
  926. blocksize = btrfs_level_size(root, level - 1);
  927. eb = btrfs_find_tree_block(root, search, blocksize);
  928. if (eb) {
  929. free_extent_buffer(eb);
  930. return;
  931. }
  932. highest_read = search;
  933. lowest_read = search;
  934. nritems = btrfs_header_nritems(node);
  935. nr = slot;
  936. while(1) {
  937. if (direction < 0) {
  938. if (nr == 0)
  939. break;
  940. nr--;
  941. } else if (direction > 0) {
  942. nr++;
  943. if (nr >= nritems)
  944. break;
  945. }
  946. if (path->reada < 0 && objectid) {
  947. btrfs_node_key(node, &disk_key, nr);
  948. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  949. break;
  950. }
  951. search = btrfs_node_blockptr(node, nr);
  952. if ((search >= lowest_read && search <= highest_read) ||
  953. (search < lowest_read && lowest_read - search <= 32768) ||
  954. (search > highest_read && search - highest_read <= 32768)) {
  955. readahead_tree_block(root, search, blocksize);
  956. nread += blocksize;
  957. }
  958. nscan++;
  959. if (path->reada < 2 && (nread > (256 * 1024) || nscan > 32))
  960. break;
  961. if(nread > (1024 * 1024) || nscan > 128)
  962. break;
  963. if (search < lowest_read)
  964. lowest_read = search;
  965. if (search > highest_read)
  966. highest_read = search;
  967. }
  968. }
  969. /*
  970. * look for key in the tree. path is filled in with nodes along the way
  971. * if key is found, we return zero and you can find the item in the leaf
  972. * level of the path (level 0)
  973. *
  974. * If the key isn't found, the path points to the slot where it should
  975. * be inserted, and 1 is returned. If there are other errors during the
  976. * search a negative error number is returned.
  977. *
  978. * if ins_len > 0, nodes and leaves will be split as we walk down the
  979. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  980. * possible)
  981. */
  982. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  983. *root, struct btrfs_key *key, struct btrfs_path *p, int
  984. ins_len, int cow)
  985. {
  986. struct extent_buffer *b;
  987. u64 bytenr;
  988. u64 ptr_gen;
  989. int slot;
  990. int ret;
  991. int level;
  992. int should_reada = p->reada;
  993. u8 lowest_level = 0;
  994. lowest_level = p->lowest_level;
  995. WARN_ON(lowest_level && ins_len);
  996. WARN_ON(p->nodes[0] != NULL);
  997. WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
  998. again:
  999. b = root->node;
  1000. extent_buffer_get(b);
  1001. while (b) {
  1002. level = btrfs_header_level(b);
  1003. if (cow) {
  1004. int wret;
  1005. wret = btrfs_cow_block(trans, root, b,
  1006. p->nodes[level + 1],
  1007. p->slots[level + 1],
  1008. &b);
  1009. if (wret) {
  1010. free_extent_buffer(b);
  1011. return wret;
  1012. }
  1013. }
  1014. BUG_ON(!cow && ins_len);
  1015. if (level != btrfs_header_level(b))
  1016. WARN_ON(1);
  1017. level = btrfs_header_level(b);
  1018. p->nodes[level] = b;
  1019. ret = check_block(root, p, level);
  1020. if (ret)
  1021. return -1;
  1022. ret = bin_search(b, key, level, &slot);
  1023. if (level != 0) {
  1024. if (ret && slot > 0)
  1025. slot -= 1;
  1026. p->slots[level] = slot;
  1027. if (ins_len > 0 && btrfs_header_nritems(b) >=
  1028. BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1029. int sret = split_node(trans, root, p, level);
  1030. BUG_ON(sret > 0);
  1031. if (sret)
  1032. return sret;
  1033. b = p->nodes[level];
  1034. slot = p->slots[level];
  1035. } else if (ins_len < 0) {
  1036. int sret = balance_level(trans, root, p,
  1037. level);
  1038. if (sret)
  1039. return sret;
  1040. b = p->nodes[level];
  1041. if (!b) {
  1042. btrfs_release_path(NULL, p);
  1043. goto again;
  1044. }
  1045. slot = p->slots[level];
  1046. BUG_ON(btrfs_header_nritems(b) == 1);
  1047. }
  1048. /* this is only true while dropping a snapshot */
  1049. if (level == lowest_level)
  1050. break;
  1051. bytenr = btrfs_node_blockptr(b, slot);
  1052. ptr_gen = btrfs_node_ptr_generation(b, slot);
  1053. if (should_reada)
  1054. reada_for_search(root, p, level, slot,
  1055. key->objectid);
  1056. b = read_tree_block(root, bytenr,
  1057. btrfs_level_size(root, level - 1));
  1058. if (ptr_gen != btrfs_header_generation(b)) {
  1059. printk("block %llu bad gen wanted %llu "
  1060. "found %llu\n",
  1061. (unsigned long long)b->start,
  1062. (unsigned long long)ptr_gen,
  1063. (unsigned long long)btrfs_header_generation(b));
  1064. }
  1065. } else {
  1066. p->slots[level] = slot;
  1067. if (ins_len > 0 && btrfs_leaf_free_space(root, b) <
  1068. sizeof(struct btrfs_item) + ins_len) {
  1069. int sret = split_leaf(trans, root, key,
  1070. p, ins_len, ret == 0);
  1071. BUG_ON(sret > 0);
  1072. if (sret)
  1073. return sret;
  1074. }
  1075. return ret;
  1076. }
  1077. }
  1078. return 1;
  1079. }
  1080. /*
  1081. * adjust the pointers going up the tree, starting at level
  1082. * making sure the right key of each node is points to 'key'.
  1083. * This is used after shifting pointers to the left, so it stops
  1084. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1085. * higher levels
  1086. *
  1087. * If this fails to write a tree block, it returns -1, but continues
  1088. * fixing up the blocks in ram so the tree is consistent.
  1089. */
  1090. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1091. struct btrfs_root *root, struct btrfs_path *path,
  1092. struct btrfs_disk_key *key, int level)
  1093. {
  1094. int i;
  1095. int ret = 0;
  1096. struct extent_buffer *t;
  1097. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1098. int tslot = path->slots[i];
  1099. if (!path->nodes[i])
  1100. break;
  1101. t = path->nodes[i];
  1102. btrfs_set_node_key(t, key, tslot);
  1103. btrfs_mark_buffer_dirty(path->nodes[i]);
  1104. if (tslot != 0)
  1105. break;
  1106. }
  1107. return ret;
  1108. }
  1109. /*
  1110. * try to push data from one node into the next node left in the
  1111. * tree.
  1112. *
  1113. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1114. * error, and > 0 if there was no room in the left hand block.
  1115. */
  1116. static int push_node_left(struct btrfs_trans_handle *trans,
  1117. struct btrfs_root *root, struct extent_buffer *dst,
  1118. struct extent_buffer *src)
  1119. {
  1120. int push_items = 0;
  1121. int src_nritems;
  1122. int dst_nritems;
  1123. int ret = 0;
  1124. src_nritems = btrfs_header_nritems(src);
  1125. dst_nritems = btrfs_header_nritems(dst);
  1126. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1127. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1128. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1129. if (push_items <= 0) {
  1130. return 1;
  1131. }
  1132. if (src_nritems < push_items)
  1133. push_items = src_nritems;
  1134. copy_extent_buffer(dst, src,
  1135. btrfs_node_key_ptr_offset(dst_nritems),
  1136. btrfs_node_key_ptr_offset(0),
  1137. push_items * sizeof(struct btrfs_key_ptr));
  1138. if (push_items < src_nritems) {
  1139. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1140. btrfs_node_key_ptr_offset(push_items),
  1141. (src_nritems - push_items) *
  1142. sizeof(struct btrfs_key_ptr));
  1143. }
  1144. btrfs_set_header_nritems(src, src_nritems - push_items);
  1145. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1146. btrfs_mark_buffer_dirty(src);
  1147. btrfs_mark_buffer_dirty(dst);
  1148. return ret;
  1149. }
  1150. /*
  1151. * try to push data from one node into the next node right in the
  1152. * tree.
  1153. *
  1154. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1155. * error, and > 0 if there was no room in the right hand block.
  1156. *
  1157. * this will only push up to 1/2 the contents of the left node over
  1158. */
  1159. static int balance_node_right(struct btrfs_trans_handle *trans,
  1160. struct btrfs_root *root,
  1161. struct extent_buffer *dst,
  1162. struct extent_buffer *src)
  1163. {
  1164. int push_items = 0;
  1165. int max_push;
  1166. int src_nritems;
  1167. int dst_nritems;
  1168. int ret = 0;
  1169. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1170. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1171. src_nritems = btrfs_header_nritems(src);
  1172. dst_nritems = btrfs_header_nritems(dst);
  1173. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1174. if (push_items <= 0)
  1175. return 1;
  1176. max_push = src_nritems / 2 + 1;
  1177. /* don't try to empty the node */
  1178. if (max_push >= src_nritems)
  1179. return 1;
  1180. if (max_push < push_items)
  1181. push_items = max_push;
  1182. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1183. btrfs_node_key_ptr_offset(0),
  1184. (dst_nritems) *
  1185. sizeof(struct btrfs_key_ptr));
  1186. copy_extent_buffer(dst, src,
  1187. btrfs_node_key_ptr_offset(0),
  1188. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1189. push_items * sizeof(struct btrfs_key_ptr));
  1190. btrfs_set_header_nritems(src, src_nritems - push_items);
  1191. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1192. btrfs_mark_buffer_dirty(src);
  1193. btrfs_mark_buffer_dirty(dst);
  1194. return ret;
  1195. }
  1196. /*
  1197. * helper function to insert a new root level in the tree.
  1198. * A new node is allocated, and a single item is inserted to
  1199. * point to the existing root
  1200. *
  1201. * returns zero on success or < 0 on failure.
  1202. */
  1203. static int noinline insert_new_root(struct btrfs_trans_handle *trans,
  1204. struct btrfs_root *root,
  1205. struct btrfs_path *path, int level)
  1206. {
  1207. u64 root_gen;
  1208. u64 lower_gen;
  1209. struct extent_buffer *lower;
  1210. struct extent_buffer *c;
  1211. struct btrfs_disk_key lower_key;
  1212. BUG_ON(path->nodes[level]);
  1213. BUG_ON(path->nodes[level-1] != root->node);
  1214. if (root->ref_cows)
  1215. root_gen = trans->transid;
  1216. else
  1217. root_gen = 0;
  1218. lower = path->nodes[level-1];
  1219. if (level == 1)
  1220. btrfs_item_key(lower, &lower_key, 0);
  1221. else
  1222. btrfs_node_key(lower, &lower_key, 0);
  1223. c = __btrfs_alloc_free_block(trans, root, root->nodesize,
  1224. root->root_key.objectid,
  1225. root_gen, lower_key.objectid, level,
  1226. root->node->start, 0);
  1227. if (IS_ERR(c))
  1228. return PTR_ERR(c);
  1229. memset_extent_buffer(c, 0, 0, root->nodesize);
  1230. btrfs_set_header_nritems(c, 1);
  1231. btrfs_set_header_level(c, level);
  1232. btrfs_set_header_bytenr(c, c->start);
  1233. btrfs_set_header_generation(c, trans->transid);
  1234. btrfs_set_header_owner(c, root->root_key.objectid);
  1235. write_extent_buffer(c, root->fs_info->fsid,
  1236. (unsigned long)btrfs_header_fsid(c),
  1237. BTRFS_FSID_SIZE);
  1238. btrfs_set_node_key(c, &lower_key, 0);
  1239. btrfs_set_node_blockptr(c, 0, lower->start);
  1240. lower_gen = btrfs_header_generation(lower);
  1241. WARN_ON(lower_gen == 0);
  1242. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1243. btrfs_mark_buffer_dirty(c);
  1244. /* the super has an extra ref to root->node */
  1245. free_extent_buffer(root->node);
  1246. root->node = c;
  1247. extent_buffer_get(c);
  1248. path->nodes[level] = c;
  1249. path->slots[level] = 0;
  1250. if (root->ref_cows && lower_gen != trans->transid) {
  1251. struct btrfs_path *back_path = btrfs_alloc_path();
  1252. int ret;
  1253. ret = btrfs_insert_extent_backref(trans,
  1254. root->fs_info->extent_root,
  1255. path, lower->start,
  1256. root->root_key.objectid,
  1257. trans->transid, 0, 0);
  1258. BUG_ON(ret);
  1259. btrfs_free_path(back_path);
  1260. }
  1261. return 0;
  1262. }
  1263. /*
  1264. * worker function to insert a single pointer in a node.
  1265. * the node should have enough room for the pointer already
  1266. *
  1267. * slot and level indicate where you want the key to go, and
  1268. * blocknr is the block the key points to.
  1269. *
  1270. * returns zero on success and < 0 on any error
  1271. */
  1272. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1273. *root, struct btrfs_path *path, struct btrfs_disk_key
  1274. *key, u64 bytenr, int slot, int level)
  1275. {
  1276. struct extent_buffer *lower;
  1277. int nritems;
  1278. BUG_ON(!path->nodes[level]);
  1279. lower = path->nodes[level];
  1280. nritems = btrfs_header_nritems(lower);
  1281. if (slot > nritems)
  1282. BUG();
  1283. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1284. BUG();
  1285. if (slot != nritems) {
  1286. memmove_extent_buffer(lower,
  1287. btrfs_node_key_ptr_offset(slot + 1),
  1288. btrfs_node_key_ptr_offset(slot),
  1289. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1290. }
  1291. btrfs_set_node_key(lower, key, slot);
  1292. btrfs_set_node_blockptr(lower, slot, bytenr);
  1293. WARN_ON(trans->transid == 0);
  1294. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1295. btrfs_set_header_nritems(lower, nritems + 1);
  1296. btrfs_mark_buffer_dirty(lower);
  1297. return 0;
  1298. }
  1299. /*
  1300. * split the node at the specified level in path in two.
  1301. * The path is corrected to point to the appropriate node after the split
  1302. *
  1303. * Before splitting this tries to make some room in the node by pushing
  1304. * left and right, if either one works, it returns right away.
  1305. *
  1306. * returns 0 on success and < 0 on failure
  1307. */
  1308. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  1309. *root, struct btrfs_path *path, int level)
  1310. {
  1311. u64 root_gen;
  1312. struct extent_buffer *c;
  1313. struct extent_buffer *split;
  1314. struct btrfs_disk_key disk_key;
  1315. int mid;
  1316. int ret;
  1317. int wret;
  1318. u32 c_nritems;
  1319. c = path->nodes[level];
  1320. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1321. if (c == root->node) {
  1322. /* trying to split the root, lets make a new one */
  1323. ret = insert_new_root(trans, root, path, level + 1);
  1324. if (ret)
  1325. return ret;
  1326. } else {
  1327. ret = push_nodes_for_insert(trans, root, path, level);
  1328. c = path->nodes[level];
  1329. if (!ret && btrfs_header_nritems(c) <
  1330. BTRFS_NODEPTRS_PER_BLOCK(root) - 1)
  1331. return 0;
  1332. if (ret < 0)
  1333. return ret;
  1334. }
  1335. c_nritems = btrfs_header_nritems(c);
  1336. if (root->ref_cows)
  1337. root_gen = trans->transid;
  1338. else
  1339. root_gen = 0;
  1340. btrfs_node_key(c, &disk_key, 0);
  1341. split = __btrfs_alloc_free_block(trans, root, root->nodesize,
  1342. root->root_key.objectid,
  1343. root_gen,
  1344. btrfs_disk_key_objectid(&disk_key),
  1345. level, c->start, 0);
  1346. if (IS_ERR(split))
  1347. return PTR_ERR(split);
  1348. btrfs_set_header_flags(split, btrfs_header_flags(c));
  1349. btrfs_set_header_level(split, btrfs_header_level(c));
  1350. btrfs_set_header_bytenr(split, split->start);
  1351. btrfs_set_header_generation(split, trans->transid);
  1352. btrfs_set_header_owner(split, root->root_key.objectid);
  1353. write_extent_buffer(split, root->fs_info->fsid,
  1354. (unsigned long)btrfs_header_fsid(split),
  1355. BTRFS_FSID_SIZE);
  1356. mid = (c_nritems + 1) / 2;
  1357. copy_extent_buffer(split, c,
  1358. btrfs_node_key_ptr_offset(0),
  1359. btrfs_node_key_ptr_offset(mid),
  1360. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1361. btrfs_set_header_nritems(split, c_nritems - mid);
  1362. btrfs_set_header_nritems(c, mid);
  1363. ret = 0;
  1364. btrfs_mark_buffer_dirty(c);
  1365. btrfs_mark_buffer_dirty(split);
  1366. btrfs_node_key(split, &disk_key, 0);
  1367. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  1368. path->slots[level + 1] + 1,
  1369. level + 1);
  1370. if (wret)
  1371. ret = wret;
  1372. if (path->slots[level] >= mid) {
  1373. path->slots[level] -= mid;
  1374. free_extent_buffer(c);
  1375. path->nodes[level] = split;
  1376. path->slots[level + 1] += 1;
  1377. } else {
  1378. free_extent_buffer(split);
  1379. }
  1380. return ret;
  1381. }
  1382. /*
  1383. * how many bytes are required to store the items in a leaf. start
  1384. * and nr indicate which items in the leaf to check. This totals up the
  1385. * space used both by the item structs and the item data
  1386. */
  1387. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  1388. {
  1389. int data_len;
  1390. int nritems = btrfs_header_nritems(l);
  1391. int end = min(nritems, start + nr) - 1;
  1392. if (!nr)
  1393. return 0;
  1394. data_len = btrfs_item_end_nr(l, start);
  1395. data_len = data_len - btrfs_item_offset_nr(l, end);
  1396. data_len += sizeof(struct btrfs_item) * nr;
  1397. WARN_ON(data_len < 0);
  1398. return data_len;
  1399. }
  1400. /*
  1401. * The space between the end of the leaf items and
  1402. * the start of the leaf data. IOW, how much room
  1403. * the leaf has left for both items and data
  1404. */
  1405. int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf)
  1406. {
  1407. int nritems = btrfs_header_nritems(leaf);
  1408. int ret;
  1409. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  1410. if (ret < 0) {
  1411. printk("leaf free space ret %d, leaf data size %lu, used %d nritems %d\n",
  1412. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  1413. leaf_space_used(leaf, 0, nritems), nritems);
  1414. }
  1415. return ret;
  1416. }
  1417. /*
  1418. * push some data in the path leaf to the right, trying to free up at
  1419. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1420. *
  1421. * returns 1 if the push failed because the other node didn't have enough
  1422. * room, 0 if everything worked out and < 0 if there were major errors.
  1423. */
  1424. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  1425. *root, struct btrfs_path *path, int data_size,
  1426. int empty)
  1427. {
  1428. struct extent_buffer *left = path->nodes[0];
  1429. struct extent_buffer *right;
  1430. struct extent_buffer *upper;
  1431. struct btrfs_disk_key disk_key;
  1432. int slot;
  1433. u32 i;
  1434. int free_space;
  1435. int push_space = 0;
  1436. int push_items = 0;
  1437. struct btrfs_item *item;
  1438. u32 left_nritems;
  1439. u32 nr;
  1440. u32 right_nritems;
  1441. u32 data_end;
  1442. u32 this_item_size;
  1443. int ret;
  1444. slot = path->slots[1];
  1445. if (!path->nodes[1]) {
  1446. return 1;
  1447. }
  1448. upper = path->nodes[1];
  1449. if (slot >= btrfs_header_nritems(upper) - 1)
  1450. return 1;
  1451. right = read_tree_block(root, btrfs_node_blockptr(upper, slot + 1),
  1452. root->leafsize);
  1453. free_space = btrfs_leaf_free_space(root, right);
  1454. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1455. free_extent_buffer(right);
  1456. return 1;
  1457. }
  1458. /* cow and double check */
  1459. ret = btrfs_cow_block(trans, root, right, upper,
  1460. slot + 1, &right);
  1461. if (ret) {
  1462. free_extent_buffer(right);
  1463. return 1;
  1464. }
  1465. free_space = btrfs_leaf_free_space(root, right);
  1466. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1467. free_extent_buffer(right);
  1468. return 1;
  1469. }
  1470. left_nritems = btrfs_header_nritems(left);
  1471. if (left_nritems == 0) {
  1472. free_extent_buffer(right);
  1473. return 1;
  1474. }
  1475. if (empty)
  1476. nr = 0;
  1477. else
  1478. nr = 1;
  1479. i = left_nritems - 1;
  1480. while (i >= nr) {
  1481. item = btrfs_item_nr(left, i);
  1482. if (path->slots[0] == i)
  1483. push_space += data_size + sizeof(*item);
  1484. if (!left->map_token) {
  1485. map_extent_buffer(left, (unsigned long)item,
  1486. sizeof(struct btrfs_item),
  1487. &left->map_token, &left->kaddr,
  1488. &left->map_start, &left->map_len,
  1489. KM_USER1);
  1490. }
  1491. this_item_size = btrfs_item_size(left, item);
  1492. if (this_item_size + sizeof(*item) + push_space > free_space)
  1493. break;
  1494. push_items++;
  1495. push_space += this_item_size + sizeof(*item);
  1496. if (i == 0)
  1497. break;
  1498. i--;
  1499. }
  1500. if (left->map_token) {
  1501. unmap_extent_buffer(left, left->map_token, KM_USER1);
  1502. left->map_token = NULL;
  1503. }
  1504. if (push_items == 0) {
  1505. free_extent_buffer(right);
  1506. return 1;
  1507. }
  1508. if (!empty && push_items == left_nritems)
  1509. WARN_ON(1);
  1510. /* push left to right */
  1511. right_nritems = btrfs_header_nritems(right);
  1512. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  1513. push_space -= leaf_data_end(root, left);
  1514. /* make room in the right data area */
  1515. data_end = leaf_data_end(root, right);
  1516. memmove_extent_buffer(right,
  1517. btrfs_leaf_data(right) + data_end - push_space,
  1518. btrfs_leaf_data(right) + data_end,
  1519. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  1520. /* copy from the left data area */
  1521. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  1522. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1523. btrfs_leaf_data(left) + leaf_data_end(root, left),
  1524. push_space);
  1525. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  1526. btrfs_item_nr_offset(0),
  1527. right_nritems * sizeof(struct btrfs_item));
  1528. /* copy the items from left to right */
  1529. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  1530. btrfs_item_nr_offset(left_nritems - push_items),
  1531. push_items * sizeof(struct btrfs_item));
  1532. /* update the item pointers */
  1533. right_nritems += push_items;
  1534. btrfs_set_header_nritems(right, right_nritems);
  1535. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1536. for (i = 0; i < right_nritems; i++) {
  1537. item = btrfs_item_nr(right, i);
  1538. if (!right->map_token) {
  1539. map_extent_buffer(right, (unsigned long)item,
  1540. sizeof(struct btrfs_item),
  1541. &right->map_token, &right->kaddr,
  1542. &right->map_start, &right->map_len,
  1543. KM_USER1);
  1544. }
  1545. push_space -= btrfs_item_size(right, item);
  1546. btrfs_set_item_offset(right, item, push_space);
  1547. }
  1548. if (right->map_token) {
  1549. unmap_extent_buffer(right, right->map_token, KM_USER1);
  1550. right->map_token = NULL;
  1551. }
  1552. left_nritems -= push_items;
  1553. btrfs_set_header_nritems(left, left_nritems);
  1554. if (left_nritems)
  1555. btrfs_mark_buffer_dirty(left);
  1556. btrfs_mark_buffer_dirty(right);
  1557. btrfs_item_key(right, &disk_key, 0);
  1558. btrfs_set_node_key(upper, &disk_key, slot + 1);
  1559. btrfs_mark_buffer_dirty(upper);
  1560. /* then fixup the leaf pointer in the path */
  1561. if (path->slots[0] >= left_nritems) {
  1562. path->slots[0] -= left_nritems;
  1563. free_extent_buffer(path->nodes[0]);
  1564. path->nodes[0] = right;
  1565. path->slots[1] += 1;
  1566. } else {
  1567. free_extent_buffer(right);
  1568. }
  1569. return 0;
  1570. }
  1571. /*
  1572. * push some data in the path leaf to the left, trying to free up at
  1573. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  1574. */
  1575. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  1576. *root, struct btrfs_path *path, int data_size,
  1577. int empty)
  1578. {
  1579. struct btrfs_disk_key disk_key;
  1580. struct extent_buffer *right = path->nodes[0];
  1581. struct extent_buffer *left;
  1582. int slot;
  1583. int i;
  1584. int free_space;
  1585. int push_space = 0;
  1586. int push_items = 0;
  1587. struct btrfs_item *item;
  1588. u32 old_left_nritems;
  1589. u32 right_nritems;
  1590. u32 nr;
  1591. int ret = 0;
  1592. int wret;
  1593. u32 this_item_size;
  1594. u32 old_left_item_size;
  1595. slot = path->slots[1];
  1596. if (slot == 0)
  1597. return 1;
  1598. if (!path->nodes[1])
  1599. return 1;
  1600. right_nritems = btrfs_header_nritems(right);
  1601. if (right_nritems == 0) {
  1602. return 1;
  1603. }
  1604. left = read_tree_block(root, btrfs_node_blockptr(path->nodes[1],
  1605. slot - 1), root->leafsize);
  1606. free_space = btrfs_leaf_free_space(root, left);
  1607. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1608. free_extent_buffer(left);
  1609. return 1;
  1610. }
  1611. /* cow and double check */
  1612. ret = btrfs_cow_block(trans, root, left,
  1613. path->nodes[1], slot - 1, &left);
  1614. if (ret) {
  1615. /* we hit -ENOSPC, but it isn't fatal here */
  1616. free_extent_buffer(left);
  1617. return 1;
  1618. }
  1619. free_space = btrfs_leaf_free_space(root, left);
  1620. if (free_space < data_size + sizeof(struct btrfs_item)) {
  1621. free_extent_buffer(left);
  1622. return 1;
  1623. }
  1624. if (empty)
  1625. nr = right_nritems;
  1626. else
  1627. nr = right_nritems - 1;
  1628. for (i = 0; i < nr; i++) {
  1629. item = btrfs_item_nr(right, i);
  1630. if (!right->map_token) {
  1631. map_extent_buffer(right, (unsigned long)item,
  1632. sizeof(struct btrfs_item),
  1633. &right->map_token, &right->kaddr,
  1634. &right->map_start, &right->map_len,
  1635. KM_USER1);
  1636. }
  1637. if (path->slots[0] == i)
  1638. push_space += data_size + sizeof(*item);
  1639. this_item_size = btrfs_item_size(right, item);
  1640. if (this_item_size + sizeof(*item) + push_space > free_space)
  1641. break;
  1642. push_items++;
  1643. push_space += this_item_size + sizeof(*item);
  1644. }
  1645. if (right->map_token) {
  1646. unmap_extent_buffer(right, right->map_token, KM_USER1);
  1647. right->map_token = NULL;
  1648. }
  1649. if (push_items == 0) {
  1650. free_extent_buffer(left);
  1651. return 1;
  1652. }
  1653. if (!empty && push_items == btrfs_header_nritems(right))
  1654. WARN_ON(1);
  1655. /* push data from right to left */
  1656. copy_extent_buffer(left, right,
  1657. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  1658. btrfs_item_nr_offset(0),
  1659. push_items * sizeof(struct btrfs_item));
  1660. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  1661. btrfs_item_offset_nr(right, push_items -1);
  1662. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  1663. leaf_data_end(root, left) - push_space,
  1664. btrfs_leaf_data(right) +
  1665. btrfs_item_offset_nr(right, push_items - 1),
  1666. push_space);
  1667. old_left_nritems = btrfs_header_nritems(left);
  1668. BUG_ON(old_left_nritems < 0);
  1669. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  1670. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  1671. u32 ioff;
  1672. item = btrfs_item_nr(left, i);
  1673. if (!left->map_token) {
  1674. map_extent_buffer(left, (unsigned long)item,
  1675. sizeof(struct btrfs_item),
  1676. &left->map_token, &left->kaddr,
  1677. &left->map_start, &left->map_len,
  1678. KM_USER1);
  1679. }
  1680. ioff = btrfs_item_offset(left, item);
  1681. btrfs_set_item_offset(left, item,
  1682. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  1683. }
  1684. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  1685. if (left->map_token) {
  1686. unmap_extent_buffer(left, left->map_token, KM_USER1);
  1687. left->map_token = NULL;
  1688. }
  1689. /* fixup right node */
  1690. if (push_items > right_nritems) {
  1691. printk("push items %d nr %u\n", push_items, right_nritems);
  1692. WARN_ON(1);
  1693. }
  1694. if (push_items < right_nritems) {
  1695. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  1696. leaf_data_end(root, right);
  1697. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  1698. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  1699. btrfs_leaf_data(right) +
  1700. leaf_data_end(root, right), push_space);
  1701. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  1702. btrfs_item_nr_offset(push_items),
  1703. (btrfs_header_nritems(right) - push_items) *
  1704. sizeof(struct btrfs_item));
  1705. }
  1706. right_nritems -= push_items;
  1707. btrfs_set_header_nritems(right, right_nritems);
  1708. push_space = BTRFS_LEAF_DATA_SIZE(root);
  1709. for (i = 0; i < right_nritems; i++) {
  1710. item = btrfs_item_nr(right, i);
  1711. if (!right->map_token) {
  1712. map_extent_buffer(right, (unsigned long)item,
  1713. sizeof(struct btrfs_item),
  1714. &right->map_token, &right->kaddr,
  1715. &right->map_start, &right->map_len,
  1716. KM_USER1);
  1717. }
  1718. push_space = push_space - btrfs_item_size(right, item);
  1719. btrfs_set_item_offset(right, item, push_space);
  1720. }
  1721. if (right->map_token) {
  1722. unmap_extent_buffer(right, right->map_token, KM_USER1);
  1723. right->map_token = NULL;
  1724. }
  1725. btrfs_mark_buffer_dirty(left);
  1726. if (right_nritems)
  1727. btrfs_mark_buffer_dirty(right);
  1728. btrfs_item_key(right, &disk_key, 0);
  1729. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  1730. if (wret)
  1731. ret = wret;
  1732. /* then fixup the leaf pointer in the path */
  1733. if (path->slots[0] < push_items) {
  1734. path->slots[0] += old_left_nritems;
  1735. free_extent_buffer(path->nodes[0]);
  1736. path->nodes[0] = left;
  1737. path->slots[1] -= 1;
  1738. } else {
  1739. free_extent_buffer(left);
  1740. path->slots[0] -= push_items;
  1741. }
  1742. BUG_ON(path->slots[0] < 0);
  1743. return ret;
  1744. }
  1745. /*
  1746. * split the path's leaf in two, making sure there is at least data_size
  1747. * available for the resulting leaf level of the path.
  1748. *
  1749. * returns 0 if all went well and < 0 on failure.
  1750. */
  1751. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  1752. *root, struct btrfs_key *ins_key,
  1753. struct btrfs_path *path, int data_size, int extend)
  1754. {
  1755. u64 root_gen;
  1756. struct extent_buffer *l;
  1757. u32 nritems;
  1758. int mid;
  1759. int slot;
  1760. struct extent_buffer *right;
  1761. int space_needed = data_size + sizeof(struct btrfs_item);
  1762. int data_copy_size;
  1763. int rt_data_off;
  1764. int i;
  1765. int ret = 0;
  1766. int wret;
  1767. int double_split;
  1768. int num_doubles = 0;
  1769. struct btrfs_disk_key disk_key;
  1770. if (extend)
  1771. space_needed = data_size;
  1772. if (root->ref_cows)
  1773. root_gen = trans->transid;
  1774. else
  1775. root_gen = 0;
  1776. /* first try to make some room by pushing left and right */
  1777. if (ins_key->type != BTRFS_DIR_ITEM_KEY) {
  1778. wret = push_leaf_right(trans, root, path, data_size, 0);
  1779. if (wret < 0) {
  1780. return wret;
  1781. }
  1782. if (wret) {
  1783. wret = push_leaf_left(trans, root, path, data_size, 0);
  1784. if (wret < 0)
  1785. return wret;
  1786. }
  1787. l = path->nodes[0];
  1788. /* did the pushes work? */
  1789. if (btrfs_leaf_free_space(root, l) >= space_needed)
  1790. return 0;
  1791. }
  1792. if (!path->nodes[1]) {
  1793. ret = insert_new_root(trans, root, path, 1);
  1794. if (ret)
  1795. return ret;
  1796. }
  1797. again:
  1798. double_split = 0;
  1799. l = path->nodes[0];
  1800. slot = path->slots[0];
  1801. nritems = btrfs_header_nritems(l);
  1802. mid = (nritems + 1)/ 2;
  1803. btrfs_item_key(l, &disk_key, 0);
  1804. right = __btrfs_alloc_free_block(trans, root, root->leafsize,
  1805. root->root_key.objectid,
  1806. root_gen, disk_key.objectid, 0,
  1807. l->start, 0);
  1808. if (IS_ERR(right))
  1809. return PTR_ERR(right);
  1810. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  1811. btrfs_set_header_bytenr(right, right->start);
  1812. btrfs_set_header_generation(right, trans->transid);
  1813. btrfs_set_header_owner(right, root->root_key.objectid);
  1814. btrfs_set_header_level(right, 0);
  1815. write_extent_buffer(right, root->fs_info->fsid,
  1816. (unsigned long)btrfs_header_fsid(right),
  1817. BTRFS_FSID_SIZE);
  1818. if (mid <= slot) {
  1819. if (nritems == 1 ||
  1820. leaf_space_used(l, mid, nritems - mid) + space_needed >
  1821. BTRFS_LEAF_DATA_SIZE(root)) {
  1822. if (slot >= nritems) {
  1823. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1824. btrfs_set_header_nritems(right, 0);
  1825. wret = insert_ptr(trans, root, path,
  1826. &disk_key, right->start,
  1827. path->slots[1] + 1, 1);
  1828. if (wret)
  1829. ret = wret;
  1830. free_extent_buffer(path->nodes[0]);
  1831. path->nodes[0] = right;
  1832. path->slots[0] = 0;
  1833. path->slots[1] += 1;
  1834. return ret;
  1835. }
  1836. mid = slot;
  1837. if (mid != nritems &&
  1838. leaf_space_used(l, mid, nritems - mid) +
  1839. space_needed > BTRFS_LEAF_DATA_SIZE(root)) {
  1840. double_split = 1;
  1841. }
  1842. }
  1843. } else {
  1844. if (leaf_space_used(l, 0, mid + 1) + space_needed >
  1845. BTRFS_LEAF_DATA_SIZE(root)) {
  1846. if (!extend && slot == 0) {
  1847. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  1848. btrfs_set_header_nritems(right, 0);
  1849. wret = insert_ptr(trans, root, path,
  1850. &disk_key,
  1851. right->start,
  1852. path->slots[1], 1);
  1853. if (wret)
  1854. ret = wret;
  1855. free_extent_buffer(path->nodes[0]);
  1856. path->nodes[0] = right;
  1857. path->slots[0] = 0;
  1858. if (path->slots[1] == 0) {
  1859. wret = fixup_low_keys(trans, root,
  1860. path, &disk_key, 1);
  1861. if (wret)
  1862. ret = wret;
  1863. }
  1864. return ret;
  1865. } else if (extend && slot == 0) {
  1866. mid = 1;
  1867. } else {
  1868. mid = slot;
  1869. if (mid != nritems &&
  1870. leaf_space_used(l, mid, nritems - mid) +
  1871. space_needed > BTRFS_LEAF_DATA_SIZE(root)) {
  1872. double_split = 1;
  1873. }
  1874. }
  1875. }
  1876. }
  1877. nritems = nritems - mid;
  1878. btrfs_set_header_nritems(right, nritems);
  1879. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  1880. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  1881. btrfs_item_nr_offset(mid),
  1882. nritems * sizeof(struct btrfs_item));
  1883. copy_extent_buffer(right, l,
  1884. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  1885. data_copy_size, btrfs_leaf_data(l) +
  1886. leaf_data_end(root, l), data_copy_size);
  1887. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  1888. btrfs_item_end_nr(l, mid);
  1889. for (i = 0; i < nritems; i++) {
  1890. struct btrfs_item *item = btrfs_item_nr(right, i);
  1891. u32 ioff;
  1892. if (!right->map_token) {
  1893. map_extent_buffer(right, (unsigned long)item,
  1894. sizeof(struct btrfs_item),
  1895. &right->map_token, &right->kaddr,
  1896. &right->map_start, &right->map_len,
  1897. KM_USER1);
  1898. }
  1899. ioff = btrfs_item_offset(right, item);
  1900. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  1901. }
  1902. if (right->map_token) {
  1903. unmap_extent_buffer(right, right->map_token, KM_USER1);
  1904. right->map_token = NULL;
  1905. }
  1906. btrfs_set_header_nritems(l, mid);
  1907. ret = 0;
  1908. btrfs_item_key(right, &disk_key, 0);
  1909. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  1910. path->slots[1] + 1, 1);
  1911. if (wret)
  1912. ret = wret;
  1913. btrfs_mark_buffer_dirty(right);
  1914. btrfs_mark_buffer_dirty(l);
  1915. BUG_ON(path->slots[0] != slot);
  1916. if (mid <= slot) {
  1917. free_extent_buffer(path->nodes[0]);
  1918. path->nodes[0] = right;
  1919. path->slots[0] -= mid;
  1920. path->slots[1] += 1;
  1921. } else
  1922. free_extent_buffer(right);
  1923. BUG_ON(path->slots[0] < 0);
  1924. if (double_split) {
  1925. BUG_ON(num_doubles != 0);
  1926. num_doubles++;
  1927. goto again;
  1928. }
  1929. return ret;
  1930. }
  1931. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  1932. struct btrfs_root *root,
  1933. struct btrfs_path *path,
  1934. u32 new_size, int from_end)
  1935. {
  1936. int ret = 0;
  1937. int slot;
  1938. int slot_orig;
  1939. struct extent_buffer *leaf;
  1940. struct btrfs_item *item;
  1941. u32 nritems;
  1942. unsigned int data_end;
  1943. unsigned int old_data_start;
  1944. unsigned int old_size;
  1945. unsigned int size_diff;
  1946. int i;
  1947. slot_orig = path->slots[0];
  1948. leaf = path->nodes[0];
  1949. slot = path->slots[0];
  1950. old_size = btrfs_item_size_nr(leaf, slot);
  1951. if (old_size == new_size)
  1952. return 0;
  1953. nritems = btrfs_header_nritems(leaf);
  1954. data_end = leaf_data_end(root, leaf);
  1955. old_data_start = btrfs_item_offset_nr(leaf, slot);
  1956. size_diff = old_size - new_size;
  1957. BUG_ON(slot < 0);
  1958. BUG_ON(slot >= nritems);
  1959. /*
  1960. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  1961. */
  1962. /* first correct the data pointers */
  1963. for (i = slot; i < nritems; i++) {
  1964. u32 ioff;
  1965. item = btrfs_item_nr(leaf, i);
  1966. if (!leaf->map_token) {
  1967. map_extent_buffer(leaf, (unsigned long)item,
  1968. sizeof(struct btrfs_item),
  1969. &leaf->map_token, &leaf->kaddr,
  1970. &leaf->map_start, &leaf->map_len,
  1971. KM_USER1);
  1972. }
  1973. ioff = btrfs_item_offset(leaf, item);
  1974. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  1975. }
  1976. if (leaf->map_token) {
  1977. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  1978. leaf->map_token = NULL;
  1979. }
  1980. /* shift the data */
  1981. if (from_end) {
  1982. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  1983. data_end + size_diff, btrfs_leaf_data(leaf) +
  1984. data_end, old_data_start + new_size - data_end);
  1985. } else {
  1986. struct btrfs_disk_key disk_key;
  1987. u64 offset;
  1988. btrfs_item_key(leaf, &disk_key, slot);
  1989. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  1990. unsigned long ptr;
  1991. struct btrfs_file_extent_item *fi;
  1992. fi = btrfs_item_ptr(leaf, slot,
  1993. struct btrfs_file_extent_item);
  1994. fi = (struct btrfs_file_extent_item *)(
  1995. (unsigned long)fi - size_diff);
  1996. if (btrfs_file_extent_type(leaf, fi) ==
  1997. BTRFS_FILE_EXTENT_INLINE) {
  1998. ptr = btrfs_item_ptr_offset(leaf, slot);
  1999. memmove_extent_buffer(leaf, ptr,
  2000. (unsigned long)fi,
  2001. offsetof(struct btrfs_file_extent_item,
  2002. disk_bytenr));
  2003. }
  2004. }
  2005. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2006. data_end + size_diff, btrfs_leaf_data(leaf) +
  2007. data_end, old_data_start - data_end);
  2008. offset = btrfs_disk_key_offset(&disk_key);
  2009. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2010. btrfs_set_item_key(leaf, &disk_key, slot);
  2011. if (slot == 0)
  2012. fixup_low_keys(trans, root, path, &disk_key, 1);
  2013. }
  2014. item = btrfs_item_nr(leaf, slot);
  2015. btrfs_set_item_size(leaf, item, new_size);
  2016. btrfs_mark_buffer_dirty(leaf);
  2017. ret = 0;
  2018. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2019. btrfs_print_leaf(root, leaf);
  2020. BUG();
  2021. }
  2022. return ret;
  2023. }
  2024. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2025. struct btrfs_root *root, struct btrfs_path *path,
  2026. u32 data_size)
  2027. {
  2028. int ret = 0;
  2029. int slot;
  2030. int slot_orig;
  2031. struct extent_buffer *leaf;
  2032. struct btrfs_item *item;
  2033. u32 nritems;
  2034. unsigned int data_end;
  2035. unsigned int old_data;
  2036. unsigned int old_size;
  2037. int i;
  2038. slot_orig = path->slots[0];
  2039. leaf = path->nodes[0];
  2040. nritems = btrfs_header_nritems(leaf);
  2041. data_end = leaf_data_end(root, leaf);
  2042. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2043. btrfs_print_leaf(root, leaf);
  2044. BUG();
  2045. }
  2046. slot = path->slots[0];
  2047. old_data = btrfs_item_end_nr(leaf, slot);
  2048. BUG_ON(slot < 0);
  2049. if (slot >= nritems) {
  2050. btrfs_print_leaf(root, leaf);
  2051. printk("slot %d too large, nritems %d\n", slot, nritems);
  2052. BUG_ON(1);
  2053. }
  2054. /*
  2055. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2056. */
  2057. /* first correct the data pointers */
  2058. for (i = slot; i < nritems; i++) {
  2059. u32 ioff;
  2060. item = btrfs_item_nr(leaf, i);
  2061. if (!leaf->map_token) {
  2062. map_extent_buffer(leaf, (unsigned long)item,
  2063. sizeof(struct btrfs_item),
  2064. &leaf->map_token, &leaf->kaddr,
  2065. &leaf->map_start, &leaf->map_len,
  2066. KM_USER1);
  2067. }
  2068. ioff = btrfs_item_offset(leaf, item);
  2069. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2070. }
  2071. if (leaf->map_token) {
  2072. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2073. leaf->map_token = NULL;
  2074. }
  2075. /* shift the data */
  2076. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2077. data_end - data_size, btrfs_leaf_data(leaf) +
  2078. data_end, old_data - data_end);
  2079. data_end = old_data;
  2080. old_size = btrfs_item_size_nr(leaf, slot);
  2081. item = btrfs_item_nr(leaf, slot);
  2082. btrfs_set_item_size(leaf, item, old_size + data_size);
  2083. btrfs_mark_buffer_dirty(leaf);
  2084. ret = 0;
  2085. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2086. btrfs_print_leaf(root, leaf);
  2087. BUG();
  2088. }
  2089. return ret;
  2090. }
  2091. /*
  2092. * Given a key and some data, insert an item into the tree.
  2093. * This does all the path init required, making room in the tree if needed.
  2094. */
  2095. int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
  2096. struct btrfs_root *root,
  2097. struct btrfs_path *path,
  2098. struct btrfs_key *cpu_key, u32 data_size)
  2099. {
  2100. struct extent_buffer *leaf;
  2101. struct btrfs_item *item;
  2102. int ret = 0;
  2103. int slot;
  2104. int slot_orig;
  2105. u32 nritems;
  2106. unsigned int data_end;
  2107. struct btrfs_disk_key disk_key;
  2108. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  2109. /* create a root if there isn't one */
  2110. if (!root->node)
  2111. BUG();
  2112. ret = btrfs_search_slot(trans, root, cpu_key, path, data_size, 1);
  2113. if (ret == 0) {
  2114. return -EEXIST;
  2115. }
  2116. if (ret < 0)
  2117. goto out;
  2118. slot_orig = path->slots[0];
  2119. leaf = path->nodes[0];
  2120. nritems = btrfs_header_nritems(leaf);
  2121. data_end = leaf_data_end(root, leaf);
  2122. if (btrfs_leaf_free_space(root, leaf) <
  2123. sizeof(struct btrfs_item) + data_size) {
  2124. btrfs_print_leaf(root, leaf);
  2125. printk("not enough freespace need %u have %d\n",
  2126. data_size, btrfs_leaf_free_space(root, leaf));
  2127. BUG();
  2128. }
  2129. slot = path->slots[0];
  2130. BUG_ON(slot < 0);
  2131. if (slot != nritems) {
  2132. int i;
  2133. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  2134. if (old_data < data_end) {
  2135. btrfs_print_leaf(root, leaf);
  2136. printk("slot %d old_data %d data_end %d\n",
  2137. slot, old_data, data_end);
  2138. BUG_ON(1);
  2139. }
  2140. /*
  2141. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2142. */
  2143. /* first correct the data pointers */
  2144. WARN_ON(leaf->map_token);
  2145. for (i = slot; i < nritems; i++) {
  2146. u32 ioff;
  2147. item = btrfs_item_nr(leaf, i);
  2148. if (!leaf->map_token) {
  2149. map_extent_buffer(leaf, (unsigned long)item,
  2150. sizeof(struct btrfs_item),
  2151. &leaf->map_token, &leaf->kaddr,
  2152. &leaf->map_start, &leaf->map_len,
  2153. KM_USER1);
  2154. }
  2155. ioff = btrfs_item_offset(leaf, item);
  2156. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2157. }
  2158. if (leaf->map_token) {
  2159. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2160. leaf->map_token = NULL;
  2161. }
  2162. /* shift the items */
  2163. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2164. btrfs_item_nr_offset(slot),
  2165. (nritems - slot) * sizeof(struct btrfs_item));
  2166. /* shift the data */
  2167. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2168. data_end - data_size, btrfs_leaf_data(leaf) +
  2169. data_end, old_data - data_end);
  2170. data_end = old_data;
  2171. }
  2172. /* setup the item for the new data */
  2173. btrfs_set_item_key(leaf, &disk_key, slot);
  2174. item = btrfs_item_nr(leaf, slot);
  2175. btrfs_set_item_offset(leaf, item, data_end - data_size);
  2176. btrfs_set_item_size(leaf, item, data_size);
  2177. btrfs_set_header_nritems(leaf, nritems + 1);
  2178. btrfs_mark_buffer_dirty(leaf);
  2179. ret = 0;
  2180. if (slot == 0)
  2181. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2182. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2183. btrfs_print_leaf(root, leaf);
  2184. BUG();
  2185. }
  2186. out:
  2187. return ret;
  2188. }
  2189. /*
  2190. * Given a key and some data, insert an item into the tree.
  2191. * This does all the path init required, making room in the tree if needed.
  2192. */
  2193. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  2194. *root, struct btrfs_key *cpu_key, void *data, u32
  2195. data_size)
  2196. {
  2197. int ret = 0;
  2198. struct btrfs_path *path;
  2199. struct extent_buffer *leaf;
  2200. unsigned long ptr;
  2201. path = btrfs_alloc_path();
  2202. BUG_ON(!path);
  2203. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  2204. if (!ret) {
  2205. leaf = path->nodes[0];
  2206. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  2207. write_extent_buffer(leaf, data, ptr, data_size);
  2208. btrfs_mark_buffer_dirty(leaf);
  2209. }
  2210. btrfs_free_path(path);
  2211. return ret;
  2212. }
  2213. /*
  2214. * delete the pointer from a given node.
  2215. *
  2216. * If the delete empties a node, the node is removed from the tree,
  2217. * continuing all the way the root if required. The root is converted into
  2218. * a leaf if all the nodes are emptied.
  2219. */
  2220. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2221. struct btrfs_path *path, int level, int slot)
  2222. {
  2223. struct extent_buffer *parent = path->nodes[level];
  2224. u32 nritems;
  2225. int ret = 0;
  2226. int wret;
  2227. nritems = btrfs_header_nritems(parent);
  2228. if (slot != nritems -1) {
  2229. memmove_extent_buffer(parent,
  2230. btrfs_node_key_ptr_offset(slot),
  2231. btrfs_node_key_ptr_offset(slot + 1),
  2232. sizeof(struct btrfs_key_ptr) *
  2233. (nritems - slot - 1));
  2234. }
  2235. nritems--;
  2236. btrfs_set_header_nritems(parent, nritems);
  2237. if (nritems == 0 && parent == root->node) {
  2238. BUG_ON(btrfs_header_level(root->node) != 1);
  2239. /* just turn the root into a leaf and break */
  2240. btrfs_set_header_level(root->node, 0);
  2241. } else if (slot == 0) {
  2242. struct btrfs_disk_key disk_key;
  2243. btrfs_node_key(parent, &disk_key, 0);
  2244. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  2245. if (wret)
  2246. ret = wret;
  2247. }
  2248. btrfs_mark_buffer_dirty(parent);
  2249. return ret;
  2250. }
  2251. /*
  2252. * delete the item at the leaf level in path. If that empties
  2253. * the leaf, remove it from the tree
  2254. */
  2255. int btrfs_del_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2256. struct btrfs_path *path)
  2257. {
  2258. int slot;
  2259. struct extent_buffer *leaf;
  2260. struct btrfs_item *item;
  2261. int doff;
  2262. int dsize;
  2263. int ret = 0;
  2264. int wret;
  2265. u32 nritems;
  2266. leaf = path->nodes[0];
  2267. slot = path->slots[0];
  2268. doff = btrfs_item_offset_nr(leaf, slot);
  2269. dsize = btrfs_item_size_nr(leaf, slot);
  2270. nritems = btrfs_header_nritems(leaf);
  2271. if (slot != nritems - 1) {
  2272. int i;
  2273. int data_end = leaf_data_end(root, leaf);
  2274. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2275. data_end + dsize,
  2276. btrfs_leaf_data(leaf) + data_end,
  2277. doff - data_end);
  2278. for (i = slot + 1; i < nritems; i++) {
  2279. u32 ioff;
  2280. item = btrfs_item_nr(leaf, i);
  2281. if (!leaf->map_token) {
  2282. map_extent_buffer(leaf, (unsigned long)item,
  2283. sizeof(struct btrfs_item),
  2284. &leaf->map_token, &leaf->kaddr,
  2285. &leaf->map_start, &leaf->map_len,
  2286. KM_USER1);
  2287. }
  2288. ioff = btrfs_item_offset(leaf, item);
  2289. btrfs_set_item_offset(leaf, item, ioff + dsize);
  2290. }
  2291. if (leaf->map_token) {
  2292. unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
  2293. leaf->map_token = NULL;
  2294. }
  2295. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  2296. btrfs_item_nr_offset(slot + 1),
  2297. sizeof(struct btrfs_item) *
  2298. (nritems - slot - 1));
  2299. }
  2300. btrfs_set_header_nritems(leaf, nritems - 1);
  2301. nritems--;
  2302. /* delete the leaf if we've emptied it */
  2303. if (nritems == 0) {
  2304. if (leaf == root->node) {
  2305. btrfs_set_header_level(leaf, 0);
  2306. } else {
  2307. u64 root_gen = btrfs_header_generation(path->nodes[1]);
  2308. clean_tree_block(trans, root, leaf);
  2309. wait_on_tree_block_writeback(root, leaf);
  2310. wret = del_ptr(trans, root, path, 1, path->slots[1]);
  2311. if (wret)
  2312. ret = wret;
  2313. wret = btrfs_free_extent(trans, root,
  2314. leaf->start, leaf->len,
  2315. btrfs_header_owner(path->nodes[1]),
  2316. root_gen, 0, 0, 1);
  2317. if (wret)
  2318. ret = wret;
  2319. }
  2320. } else {
  2321. int used = leaf_space_used(leaf, 0, nritems);
  2322. if (slot == 0) {
  2323. struct btrfs_disk_key disk_key;
  2324. btrfs_item_key(leaf, &disk_key, 0);
  2325. wret = fixup_low_keys(trans, root, path,
  2326. &disk_key, 1);
  2327. if (wret)
  2328. ret = wret;
  2329. }
  2330. /* delete the leaf if it is mostly empty */
  2331. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  2332. /* push_leaf_left fixes the path.
  2333. * make sure the path still points to our leaf
  2334. * for possible call to del_ptr below
  2335. */
  2336. slot = path->slots[1];
  2337. extent_buffer_get(leaf);
  2338. wret = push_leaf_right(trans, root, path, 1, 1);
  2339. if (wret < 0 && wret != -ENOSPC)
  2340. ret = wret;
  2341. if (path->nodes[0] == leaf &&
  2342. btrfs_header_nritems(leaf)) {
  2343. wret = push_leaf_left(trans, root, path, 1, 1);
  2344. if (wret < 0 && wret != -ENOSPC)
  2345. ret = wret;
  2346. }
  2347. if (btrfs_header_nritems(leaf) == 0) {
  2348. u64 root_gen;
  2349. u64 bytenr = leaf->start;
  2350. u32 blocksize = leaf->len;
  2351. root_gen = btrfs_header_generation(
  2352. path->nodes[1]);
  2353. clean_tree_block(trans, root, leaf);
  2354. wait_on_tree_block_writeback(root, leaf);
  2355. wret = del_ptr(trans, root, path, 1, slot);
  2356. if (wret)
  2357. ret = wret;
  2358. free_extent_buffer(leaf);
  2359. wret = btrfs_free_extent(trans, root, bytenr,
  2360. blocksize,
  2361. btrfs_header_owner(path->nodes[1]),
  2362. root_gen, 0, 0, 1);
  2363. if (wret)
  2364. ret = wret;
  2365. } else {
  2366. btrfs_mark_buffer_dirty(leaf);
  2367. free_extent_buffer(leaf);
  2368. }
  2369. } else {
  2370. btrfs_mark_buffer_dirty(leaf);
  2371. }
  2372. }
  2373. return ret;
  2374. }
  2375. /*
  2376. * walk up the tree as far as required to find the previous leaf.
  2377. * returns 0 if it found something or 1 if there are no lesser leaves.
  2378. * returns < 0 on io errors.
  2379. */
  2380. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  2381. {
  2382. u64 bytenr;
  2383. int slot;
  2384. int level = 1;
  2385. struct extent_buffer *c;
  2386. struct extent_buffer *next = NULL;
  2387. while(level < BTRFS_MAX_LEVEL) {
  2388. if (!path->nodes[level])
  2389. return 1;
  2390. slot = path->slots[level];
  2391. c = path->nodes[level];
  2392. if (slot == 0) {
  2393. level++;
  2394. if (level == BTRFS_MAX_LEVEL)
  2395. return 1;
  2396. continue;
  2397. }
  2398. slot--;
  2399. bytenr = btrfs_node_blockptr(c, slot);
  2400. if (next)
  2401. free_extent_buffer(next);
  2402. next = read_tree_block(root, bytenr,
  2403. btrfs_level_size(root, level - 1));
  2404. break;
  2405. }
  2406. path->slots[level] = slot;
  2407. while(1) {
  2408. level--;
  2409. c = path->nodes[level];
  2410. free_extent_buffer(c);
  2411. slot = btrfs_header_nritems(next);
  2412. if (slot != 0)
  2413. slot--;
  2414. path->nodes[level] = next;
  2415. path->slots[level] = slot;
  2416. if (!level)
  2417. break;
  2418. next = read_tree_block(root, btrfs_node_blockptr(next, slot),
  2419. btrfs_level_size(root, level - 1));
  2420. }
  2421. return 0;
  2422. }
  2423. /*
  2424. * walk up the tree as far as required to find the next leaf.
  2425. * returns 0 if it found something or 1 if there are no greater leaves.
  2426. * returns < 0 on io errors.
  2427. */
  2428. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  2429. {
  2430. int slot;
  2431. int level = 1;
  2432. u64 bytenr;
  2433. struct extent_buffer *c;
  2434. struct extent_buffer *next = NULL;
  2435. while(level < BTRFS_MAX_LEVEL) {
  2436. if (!path->nodes[level])
  2437. return 1;
  2438. slot = path->slots[level] + 1;
  2439. c = path->nodes[level];
  2440. if (slot >= btrfs_header_nritems(c)) {
  2441. level++;
  2442. if (level == BTRFS_MAX_LEVEL)
  2443. return 1;
  2444. continue;
  2445. }
  2446. bytenr = btrfs_node_blockptr(c, slot);
  2447. if (next)
  2448. free_extent_buffer(next);
  2449. if (path->reada)
  2450. reada_for_search(root, path, level, slot, 0);
  2451. next = read_tree_block(root, bytenr,
  2452. btrfs_level_size(root, level -1));
  2453. break;
  2454. }
  2455. path->slots[level] = slot;
  2456. while(1) {
  2457. level--;
  2458. c = path->nodes[level];
  2459. free_extent_buffer(c);
  2460. path->nodes[level] = next;
  2461. path->slots[level] = 0;
  2462. if (!level)
  2463. break;
  2464. if (path->reada)
  2465. reada_for_search(root, path, level, 0, 0);
  2466. next = read_tree_block(root, btrfs_node_blockptr(next, 0),
  2467. btrfs_level_size(root, level - 1));
  2468. }
  2469. return 0;
  2470. }