intel_display.c 250 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. typedef struct {
  46. /* given values */
  47. int n;
  48. int m1, m2;
  49. int p1, p2;
  50. /* derived values */
  51. int dot;
  52. int vco;
  53. int m;
  54. int p;
  55. } intel_clock_t;
  56. typedef struct {
  57. int min, max;
  58. } intel_range_t;
  59. typedef struct {
  60. int dot_limit;
  61. int p2_slow, p2_fast;
  62. } intel_p2_t;
  63. #define INTEL_P2_NUM 2
  64. typedef struct intel_limit intel_limit_t;
  65. struct intel_limit {
  66. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  67. intel_p2_t p2;
  68. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  69. int, int, intel_clock_t *, intel_clock_t *);
  70. };
  71. /* FDI */
  72. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  73. int
  74. intel_pch_rawclk(struct drm_device *dev)
  75. {
  76. struct drm_i915_private *dev_priv = dev->dev_private;
  77. WARN_ON(!HAS_PCH_SPLIT(dev));
  78. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  79. }
  80. static bool
  81. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  82. int target, int refclk, intel_clock_t *match_clock,
  83. intel_clock_t *best_clock);
  84. static bool
  85. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  86. int target, int refclk, intel_clock_t *match_clock,
  87. intel_clock_t *best_clock);
  88. static bool
  89. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  90. int target, int refclk, intel_clock_t *match_clock,
  91. intel_clock_t *best_clock);
  92. static bool
  93. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  94. int target, int refclk, intel_clock_t *match_clock,
  95. intel_clock_t *best_clock);
  96. static bool
  97. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  98. int target, int refclk, intel_clock_t *match_clock,
  99. intel_clock_t *best_clock);
  100. static inline u32 /* units of 100MHz */
  101. intel_fdi_link_freq(struct drm_device *dev)
  102. {
  103. if (IS_GEN5(dev)) {
  104. struct drm_i915_private *dev_priv = dev->dev_private;
  105. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  106. } else
  107. return 27;
  108. }
  109. static const intel_limit_t intel_limits_i8xx_dvo = {
  110. .dot = { .min = 25000, .max = 350000 },
  111. .vco = { .min = 930000, .max = 1400000 },
  112. .n = { .min = 3, .max = 16 },
  113. .m = { .min = 96, .max = 140 },
  114. .m1 = { .min = 18, .max = 26 },
  115. .m2 = { .min = 6, .max = 16 },
  116. .p = { .min = 4, .max = 128 },
  117. .p1 = { .min = 2, .max = 33 },
  118. .p2 = { .dot_limit = 165000,
  119. .p2_slow = 4, .p2_fast = 2 },
  120. .find_pll = intel_find_best_PLL,
  121. };
  122. static const intel_limit_t intel_limits_i8xx_lvds = {
  123. .dot = { .min = 25000, .max = 350000 },
  124. .vco = { .min = 930000, .max = 1400000 },
  125. .n = { .min = 3, .max = 16 },
  126. .m = { .min = 96, .max = 140 },
  127. .m1 = { .min = 18, .max = 26 },
  128. .m2 = { .min = 6, .max = 16 },
  129. .p = { .min = 4, .max = 128 },
  130. .p1 = { .min = 1, .max = 6 },
  131. .p2 = { .dot_limit = 165000,
  132. .p2_slow = 14, .p2_fast = 7 },
  133. .find_pll = intel_find_best_PLL,
  134. };
  135. static const intel_limit_t intel_limits_i9xx_sdvo = {
  136. .dot = { .min = 20000, .max = 400000 },
  137. .vco = { .min = 1400000, .max = 2800000 },
  138. .n = { .min = 1, .max = 6 },
  139. .m = { .min = 70, .max = 120 },
  140. .m1 = { .min = 10, .max = 22 },
  141. .m2 = { .min = 5, .max = 9 },
  142. .p = { .min = 5, .max = 80 },
  143. .p1 = { .min = 1, .max = 8 },
  144. .p2 = { .dot_limit = 200000,
  145. .p2_slow = 10, .p2_fast = 5 },
  146. .find_pll = intel_find_best_PLL,
  147. };
  148. static const intel_limit_t intel_limits_i9xx_lvds = {
  149. .dot = { .min = 20000, .max = 400000 },
  150. .vco = { .min = 1400000, .max = 2800000 },
  151. .n = { .min = 1, .max = 6 },
  152. .m = { .min = 70, .max = 120 },
  153. .m1 = { .min = 10, .max = 22 },
  154. .m2 = { .min = 5, .max = 9 },
  155. .p = { .min = 7, .max = 98 },
  156. .p1 = { .min = 1, .max = 8 },
  157. .p2 = { .dot_limit = 112000,
  158. .p2_slow = 14, .p2_fast = 7 },
  159. .find_pll = intel_find_best_PLL,
  160. };
  161. static const intel_limit_t intel_limits_g4x_sdvo = {
  162. .dot = { .min = 25000, .max = 270000 },
  163. .vco = { .min = 1750000, .max = 3500000},
  164. .n = { .min = 1, .max = 4 },
  165. .m = { .min = 104, .max = 138 },
  166. .m1 = { .min = 17, .max = 23 },
  167. .m2 = { .min = 5, .max = 11 },
  168. .p = { .min = 10, .max = 30 },
  169. .p1 = { .min = 1, .max = 3},
  170. .p2 = { .dot_limit = 270000,
  171. .p2_slow = 10,
  172. .p2_fast = 10
  173. },
  174. .find_pll = intel_g4x_find_best_PLL,
  175. };
  176. static const intel_limit_t intel_limits_g4x_hdmi = {
  177. .dot = { .min = 22000, .max = 400000 },
  178. .vco = { .min = 1750000, .max = 3500000},
  179. .n = { .min = 1, .max = 4 },
  180. .m = { .min = 104, .max = 138 },
  181. .m1 = { .min = 16, .max = 23 },
  182. .m2 = { .min = 5, .max = 11 },
  183. .p = { .min = 5, .max = 80 },
  184. .p1 = { .min = 1, .max = 8},
  185. .p2 = { .dot_limit = 165000,
  186. .p2_slow = 10, .p2_fast = 5 },
  187. .find_pll = intel_g4x_find_best_PLL,
  188. };
  189. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  190. .dot = { .min = 20000, .max = 115000 },
  191. .vco = { .min = 1750000, .max = 3500000 },
  192. .n = { .min = 1, .max = 3 },
  193. .m = { .min = 104, .max = 138 },
  194. .m1 = { .min = 17, .max = 23 },
  195. .m2 = { .min = 5, .max = 11 },
  196. .p = { .min = 28, .max = 112 },
  197. .p1 = { .min = 2, .max = 8 },
  198. .p2 = { .dot_limit = 0,
  199. .p2_slow = 14, .p2_fast = 14
  200. },
  201. .find_pll = intel_g4x_find_best_PLL,
  202. };
  203. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  204. .dot = { .min = 80000, .max = 224000 },
  205. .vco = { .min = 1750000, .max = 3500000 },
  206. .n = { .min = 1, .max = 3 },
  207. .m = { .min = 104, .max = 138 },
  208. .m1 = { .min = 17, .max = 23 },
  209. .m2 = { .min = 5, .max = 11 },
  210. .p = { .min = 14, .max = 42 },
  211. .p1 = { .min = 2, .max = 6 },
  212. .p2 = { .dot_limit = 0,
  213. .p2_slow = 7, .p2_fast = 7
  214. },
  215. .find_pll = intel_g4x_find_best_PLL,
  216. };
  217. static const intel_limit_t intel_limits_g4x_display_port = {
  218. .dot = { .min = 161670, .max = 227000 },
  219. .vco = { .min = 1750000, .max = 3500000},
  220. .n = { .min = 1, .max = 2 },
  221. .m = { .min = 97, .max = 108 },
  222. .m1 = { .min = 0x10, .max = 0x12 },
  223. .m2 = { .min = 0x05, .max = 0x06 },
  224. .p = { .min = 10, .max = 20 },
  225. .p1 = { .min = 1, .max = 2},
  226. .p2 = { .dot_limit = 0,
  227. .p2_slow = 10, .p2_fast = 10 },
  228. .find_pll = intel_find_pll_g4x_dp,
  229. };
  230. static const intel_limit_t intel_limits_pineview_sdvo = {
  231. .dot = { .min = 20000, .max = 400000},
  232. .vco = { .min = 1700000, .max = 3500000 },
  233. /* Pineview's Ncounter is a ring counter */
  234. .n = { .min = 3, .max = 6 },
  235. .m = { .min = 2, .max = 256 },
  236. /* Pineview only has one combined m divider, which we treat as m2. */
  237. .m1 = { .min = 0, .max = 0 },
  238. .m2 = { .min = 0, .max = 254 },
  239. .p = { .min = 5, .max = 80 },
  240. .p1 = { .min = 1, .max = 8 },
  241. .p2 = { .dot_limit = 200000,
  242. .p2_slow = 10, .p2_fast = 5 },
  243. .find_pll = intel_find_best_PLL,
  244. };
  245. static const intel_limit_t intel_limits_pineview_lvds = {
  246. .dot = { .min = 20000, .max = 400000 },
  247. .vco = { .min = 1700000, .max = 3500000 },
  248. .n = { .min = 3, .max = 6 },
  249. .m = { .min = 2, .max = 256 },
  250. .m1 = { .min = 0, .max = 0 },
  251. .m2 = { .min = 0, .max = 254 },
  252. .p = { .min = 7, .max = 112 },
  253. .p1 = { .min = 1, .max = 8 },
  254. .p2 = { .dot_limit = 112000,
  255. .p2_slow = 14, .p2_fast = 14 },
  256. .find_pll = intel_find_best_PLL,
  257. };
  258. /* Ironlake / Sandybridge
  259. *
  260. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  261. * the range value for them is (actual_value - 2).
  262. */
  263. static const intel_limit_t intel_limits_ironlake_dac = {
  264. .dot = { .min = 25000, .max = 350000 },
  265. .vco = { .min = 1760000, .max = 3510000 },
  266. .n = { .min = 1, .max = 5 },
  267. .m = { .min = 79, .max = 127 },
  268. .m1 = { .min = 12, .max = 22 },
  269. .m2 = { .min = 5, .max = 9 },
  270. .p = { .min = 5, .max = 80 },
  271. .p1 = { .min = 1, .max = 8 },
  272. .p2 = { .dot_limit = 225000,
  273. .p2_slow = 10, .p2_fast = 5 },
  274. .find_pll = intel_g4x_find_best_PLL,
  275. };
  276. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  277. .dot = { .min = 25000, .max = 350000 },
  278. .vco = { .min = 1760000, .max = 3510000 },
  279. .n = { .min = 1, .max = 3 },
  280. .m = { .min = 79, .max = 118 },
  281. .m1 = { .min = 12, .max = 22 },
  282. .m2 = { .min = 5, .max = 9 },
  283. .p = { .min = 28, .max = 112 },
  284. .p1 = { .min = 2, .max = 8 },
  285. .p2 = { .dot_limit = 225000,
  286. .p2_slow = 14, .p2_fast = 14 },
  287. .find_pll = intel_g4x_find_best_PLL,
  288. };
  289. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  290. .dot = { .min = 25000, .max = 350000 },
  291. .vco = { .min = 1760000, .max = 3510000 },
  292. .n = { .min = 1, .max = 3 },
  293. .m = { .min = 79, .max = 127 },
  294. .m1 = { .min = 12, .max = 22 },
  295. .m2 = { .min = 5, .max = 9 },
  296. .p = { .min = 14, .max = 56 },
  297. .p1 = { .min = 2, .max = 8 },
  298. .p2 = { .dot_limit = 225000,
  299. .p2_slow = 7, .p2_fast = 7 },
  300. .find_pll = intel_g4x_find_best_PLL,
  301. };
  302. /* LVDS 100mhz refclk limits. */
  303. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  304. .dot = { .min = 25000, .max = 350000 },
  305. .vco = { .min = 1760000, .max = 3510000 },
  306. .n = { .min = 1, .max = 2 },
  307. .m = { .min = 79, .max = 126 },
  308. .m1 = { .min = 12, .max = 22 },
  309. .m2 = { .min = 5, .max = 9 },
  310. .p = { .min = 28, .max = 112 },
  311. .p1 = { .min = 2, .max = 8 },
  312. .p2 = { .dot_limit = 225000,
  313. .p2_slow = 14, .p2_fast = 14 },
  314. .find_pll = intel_g4x_find_best_PLL,
  315. };
  316. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  317. .dot = { .min = 25000, .max = 350000 },
  318. .vco = { .min = 1760000, .max = 3510000 },
  319. .n = { .min = 1, .max = 3 },
  320. .m = { .min = 79, .max = 126 },
  321. .m1 = { .min = 12, .max = 22 },
  322. .m2 = { .min = 5, .max = 9 },
  323. .p = { .min = 14, .max = 42 },
  324. .p1 = { .min = 2, .max = 6 },
  325. .p2 = { .dot_limit = 225000,
  326. .p2_slow = 7, .p2_fast = 7 },
  327. .find_pll = intel_g4x_find_best_PLL,
  328. };
  329. static const intel_limit_t intel_limits_ironlake_display_port = {
  330. .dot = { .min = 25000, .max = 350000 },
  331. .vco = { .min = 1760000, .max = 3510000},
  332. .n = { .min = 1, .max = 2 },
  333. .m = { .min = 81, .max = 90 },
  334. .m1 = { .min = 12, .max = 22 },
  335. .m2 = { .min = 5, .max = 9 },
  336. .p = { .min = 10, .max = 20 },
  337. .p1 = { .min = 1, .max = 2},
  338. .p2 = { .dot_limit = 0,
  339. .p2_slow = 10, .p2_fast = 10 },
  340. .find_pll = intel_find_pll_ironlake_dp,
  341. };
  342. static const intel_limit_t intel_limits_vlv_dac = {
  343. .dot = { .min = 25000, .max = 270000 },
  344. .vco = { .min = 4000000, .max = 6000000 },
  345. .n = { .min = 1, .max = 7 },
  346. .m = { .min = 22, .max = 450 }, /* guess */
  347. .m1 = { .min = 2, .max = 3 },
  348. .m2 = { .min = 11, .max = 156 },
  349. .p = { .min = 10, .max = 30 },
  350. .p1 = { .min = 2, .max = 3 },
  351. .p2 = { .dot_limit = 270000,
  352. .p2_slow = 2, .p2_fast = 20 },
  353. .find_pll = intel_vlv_find_best_pll,
  354. };
  355. static const intel_limit_t intel_limits_vlv_hdmi = {
  356. .dot = { .min = 20000, .max = 165000 },
  357. .vco = { .min = 4000000, .max = 5994000},
  358. .n = { .min = 1, .max = 7 },
  359. .m = { .min = 60, .max = 300 }, /* guess */
  360. .m1 = { .min = 2, .max = 3 },
  361. .m2 = { .min = 11, .max = 156 },
  362. .p = { .min = 10, .max = 30 },
  363. .p1 = { .min = 2, .max = 3 },
  364. .p2 = { .dot_limit = 270000,
  365. .p2_slow = 2, .p2_fast = 20 },
  366. .find_pll = intel_vlv_find_best_pll,
  367. };
  368. static const intel_limit_t intel_limits_vlv_dp = {
  369. .dot = { .min = 25000, .max = 270000 },
  370. .vco = { .min = 4000000, .max = 6000000 },
  371. .n = { .min = 1, .max = 7 },
  372. .m = { .min = 22, .max = 450 },
  373. .m1 = { .min = 2, .max = 3 },
  374. .m2 = { .min = 11, .max = 156 },
  375. .p = { .min = 10, .max = 30 },
  376. .p1 = { .min = 2, .max = 3 },
  377. .p2 = { .dot_limit = 270000,
  378. .p2_slow = 2, .p2_fast = 20 },
  379. .find_pll = intel_vlv_find_best_pll,
  380. };
  381. u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
  382. {
  383. unsigned long flags;
  384. u32 val = 0;
  385. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  386. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  387. DRM_ERROR("DPIO idle wait timed out\n");
  388. goto out_unlock;
  389. }
  390. I915_WRITE(DPIO_REG, reg);
  391. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
  392. DPIO_BYTE);
  393. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  394. DRM_ERROR("DPIO read wait timed out\n");
  395. goto out_unlock;
  396. }
  397. val = I915_READ(DPIO_DATA);
  398. out_unlock:
  399. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  400. return val;
  401. }
  402. static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
  403. u32 val)
  404. {
  405. unsigned long flags;
  406. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  407. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  408. DRM_ERROR("DPIO idle wait timed out\n");
  409. goto out_unlock;
  410. }
  411. I915_WRITE(DPIO_DATA, val);
  412. I915_WRITE(DPIO_REG, reg);
  413. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
  414. DPIO_BYTE);
  415. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
  416. DRM_ERROR("DPIO write wait timed out\n");
  417. out_unlock:
  418. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  419. }
  420. static void vlv_init_dpio(struct drm_device *dev)
  421. {
  422. struct drm_i915_private *dev_priv = dev->dev_private;
  423. /* Reset the DPIO config */
  424. I915_WRITE(DPIO_CTL, 0);
  425. POSTING_READ(DPIO_CTL);
  426. I915_WRITE(DPIO_CTL, 1);
  427. POSTING_READ(DPIO_CTL);
  428. }
  429. static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
  430. {
  431. DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
  432. return 1;
  433. }
  434. static const struct dmi_system_id intel_dual_link_lvds[] = {
  435. {
  436. .callback = intel_dual_link_lvds_callback,
  437. .ident = "Apple MacBook Pro (Core i5/i7 Series)",
  438. .matches = {
  439. DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
  440. DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
  441. },
  442. },
  443. { } /* terminating entry */
  444. };
  445. static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
  446. unsigned int reg)
  447. {
  448. unsigned int val;
  449. /* use the module option value if specified */
  450. if (i915_lvds_channel_mode > 0)
  451. return i915_lvds_channel_mode == 2;
  452. if (dmi_check_system(intel_dual_link_lvds))
  453. return true;
  454. if (dev_priv->lvds_val)
  455. val = dev_priv->lvds_val;
  456. else {
  457. /* BIOS should set the proper LVDS register value at boot, but
  458. * in reality, it doesn't set the value when the lid is closed;
  459. * we need to check "the value to be set" in VBT when LVDS
  460. * register is uninitialized.
  461. */
  462. val = I915_READ(reg);
  463. if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
  464. val = dev_priv->bios_lvds_val;
  465. dev_priv->lvds_val = val;
  466. }
  467. return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
  468. }
  469. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  470. int refclk)
  471. {
  472. struct drm_device *dev = crtc->dev;
  473. struct drm_i915_private *dev_priv = dev->dev_private;
  474. const intel_limit_t *limit;
  475. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  476. if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
  477. /* LVDS dual channel */
  478. if (refclk == 100000)
  479. limit = &intel_limits_ironlake_dual_lvds_100m;
  480. else
  481. limit = &intel_limits_ironlake_dual_lvds;
  482. } else {
  483. if (refclk == 100000)
  484. limit = &intel_limits_ironlake_single_lvds_100m;
  485. else
  486. limit = &intel_limits_ironlake_single_lvds;
  487. }
  488. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  489. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  490. limit = &intel_limits_ironlake_display_port;
  491. else
  492. limit = &intel_limits_ironlake_dac;
  493. return limit;
  494. }
  495. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  496. {
  497. struct drm_device *dev = crtc->dev;
  498. struct drm_i915_private *dev_priv = dev->dev_private;
  499. const intel_limit_t *limit;
  500. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  501. if (is_dual_link_lvds(dev_priv, LVDS))
  502. /* LVDS with dual channel */
  503. limit = &intel_limits_g4x_dual_channel_lvds;
  504. else
  505. /* LVDS with dual channel */
  506. limit = &intel_limits_g4x_single_channel_lvds;
  507. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  508. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  509. limit = &intel_limits_g4x_hdmi;
  510. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  511. limit = &intel_limits_g4x_sdvo;
  512. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  513. limit = &intel_limits_g4x_display_port;
  514. } else /* The option is for other outputs */
  515. limit = &intel_limits_i9xx_sdvo;
  516. return limit;
  517. }
  518. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  519. {
  520. struct drm_device *dev = crtc->dev;
  521. const intel_limit_t *limit;
  522. if (HAS_PCH_SPLIT(dev))
  523. limit = intel_ironlake_limit(crtc, refclk);
  524. else if (IS_G4X(dev)) {
  525. limit = intel_g4x_limit(crtc);
  526. } else if (IS_PINEVIEW(dev)) {
  527. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  528. limit = &intel_limits_pineview_lvds;
  529. else
  530. limit = &intel_limits_pineview_sdvo;
  531. } else if (IS_VALLEYVIEW(dev)) {
  532. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  533. limit = &intel_limits_vlv_dac;
  534. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  535. limit = &intel_limits_vlv_hdmi;
  536. else
  537. limit = &intel_limits_vlv_dp;
  538. } else if (!IS_GEN2(dev)) {
  539. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  540. limit = &intel_limits_i9xx_lvds;
  541. else
  542. limit = &intel_limits_i9xx_sdvo;
  543. } else {
  544. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  545. limit = &intel_limits_i8xx_lvds;
  546. else
  547. limit = &intel_limits_i8xx_dvo;
  548. }
  549. return limit;
  550. }
  551. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  552. static void pineview_clock(int refclk, intel_clock_t *clock)
  553. {
  554. clock->m = clock->m2 + 2;
  555. clock->p = clock->p1 * clock->p2;
  556. clock->vco = refclk * clock->m / clock->n;
  557. clock->dot = clock->vco / clock->p;
  558. }
  559. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  560. {
  561. if (IS_PINEVIEW(dev)) {
  562. pineview_clock(refclk, clock);
  563. return;
  564. }
  565. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  566. clock->p = clock->p1 * clock->p2;
  567. clock->vco = refclk * clock->m / (clock->n + 2);
  568. clock->dot = clock->vco / clock->p;
  569. }
  570. /**
  571. * Returns whether any output on the specified pipe is of the specified type
  572. */
  573. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  574. {
  575. struct drm_device *dev = crtc->dev;
  576. struct intel_encoder *encoder;
  577. for_each_encoder_on_crtc(dev, crtc, encoder)
  578. if (encoder->type == type)
  579. return true;
  580. return false;
  581. }
  582. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  583. /**
  584. * Returns whether the given set of divisors are valid for a given refclk with
  585. * the given connectors.
  586. */
  587. static bool intel_PLL_is_valid(struct drm_device *dev,
  588. const intel_limit_t *limit,
  589. const intel_clock_t *clock)
  590. {
  591. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  592. INTELPllInvalid("p1 out of range\n");
  593. if (clock->p < limit->p.min || limit->p.max < clock->p)
  594. INTELPllInvalid("p out of range\n");
  595. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  596. INTELPllInvalid("m2 out of range\n");
  597. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  598. INTELPllInvalid("m1 out of range\n");
  599. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  600. INTELPllInvalid("m1 <= m2\n");
  601. if (clock->m < limit->m.min || limit->m.max < clock->m)
  602. INTELPllInvalid("m out of range\n");
  603. if (clock->n < limit->n.min || limit->n.max < clock->n)
  604. INTELPllInvalid("n out of range\n");
  605. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  606. INTELPllInvalid("vco out of range\n");
  607. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  608. * connector, etc., rather than just a single range.
  609. */
  610. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  611. INTELPllInvalid("dot out of range\n");
  612. return true;
  613. }
  614. static bool
  615. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  616. int target, int refclk, intel_clock_t *match_clock,
  617. intel_clock_t *best_clock)
  618. {
  619. struct drm_device *dev = crtc->dev;
  620. struct drm_i915_private *dev_priv = dev->dev_private;
  621. intel_clock_t clock;
  622. int err = target;
  623. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  624. (I915_READ(LVDS)) != 0) {
  625. /*
  626. * For LVDS, if the panel is on, just rely on its current
  627. * settings for dual-channel. We haven't figured out how to
  628. * reliably set up different single/dual channel state, if we
  629. * even can.
  630. */
  631. if (is_dual_link_lvds(dev_priv, LVDS))
  632. clock.p2 = limit->p2.p2_fast;
  633. else
  634. clock.p2 = limit->p2.p2_slow;
  635. } else {
  636. if (target < limit->p2.dot_limit)
  637. clock.p2 = limit->p2.p2_slow;
  638. else
  639. clock.p2 = limit->p2.p2_fast;
  640. }
  641. memset(best_clock, 0, sizeof(*best_clock));
  642. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  643. clock.m1++) {
  644. for (clock.m2 = limit->m2.min;
  645. clock.m2 <= limit->m2.max; clock.m2++) {
  646. /* m1 is always 0 in Pineview */
  647. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  648. break;
  649. for (clock.n = limit->n.min;
  650. clock.n <= limit->n.max; clock.n++) {
  651. for (clock.p1 = limit->p1.min;
  652. clock.p1 <= limit->p1.max; clock.p1++) {
  653. int this_err;
  654. intel_clock(dev, refclk, &clock);
  655. if (!intel_PLL_is_valid(dev, limit,
  656. &clock))
  657. continue;
  658. if (match_clock &&
  659. clock.p != match_clock->p)
  660. continue;
  661. this_err = abs(clock.dot - target);
  662. if (this_err < err) {
  663. *best_clock = clock;
  664. err = this_err;
  665. }
  666. }
  667. }
  668. }
  669. }
  670. return (err != target);
  671. }
  672. static bool
  673. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  674. int target, int refclk, intel_clock_t *match_clock,
  675. intel_clock_t *best_clock)
  676. {
  677. struct drm_device *dev = crtc->dev;
  678. struct drm_i915_private *dev_priv = dev->dev_private;
  679. intel_clock_t clock;
  680. int max_n;
  681. bool found;
  682. /* approximately equals target * 0.00585 */
  683. int err_most = (target >> 8) + (target >> 9);
  684. found = false;
  685. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  686. int lvds_reg;
  687. if (HAS_PCH_SPLIT(dev))
  688. lvds_reg = PCH_LVDS;
  689. else
  690. lvds_reg = LVDS;
  691. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  692. LVDS_CLKB_POWER_UP)
  693. clock.p2 = limit->p2.p2_fast;
  694. else
  695. clock.p2 = limit->p2.p2_slow;
  696. } else {
  697. if (target < limit->p2.dot_limit)
  698. clock.p2 = limit->p2.p2_slow;
  699. else
  700. clock.p2 = limit->p2.p2_fast;
  701. }
  702. memset(best_clock, 0, sizeof(*best_clock));
  703. max_n = limit->n.max;
  704. /* based on hardware requirement, prefer smaller n to precision */
  705. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  706. /* based on hardware requirement, prefere larger m1,m2 */
  707. for (clock.m1 = limit->m1.max;
  708. clock.m1 >= limit->m1.min; clock.m1--) {
  709. for (clock.m2 = limit->m2.max;
  710. clock.m2 >= limit->m2.min; clock.m2--) {
  711. for (clock.p1 = limit->p1.max;
  712. clock.p1 >= limit->p1.min; clock.p1--) {
  713. int this_err;
  714. intel_clock(dev, refclk, &clock);
  715. if (!intel_PLL_is_valid(dev, limit,
  716. &clock))
  717. continue;
  718. if (match_clock &&
  719. clock.p != match_clock->p)
  720. continue;
  721. this_err = abs(clock.dot - target);
  722. if (this_err < err_most) {
  723. *best_clock = clock;
  724. err_most = this_err;
  725. max_n = clock.n;
  726. found = true;
  727. }
  728. }
  729. }
  730. }
  731. }
  732. return found;
  733. }
  734. static bool
  735. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  736. int target, int refclk, intel_clock_t *match_clock,
  737. intel_clock_t *best_clock)
  738. {
  739. struct drm_device *dev = crtc->dev;
  740. intel_clock_t clock;
  741. if (target < 200000) {
  742. clock.n = 1;
  743. clock.p1 = 2;
  744. clock.p2 = 10;
  745. clock.m1 = 12;
  746. clock.m2 = 9;
  747. } else {
  748. clock.n = 2;
  749. clock.p1 = 1;
  750. clock.p2 = 10;
  751. clock.m1 = 14;
  752. clock.m2 = 8;
  753. }
  754. intel_clock(dev, refclk, &clock);
  755. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  756. return true;
  757. }
  758. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  759. static bool
  760. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  761. int target, int refclk, intel_clock_t *match_clock,
  762. intel_clock_t *best_clock)
  763. {
  764. intel_clock_t clock;
  765. if (target < 200000) {
  766. clock.p1 = 2;
  767. clock.p2 = 10;
  768. clock.n = 2;
  769. clock.m1 = 23;
  770. clock.m2 = 8;
  771. } else {
  772. clock.p1 = 1;
  773. clock.p2 = 10;
  774. clock.n = 1;
  775. clock.m1 = 14;
  776. clock.m2 = 2;
  777. }
  778. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  779. clock.p = (clock.p1 * clock.p2);
  780. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  781. clock.vco = 0;
  782. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  783. return true;
  784. }
  785. static bool
  786. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  787. int target, int refclk, intel_clock_t *match_clock,
  788. intel_clock_t *best_clock)
  789. {
  790. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  791. u32 m, n, fastclk;
  792. u32 updrate, minupdate, fracbits, p;
  793. unsigned long bestppm, ppm, absppm;
  794. int dotclk, flag;
  795. flag = 0;
  796. dotclk = target * 1000;
  797. bestppm = 1000000;
  798. ppm = absppm = 0;
  799. fastclk = dotclk / (2*100);
  800. updrate = 0;
  801. minupdate = 19200;
  802. fracbits = 1;
  803. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  804. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  805. /* based on hardware requirement, prefer smaller n to precision */
  806. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  807. updrate = refclk / n;
  808. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  809. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  810. if (p2 > 10)
  811. p2 = p2 - 1;
  812. p = p1 * p2;
  813. /* based on hardware requirement, prefer bigger m1,m2 values */
  814. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  815. m2 = (((2*(fastclk * p * n / m1 )) +
  816. refclk) / (2*refclk));
  817. m = m1 * m2;
  818. vco = updrate * m;
  819. if (vco >= limit->vco.min && vco < limit->vco.max) {
  820. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  821. absppm = (ppm > 0) ? ppm : (-ppm);
  822. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  823. bestppm = 0;
  824. flag = 1;
  825. }
  826. if (absppm < bestppm - 10) {
  827. bestppm = absppm;
  828. flag = 1;
  829. }
  830. if (flag) {
  831. bestn = n;
  832. bestm1 = m1;
  833. bestm2 = m2;
  834. bestp1 = p1;
  835. bestp2 = p2;
  836. flag = 0;
  837. }
  838. }
  839. }
  840. }
  841. }
  842. }
  843. best_clock->n = bestn;
  844. best_clock->m1 = bestm1;
  845. best_clock->m2 = bestm2;
  846. best_clock->p1 = bestp1;
  847. best_clock->p2 = bestp2;
  848. return true;
  849. }
  850. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  851. enum pipe pipe)
  852. {
  853. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  854. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  855. return intel_crtc->cpu_transcoder;
  856. }
  857. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  858. {
  859. struct drm_i915_private *dev_priv = dev->dev_private;
  860. u32 frame, frame_reg = PIPEFRAME(pipe);
  861. frame = I915_READ(frame_reg);
  862. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  863. DRM_DEBUG_KMS("vblank wait timed out\n");
  864. }
  865. /**
  866. * intel_wait_for_vblank - wait for vblank on a given pipe
  867. * @dev: drm device
  868. * @pipe: pipe to wait for
  869. *
  870. * Wait for vblank to occur on a given pipe. Needed for various bits of
  871. * mode setting code.
  872. */
  873. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  874. {
  875. struct drm_i915_private *dev_priv = dev->dev_private;
  876. int pipestat_reg = PIPESTAT(pipe);
  877. if (INTEL_INFO(dev)->gen >= 5) {
  878. ironlake_wait_for_vblank(dev, pipe);
  879. return;
  880. }
  881. /* Clear existing vblank status. Note this will clear any other
  882. * sticky status fields as well.
  883. *
  884. * This races with i915_driver_irq_handler() with the result
  885. * that either function could miss a vblank event. Here it is not
  886. * fatal, as we will either wait upon the next vblank interrupt or
  887. * timeout. Generally speaking intel_wait_for_vblank() is only
  888. * called during modeset at which time the GPU should be idle and
  889. * should *not* be performing page flips and thus not waiting on
  890. * vblanks...
  891. * Currently, the result of us stealing a vblank from the irq
  892. * handler is that a single frame will be skipped during swapbuffers.
  893. */
  894. I915_WRITE(pipestat_reg,
  895. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  896. /* Wait for vblank interrupt bit to set */
  897. if (wait_for(I915_READ(pipestat_reg) &
  898. PIPE_VBLANK_INTERRUPT_STATUS,
  899. 50))
  900. DRM_DEBUG_KMS("vblank wait timed out\n");
  901. }
  902. /*
  903. * intel_wait_for_pipe_off - wait for pipe to turn off
  904. * @dev: drm device
  905. * @pipe: pipe to wait for
  906. *
  907. * After disabling a pipe, we can't wait for vblank in the usual way,
  908. * spinning on the vblank interrupt status bit, since we won't actually
  909. * see an interrupt when the pipe is disabled.
  910. *
  911. * On Gen4 and above:
  912. * wait for the pipe register state bit to turn off
  913. *
  914. * Otherwise:
  915. * wait for the display line value to settle (it usually
  916. * ends up stopping at the start of the next frame).
  917. *
  918. */
  919. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  920. {
  921. struct drm_i915_private *dev_priv = dev->dev_private;
  922. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  923. pipe);
  924. if (INTEL_INFO(dev)->gen >= 4) {
  925. int reg = PIPECONF(cpu_transcoder);
  926. /* Wait for the Pipe State to go off */
  927. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  928. 100))
  929. WARN(1, "pipe_off wait timed out\n");
  930. } else {
  931. u32 last_line, line_mask;
  932. int reg = PIPEDSL(pipe);
  933. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  934. if (IS_GEN2(dev))
  935. line_mask = DSL_LINEMASK_GEN2;
  936. else
  937. line_mask = DSL_LINEMASK_GEN3;
  938. /* Wait for the display line to settle */
  939. do {
  940. last_line = I915_READ(reg) & line_mask;
  941. mdelay(5);
  942. } while (((I915_READ(reg) & line_mask) != last_line) &&
  943. time_after(timeout, jiffies));
  944. if (time_after(jiffies, timeout))
  945. WARN(1, "pipe_off wait timed out\n");
  946. }
  947. }
  948. static const char *state_string(bool enabled)
  949. {
  950. return enabled ? "on" : "off";
  951. }
  952. /* Only for pre-ILK configs */
  953. static void assert_pll(struct drm_i915_private *dev_priv,
  954. enum pipe pipe, bool state)
  955. {
  956. int reg;
  957. u32 val;
  958. bool cur_state;
  959. reg = DPLL(pipe);
  960. val = I915_READ(reg);
  961. cur_state = !!(val & DPLL_VCO_ENABLE);
  962. WARN(cur_state != state,
  963. "PLL state assertion failure (expected %s, current %s)\n",
  964. state_string(state), state_string(cur_state));
  965. }
  966. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  967. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  968. /* For ILK+ */
  969. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  970. struct intel_pch_pll *pll,
  971. struct intel_crtc *crtc,
  972. bool state)
  973. {
  974. u32 val;
  975. bool cur_state;
  976. if (HAS_PCH_LPT(dev_priv->dev)) {
  977. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  978. return;
  979. }
  980. if (WARN (!pll,
  981. "asserting PCH PLL %s with no PLL\n", state_string(state)))
  982. return;
  983. val = I915_READ(pll->pll_reg);
  984. cur_state = !!(val & DPLL_VCO_ENABLE);
  985. WARN(cur_state != state,
  986. "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
  987. pll->pll_reg, state_string(state), state_string(cur_state), val);
  988. /* Make sure the selected PLL is correctly attached to the transcoder */
  989. if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
  990. u32 pch_dpll;
  991. pch_dpll = I915_READ(PCH_DPLL_SEL);
  992. cur_state = pll->pll_reg == _PCH_DPLL_B;
  993. if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
  994. "PLL[%d] not attached to this transcoder %d: %08x\n",
  995. cur_state, crtc->pipe, pch_dpll)) {
  996. cur_state = !!(val >> (4*crtc->pipe + 3));
  997. WARN(cur_state != state,
  998. "PLL[%d] not %s on this transcoder %d: %08x\n",
  999. pll->pll_reg == _PCH_DPLL_B,
  1000. state_string(state),
  1001. crtc->pipe,
  1002. val);
  1003. }
  1004. }
  1005. }
  1006. #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
  1007. #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
  1008. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  1009. enum pipe pipe, bool state)
  1010. {
  1011. int reg;
  1012. u32 val;
  1013. bool cur_state;
  1014. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1015. pipe);
  1016. if (IS_HASWELL(dev_priv->dev)) {
  1017. /* On Haswell, DDI is used instead of FDI_TX_CTL */
  1018. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  1019. val = I915_READ(reg);
  1020. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  1021. } else {
  1022. reg = FDI_TX_CTL(pipe);
  1023. val = I915_READ(reg);
  1024. cur_state = !!(val & FDI_TX_ENABLE);
  1025. }
  1026. WARN(cur_state != state,
  1027. "FDI TX state assertion failure (expected %s, current %s)\n",
  1028. state_string(state), state_string(cur_state));
  1029. }
  1030. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  1031. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  1032. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  1033. enum pipe pipe, bool state)
  1034. {
  1035. int reg;
  1036. u32 val;
  1037. bool cur_state;
  1038. reg = FDI_RX_CTL(pipe);
  1039. val = I915_READ(reg);
  1040. cur_state = !!(val & FDI_RX_ENABLE);
  1041. WARN(cur_state != state,
  1042. "FDI RX state assertion failure (expected %s, current %s)\n",
  1043. state_string(state), state_string(cur_state));
  1044. }
  1045. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  1046. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  1047. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  1048. enum pipe pipe)
  1049. {
  1050. int reg;
  1051. u32 val;
  1052. /* ILK FDI PLL is always enabled */
  1053. if (dev_priv->info->gen == 5)
  1054. return;
  1055. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  1056. if (IS_HASWELL(dev_priv->dev))
  1057. return;
  1058. reg = FDI_TX_CTL(pipe);
  1059. val = I915_READ(reg);
  1060. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  1061. }
  1062. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  1063. enum pipe pipe)
  1064. {
  1065. int reg;
  1066. u32 val;
  1067. reg = FDI_RX_CTL(pipe);
  1068. val = I915_READ(reg);
  1069. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  1070. }
  1071. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  1072. enum pipe pipe)
  1073. {
  1074. int pp_reg, lvds_reg;
  1075. u32 val;
  1076. enum pipe panel_pipe = PIPE_A;
  1077. bool locked = true;
  1078. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1079. pp_reg = PCH_PP_CONTROL;
  1080. lvds_reg = PCH_LVDS;
  1081. } else {
  1082. pp_reg = PP_CONTROL;
  1083. lvds_reg = LVDS;
  1084. }
  1085. val = I915_READ(pp_reg);
  1086. if (!(val & PANEL_POWER_ON) ||
  1087. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  1088. locked = false;
  1089. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  1090. panel_pipe = PIPE_B;
  1091. WARN(panel_pipe == pipe && locked,
  1092. "panel assertion failure, pipe %c regs locked\n",
  1093. pipe_name(pipe));
  1094. }
  1095. void assert_pipe(struct drm_i915_private *dev_priv,
  1096. enum pipe pipe, bool state)
  1097. {
  1098. int reg;
  1099. u32 val;
  1100. bool cur_state;
  1101. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1102. pipe);
  1103. /* if we need the pipe A quirk it must be always on */
  1104. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  1105. state = true;
  1106. reg = PIPECONF(cpu_transcoder);
  1107. val = I915_READ(reg);
  1108. cur_state = !!(val & PIPECONF_ENABLE);
  1109. WARN(cur_state != state,
  1110. "pipe %c assertion failure (expected %s, current %s)\n",
  1111. pipe_name(pipe), state_string(state), state_string(cur_state));
  1112. }
  1113. static void assert_plane(struct drm_i915_private *dev_priv,
  1114. enum plane plane, bool state)
  1115. {
  1116. int reg;
  1117. u32 val;
  1118. bool cur_state;
  1119. reg = DSPCNTR(plane);
  1120. val = I915_READ(reg);
  1121. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1122. WARN(cur_state != state,
  1123. "plane %c assertion failure (expected %s, current %s)\n",
  1124. plane_name(plane), state_string(state), state_string(cur_state));
  1125. }
  1126. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1127. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1128. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1129. enum pipe pipe)
  1130. {
  1131. int reg, i;
  1132. u32 val;
  1133. int cur_pipe;
  1134. /* Planes are fixed to pipes on ILK+ */
  1135. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1136. reg = DSPCNTR(pipe);
  1137. val = I915_READ(reg);
  1138. WARN((val & DISPLAY_PLANE_ENABLE),
  1139. "plane %c assertion failure, should be disabled but not\n",
  1140. plane_name(pipe));
  1141. return;
  1142. }
  1143. /* Need to check both planes against the pipe */
  1144. for (i = 0; i < 2; i++) {
  1145. reg = DSPCNTR(i);
  1146. val = I915_READ(reg);
  1147. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1148. DISPPLANE_SEL_PIPE_SHIFT;
  1149. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1150. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1151. plane_name(i), pipe_name(pipe));
  1152. }
  1153. }
  1154. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1155. {
  1156. u32 val;
  1157. bool enabled;
  1158. if (HAS_PCH_LPT(dev_priv->dev)) {
  1159. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1160. return;
  1161. }
  1162. val = I915_READ(PCH_DREF_CONTROL);
  1163. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1164. DREF_SUPERSPREAD_SOURCE_MASK));
  1165. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1166. }
  1167. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  1168. enum pipe pipe)
  1169. {
  1170. int reg;
  1171. u32 val;
  1172. bool enabled;
  1173. reg = TRANSCONF(pipe);
  1174. val = I915_READ(reg);
  1175. enabled = !!(val & TRANS_ENABLE);
  1176. WARN(enabled,
  1177. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1178. pipe_name(pipe));
  1179. }
  1180. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1181. enum pipe pipe, u32 port_sel, u32 val)
  1182. {
  1183. if ((val & DP_PORT_EN) == 0)
  1184. return false;
  1185. if (HAS_PCH_CPT(dev_priv->dev)) {
  1186. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1187. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1188. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1189. return false;
  1190. } else {
  1191. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1192. return false;
  1193. }
  1194. return true;
  1195. }
  1196. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1197. enum pipe pipe, u32 val)
  1198. {
  1199. if ((val & PORT_ENABLE) == 0)
  1200. return false;
  1201. if (HAS_PCH_CPT(dev_priv->dev)) {
  1202. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1203. return false;
  1204. } else {
  1205. if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
  1206. return false;
  1207. }
  1208. return true;
  1209. }
  1210. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1211. enum pipe pipe, u32 val)
  1212. {
  1213. if ((val & LVDS_PORT_EN) == 0)
  1214. return false;
  1215. if (HAS_PCH_CPT(dev_priv->dev)) {
  1216. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1217. return false;
  1218. } else {
  1219. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1220. return false;
  1221. }
  1222. return true;
  1223. }
  1224. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1225. enum pipe pipe, u32 val)
  1226. {
  1227. if ((val & ADPA_DAC_ENABLE) == 0)
  1228. return false;
  1229. if (HAS_PCH_CPT(dev_priv->dev)) {
  1230. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1231. return false;
  1232. } else {
  1233. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1234. return false;
  1235. }
  1236. return true;
  1237. }
  1238. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1239. enum pipe pipe, int reg, u32 port_sel)
  1240. {
  1241. u32 val = I915_READ(reg);
  1242. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1243. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1244. reg, pipe_name(pipe));
  1245. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1246. && (val & DP_PIPEB_SELECT),
  1247. "IBX PCH dp port still using transcoder B\n");
  1248. }
  1249. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1250. enum pipe pipe, int reg)
  1251. {
  1252. u32 val = I915_READ(reg);
  1253. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1254. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1255. reg, pipe_name(pipe));
  1256. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
  1257. && (val & SDVO_PIPE_B_SELECT),
  1258. "IBX PCH hdmi port still using transcoder B\n");
  1259. }
  1260. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1261. enum pipe pipe)
  1262. {
  1263. int reg;
  1264. u32 val;
  1265. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1266. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1267. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1268. reg = PCH_ADPA;
  1269. val = I915_READ(reg);
  1270. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1271. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1272. pipe_name(pipe));
  1273. reg = PCH_LVDS;
  1274. val = I915_READ(reg);
  1275. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1276. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1277. pipe_name(pipe));
  1278. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
  1279. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
  1280. assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
  1281. }
  1282. /**
  1283. * intel_enable_pll - enable a PLL
  1284. * @dev_priv: i915 private structure
  1285. * @pipe: pipe PLL to enable
  1286. *
  1287. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1288. * make sure the PLL reg is writable first though, since the panel write
  1289. * protect mechanism may be enabled.
  1290. *
  1291. * Note! This is for pre-ILK only.
  1292. *
  1293. * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
  1294. */
  1295. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1296. {
  1297. int reg;
  1298. u32 val;
  1299. /* No really, not for ILK+ */
  1300. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
  1301. /* PLL is protected by panel, make sure we can write it */
  1302. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1303. assert_panel_unlocked(dev_priv, pipe);
  1304. reg = DPLL(pipe);
  1305. val = I915_READ(reg);
  1306. val |= DPLL_VCO_ENABLE;
  1307. /* We do this three times for luck */
  1308. I915_WRITE(reg, val);
  1309. POSTING_READ(reg);
  1310. udelay(150); /* wait for warmup */
  1311. I915_WRITE(reg, val);
  1312. POSTING_READ(reg);
  1313. udelay(150); /* wait for warmup */
  1314. I915_WRITE(reg, val);
  1315. POSTING_READ(reg);
  1316. udelay(150); /* wait for warmup */
  1317. }
  1318. /**
  1319. * intel_disable_pll - disable a PLL
  1320. * @dev_priv: i915 private structure
  1321. * @pipe: pipe PLL to disable
  1322. *
  1323. * Disable the PLL for @pipe, making sure the pipe is off first.
  1324. *
  1325. * Note! This is for pre-ILK only.
  1326. */
  1327. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1328. {
  1329. int reg;
  1330. u32 val;
  1331. /* Don't disable pipe A or pipe A PLLs if needed */
  1332. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1333. return;
  1334. /* Make sure the pipe isn't still relying on us */
  1335. assert_pipe_disabled(dev_priv, pipe);
  1336. reg = DPLL(pipe);
  1337. val = I915_READ(reg);
  1338. val &= ~DPLL_VCO_ENABLE;
  1339. I915_WRITE(reg, val);
  1340. POSTING_READ(reg);
  1341. }
  1342. /* SBI access */
  1343. static void
  1344. intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
  1345. enum intel_sbi_destination destination)
  1346. {
  1347. unsigned long flags;
  1348. u32 tmp;
  1349. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  1350. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0, 100)) {
  1351. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1352. goto out_unlock;
  1353. }
  1354. I915_WRITE(SBI_ADDR, (reg << 16));
  1355. I915_WRITE(SBI_DATA, value);
  1356. if (destination == SBI_ICLK)
  1357. tmp = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRWR;
  1358. else
  1359. tmp = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IOWR;
  1360. I915_WRITE(SBI_CTL_STAT, SBI_BUSY | tmp);
  1361. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1362. 100)) {
  1363. DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
  1364. goto out_unlock;
  1365. }
  1366. out_unlock:
  1367. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  1368. }
  1369. static u32
  1370. intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
  1371. enum intel_sbi_destination destination)
  1372. {
  1373. unsigned long flags;
  1374. u32 value = 0;
  1375. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  1376. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0, 100)) {
  1377. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1378. goto out_unlock;
  1379. }
  1380. I915_WRITE(SBI_ADDR, (reg << 16));
  1381. if (destination == SBI_ICLK)
  1382. value = SBI_CTL_DEST_ICLK | SBI_CTL_OP_CRRD;
  1383. else
  1384. value = SBI_CTL_DEST_MPHY | SBI_CTL_OP_IORD;
  1385. I915_WRITE(SBI_CTL_STAT, value | SBI_BUSY);
  1386. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1387. 100)) {
  1388. DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
  1389. goto out_unlock;
  1390. }
  1391. value = I915_READ(SBI_DATA);
  1392. out_unlock:
  1393. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  1394. return value;
  1395. }
  1396. /**
  1397. * ironlake_enable_pch_pll - enable PCH PLL
  1398. * @dev_priv: i915 private structure
  1399. * @pipe: pipe PLL to enable
  1400. *
  1401. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1402. * drives the transcoder clock.
  1403. */
  1404. static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
  1405. {
  1406. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1407. struct intel_pch_pll *pll;
  1408. int reg;
  1409. u32 val;
  1410. /* PCH PLLs only available on ILK, SNB and IVB */
  1411. BUG_ON(dev_priv->info->gen < 5);
  1412. pll = intel_crtc->pch_pll;
  1413. if (pll == NULL)
  1414. return;
  1415. if (WARN_ON(pll->refcount == 0))
  1416. return;
  1417. DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
  1418. pll->pll_reg, pll->active, pll->on,
  1419. intel_crtc->base.base.id);
  1420. /* PCH refclock must be enabled first */
  1421. assert_pch_refclk_enabled(dev_priv);
  1422. if (pll->active++ && pll->on) {
  1423. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1424. return;
  1425. }
  1426. DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
  1427. reg = pll->pll_reg;
  1428. val = I915_READ(reg);
  1429. val |= DPLL_VCO_ENABLE;
  1430. I915_WRITE(reg, val);
  1431. POSTING_READ(reg);
  1432. udelay(200);
  1433. pll->on = true;
  1434. }
  1435. static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
  1436. {
  1437. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1438. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  1439. int reg;
  1440. u32 val;
  1441. /* PCH only available on ILK+ */
  1442. BUG_ON(dev_priv->info->gen < 5);
  1443. if (pll == NULL)
  1444. return;
  1445. if (WARN_ON(pll->refcount == 0))
  1446. return;
  1447. DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
  1448. pll->pll_reg, pll->active, pll->on,
  1449. intel_crtc->base.base.id);
  1450. if (WARN_ON(pll->active == 0)) {
  1451. assert_pch_pll_disabled(dev_priv, pll, NULL);
  1452. return;
  1453. }
  1454. if (--pll->active) {
  1455. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1456. return;
  1457. }
  1458. DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
  1459. /* Make sure transcoder isn't still depending on us */
  1460. assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
  1461. reg = pll->pll_reg;
  1462. val = I915_READ(reg);
  1463. val &= ~DPLL_VCO_ENABLE;
  1464. I915_WRITE(reg, val);
  1465. POSTING_READ(reg);
  1466. udelay(200);
  1467. pll->on = false;
  1468. }
  1469. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1470. enum pipe pipe)
  1471. {
  1472. struct drm_device *dev = dev_priv->dev;
  1473. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1474. uint32_t reg, val, pipeconf_val;
  1475. /* PCH only available on ILK+ */
  1476. BUG_ON(dev_priv->info->gen < 5);
  1477. /* Make sure PCH DPLL is enabled */
  1478. assert_pch_pll_enabled(dev_priv,
  1479. to_intel_crtc(crtc)->pch_pll,
  1480. to_intel_crtc(crtc));
  1481. /* FDI must be feeding us bits for PCH ports */
  1482. assert_fdi_tx_enabled(dev_priv, pipe);
  1483. assert_fdi_rx_enabled(dev_priv, pipe);
  1484. if (HAS_PCH_CPT(dev)) {
  1485. /* Workaround: Set the timing override bit before enabling the
  1486. * pch transcoder. */
  1487. reg = TRANS_CHICKEN2(pipe);
  1488. val = I915_READ(reg);
  1489. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1490. I915_WRITE(reg, val);
  1491. }
  1492. reg = TRANSCONF(pipe);
  1493. val = I915_READ(reg);
  1494. pipeconf_val = I915_READ(PIPECONF(pipe));
  1495. if (HAS_PCH_IBX(dev_priv->dev)) {
  1496. /*
  1497. * make the BPC in transcoder be consistent with
  1498. * that in pipeconf reg.
  1499. */
  1500. val &= ~PIPE_BPC_MASK;
  1501. val |= pipeconf_val & PIPE_BPC_MASK;
  1502. }
  1503. val &= ~TRANS_INTERLACE_MASK;
  1504. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1505. if (HAS_PCH_IBX(dev_priv->dev) &&
  1506. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1507. val |= TRANS_LEGACY_INTERLACED_ILK;
  1508. else
  1509. val |= TRANS_INTERLACED;
  1510. else
  1511. val |= TRANS_PROGRESSIVE;
  1512. I915_WRITE(reg, val | TRANS_ENABLE);
  1513. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1514. DRM_ERROR("failed to enable transcoder %d\n", pipe);
  1515. }
  1516. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1517. enum transcoder cpu_transcoder)
  1518. {
  1519. u32 val, pipeconf_val;
  1520. /* PCH only available on ILK+ */
  1521. BUG_ON(dev_priv->info->gen < 5);
  1522. /* FDI must be feeding us bits for PCH ports */
  1523. assert_fdi_tx_enabled(dev_priv, cpu_transcoder);
  1524. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1525. /* Workaround: set timing override bit. */
  1526. val = I915_READ(_TRANSA_CHICKEN2);
  1527. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1528. I915_WRITE(_TRANSA_CHICKEN2, val);
  1529. val = TRANS_ENABLE;
  1530. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1531. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1532. PIPECONF_INTERLACED_ILK)
  1533. val |= TRANS_INTERLACED;
  1534. else
  1535. val |= TRANS_PROGRESSIVE;
  1536. I915_WRITE(TRANSCONF(TRANSCODER_A), val);
  1537. if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
  1538. DRM_ERROR("Failed to enable PCH transcoder\n");
  1539. }
  1540. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1541. enum pipe pipe)
  1542. {
  1543. struct drm_device *dev = dev_priv->dev;
  1544. uint32_t reg, val;
  1545. /* FDI relies on the transcoder */
  1546. assert_fdi_tx_disabled(dev_priv, pipe);
  1547. assert_fdi_rx_disabled(dev_priv, pipe);
  1548. /* Ports must be off as well */
  1549. assert_pch_ports_disabled(dev_priv, pipe);
  1550. reg = TRANSCONF(pipe);
  1551. val = I915_READ(reg);
  1552. val &= ~TRANS_ENABLE;
  1553. I915_WRITE(reg, val);
  1554. /* wait for PCH transcoder off, transcoder state */
  1555. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1556. DRM_ERROR("failed to disable transcoder %d\n", pipe);
  1557. if (!HAS_PCH_IBX(dev)) {
  1558. /* Workaround: Clear the timing override chicken bit again. */
  1559. reg = TRANS_CHICKEN2(pipe);
  1560. val = I915_READ(reg);
  1561. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1562. I915_WRITE(reg, val);
  1563. }
  1564. }
  1565. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1566. {
  1567. u32 val;
  1568. val = I915_READ(_TRANSACONF);
  1569. val &= ~TRANS_ENABLE;
  1570. I915_WRITE(_TRANSACONF, val);
  1571. /* wait for PCH transcoder off, transcoder state */
  1572. if (wait_for((I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE) == 0, 50))
  1573. DRM_ERROR("Failed to disable PCH transcoder\n");
  1574. /* Workaround: clear timing override bit. */
  1575. val = I915_READ(_TRANSA_CHICKEN2);
  1576. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1577. I915_WRITE(_TRANSA_CHICKEN2, val);
  1578. }
  1579. /**
  1580. * intel_enable_pipe - enable a pipe, asserting requirements
  1581. * @dev_priv: i915 private structure
  1582. * @pipe: pipe to enable
  1583. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1584. *
  1585. * Enable @pipe, making sure that various hardware specific requirements
  1586. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1587. *
  1588. * @pipe should be %PIPE_A or %PIPE_B.
  1589. *
  1590. * Will wait until the pipe is actually running (i.e. first vblank) before
  1591. * returning.
  1592. */
  1593. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1594. bool pch_port)
  1595. {
  1596. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1597. pipe);
  1598. enum transcoder pch_transcoder;
  1599. int reg;
  1600. u32 val;
  1601. if (IS_HASWELL(dev_priv->dev))
  1602. pch_transcoder = TRANSCODER_A;
  1603. else
  1604. pch_transcoder = pipe;
  1605. /*
  1606. * A pipe without a PLL won't actually be able to drive bits from
  1607. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1608. * need the check.
  1609. */
  1610. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1611. assert_pll_enabled(dev_priv, pipe);
  1612. else {
  1613. if (pch_port) {
  1614. /* if driving the PCH, we need FDI enabled */
  1615. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1616. assert_fdi_tx_pll_enabled(dev_priv, cpu_transcoder);
  1617. }
  1618. /* FIXME: assert CPU port conditions for SNB+ */
  1619. }
  1620. reg = PIPECONF(cpu_transcoder);
  1621. val = I915_READ(reg);
  1622. if (val & PIPECONF_ENABLE)
  1623. return;
  1624. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1625. intel_wait_for_vblank(dev_priv->dev, pipe);
  1626. }
  1627. /**
  1628. * intel_disable_pipe - disable a pipe, asserting requirements
  1629. * @dev_priv: i915 private structure
  1630. * @pipe: pipe to disable
  1631. *
  1632. * Disable @pipe, making sure that various hardware specific requirements
  1633. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1634. *
  1635. * @pipe should be %PIPE_A or %PIPE_B.
  1636. *
  1637. * Will wait until the pipe has shut down before returning.
  1638. */
  1639. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1640. enum pipe pipe)
  1641. {
  1642. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1643. pipe);
  1644. int reg;
  1645. u32 val;
  1646. /*
  1647. * Make sure planes won't keep trying to pump pixels to us,
  1648. * or we might hang the display.
  1649. */
  1650. assert_planes_disabled(dev_priv, pipe);
  1651. /* Don't disable pipe A or pipe A PLLs if needed */
  1652. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1653. return;
  1654. reg = PIPECONF(cpu_transcoder);
  1655. val = I915_READ(reg);
  1656. if ((val & PIPECONF_ENABLE) == 0)
  1657. return;
  1658. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1659. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1660. }
  1661. /*
  1662. * Plane regs are double buffered, going from enabled->disabled needs a
  1663. * trigger in order to latch. The display address reg provides this.
  1664. */
  1665. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1666. enum plane plane)
  1667. {
  1668. if (dev_priv->info->gen >= 4)
  1669. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1670. else
  1671. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1672. }
  1673. /**
  1674. * intel_enable_plane - enable a display plane on a given pipe
  1675. * @dev_priv: i915 private structure
  1676. * @plane: plane to enable
  1677. * @pipe: pipe being fed
  1678. *
  1679. * Enable @plane on @pipe, making sure that @pipe is running first.
  1680. */
  1681. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1682. enum plane plane, enum pipe pipe)
  1683. {
  1684. int reg;
  1685. u32 val;
  1686. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1687. assert_pipe_enabled(dev_priv, pipe);
  1688. reg = DSPCNTR(plane);
  1689. val = I915_READ(reg);
  1690. if (val & DISPLAY_PLANE_ENABLE)
  1691. return;
  1692. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1693. intel_flush_display_plane(dev_priv, plane);
  1694. intel_wait_for_vblank(dev_priv->dev, pipe);
  1695. }
  1696. /**
  1697. * intel_disable_plane - disable a display plane
  1698. * @dev_priv: i915 private structure
  1699. * @plane: plane to disable
  1700. * @pipe: pipe consuming the data
  1701. *
  1702. * Disable @plane; should be an independent operation.
  1703. */
  1704. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1705. enum plane plane, enum pipe pipe)
  1706. {
  1707. int reg;
  1708. u32 val;
  1709. reg = DSPCNTR(plane);
  1710. val = I915_READ(reg);
  1711. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1712. return;
  1713. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1714. intel_flush_display_plane(dev_priv, plane);
  1715. intel_wait_for_vblank(dev_priv->dev, pipe);
  1716. }
  1717. int
  1718. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1719. struct drm_i915_gem_object *obj,
  1720. struct intel_ring_buffer *pipelined)
  1721. {
  1722. struct drm_i915_private *dev_priv = dev->dev_private;
  1723. u32 alignment;
  1724. int ret;
  1725. switch (obj->tiling_mode) {
  1726. case I915_TILING_NONE:
  1727. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1728. alignment = 128 * 1024;
  1729. else if (INTEL_INFO(dev)->gen >= 4)
  1730. alignment = 4 * 1024;
  1731. else
  1732. alignment = 64 * 1024;
  1733. break;
  1734. case I915_TILING_X:
  1735. /* pin() will align the object as required by fence */
  1736. alignment = 0;
  1737. break;
  1738. case I915_TILING_Y:
  1739. /* FIXME: Is this true? */
  1740. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1741. return -EINVAL;
  1742. default:
  1743. BUG();
  1744. }
  1745. dev_priv->mm.interruptible = false;
  1746. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1747. if (ret)
  1748. goto err_interruptible;
  1749. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1750. * fence, whereas 965+ only requires a fence if using
  1751. * framebuffer compression. For simplicity, we always install
  1752. * a fence as the cost is not that onerous.
  1753. */
  1754. ret = i915_gem_object_get_fence(obj);
  1755. if (ret)
  1756. goto err_unpin;
  1757. i915_gem_object_pin_fence(obj);
  1758. dev_priv->mm.interruptible = true;
  1759. return 0;
  1760. err_unpin:
  1761. i915_gem_object_unpin(obj);
  1762. err_interruptible:
  1763. dev_priv->mm.interruptible = true;
  1764. return ret;
  1765. }
  1766. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1767. {
  1768. i915_gem_object_unpin_fence(obj);
  1769. i915_gem_object_unpin(obj);
  1770. }
  1771. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1772. * is assumed to be a power-of-two. */
  1773. unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
  1774. unsigned int bpp,
  1775. unsigned int pitch)
  1776. {
  1777. int tile_rows, tiles;
  1778. tile_rows = *y / 8;
  1779. *y %= 8;
  1780. tiles = *x / (512/bpp);
  1781. *x %= 512/bpp;
  1782. return tile_rows * pitch * 8 + tiles * 4096;
  1783. }
  1784. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1785. int x, int y)
  1786. {
  1787. struct drm_device *dev = crtc->dev;
  1788. struct drm_i915_private *dev_priv = dev->dev_private;
  1789. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1790. struct intel_framebuffer *intel_fb;
  1791. struct drm_i915_gem_object *obj;
  1792. int plane = intel_crtc->plane;
  1793. unsigned long linear_offset;
  1794. u32 dspcntr;
  1795. u32 reg;
  1796. switch (plane) {
  1797. case 0:
  1798. case 1:
  1799. break;
  1800. default:
  1801. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1802. return -EINVAL;
  1803. }
  1804. intel_fb = to_intel_framebuffer(fb);
  1805. obj = intel_fb->obj;
  1806. reg = DSPCNTR(plane);
  1807. dspcntr = I915_READ(reg);
  1808. /* Mask out pixel format bits in case we change it */
  1809. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1810. switch (fb->pixel_format) {
  1811. case DRM_FORMAT_C8:
  1812. dspcntr |= DISPPLANE_8BPP;
  1813. break;
  1814. case DRM_FORMAT_XRGB1555:
  1815. case DRM_FORMAT_ARGB1555:
  1816. dspcntr |= DISPPLANE_BGRX555;
  1817. break;
  1818. case DRM_FORMAT_RGB565:
  1819. dspcntr |= DISPPLANE_BGRX565;
  1820. break;
  1821. case DRM_FORMAT_XRGB8888:
  1822. case DRM_FORMAT_ARGB8888:
  1823. dspcntr |= DISPPLANE_BGRX888;
  1824. break;
  1825. case DRM_FORMAT_XBGR8888:
  1826. case DRM_FORMAT_ABGR8888:
  1827. dspcntr |= DISPPLANE_RGBX888;
  1828. break;
  1829. case DRM_FORMAT_XRGB2101010:
  1830. case DRM_FORMAT_ARGB2101010:
  1831. dspcntr |= DISPPLANE_BGRX101010;
  1832. break;
  1833. case DRM_FORMAT_XBGR2101010:
  1834. case DRM_FORMAT_ABGR2101010:
  1835. dspcntr |= DISPPLANE_RGBX101010;
  1836. break;
  1837. default:
  1838. DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
  1839. return -EINVAL;
  1840. }
  1841. if (INTEL_INFO(dev)->gen >= 4) {
  1842. if (obj->tiling_mode != I915_TILING_NONE)
  1843. dspcntr |= DISPPLANE_TILED;
  1844. else
  1845. dspcntr &= ~DISPPLANE_TILED;
  1846. }
  1847. I915_WRITE(reg, dspcntr);
  1848. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1849. if (INTEL_INFO(dev)->gen >= 4) {
  1850. intel_crtc->dspaddr_offset =
  1851. intel_gen4_compute_offset_xtiled(&x, &y,
  1852. fb->bits_per_pixel / 8,
  1853. fb->pitches[0]);
  1854. linear_offset -= intel_crtc->dspaddr_offset;
  1855. } else {
  1856. intel_crtc->dspaddr_offset = linear_offset;
  1857. }
  1858. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1859. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1860. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1861. if (INTEL_INFO(dev)->gen >= 4) {
  1862. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1863. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1864. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1865. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1866. } else
  1867. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1868. POSTING_READ(reg);
  1869. return 0;
  1870. }
  1871. static int ironlake_update_plane(struct drm_crtc *crtc,
  1872. struct drm_framebuffer *fb, int x, int y)
  1873. {
  1874. struct drm_device *dev = crtc->dev;
  1875. struct drm_i915_private *dev_priv = dev->dev_private;
  1876. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1877. struct intel_framebuffer *intel_fb;
  1878. struct drm_i915_gem_object *obj;
  1879. int plane = intel_crtc->plane;
  1880. unsigned long linear_offset;
  1881. u32 dspcntr;
  1882. u32 reg;
  1883. switch (plane) {
  1884. case 0:
  1885. case 1:
  1886. case 2:
  1887. break;
  1888. default:
  1889. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1890. return -EINVAL;
  1891. }
  1892. intel_fb = to_intel_framebuffer(fb);
  1893. obj = intel_fb->obj;
  1894. reg = DSPCNTR(plane);
  1895. dspcntr = I915_READ(reg);
  1896. /* Mask out pixel format bits in case we change it */
  1897. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1898. switch (fb->pixel_format) {
  1899. case DRM_FORMAT_C8:
  1900. dspcntr |= DISPPLANE_8BPP;
  1901. break;
  1902. case DRM_FORMAT_RGB565:
  1903. dspcntr |= DISPPLANE_BGRX565;
  1904. break;
  1905. case DRM_FORMAT_XRGB8888:
  1906. case DRM_FORMAT_ARGB8888:
  1907. dspcntr |= DISPPLANE_BGRX888;
  1908. break;
  1909. case DRM_FORMAT_XBGR8888:
  1910. case DRM_FORMAT_ABGR8888:
  1911. dspcntr |= DISPPLANE_RGBX888;
  1912. break;
  1913. case DRM_FORMAT_XRGB2101010:
  1914. case DRM_FORMAT_ARGB2101010:
  1915. dspcntr |= DISPPLANE_BGRX101010;
  1916. break;
  1917. case DRM_FORMAT_XBGR2101010:
  1918. case DRM_FORMAT_ABGR2101010:
  1919. dspcntr |= DISPPLANE_RGBX101010;
  1920. break;
  1921. default:
  1922. DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
  1923. return -EINVAL;
  1924. }
  1925. if (obj->tiling_mode != I915_TILING_NONE)
  1926. dspcntr |= DISPPLANE_TILED;
  1927. else
  1928. dspcntr &= ~DISPPLANE_TILED;
  1929. /* must disable */
  1930. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1931. I915_WRITE(reg, dspcntr);
  1932. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1933. intel_crtc->dspaddr_offset =
  1934. intel_gen4_compute_offset_xtiled(&x, &y,
  1935. fb->bits_per_pixel / 8,
  1936. fb->pitches[0]);
  1937. linear_offset -= intel_crtc->dspaddr_offset;
  1938. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1939. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1940. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1941. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1942. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1943. if (IS_HASWELL(dev)) {
  1944. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1945. } else {
  1946. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1947. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1948. }
  1949. POSTING_READ(reg);
  1950. return 0;
  1951. }
  1952. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1953. static int
  1954. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1955. int x, int y, enum mode_set_atomic state)
  1956. {
  1957. struct drm_device *dev = crtc->dev;
  1958. struct drm_i915_private *dev_priv = dev->dev_private;
  1959. if (dev_priv->display.disable_fbc)
  1960. dev_priv->display.disable_fbc(dev);
  1961. intel_increase_pllclock(crtc);
  1962. return dev_priv->display.update_plane(crtc, fb, x, y);
  1963. }
  1964. static int
  1965. intel_finish_fb(struct drm_framebuffer *old_fb)
  1966. {
  1967. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1968. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1969. bool was_interruptible = dev_priv->mm.interruptible;
  1970. int ret;
  1971. wait_event(dev_priv->pending_flip_queue,
  1972. atomic_read(&dev_priv->mm.wedged) ||
  1973. atomic_read(&obj->pending_flip) == 0);
  1974. /* Big Hammer, we also need to ensure that any pending
  1975. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1976. * current scanout is retired before unpinning the old
  1977. * framebuffer.
  1978. *
  1979. * This should only fail upon a hung GPU, in which case we
  1980. * can safely continue.
  1981. */
  1982. dev_priv->mm.interruptible = false;
  1983. ret = i915_gem_object_finish_gpu(obj);
  1984. dev_priv->mm.interruptible = was_interruptible;
  1985. return ret;
  1986. }
  1987. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1988. {
  1989. struct drm_device *dev = crtc->dev;
  1990. struct drm_i915_master_private *master_priv;
  1991. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1992. if (!dev->primary->master)
  1993. return;
  1994. master_priv = dev->primary->master->driver_priv;
  1995. if (!master_priv->sarea_priv)
  1996. return;
  1997. switch (intel_crtc->pipe) {
  1998. case 0:
  1999. master_priv->sarea_priv->pipeA_x = x;
  2000. master_priv->sarea_priv->pipeA_y = y;
  2001. break;
  2002. case 1:
  2003. master_priv->sarea_priv->pipeB_x = x;
  2004. master_priv->sarea_priv->pipeB_y = y;
  2005. break;
  2006. default:
  2007. break;
  2008. }
  2009. }
  2010. static int
  2011. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  2012. struct drm_framebuffer *fb)
  2013. {
  2014. struct drm_device *dev = crtc->dev;
  2015. struct drm_i915_private *dev_priv = dev->dev_private;
  2016. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2017. struct drm_framebuffer *old_fb;
  2018. int ret;
  2019. /* no fb bound */
  2020. if (!fb) {
  2021. DRM_ERROR("No FB bound\n");
  2022. return 0;
  2023. }
  2024. if(intel_crtc->plane > dev_priv->num_pipe) {
  2025. DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
  2026. intel_crtc->plane,
  2027. dev_priv->num_pipe);
  2028. return -EINVAL;
  2029. }
  2030. mutex_lock(&dev->struct_mutex);
  2031. ret = intel_pin_and_fence_fb_obj(dev,
  2032. to_intel_framebuffer(fb)->obj,
  2033. NULL);
  2034. if (ret != 0) {
  2035. mutex_unlock(&dev->struct_mutex);
  2036. DRM_ERROR("pin & fence failed\n");
  2037. return ret;
  2038. }
  2039. if (crtc->fb)
  2040. intel_finish_fb(crtc->fb);
  2041. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  2042. if (ret) {
  2043. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  2044. mutex_unlock(&dev->struct_mutex);
  2045. DRM_ERROR("failed to update base address\n");
  2046. return ret;
  2047. }
  2048. old_fb = crtc->fb;
  2049. crtc->fb = fb;
  2050. crtc->x = x;
  2051. crtc->y = y;
  2052. if (old_fb) {
  2053. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2054. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2055. }
  2056. intel_update_fbc(dev);
  2057. mutex_unlock(&dev->struct_mutex);
  2058. intel_crtc_update_sarea_pos(crtc, x, y);
  2059. return 0;
  2060. }
  2061. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  2062. {
  2063. struct drm_device *dev = crtc->dev;
  2064. struct drm_i915_private *dev_priv = dev->dev_private;
  2065. u32 dpa_ctl;
  2066. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  2067. dpa_ctl = I915_READ(DP_A);
  2068. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  2069. if (clock < 200000) {
  2070. u32 temp;
  2071. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  2072. /* workaround for 160Mhz:
  2073. 1) program 0x4600c bits 15:0 = 0x8124
  2074. 2) program 0x46010 bit 0 = 1
  2075. 3) program 0x46034 bit 24 = 1
  2076. 4) program 0x64000 bit 14 = 1
  2077. */
  2078. temp = I915_READ(0x4600c);
  2079. temp &= 0xffff0000;
  2080. I915_WRITE(0x4600c, temp | 0x8124);
  2081. temp = I915_READ(0x46010);
  2082. I915_WRITE(0x46010, temp | 1);
  2083. temp = I915_READ(0x46034);
  2084. I915_WRITE(0x46034, temp | (1 << 24));
  2085. } else {
  2086. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  2087. }
  2088. I915_WRITE(DP_A, dpa_ctl);
  2089. POSTING_READ(DP_A);
  2090. udelay(500);
  2091. }
  2092. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2093. {
  2094. struct drm_device *dev = crtc->dev;
  2095. struct drm_i915_private *dev_priv = dev->dev_private;
  2096. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2097. int pipe = intel_crtc->pipe;
  2098. u32 reg, temp;
  2099. /* enable normal train */
  2100. reg = FDI_TX_CTL(pipe);
  2101. temp = I915_READ(reg);
  2102. if (IS_IVYBRIDGE(dev)) {
  2103. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2104. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2105. } else {
  2106. temp &= ~FDI_LINK_TRAIN_NONE;
  2107. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2108. }
  2109. I915_WRITE(reg, temp);
  2110. reg = FDI_RX_CTL(pipe);
  2111. temp = I915_READ(reg);
  2112. if (HAS_PCH_CPT(dev)) {
  2113. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2114. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2115. } else {
  2116. temp &= ~FDI_LINK_TRAIN_NONE;
  2117. temp |= FDI_LINK_TRAIN_NONE;
  2118. }
  2119. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2120. /* wait one idle pattern time */
  2121. POSTING_READ(reg);
  2122. udelay(1000);
  2123. /* IVB wants error correction enabled */
  2124. if (IS_IVYBRIDGE(dev))
  2125. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2126. FDI_FE_ERRC_ENABLE);
  2127. }
  2128. static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
  2129. {
  2130. struct drm_i915_private *dev_priv = dev->dev_private;
  2131. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2132. flags |= FDI_PHASE_SYNC_OVR(pipe);
  2133. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
  2134. flags |= FDI_PHASE_SYNC_EN(pipe);
  2135. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
  2136. POSTING_READ(SOUTH_CHICKEN1);
  2137. }
  2138. static void ivb_modeset_global_resources(struct drm_device *dev)
  2139. {
  2140. struct drm_i915_private *dev_priv = dev->dev_private;
  2141. struct intel_crtc *pipe_B_crtc =
  2142. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2143. struct intel_crtc *pipe_C_crtc =
  2144. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2145. uint32_t temp;
  2146. /* When everything is off disable fdi C so that we could enable fdi B
  2147. * with all lanes. XXX: This misses the case where a pipe is not using
  2148. * any pch resources and so doesn't need any fdi lanes. */
  2149. if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
  2150. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2151. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2152. temp = I915_READ(SOUTH_CHICKEN1);
  2153. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2154. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2155. I915_WRITE(SOUTH_CHICKEN1, temp);
  2156. }
  2157. }
  2158. /* The FDI link training functions for ILK/Ibexpeak. */
  2159. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2160. {
  2161. struct drm_device *dev = crtc->dev;
  2162. struct drm_i915_private *dev_priv = dev->dev_private;
  2163. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2164. int pipe = intel_crtc->pipe;
  2165. int plane = intel_crtc->plane;
  2166. u32 reg, temp, tries;
  2167. /* FDI needs bits from pipe & plane first */
  2168. assert_pipe_enabled(dev_priv, pipe);
  2169. assert_plane_enabled(dev_priv, plane);
  2170. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2171. for train result */
  2172. reg = FDI_RX_IMR(pipe);
  2173. temp = I915_READ(reg);
  2174. temp &= ~FDI_RX_SYMBOL_LOCK;
  2175. temp &= ~FDI_RX_BIT_LOCK;
  2176. I915_WRITE(reg, temp);
  2177. I915_READ(reg);
  2178. udelay(150);
  2179. /* enable CPU FDI TX and PCH FDI RX */
  2180. reg = FDI_TX_CTL(pipe);
  2181. temp = I915_READ(reg);
  2182. temp &= ~(7 << 19);
  2183. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2184. temp &= ~FDI_LINK_TRAIN_NONE;
  2185. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2186. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2187. reg = FDI_RX_CTL(pipe);
  2188. temp = I915_READ(reg);
  2189. temp &= ~FDI_LINK_TRAIN_NONE;
  2190. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2191. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2192. POSTING_READ(reg);
  2193. udelay(150);
  2194. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2195. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2196. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2197. FDI_RX_PHASE_SYNC_POINTER_EN);
  2198. reg = FDI_RX_IIR(pipe);
  2199. for (tries = 0; tries < 5; tries++) {
  2200. temp = I915_READ(reg);
  2201. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2202. if ((temp & FDI_RX_BIT_LOCK)) {
  2203. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2204. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2205. break;
  2206. }
  2207. }
  2208. if (tries == 5)
  2209. DRM_ERROR("FDI train 1 fail!\n");
  2210. /* Train 2 */
  2211. reg = FDI_TX_CTL(pipe);
  2212. temp = I915_READ(reg);
  2213. temp &= ~FDI_LINK_TRAIN_NONE;
  2214. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2215. I915_WRITE(reg, temp);
  2216. reg = FDI_RX_CTL(pipe);
  2217. temp = I915_READ(reg);
  2218. temp &= ~FDI_LINK_TRAIN_NONE;
  2219. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2220. I915_WRITE(reg, temp);
  2221. POSTING_READ(reg);
  2222. udelay(150);
  2223. reg = FDI_RX_IIR(pipe);
  2224. for (tries = 0; tries < 5; tries++) {
  2225. temp = I915_READ(reg);
  2226. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2227. if (temp & FDI_RX_SYMBOL_LOCK) {
  2228. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2229. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2230. break;
  2231. }
  2232. }
  2233. if (tries == 5)
  2234. DRM_ERROR("FDI train 2 fail!\n");
  2235. DRM_DEBUG_KMS("FDI train done\n");
  2236. }
  2237. static const int snb_b_fdi_train_param[] = {
  2238. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2239. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2240. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2241. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2242. };
  2243. /* The FDI link training functions for SNB/Cougarpoint. */
  2244. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2245. {
  2246. struct drm_device *dev = crtc->dev;
  2247. struct drm_i915_private *dev_priv = dev->dev_private;
  2248. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2249. int pipe = intel_crtc->pipe;
  2250. u32 reg, temp, i, retry;
  2251. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2252. for train result */
  2253. reg = FDI_RX_IMR(pipe);
  2254. temp = I915_READ(reg);
  2255. temp &= ~FDI_RX_SYMBOL_LOCK;
  2256. temp &= ~FDI_RX_BIT_LOCK;
  2257. I915_WRITE(reg, temp);
  2258. POSTING_READ(reg);
  2259. udelay(150);
  2260. /* enable CPU FDI TX and PCH FDI RX */
  2261. reg = FDI_TX_CTL(pipe);
  2262. temp = I915_READ(reg);
  2263. temp &= ~(7 << 19);
  2264. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2265. temp &= ~FDI_LINK_TRAIN_NONE;
  2266. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2267. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2268. /* SNB-B */
  2269. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2270. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2271. I915_WRITE(FDI_RX_MISC(pipe),
  2272. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2273. reg = FDI_RX_CTL(pipe);
  2274. temp = I915_READ(reg);
  2275. if (HAS_PCH_CPT(dev)) {
  2276. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2277. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2278. } else {
  2279. temp &= ~FDI_LINK_TRAIN_NONE;
  2280. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2281. }
  2282. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2283. POSTING_READ(reg);
  2284. udelay(150);
  2285. cpt_phase_pointer_enable(dev, pipe);
  2286. for (i = 0; i < 4; i++) {
  2287. reg = FDI_TX_CTL(pipe);
  2288. temp = I915_READ(reg);
  2289. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2290. temp |= snb_b_fdi_train_param[i];
  2291. I915_WRITE(reg, temp);
  2292. POSTING_READ(reg);
  2293. udelay(500);
  2294. for (retry = 0; retry < 5; retry++) {
  2295. reg = FDI_RX_IIR(pipe);
  2296. temp = I915_READ(reg);
  2297. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2298. if (temp & FDI_RX_BIT_LOCK) {
  2299. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2300. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2301. break;
  2302. }
  2303. udelay(50);
  2304. }
  2305. if (retry < 5)
  2306. break;
  2307. }
  2308. if (i == 4)
  2309. DRM_ERROR("FDI train 1 fail!\n");
  2310. /* Train 2 */
  2311. reg = FDI_TX_CTL(pipe);
  2312. temp = I915_READ(reg);
  2313. temp &= ~FDI_LINK_TRAIN_NONE;
  2314. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2315. if (IS_GEN6(dev)) {
  2316. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2317. /* SNB-B */
  2318. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2319. }
  2320. I915_WRITE(reg, temp);
  2321. reg = FDI_RX_CTL(pipe);
  2322. temp = I915_READ(reg);
  2323. if (HAS_PCH_CPT(dev)) {
  2324. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2325. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2326. } else {
  2327. temp &= ~FDI_LINK_TRAIN_NONE;
  2328. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2329. }
  2330. I915_WRITE(reg, temp);
  2331. POSTING_READ(reg);
  2332. udelay(150);
  2333. for (i = 0; i < 4; i++) {
  2334. reg = FDI_TX_CTL(pipe);
  2335. temp = I915_READ(reg);
  2336. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2337. temp |= snb_b_fdi_train_param[i];
  2338. I915_WRITE(reg, temp);
  2339. POSTING_READ(reg);
  2340. udelay(500);
  2341. for (retry = 0; retry < 5; retry++) {
  2342. reg = FDI_RX_IIR(pipe);
  2343. temp = I915_READ(reg);
  2344. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2345. if (temp & FDI_RX_SYMBOL_LOCK) {
  2346. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2347. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2348. break;
  2349. }
  2350. udelay(50);
  2351. }
  2352. if (retry < 5)
  2353. break;
  2354. }
  2355. if (i == 4)
  2356. DRM_ERROR("FDI train 2 fail!\n");
  2357. DRM_DEBUG_KMS("FDI train done.\n");
  2358. }
  2359. /* Manual link training for Ivy Bridge A0 parts */
  2360. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2361. {
  2362. struct drm_device *dev = crtc->dev;
  2363. struct drm_i915_private *dev_priv = dev->dev_private;
  2364. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2365. int pipe = intel_crtc->pipe;
  2366. u32 reg, temp, i;
  2367. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2368. for train result */
  2369. reg = FDI_RX_IMR(pipe);
  2370. temp = I915_READ(reg);
  2371. temp &= ~FDI_RX_SYMBOL_LOCK;
  2372. temp &= ~FDI_RX_BIT_LOCK;
  2373. I915_WRITE(reg, temp);
  2374. POSTING_READ(reg);
  2375. udelay(150);
  2376. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2377. I915_READ(FDI_RX_IIR(pipe)));
  2378. /* enable CPU FDI TX and PCH FDI RX */
  2379. reg = FDI_TX_CTL(pipe);
  2380. temp = I915_READ(reg);
  2381. temp &= ~(7 << 19);
  2382. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2383. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2384. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2385. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2386. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2387. temp |= FDI_COMPOSITE_SYNC;
  2388. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2389. I915_WRITE(FDI_RX_MISC(pipe),
  2390. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2391. reg = FDI_RX_CTL(pipe);
  2392. temp = I915_READ(reg);
  2393. temp &= ~FDI_LINK_TRAIN_AUTO;
  2394. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2395. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2396. temp |= FDI_COMPOSITE_SYNC;
  2397. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2398. POSTING_READ(reg);
  2399. udelay(150);
  2400. cpt_phase_pointer_enable(dev, pipe);
  2401. for (i = 0; i < 4; i++) {
  2402. reg = FDI_TX_CTL(pipe);
  2403. temp = I915_READ(reg);
  2404. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2405. temp |= snb_b_fdi_train_param[i];
  2406. I915_WRITE(reg, temp);
  2407. POSTING_READ(reg);
  2408. udelay(500);
  2409. reg = FDI_RX_IIR(pipe);
  2410. temp = I915_READ(reg);
  2411. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2412. if (temp & FDI_RX_BIT_LOCK ||
  2413. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2414. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2415. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
  2416. break;
  2417. }
  2418. }
  2419. if (i == 4)
  2420. DRM_ERROR("FDI train 1 fail!\n");
  2421. /* Train 2 */
  2422. reg = FDI_TX_CTL(pipe);
  2423. temp = I915_READ(reg);
  2424. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2425. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2426. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2427. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2428. I915_WRITE(reg, temp);
  2429. reg = FDI_RX_CTL(pipe);
  2430. temp = I915_READ(reg);
  2431. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2432. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2433. I915_WRITE(reg, temp);
  2434. POSTING_READ(reg);
  2435. udelay(150);
  2436. for (i = 0; i < 4; i++) {
  2437. reg = FDI_TX_CTL(pipe);
  2438. temp = I915_READ(reg);
  2439. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2440. temp |= snb_b_fdi_train_param[i];
  2441. I915_WRITE(reg, temp);
  2442. POSTING_READ(reg);
  2443. udelay(500);
  2444. reg = FDI_RX_IIR(pipe);
  2445. temp = I915_READ(reg);
  2446. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2447. if (temp & FDI_RX_SYMBOL_LOCK) {
  2448. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2449. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
  2450. break;
  2451. }
  2452. }
  2453. if (i == 4)
  2454. DRM_ERROR("FDI train 2 fail!\n");
  2455. DRM_DEBUG_KMS("FDI train done.\n");
  2456. }
  2457. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2458. {
  2459. struct drm_device *dev = intel_crtc->base.dev;
  2460. struct drm_i915_private *dev_priv = dev->dev_private;
  2461. int pipe = intel_crtc->pipe;
  2462. u32 reg, temp;
  2463. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2464. reg = FDI_RX_CTL(pipe);
  2465. temp = I915_READ(reg);
  2466. temp &= ~((0x7 << 19) | (0x7 << 16));
  2467. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2468. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2469. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2470. POSTING_READ(reg);
  2471. udelay(200);
  2472. /* Switch from Rawclk to PCDclk */
  2473. temp = I915_READ(reg);
  2474. I915_WRITE(reg, temp | FDI_PCDCLK);
  2475. POSTING_READ(reg);
  2476. udelay(200);
  2477. /* On Haswell, the PLL configuration for ports and pipes is handled
  2478. * separately, as part of DDI setup */
  2479. if (!IS_HASWELL(dev)) {
  2480. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2481. reg = FDI_TX_CTL(pipe);
  2482. temp = I915_READ(reg);
  2483. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2484. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2485. POSTING_READ(reg);
  2486. udelay(100);
  2487. }
  2488. }
  2489. }
  2490. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2491. {
  2492. struct drm_device *dev = intel_crtc->base.dev;
  2493. struct drm_i915_private *dev_priv = dev->dev_private;
  2494. int pipe = intel_crtc->pipe;
  2495. u32 reg, temp;
  2496. /* Switch from PCDclk to Rawclk */
  2497. reg = FDI_RX_CTL(pipe);
  2498. temp = I915_READ(reg);
  2499. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2500. /* Disable CPU FDI TX PLL */
  2501. reg = FDI_TX_CTL(pipe);
  2502. temp = I915_READ(reg);
  2503. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2504. POSTING_READ(reg);
  2505. udelay(100);
  2506. reg = FDI_RX_CTL(pipe);
  2507. temp = I915_READ(reg);
  2508. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2509. /* Wait for the clocks to turn off. */
  2510. POSTING_READ(reg);
  2511. udelay(100);
  2512. }
  2513. static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
  2514. {
  2515. struct drm_i915_private *dev_priv = dev->dev_private;
  2516. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2517. flags &= ~(FDI_PHASE_SYNC_EN(pipe));
  2518. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
  2519. flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
  2520. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
  2521. POSTING_READ(SOUTH_CHICKEN1);
  2522. }
  2523. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2524. {
  2525. struct drm_device *dev = crtc->dev;
  2526. struct drm_i915_private *dev_priv = dev->dev_private;
  2527. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2528. int pipe = intel_crtc->pipe;
  2529. u32 reg, temp;
  2530. /* disable CPU FDI tx and PCH FDI rx */
  2531. reg = FDI_TX_CTL(pipe);
  2532. temp = I915_READ(reg);
  2533. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2534. POSTING_READ(reg);
  2535. reg = FDI_RX_CTL(pipe);
  2536. temp = I915_READ(reg);
  2537. temp &= ~(0x7 << 16);
  2538. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2539. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2540. POSTING_READ(reg);
  2541. udelay(100);
  2542. /* Ironlake workaround, disable clock pointer after downing FDI */
  2543. if (HAS_PCH_IBX(dev)) {
  2544. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2545. } else if (HAS_PCH_CPT(dev)) {
  2546. cpt_phase_pointer_disable(dev, pipe);
  2547. }
  2548. /* still set train pattern 1 */
  2549. reg = FDI_TX_CTL(pipe);
  2550. temp = I915_READ(reg);
  2551. temp &= ~FDI_LINK_TRAIN_NONE;
  2552. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2553. I915_WRITE(reg, temp);
  2554. reg = FDI_RX_CTL(pipe);
  2555. temp = I915_READ(reg);
  2556. if (HAS_PCH_CPT(dev)) {
  2557. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2558. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2559. } else {
  2560. temp &= ~FDI_LINK_TRAIN_NONE;
  2561. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2562. }
  2563. /* BPC in FDI rx is consistent with that in PIPECONF */
  2564. temp &= ~(0x07 << 16);
  2565. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2566. I915_WRITE(reg, temp);
  2567. POSTING_READ(reg);
  2568. udelay(100);
  2569. }
  2570. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2571. {
  2572. struct drm_device *dev = crtc->dev;
  2573. struct drm_i915_private *dev_priv = dev->dev_private;
  2574. unsigned long flags;
  2575. bool pending;
  2576. if (atomic_read(&dev_priv->mm.wedged))
  2577. return false;
  2578. spin_lock_irqsave(&dev->event_lock, flags);
  2579. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2580. spin_unlock_irqrestore(&dev->event_lock, flags);
  2581. return pending;
  2582. }
  2583. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2584. {
  2585. struct drm_device *dev = crtc->dev;
  2586. struct drm_i915_private *dev_priv = dev->dev_private;
  2587. if (crtc->fb == NULL)
  2588. return;
  2589. wait_event(dev_priv->pending_flip_queue,
  2590. !intel_crtc_has_pending_flip(crtc));
  2591. mutex_lock(&dev->struct_mutex);
  2592. intel_finish_fb(crtc->fb);
  2593. mutex_unlock(&dev->struct_mutex);
  2594. }
  2595. static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
  2596. {
  2597. struct drm_device *dev = crtc->dev;
  2598. struct intel_encoder *intel_encoder;
  2599. /*
  2600. * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
  2601. * must be driven by its own crtc; no sharing is possible.
  2602. */
  2603. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  2604. switch (intel_encoder->type) {
  2605. case INTEL_OUTPUT_EDP:
  2606. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  2607. return false;
  2608. continue;
  2609. }
  2610. }
  2611. return true;
  2612. }
  2613. static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
  2614. {
  2615. return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
  2616. }
  2617. /* Program iCLKIP clock to the desired frequency */
  2618. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2619. {
  2620. struct drm_device *dev = crtc->dev;
  2621. struct drm_i915_private *dev_priv = dev->dev_private;
  2622. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2623. u32 temp;
  2624. /* It is necessary to ungate the pixclk gate prior to programming
  2625. * the divisors, and gate it back when it is done.
  2626. */
  2627. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2628. /* Disable SSCCTL */
  2629. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2630. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2631. SBI_SSCCTL_DISABLE,
  2632. SBI_ICLK);
  2633. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2634. if (crtc->mode.clock == 20000) {
  2635. auxdiv = 1;
  2636. divsel = 0x41;
  2637. phaseinc = 0x20;
  2638. } else {
  2639. /* The iCLK virtual clock root frequency is in MHz,
  2640. * but the crtc->mode.clock in in KHz. To get the divisors,
  2641. * it is necessary to divide one by another, so we
  2642. * convert the virtual clock precision to KHz here for higher
  2643. * precision.
  2644. */
  2645. u32 iclk_virtual_root_freq = 172800 * 1000;
  2646. u32 iclk_pi_range = 64;
  2647. u32 desired_divisor, msb_divisor_value, pi_value;
  2648. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2649. msb_divisor_value = desired_divisor / iclk_pi_range;
  2650. pi_value = desired_divisor % iclk_pi_range;
  2651. auxdiv = 0;
  2652. divsel = msb_divisor_value - 2;
  2653. phaseinc = pi_value;
  2654. }
  2655. /* This should not happen with any sane values */
  2656. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2657. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2658. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2659. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2660. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2661. crtc->mode.clock,
  2662. auxdiv,
  2663. divsel,
  2664. phasedir,
  2665. phaseinc);
  2666. /* Program SSCDIVINTPHASE6 */
  2667. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2668. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2669. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2670. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2671. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2672. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2673. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2674. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2675. /* Program SSCAUXDIV */
  2676. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2677. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2678. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2679. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2680. /* Enable modulator and associated divider */
  2681. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2682. temp &= ~SBI_SSCCTL_DISABLE;
  2683. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2684. /* Wait for initialization time */
  2685. udelay(24);
  2686. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2687. }
  2688. /*
  2689. * Enable PCH resources required for PCH ports:
  2690. * - PCH PLLs
  2691. * - FDI training & RX/TX
  2692. * - update transcoder timings
  2693. * - DP transcoding bits
  2694. * - transcoder
  2695. */
  2696. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2697. {
  2698. struct drm_device *dev = crtc->dev;
  2699. struct drm_i915_private *dev_priv = dev->dev_private;
  2700. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2701. int pipe = intel_crtc->pipe;
  2702. u32 reg, temp;
  2703. assert_transcoder_disabled(dev_priv, pipe);
  2704. /* Write the TU size bits before fdi link training, so that error
  2705. * detection works. */
  2706. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2707. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2708. /* For PCH output, training FDI link */
  2709. dev_priv->display.fdi_link_train(crtc);
  2710. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2711. * transcoder, and we actually should do this to not upset any PCH
  2712. * transcoder that already use the clock when we share it.
  2713. *
  2714. * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
  2715. * unconditionally resets the pll - we need that to have the right LVDS
  2716. * enable sequence. */
  2717. ironlake_enable_pch_pll(intel_crtc);
  2718. if (HAS_PCH_CPT(dev)) {
  2719. u32 sel;
  2720. temp = I915_READ(PCH_DPLL_SEL);
  2721. switch (pipe) {
  2722. default:
  2723. case 0:
  2724. temp |= TRANSA_DPLL_ENABLE;
  2725. sel = TRANSA_DPLLB_SEL;
  2726. break;
  2727. case 1:
  2728. temp |= TRANSB_DPLL_ENABLE;
  2729. sel = TRANSB_DPLLB_SEL;
  2730. break;
  2731. case 2:
  2732. temp |= TRANSC_DPLL_ENABLE;
  2733. sel = TRANSC_DPLLB_SEL;
  2734. break;
  2735. }
  2736. if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
  2737. temp |= sel;
  2738. else
  2739. temp &= ~sel;
  2740. I915_WRITE(PCH_DPLL_SEL, temp);
  2741. }
  2742. /* set transcoder timing, panel must allow it */
  2743. assert_panel_unlocked(dev_priv, pipe);
  2744. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2745. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2746. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2747. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2748. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2749. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2750. I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
  2751. intel_fdi_normal_train(crtc);
  2752. /* For PCH DP, enable TRANS_DP_CTL */
  2753. if (HAS_PCH_CPT(dev) &&
  2754. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2755. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2756. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
  2757. reg = TRANS_DP_CTL(pipe);
  2758. temp = I915_READ(reg);
  2759. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2760. TRANS_DP_SYNC_MASK |
  2761. TRANS_DP_BPC_MASK);
  2762. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2763. TRANS_DP_ENH_FRAMING);
  2764. temp |= bpc << 9; /* same format but at 11:9 */
  2765. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2766. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2767. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2768. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2769. switch (intel_trans_dp_port_sel(crtc)) {
  2770. case PCH_DP_B:
  2771. temp |= TRANS_DP_PORT_SEL_B;
  2772. break;
  2773. case PCH_DP_C:
  2774. temp |= TRANS_DP_PORT_SEL_C;
  2775. break;
  2776. case PCH_DP_D:
  2777. temp |= TRANS_DP_PORT_SEL_D;
  2778. break;
  2779. default:
  2780. BUG();
  2781. }
  2782. I915_WRITE(reg, temp);
  2783. }
  2784. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2785. }
  2786. static void lpt_pch_enable(struct drm_crtc *crtc)
  2787. {
  2788. struct drm_device *dev = crtc->dev;
  2789. struct drm_i915_private *dev_priv = dev->dev_private;
  2790. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2791. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  2792. assert_transcoder_disabled(dev_priv, TRANSCODER_A);
  2793. lpt_program_iclkip(crtc);
  2794. /* Set transcoder timing. */
  2795. I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
  2796. I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
  2797. I915_WRITE(_TRANS_HSYNC_A, I915_READ(HSYNC(cpu_transcoder)));
  2798. I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
  2799. I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
  2800. I915_WRITE(_TRANS_VSYNC_A, I915_READ(VSYNC(cpu_transcoder)));
  2801. I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2802. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2803. }
  2804. static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
  2805. {
  2806. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  2807. if (pll == NULL)
  2808. return;
  2809. if (pll->refcount == 0) {
  2810. WARN(1, "bad PCH PLL refcount\n");
  2811. return;
  2812. }
  2813. --pll->refcount;
  2814. intel_crtc->pch_pll = NULL;
  2815. }
  2816. static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
  2817. {
  2818. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  2819. struct intel_pch_pll *pll;
  2820. int i;
  2821. pll = intel_crtc->pch_pll;
  2822. if (pll) {
  2823. DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
  2824. intel_crtc->base.base.id, pll->pll_reg);
  2825. goto prepare;
  2826. }
  2827. if (HAS_PCH_IBX(dev_priv->dev)) {
  2828. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2829. i = intel_crtc->pipe;
  2830. pll = &dev_priv->pch_plls[i];
  2831. DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
  2832. intel_crtc->base.base.id, pll->pll_reg);
  2833. goto found;
  2834. }
  2835. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2836. pll = &dev_priv->pch_plls[i];
  2837. /* Only want to check enabled timings first */
  2838. if (pll->refcount == 0)
  2839. continue;
  2840. if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
  2841. fp == I915_READ(pll->fp0_reg)) {
  2842. DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
  2843. intel_crtc->base.base.id,
  2844. pll->pll_reg, pll->refcount, pll->active);
  2845. goto found;
  2846. }
  2847. }
  2848. /* Ok no matching timings, maybe there's a free one? */
  2849. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2850. pll = &dev_priv->pch_plls[i];
  2851. if (pll->refcount == 0) {
  2852. DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
  2853. intel_crtc->base.base.id, pll->pll_reg);
  2854. goto found;
  2855. }
  2856. }
  2857. return NULL;
  2858. found:
  2859. intel_crtc->pch_pll = pll;
  2860. pll->refcount++;
  2861. DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
  2862. prepare: /* separate function? */
  2863. DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
  2864. /* Wait for the clocks to stabilize before rewriting the regs */
  2865. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2866. POSTING_READ(pll->pll_reg);
  2867. udelay(150);
  2868. I915_WRITE(pll->fp0_reg, fp);
  2869. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2870. pll->on = false;
  2871. return pll;
  2872. }
  2873. void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
  2874. {
  2875. struct drm_i915_private *dev_priv = dev->dev_private;
  2876. int dslreg = PIPEDSL(pipe);
  2877. u32 temp;
  2878. temp = I915_READ(dslreg);
  2879. udelay(500);
  2880. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2881. if (wait_for(I915_READ(dslreg) != temp, 5))
  2882. DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
  2883. }
  2884. }
  2885. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2886. {
  2887. struct drm_device *dev = crtc->dev;
  2888. struct drm_i915_private *dev_priv = dev->dev_private;
  2889. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2890. struct intel_encoder *encoder;
  2891. int pipe = intel_crtc->pipe;
  2892. int plane = intel_crtc->plane;
  2893. u32 temp;
  2894. bool is_pch_port;
  2895. WARN_ON(!crtc->enabled);
  2896. if (intel_crtc->active)
  2897. return;
  2898. intel_crtc->active = true;
  2899. intel_update_watermarks(dev);
  2900. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2901. temp = I915_READ(PCH_LVDS);
  2902. if ((temp & LVDS_PORT_EN) == 0)
  2903. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2904. }
  2905. is_pch_port = ironlake_crtc_driving_pch(crtc);
  2906. if (is_pch_port) {
  2907. /* Note: FDI PLL enabling _must_ be done before we enable the
  2908. * cpu pipes, hence this is separate from all the other fdi/pch
  2909. * enabling. */
  2910. ironlake_fdi_pll_enable(intel_crtc);
  2911. } else {
  2912. assert_fdi_tx_disabled(dev_priv, pipe);
  2913. assert_fdi_rx_disabled(dev_priv, pipe);
  2914. }
  2915. for_each_encoder_on_crtc(dev, crtc, encoder)
  2916. if (encoder->pre_enable)
  2917. encoder->pre_enable(encoder);
  2918. /* Enable panel fitting for LVDS */
  2919. if (dev_priv->pch_pf_size &&
  2920. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  2921. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2922. /* Force use of hard-coded filter coefficients
  2923. * as some pre-programmed values are broken,
  2924. * e.g. x201.
  2925. */
  2926. if (IS_IVYBRIDGE(dev))
  2927. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2928. PF_PIPE_SEL_IVB(pipe));
  2929. else
  2930. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2931. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2932. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2933. }
  2934. /*
  2935. * On ILK+ LUT must be loaded before the pipe is running but with
  2936. * clocks enabled
  2937. */
  2938. intel_crtc_load_lut(crtc);
  2939. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2940. intel_enable_plane(dev_priv, plane, pipe);
  2941. if (is_pch_port)
  2942. ironlake_pch_enable(crtc);
  2943. mutex_lock(&dev->struct_mutex);
  2944. intel_update_fbc(dev);
  2945. mutex_unlock(&dev->struct_mutex);
  2946. intel_crtc_update_cursor(crtc, true);
  2947. for_each_encoder_on_crtc(dev, crtc, encoder)
  2948. encoder->enable(encoder);
  2949. if (HAS_PCH_CPT(dev))
  2950. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  2951. /*
  2952. * There seems to be a race in PCH platform hw (at least on some
  2953. * outputs) where an enabled pipe still completes any pageflip right
  2954. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2955. * as the first vblank happend, everything works as expected. Hence just
  2956. * wait for one vblank before returning to avoid strange things
  2957. * happening.
  2958. */
  2959. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2960. }
  2961. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2962. {
  2963. struct drm_device *dev = crtc->dev;
  2964. struct drm_i915_private *dev_priv = dev->dev_private;
  2965. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2966. struct intel_encoder *encoder;
  2967. int pipe = intel_crtc->pipe;
  2968. int plane = intel_crtc->plane;
  2969. bool is_pch_port;
  2970. WARN_ON(!crtc->enabled);
  2971. if (intel_crtc->active)
  2972. return;
  2973. intel_crtc->active = true;
  2974. intel_update_watermarks(dev);
  2975. is_pch_port = haswell_crtc_driving_pch(crtc);
  2976. if (is_pch_port)
  2977. dev_priv->display.fdi_link_train(crtc);
  2978. for_each_encoder_on_crtc(dev, crtc, encoder)
  2979. if (encoder->pre_enable)
  2980. encoder->pre_enable(encoder);
  2981. intel_ddi_enable_pipe_clock(intel_crtc);
  2982. /* Enable panel fitting for eDP */
  2983. if (dev_priv->pch_pf_size &&
  2984. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  2985. /* Force use of hard-coded filter coefficients
  2986. * as some pre-programmed values are broken,
  2987. * e.g. x201.
  2988. */
  2989. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2990. PF_PIPE_SEL_IVB(pipe));
  2991. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2992. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2993. }
  2994. /*
  2995. * On ILK+ LUT must be loaded before the pipe is running but with
  2996. * clocks enabled
  2997. */
  2998. intel_crtc_load_lut(crtc);
  2999. intel_ddi_set_pipe_settings(crtc);
  3000. intel_ddi_enable_pipe_func(crtc);
  3001. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  3002. intel_enable_plane(dev_priv, plane, pipe);
  3003. if (is_pch_port)
  3004. lpt_pch_enable(crtc);
  3005. mutex_lock(&dev->struct_mutex);
  3006. intel_update_fbc(dev);
  3007. mutex_unlock(&dev->struct_mutex);
  3008. intel_crtc_update_cursor(crtc, true);
  3009. for_each_encoder_on_crtc(dev, crtc, encoder)
  3010. encoder->enable(encoder);
  3011. /*
  3012. * There seems to be a race in PCH platform hw (at least on some
  3013. * outputs) where an enabled pipe still completes any pageflip right
  3014. * away (as if the pipe is off) instead of waiting for vblank. As soon
  3015. * as the first vblank happend, everything works as expected. Hence just
  3016. * wait for one vblank before returning to avoid strange things
  3017. * happening.
  3018. */
  3019. intel_wait_for_vblank(dev, intel_crtc->pipe);
  3020. }
  3021. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  3022. {
  3023. struct drm_device *dev = crtc->dev;
  3024. struct drm_i915_private *dev_priv = dev->dev_private;
  3025. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3026. struct intel_encoder *encoder;
  3027. int pipe = intel_crtc->pipe;
  3028. int plane = intel_crtc->plane;
  3029. u32 reg, temp;
  3030. if (!intel_crtc->active)
  3031. return;
  3032. for_each_encoder_on_crtc(dev, crtc, encoder)
  3033. encoder->disable(encoder);
  3034. intel_crtc_wait_for_pending_flips(crtc);
  3035. drm_vblank_off(dev, pipe);
  3036. intel_crtc_update_cursor(crtc, false);
  3037. intel_disable_plane(dev_priv, plane, pipe);
  3038. if (dev_priv->cfb_plane == plane)
  3039. intel_disable_fbc(dev);
  3040. intel_disable_pipe(dev_priv, pipe);
  3041. /* Disable PF */
  3042. I915_WRITE(PF_CTL(pipe), 0);
  3043. I915_WRITE(PF_WIN_SZ(pipe), 0);
  3044. for_each_encoder_on_crtc(dev, crtc, encoder)
  3045. if (encoder->post_disable)
  3046. encoder->post_disable(encoder);
  3047. ironlake_fdi_disable(crtc);
  3048. ironlake_disable_pch_transcoder(dev_priv, pipe);
  3049. if (HAS_PCH_CPT(dev)) {
  3050. /* disable TRANS_DP_CTL */
  3051. reg = TRANS_DP_CTL(pipe);
  3052. temp = I915_READ(reg);
  3053. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  3054. temp |= TRANS_DP_PORT_SEL_NONE;
  3055. I915_WRITE(reg, temp);
  3056. /* disable DPLL_SEL */
  3057. temp = I915_READ(PCH_DPLL_SEL);
  3058. switch (pipe) {
  3059. case 0:
  3060. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  3061. break;
  3062. case 1:
  3063. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  3064. break;
  3065. case 2:
  3066. /* C shares PLL A or B */
  3067. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  3068. break;
  3069. default:
  3070. BUG(); /* wtf */
  3071. }
  3072. I915_WRITE(PCH_DPLL_SEL, temp);
  3073. }
  3074. /* disable PCH DPLL */
  3075. intel_disable_pch_pll(intel_crtc);
  3076. ironlake_fdi_pll_disable(intel_crtc);
  3077. intel_crtc->active = false;
  3078. intel_update_watermarks(dev);
  3079. mutex_lock(&dev->struct_mutex);
  3080. intel_update_fbc(dev);
  3081. mutex_unlock(&dev->struct_mutex);
  3082. }
  3083. static void haswell_crtc_disable(struct drm_crtc *crtc)
  3084. {
  3085. struct drm_device *dev = crtc->dev;
  3086. struct drm_i915_private *dev_priv = dev->dev_private;
  3087. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3088. struct intel_encoder *encoder;
  3089. int pipe = intel_crtc->pipe;
  3090. int plane = intel_crtc->plane;
  3091. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  3092. bool is_pch_port;
  3093. if (!intel_crtc->active)
  3094. return;
  3095. is_pch_port = haswell_crtc_driving_pch(crtc);
  3096. for_each_encoder_on_crtc(dev, crtc, encoder)
  3097. encoder->disable(encoder);
  3098. intel_crtc_wait_for_pending_flips(crtc);
  3099. drm_vblank_off(dev, pipe);
  3100. intel_crtc_update_cursor(crtc, false);
  3101. intel_disable_plane(dev_priv, plane, pipe);
  3102. if (dev_priv->cfb_plane == plane)
  3103. intel_disable_fbc(dev);
  3104. intel_disable_pipe(dev_priv, pipe);
  3105. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3106. /* Disable PF */
  3107. I915_WRITE(PF_CTL(pipe), 0);
  3108. I915_WRITE(PF_WIN_SZ(pipe), 0);
  3109. intel_ddi_disable_pipe_clock(intel_crtc);
  3110. for_each_encoder_on_crtc(dev, crtc, encoder)
  3111. if (encoder->post_disable)
  3112. encoder->post_disable(encoder);
  3113. if (is_pch_port) {
  3114. lpt_disable_pch_transcoder(dev_priv);
  3115. intel_ddi_fdi_disable(crtc);
  3116. }
  3117. intel_crtc->active = false;
  3118. intel_update_watermarks(dev);
  3119. mutex_lock(&dev->struct_mutex);
  3120. intel_update_fbc(dev);
  3121. mutex_unlock(&dev->struct_mutex);
  3122. }
  3123. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3124. {
  3125. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3126. intel_put_pch_pll(intel_crtc);
  3127. }
  3128. static void haswell_crtc_off(struct drm_crtc *crtc)
  3129. {
  3130. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3131. /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
  3132. * start using it. */
  3133. intel_crtc->cpu_transcoder = intel_crtc->pipe;
  3134. intel_ddi_put_crtc_pll(crtc);
  3135. }
  3136. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3137. {
  3138. if (!enable && intel_crtc->overlay) {
  3139. struct drm_device *dev = intel_crtc->base.dev;
  3140. struct drm_i915_private *dev_priv = dev->dev_private;
  3141. mutex_lock(&dev->struct_mutex);
  3142. dev_priv->mm.interruptible = false;
  3143. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3144. dev_priv->mm.interruptible = true;
  3145. mutex_unlock(&dev->struct_mutex);
  3146. }
  3147. /* Let userspace switch the overlay on again. In most cases userspace
  3148. * has to recompute where to put it anyway.
  3149. */
  3150. }
  3151. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3152. {
  3153. struct drm_device *dev = crtc->dev;
  3154. struct drm_i915_private *dev_priv = dev->dev_private;
  3155. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3156. struct intel_encoder *encoder;
  3157. int pipe = intel_crtc->pipe;
  3158. int plane = intel_crtc->plane;
  3159. WARN_ON(!crtc->enabled);
  3160. if (intel_crtc->active)
  3161. return;
  3162. intel_crtc->active = true;
  3163. intel_update_watermarks(dev);
  3164. intel_enable_pll(dev_priv, pipe);
  3165. intel_enable_pipe(dev_priv, pipe, false);
  3166. intel_enable_plane(dev_priv, plane, pipe);
  3167. intel_crtc_load_lut(crtc);
  3168. intel_update_fbc(dev);
  3169. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3170. intel_crtc_dpms_overlay(intel_crtc, true);
  3171. intel_crtc_update_cursor(crtc, true);
  3172. for_each_encoder_on_crtc(dev, crtc, encoder)
  3173. encoder->enable(encoder);
  3174. }
  3175. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3176. {
  3177. struct drm_device *dev = crtc->dev;
  3178. struct drm_i915_private *dev_priv = dev->dev_private;
  3179. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3180. struct intel_encoder *encoder;
  3181. int pipe = intel_crtc->pipe;
  3182. int plane = intel_crtc->plane;
  3183. if (!intel_crtc->active)
  3184. return;
  3185. for_each_encoder_on_crtc(dev, crtc, encoder)
  3186. encoder->disable(encoder);
  3187. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3188. intel_crtc_wait_for_pending_flips(crtc);
  3189. drm_vblank_off(dev, pipe);
  3190. intel_crtc_dpms_overlay(intel_crtc, false);
  3191. intel_crtc_update_cursor(crtc, false);
  3192. if (dev_priv->cfb_plane == plane)
  3193. intel_disable_fbc(dev);
  3194. intel_disable_plane(dev_priv, plane, pipe);
  3195. intel_disable_pipe(dev_priv, pipe);
  3196. intel_disable_pll(dev_priv, pipe);
  3197. intel_crtc->active = false;
  3198. intel_update_fbc(dev);
  3199. intel_update_watermarks(dev);
  3200. }
  3201. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3202. {
  3203. }
  3204. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3205. bool enabled)
  3206. {
  3207. struct drm_device *dev = crtc->dev;
  3208. struct drm_i915_master_private *master_priv;
  3209. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3210. int pipe = intel_crtc->pipe;
  3211. if (!dev->primary->master)
  3212. return;
  3213. master_priv = dev->primary->master->driver_priv;
  3214. if (!master_priv->sarea_priv)
  3215. return;
  3216. switch (pipe) {
  3217. case 0:
  3218. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3219. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3220. break;
  3221. case 1:
  3222. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3223. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3224. break;
  3225. default:
  3226. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3227. break;
  3228. }
  3229. }
  3230. /**
  3231. * Sets the power management mode of the pipe and plane.
  3232. */
  3233. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3234. {
  3235. struct drm_device *dev = crtc->dev;
  3236. struct drm_i915_private *dev_priv = dev->dev_private;
  3237. struct intel_encoder *intel_encoder;
  3238. bool enable = false;
  3239. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3240. enable |= intel_encoder->connectors_active;
  3241. if (enable)
  3242. dev_priv->display.crtc_enable(crtc);
  3243. else
  3244. dev_priv->display.crtc_disable(crtc);
  3245. intel_crtc_update_sarea(crtc, enable);
  3246. }
  3247. static void intel_crtc_noop(struct drm_crtc *crtc)
  3248. {
  3249. }
  3250. static void intel_crtc_disable(struct drm_crtc *crtc)
  3251. {
  3252. struct drm_device *dev = crtc->dev;
  3253. struct drm_connector *connector;
  3254. struct drm_i915_private *dev_priv = dev->dev_private;
  3255. /* crtc should still be enabled when we disable it. */
  3256. WARN_ON(!crtc->enabled);
  3257. dev_priv->display.crtc_disable(crtc);
  3258. intel_crtc_update_sarea(crtc, false);
  3259. dev_priv->display.off(crtc);
  3260. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3261. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3262. if (crtc->fb) {
  3263. mutex_lock(&dev->struct_mutex);
  3264. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3265. mutex_unlock(&dev->struct_mutex);
  3266. crtc->fb = NULL;
  3267. }
  3268. /* Update computed state. */
  3269. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3270. if (!connector->encoder || !connector->encoder->crtc)
  3271. continue;
  3272. if (connector->encoder->crtc != crtc)
  3273. continue;
  3274. connector->dpms = DRM_MODE_DPMS_OFF;
  3275. to_intel_encoder(connector->encoder)->connectors_active = false;
  3276. }
  3277. }
  3278. void intel_modeset_disable(struct drm_device *dev)
  3279. {
  3280. struct drm_crtc *crtc;
  3281. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3282. if (crtc->enabled)
  3283. intel_crtc_disable(crtc);
  3284. }
  3285. }
  3286. void intel_encoder_noop(struct drm_encoder *encoder)
  3287. {
  3288. }
  3289. void intel_encoder_destroy(struct drm_encoder *encoder)
  3290. {
  3291. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3292. drm_encoder_cleanup(encoder);
  3293. kfree(intel_encoder);
  3294. }
  3295. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3296. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3297. * state of the entire output pipe. */
  3298. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3299. {
  3300. if (mode == DRM_MODE_DPMS_ON) {
  3301. encoder->connectors_active = true;
  3302. intel_crtc_update_dpms(encoder->base.crtc);
  3303. } else {
  3304. encoder->connectors_active = false;
  3305. intel_crtc_update_dpms(encoder->base.crtc);
  3306. }
  3307. }
  3308. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3309. * internal consistency). */
  3310. static void intel_connector_check_state(struct intel_connector *connector)
  3311. {
  3312. if (connector->get_hw_state(connector)) {
  3313. struct intel_encoder *encoder = connector->encoder;
  3314. struct drm_crtc *crtc;
  3315. bool encoder_enabled;
  3316. enum pipe pipe;
  3317. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3318. connector->base.base.id,
  3319. drm_get_connector_name(&connector->base));
  3320. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3321. "wrong connector dpms state\n");
  3322. WARN(connector->base.encoder != &encoder->base,
  3323. "active connector not linked to encoder\n");
  3324. WARN(!encoder->connectors_active,
  3325. "encoder->connectors_active not set\n");
  3326. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3327. WARN(!encoder_enabled, "encoder not enabled\n");
  3328. if (WARN_ON(!encoder->base.crtc))
  3329. return;
  3330. crtc = encoder->base.crtc;
  3331. WARN(!crtc->enabled, "crtc not enabled\n");
  3332. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3333. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3334. "encoder active on the wrong pipe\n");
  3335. }
  3336. }
  3337. /* Even simpler default implementation, if there's really no special case to
  3338. * consider. */
  3339. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3340. {
  3341. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3342. /* All the simple cases only support two dpms states. */
  3343. if (mode != DRM_MODE_DPMS_ON)
  3344. mode = DRM_MODE_DPMS_OFF;
  3345. if (mode == connector->dpms)
  3346. return;
  3347. connector->dpms = mode;
  3348. /* Only need to change hw state when actually enabled */
  3349. if (encoder->base.crtc)
  3350. intel_encoder_dpms(encoder, mode);
  3351. else
  3352. WARN_ON(encoder->connectors_active != false);
  3353. intel_modeset_check_state(connector->dev);
  3354. }
  3355. /* Simple connector->get_hw_state implementation for encoders that support only
  3356. * one connector and no cloning and hence the encoder state determines the state
  3357. * of the connector. */
  3358. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3359. {
  3360. enum pipe pipe = 0;
  3361. struct intel_encoder *encoder = connector->encoder;
  3362. return encoder->get_hw_state(encoder, &pipe);
  3363. }
  3364. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  3365. const struct drm_display_mode *mode,
  3366. struct drm_display_mode *adjusted_mode)
  3367. {
  3368. struct drm_device *dev = crtc->dev;
  3369. if (HAS_PCH_SPLIT(dev)) {
  3370. /* FDI link clock is fixed at 2.7G */
  3371. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  3372. return false;
  3373. }
  3374. /* All interlaced capable intel hw wants timings in frames. Note though
  3375. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3376. * timings, so we need to be careful not to clobber these.*/
  3377. if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
  3378. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3379. /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
  3380. * with a hsync front porch of 0.
  3381. */
  3382. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3383. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3384. return false;
  3385. return true;
  3386. }
  3387. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3388. {
  3389. return 400000; /* FIXME */
  3390. }
  3391. static int i945_get_display_clock_speed(struct drm_device *dev)
  3392. {
  3393. return 400000;
  3394. }
  3395. static int i915_get_display_clock_speed(struct drm_device *dev)
  3396. {
  3397. return 333000;
  3398. }
  3399. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3400. {
  3401. return 200000;
  3402. }
  3403. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3404. {
  3405. u16 gcfgc = 0;
  3406. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3407. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3408. return 133000;
  3409. else {
  3410. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3411. case GC_DISPLAY_CLOCK_333_MHZ:
  3412. return 333000;
  3413. default:
  3414. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3415. return 190000;
  3416. }
  3417. }
  3418. }
  3419. static int i865_get_display_clock_speed(struct drm_device *dev)
  3420. {
  3421. return 266000;
  3422. }
  3423. static int i855_get_display_clock_speed(struct drm_device *dev)
  3424. {
  3425. u16 hpllcc = 0;
  3426. /* Assume that the hardware is in the high speed state. This
  3427. * should be the default.
  3428. */
  3429. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3430. case GC_CLOCK_133_200:
  3431. case GC_CLOCK_100_200:
  3432. return 200000;
  3433. case GC_CLOCK_166_250:
  3434. return 250000;
  3435. case GC_CLOCK_100_133:
  3436. return 133000;
  3437. }
  3438. /* Shouldn't happen */
  3439. return 0;
  3440. }
  3441. static int i830_get_display_clock_speed(struct drm_device *dev)
  3442. {
  3443. return 133000;
  3444. }
  3445. struct fdi_m_n {
  3446. u32 tu;
  3447. u32 gmch_m;
  3448. u32 gmch_n;
  3449. u32 link_m;
  3450. u32 link_n;
  3451. };
  3452. static void
  3453. fdi_reduce_ratio(u32 *num, u32 *den)
  3454. {
  3455. while (*num > 0xffffff || *den > 0xffffff) {
  3456. *num >>= 1;
  3457. *den >>= 1;
  3458. }
  3459. }
  3460. static void
  3461. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  3462. int link_clock, struct fdi_m_n *m_n)
  3463. {
  3464. m_n->tu = 64; /* default size */
  3465. /* BUG_ON(pixel_clock > INT_MAX / 36); */
  3466. m_n->gmch_m = bits_per_pixel * pixel_clock;
  3467. m_n->gmch_n = link_clock * nlanes * 8;
  3468. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3469. m_n->link_m = pixel_clock;
  3470. m_n->link_n = link_clock;
  3471. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3472. }
  3473. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3474. {
  3475. if (i915_panel_use_ssc >= 0)
  3476. return i915_panel_use_ssc != 0;
  3477. return dev_priv->lvds_use_ssc
  3478. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3479. }
  3480. /**
  3481. * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
  3482. * @crtc: CRTC structure
  3483. * @mode: requested mode
  3484. *
  3485. * A pipe may be connected to one or more outputs. Based on the depth of the
  3486. * attached framebuffer, choose a good color depth to use on the pipe.
  3487. *
  3488. * If possible, match the pipe depth to the fb depth. In some cases, this
  3489. * isn't ideal, because the connected output supports a lesser or restricted
  3490. * set of depths. Resolve that here:
  3491. * LVDS typically supports only 6bpc, so clamp down in that case
  3492. * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
  3493. * Displays may support a restricted set as well, check EDID and clamp as
  3494. * appropriate.
  3495. * DP may want to dither down to 6bpc to fit larger modes
  3496. *
  3497. * RETURNS:
  3498. * Dithering requirement (i.e. false if display bpc and pipe bpc match,
  3499. * true if they don't match).
  3500. */
  3501. static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
  3502. struct drm_framebuffer *fb,
  3503. unsigned int *pipe_bpp,
  3504. struct drm_display_mode *mode)
  3505. {
  3506. struct drm_device *dev = crtc->dev;
  3507. struct drm_i915_private *dev_priv = dev->dev_private;
  3508. struct drm_connector *connector;
  3509. struct intel_encoder *intel_encoder;
  3510. unsigned int display_bpc = UINT_MAX, bpc;
  3511. /* Walk the encoders & connectors on this crtc, get min bpc */
  3512. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  3513. if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
  3514. unsigned int lvds_bpc;
  3515. if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
  3516. LVDS_A3_POWER_UP)
  3517. lvds_bpc = 8;
  3518. else
  3519. lvds_bpc = 6;
  3520. if (lvds_bpc < display_bpc) {
  3521. DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
  3522. display_bpc = lvds_bpc;
  3523. }
  3524. continue;
  3525. }
  3526. /* Not one of the known troublemakers, check the EDID */
  3527. list_for_each_entry(connector, &dev->mode_config.connector_list,
  3528. head) {
  3529. if (connector->encoder != &intel_encoder->base)
  3530. continue;
  3531. /* Don't use an invalid EDID bpc value */
  3532. if (connector->display_info.bpc &&
  3533. connector->display_info.bpc < display_bpc) {
  3534. DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
  3535. display_bpc = connector->display_info.bpc;
  3536. }
  3537. }
  3538. /*
  3539. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  3540. * through, clamp it down. (Note: >12bpc will be caught below.)
  3541. */
  3542. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  3543. if (display_bpc > 8 && display_bpc < 12) {
  3544. DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
  3545. display_bpc = 12;
  3546. } else {
  3547. DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
  3548. display_bpc = 8;
  3549. }
  3550. }
  3551. }
  3552. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  3553. DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
  3554. display_bpc = 6;
  3555. }
  3556. /*
  3557. * We could just drive the pipe at the highest bpc all the time and
  3558. * enable dithering as needed, but that costs bandwidth. So choose
  3559. * the minimum value that expresses the full color range of the fb but
  3560. * also stays within the max display bpc discovered above.
  3561. */
  3562. switch (fb->depth) {
  3563. case 8:
  3564. bpc = 8; /* since we go through a colormap */
  3565. break;
  3566. case 15:
  3567. case 16:
  3568. bpc = 6; /* min is 18bpp */
  3569. break;
  3570. case 24:
  3571. bpc = 8;
  3572. break;
  3573. case 30:
  3574. bpc = 10;
  3575. break;
  3576. case 48:
  3577. bpc = 12;
  3578. break;
  3579. default:
  3580. DRM_DEBUG("unsupported depth, assuming 24 bits\n");
  3581. bpc = min((unsigned int)8, display_bpc);
  3582. break;
  3583. }
  3584. display_bpc = min(display_bpc, bpc);
  3585. DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
  3586. bpc, display_bpc);
  3587. *pipe_bpp = display_bpc * 3;
  3588. return display_bpc != bpc;
  3589. }
  3590. static int vlv_get_refclk(struct drm_crtc *crtc)
  3591. {
  3592. struct drm_device *dev = crtc->dev;
  3593. struct drm_i915_private *dev_priv = dev->dev_private;
  3594. int refclk = 27000; /* for DP & HDMI */
  3595. return 100000; /* only one validated so far */
  3596. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3597. refclk = 96000;
  3598. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3599. if (intel_panel_use_ssc(dev_priv))
  3600. refclk = 100000;
  3601. else
  3602. refclk = 96000;
  3603. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3604. refclk = 100000;
  3605. }
  3606. return refclk;
  3607. }
  3608. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3609. {
  3610. struct drm_device *dev = crtc->dev;
  3611. struct drm_i915_private *dev_priv = dev->dev_private;
  3612. int refclk;
  3613. if (IS_VALLEYVIEW(dev)) {
  3614. refclk = vlv_get_refclk(crtc);
  3615. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3616. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3617. refclk = dev_priv->lvds_ssc_freq * 1000;
  3618. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3619. refclk / 1000);
  3620. } else if (!IS_GEN2(dev)) {
  3621. refclk = 96000;
  3622. } else {
  3623. refclk = 48000;
  3624. }
  3625. return refclk;
  3626. }
  3627. static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
  3628. intel_clock_t *clock)
  3629. {
  3630. /* SDVO TV has fixed PLL values depend on its clock range,
  3631. this mirrors vbios setting. */
  3632. if (adjusted_mode->clock >= 100000
  3633. && adjusted_mode->clock < 140500) {
  3634. clock->p1 = 2;
  3635. clock->p2 = 10;
  3636. clock->n = 3;
  3637. clock->m1 = 16;
  3638. clock->m2 = 8;
  3639. } else if (adjusted_mode->clock >= 140500
  3640. && adjusted_mode->clock <= 200000) {
  3641. clock->p1 = 1;
  3642. clock->p2 = 10;
  3643. clock->n = 6;
  3644. clock->m1 = 12;
  3645. clock->m2 = 8;
  3646. }
  3647. }
  3648. static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
  3649. intel_clock_t *clock,
  3650. intel_clock_t *reduced_clock)
  3651. {
  3652. struct drm_device *dev = crtc->dev;
  3653. struct drm_i915_private *dev_priv = dev->dev_private;
  3654. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3655. int pipe = intel_crtc->pipe;
  3656. u32 fp, fp2 = 0;
  3657. if (IS_PINEVIEW(dev)) {
  3658. fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
  3659. if (reduced_clock)
  3660. fp2 = (1 << reduced_clock->n) << 16 |
  3661. reduced_clock->m1 << 8 | reduced_clock->m2;
  3662. } else {
  3663. fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
  3664. if (reduced_clock)
  3665. fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
  3666. reduced_clock->m2;
  3667. }
  3668. I915_WRITE(FP0(pipe), fp);
  3669. intel_crtc->lowfreq_avail = false;
  3670. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3671. reduced_clock && i915_powersave) {
  3672. I915_WRITE(FP1(pipe), fp2);
  3673. intel_crtc->lowfreq_avail = true;
  3674. } else {
  3675. I915_WRITE(FP1(pipe), fp);
  3676. }
  3677. }
  3678. static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
  3679. struct drm_display_mode *adjusted_mode)
  3680. {
  3681. struct drm_device *dev = crtc->dev;
  3682. struct drm_i915_private *dev_priv = dev->dev_private;
  3683. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3684. int pipe = intel_crtc->pipe;
  3685. u32 temp;
  3686. temp = I915_READ(LVDS);
  3687. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  3688. if (pipe == 1) {
  3689. temp |= LVDS_PIPEB_SELECT;
  3690. } else {
  3691. temp &= ~LVDS_PIPEB_SELECT;
  3692. }
  3693. /* set the corresponsding LVDS_BORDER bit */
  3694. temp |= dev_priv->lvds_border_bits;
  3695. /* Set the B0-B3 data pairs corresponding to whether we're going to
  3696. * set the DPLLs for dual-channel mode or not.
  3697. */
  3698. if (clock->p2 == 7)
  3699. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  3700. else
  3701. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  3702. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  3703. * appropriately here, but we need to look more thoroughly into how
  3704. * panels behave in the two modes.
  3705. */
  3706. /* set the dithering flag on LVDS as needed */
  3707. if (INTEL_INFO(dev)->gen >= 4) {
  3708. if (dev_priv->lvds_dither)
  3709. temp |= LVDS_ENABLE_DITHER;
  3710. else
  3711. temp &= ~LVDS_ENABLE_DITHER;
  3712. }
  3713. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  3714. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  3715. temp |= LVDS_HSYNC_POLARITY;
  3716. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  3717. temp |= LVDS_VSYNC_POLARITY;
  3718. I915_WRITE(LVDS, temp);
  3719. }
  3720. static void vlv_update_pll(struct drm_crtc *crtc,
  3721. struct drm_display_mode *mode,
  3722. struct drm_display_mode *adjusted_mode,
  3723. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3724. int num_connectors)
  3725. {
  3726. struct drm_device *dev = crtc->dev;
  3727. struct drm_i915_private *dev_priv = dev->dev_private;
  3728. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3729. int pipe = intel_crtc->pipe;
  3730. u32 dpll, mdiv, pdiv;
  3731. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3732. bool is_sdvo;
  3733. u32 temp;
  3734. is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
  3735. intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  3736. dpll = DPLL_VGA_MODE_DIS;
  3737. dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
  3738. dpll |= DPLL_REFA_CLK_ENABLE_VLV;
  3739. dpll |= DPLL_INTEGRATED_CLOCK_VLV;
  3740. I915_WRITE(DPLL(pipe), dpll);
  3741. POSTING_READ(DPLL(pipe));
  3742. bestn = clock->n;
  3743. bestm1 = clock->m1;
  3744. bestm2 = clock->m2;
  3745. bestp1 = clock->p1;
  3746. bestp2 = clock->p2;
  3747. /*
  3748. * In Valleyview PLL and program lane counter registers are exposed
  3749. * through DPIO interface
  3750. */
  3751. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3752. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3753. mdiv |= ((bestn << DPIO_N_SHIFT));
  3754. mdiv |= (1 << DPIO_POST_DIV_SHIFT);
  3755. mdiv |= (1 << DPIO_K_SHIFT);
  3756. mdiv |= DPIO_ENABLE_CALIBRATION;
  3757. intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3758. intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
  3759. pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
  3760. (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
  3761. (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
  3762. (5 << DPIO_CLK_BIAS_CTL_SHIFT);
  3763. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
  3764. intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
  3765. dpll |= DPLL_VCO_ENABLE;
  3766. I915_WRITE(DPLL(pipe), dpll);
  3767. POSTING_READ(DPLL(pipe));
  3768. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3769. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3770. intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
  3771. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3772. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3773. I915_WRITE(DPLL(pipe), dpll);
  3774. /* Wait for the clocks to stabilize. */
  3775. POSTING_READ(DPLL(pipe));
  3776. udelay(150);
  3777. temp = 0;
  3778. if (is_sdvo) {
  3779. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  3780. if (temp > 1)
  3781. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3782. else
  3783. temp = 0;
  3784. }
  3785. I915_WRITE(DPLL_MD(pipe), temp);
  3786. POSTING_READ(DPLL_MD(pipe));
  3787. /* Now program lane control registers */
  3788. if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
  3789. || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  3790. {
  3791. temp = 0x1000C4;
  3792. if(pipe == 1)
  3793. temp |= (1 << 21);
  3794. intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
  3795. }
  3796. if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
  3797. {
  3798. temp = 0x1000C4;
  3799. if(pipe == 1)
  3800. temp |= (1 << 21);
  3801. intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
  3802. }
  3803. }
  3804. static void i9xx_update_pll(struct drm_crtc *crtc,
  3805. struct drm_display_mode *mode,
  3806. struct drm_display_mode *adjusted_mode,
  3807. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3808. int num_connectors)
  3809. {
  3810. struct drm_device *dev = crtc->dev;
  3811. struct drm_i915_private *dev_priv = dev->dev_private;
  3812. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3813. int pipe = intel_crtc->pipe;
  3814. u32 dpll;
  3815. bool is_sdvo;
  3816. i9xx_update_pll_dividers(crtc, clock, reduced_clock);
  3817. is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
  3818. intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  3819. dpll = DPLL_VGA_MODE_DIS;
  3820. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3821. dpll |= DPLLB_MODE_LVDS;
  3822. else
  3823. dpll |= DPLLB_MODE_DAC_SERIAL;
  3824. if (is_sdvo) {
  3825. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  3826. if (pixel_multiplier > 1) {
  3827. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3828. dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  3829. }
  3830. dpll |= DPLL_DVO_HIGH_SPEED;
  3831. }
  3832. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3833. dpll |= DPLL_DVO_HIGH_SPEED;
  3834. /* compute bitmask from p1 value */
  3835. if (IS_PINEVIEW(dev))
  3836. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3837. else {
  3838. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3839. if (IS_G4X(dev) && reduced_clock)
  3840. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3841. }
  3842. switch (clock->p2) {
  3843. case 5:
  3844. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3845. break;
  3846. case 7:
  3847. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3848. break;
  3849. case 10:
  3850. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3851. break;
  3852. case 14:
  3853. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3854. break;
  3855. }
  3856. if (INTEL_INFO(dev)->gen >= 4)
  3857. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3858. if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3859. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3860. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3861. /* XXX: just matching BIOS for now */
  3862. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3863. dpll |= 3;
  3864. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3865. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3866. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3867. else
  3868. dpll |= PLL_REF_INPUT_DREFCLK;
  3869. dpll |= DPLL_VCO_ENABLE;
  3870. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3871. POSTING_READ(DPLL(pipe));
  3872. udelay(150);
  3873. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  3874. * This is an exception to the general rule that mode_set doesn't turn
  3875. * things on.
  3876. */
  3877. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3878. intel_update_lvds(crtc, clock, adjusted_mode);
  3879. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3880. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3881. I915_WRITE(DPLL(pipe), dpll);
  3882. /* Wait for the clocks to stabilize. */
  3883. POSTING_READ(DPLL(pipe));
  3884. udelay(150);
  3885. if (INTEL_INFO(dev)->gen >= 4) {
  3886. u32 temp = 0;
  3887. if (is_sdvo) {
  3888. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  3889. if (temp > 1)
  3890. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3891. else
  3892. temp = 0;
  3893. }
  3894. I915_WRITE(DPLL_MD(pipe), temp);
  3895. } else {
  3896. /* The pixel multiplier can only be updated once the
  3897. * DPLL is enabled and the clocks are stable.
  3898. *
  3899. * So write it again.
  3900. */
  3901. I915_WRITE(DPLL(pipe), dpll);
  3902. }
  3903. }
  3904. static void i8xx_update_pll(struct drm_crtc *crtc,
  3905. struct drm_display_mode *adjusted_mode,
  3906. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3907. int num_connectors)
  3908. {
  3909. struct drm_device *dev = crtc->dev;
  3910. struct drm_i915_private *dev_priv = dev->dev_private;
  3911. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3912. int pipe = intel_crtc->pipe;
  3913. u32 dpll;
  3914. i9xx_update_pll_dividers(crtc, clock, reduced_clock);
  3915. dpll = DPLL_VGA_MODE_DIS;
  3916. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3917. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3918. } else {
  3919. if (clock->p1 == 2)
  3920. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3921. else
  3922. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3923. if (clock->p2 == 4)
  3924. dpll |= PLL_P2_DIVIDE_BY_4;
  3925. }
  3926. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3927. /* XXX: just matching BIOS for now */
  3928. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3929. dpll |= 3;
  3930. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3931. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3932. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3933. else
  3934. dpll |= PLL_REF_INPUT_DREFCLK;
  3935. dpll |= DPLL_VCO_ENABLE;
  3936. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3937. POSTING_READ(DPLL(pipe));
  3938. udelay(150);
  3939. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  3940. * This is an exception to the general rule that mode_set doesn't turn
  3941. * things on.
  3942. */
  3943. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3944. intel_update_lvds(crtc, clock, adjusted_mode);
  3945. I915_WRITE(DPLL(pipe), dpll);
  3946. /* Wait for the clocks to stabilize. */
  3947. POSTING_READ(DPLL(pipe));
  3948. udelay(150);
  3949. /* The pixel multiplier can only be updated once the
  3950. * DPLL is enabled and the clocks are stable.
  3951. *
  3952. * So write it again.
  3953. */
  3954. I915_WRITE(DPLL(pipe), dpll);
  3955. }
  3956. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
  3957. struct drm_display_mode *mode,
  3958. struct drm_display_mode *adjusted_mode)
  3959. {
  3960. struct drm_device *dev = intel_crtc->base.dev;
  3961. struct drm_i915_private *dev_priv = dev->dev_private;
  3962. enum pipe pipe = intel_crtc->pipe;
  3963. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  3964. uint32_t vsyncshift;
  3965. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3966. /* the chip adds 2 halflines automatically */
  3967. adjusted_mode->crtc_vtotal -= 1;
  3968. adjusted_mode->crtc_vblank_end -= 1;
  3969. vsyncshift = adjusted_mode->crtc_hsync_start
  3970. - adjusted_mode->crtc_htotal / 2;
  3971. } else {
  3972. vsyncshift = 0;
  3973. }
  3974. if (INTEL_INFO(dev)->gen > 3)
  3975. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3976. I915_WRITE(HTOTAL(cpu_transcoder),
  3977. (adjusted_mode->crtc_hdisplay - 1) |
  3978. ((adjusted_mode->crtc_htotal - 1) << 16));
  3979. I915_WRITE(HBLANK(cpu_transcoder),
  3980. (adjusted_mode->crtc_hblank_start - 1) |
  3981. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3982. I915_WRITE(HSYNC(cpu_transcoder),
  3983. (adjusted_mode->crtc_hsync_start - 1) |
  3984. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3985. I915_WRITE(VTOTAL(cpu_transcoder),
  3986. (adjusted_mode->crtc_vdisplay - 1) |
  3987. ((adjusted_mode->crtc_vtotal - 1) << 16));
  3988. I915_WRITE(VBLANK(cpu_transcoder),
  3989. (adjusted_mode->crtc_vblank_start - 1) |
  3990. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  3991. I915_WRITE(VSYNC(cpu_transcoder),
  3992. (adjusted_mode->crtc_vsync_start - 1) |
  3993. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3994. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3995. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3996. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3997. * bits. */
  3998. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3999. (pipe == PIPE_B || pipe == PIPE_C))
  4000. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  4001. /* pipesrc controls the size that is scaled from, which should
  4002. * always be the user's requested size.
  4003. */
  4004. I915_WRITE(PIPESRC(pipe),
  4005. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  4006. }
  4007. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4008. struct drm_display_mode *mode,
  4009. struct drm_display_mode *adjusted_mode,
  4010. int x, int y,
  4011. struct drm_framebuffer *fb)
  4012. {
  4013. struct drm_device *dev = crtc->dev;
  4014. struct drm_i915_private *dev_priv = dev->dev_private;
  4015. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4016. int pipe = intel_crtc->pipe;
  4017. int plane = intel_crtc->plane;
  4018. int refclk, num_connectors = 0;
  4019. intel_clock_t clock, reduced_clock;
  4020. u32 dspcntr, pipeconf;
  4021. bool ok, has_reduced_clock = false, is_sdvo = false;
  4022. bool is_lvds = false, is_tv = false, is_dp = false;
  4023. struct intel_encoder *encoder;
  4024. const intel_limit_t *limit;
  4025. int ret;
  4026. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4027. switch (encoder->type) {
  4028. case INTEL_OUTPUT_LVDS:
  4029. is_lvds = true;
  4030. break;
  4031. case INTEL_OUTPUT_SDVO:
  4032. case INTEL_OUTPUT_HDMI:
  4033. is_sdvo = true;
  4034. if (encoder->needs_tv_clock)
  4035. is_tv = true;
  4036. break;
  4037. case INTEL_OUTPUT_TVOUT:
  4038. is_tv = true;
  4039. break;
  4040. case INTEL_OUTPUT_DISPLAYPORT:
  4041. is_dp = true;
  4042. break;
  4043. }
  4044. num_connectors++;
  4045. }
  4046. refclk = i9xx_get_refclk(crtc, num_connectors);
  4047. /*
  4048. * Returns a set of divisors for the desired target clock with the given
  4049. * refclk, or FALSE. The returned values represent the clock equation:
  4050. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4051. */
  4052. limit = intel_limit(crtc, refclk);
  4053. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4054. &clock);
  4055. if (!ok) {
  4056. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4057. return -EINVAL;
  4058. }
  4059. /* Ensure that the cursor is valid for the new mode before changing... */
  4060. intel_crtc_update_cursor(crtc, true);
  4061. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4062. /*
  4063. * Ensure we match the reduced clock's P to the target clock.
  4064. * If the clocks don't match, we can't switch the display clock
  4065. * by using the FP0/FP1. In such case we will disable the LVDS
  4066. * downclock feature.
  4067. */
  4068. has_reduced_clock = limit->find_pll(limit, crtc,
  4069. dev_priv->lvds_downclock,
  4070. refclk,
  4071. &clock,
  4072. &reduced_clock);
  4073. }
  4074. if (is_sdvo && is_tv)
  4075. i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
  4076. if (IS_GEN2(dev))
  4077. i8xx_update_pll(crtc, adjusted_mode, &clock,
  4078. has_reduced_clock ? &reduced_clock : NULL,
  4079. num_connectors);
  4080. else if (IS_VALLEYVIEW(dev))
  4081. vlv_update_pll(crtc, mode, adjusted_mode, &clock,
  4082. has_reduced_clock ? &reduced_clock : NULL,
  4083. num_connectors);
  4084. else
  4085. i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
  4086. has_reduced_clock ? &reduced_clock : NULL,
  4087. num_connectors);
  4088. /* setup pipeconf */
  4089. pipeconf = I915_READ(PIPECONF(pipe));
  4090. /* Set up the display plane register */
  4091. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4092. if (pipe == 0)
  4093. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4094. else
  4095. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4096. if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4097. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4098. * core speed.
  4099. *
  4100. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4101. * pipe == 0 check?
  4102. */
  4103. if (mode->clock >
  4104. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4105. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4106. else
  4107. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4108. }
  4109. /* default to 8bpc */
  4110. pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
  4111. if (is_dp) {
  4112. if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4113. pipeconf |= PIPECONF_BPP_6 |
  4114. PIPECONF_DITHER_EN |
  4115. PIPECONF_DITHER_TYPE_SP;
  4116. }
  4117. }
  4118. if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  4119. if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  4120. pipeconf |= PIPECONF_BPP_6 |
  4121. PIPECONF_ENABLE |
  4122. I965_PIPECONF_ACTIVE;
  4123. }
  4124. }
  4125. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  4126. drm_mode_debug_printmodeline(mode);
  4127. if (HAS_PIPE_CXSR(dev)) {
  4128. if (intel_crtc->lowfreq_avail) {
  4129. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4130. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4131. } else {
  4132. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4133. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4134. }
  4135. }
  4136. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4137. if (!IS_GEN2(dev) &&
  4138. adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4139. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4140. else
  4141. pipeconf |= PIPECONF_PROGRESSIVE;
  4142. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4143. /* pipesrc and dspsize control the size that is scaled from,
  4144. * which should always be the user's requested size.
  4145. */
  4146. I915_WRITE(DSPSIZE(plane),
  4147. ((mode->vdisplay - 1) << 16) |
  4148. (mode->hdisplay - 1));
  4149. I915_WRITE(DSPPOS(plane), 0);
  4150. I915_WRITE(PIPECONF(pipe), pipeconf);
  4151. POSTING_READ(PIPECONF(pipe));
  4152. intel_enable_pipe(dev_priv, pipe, false);
  4153. intel_wait_for_vblank(dev, pipe);
  4154. I915_WRITE(DSPCNTR(plane), dspcntr);
  4155. POSTING_READ(DSPCNTR(plane));
  4156. ret = intel_pipe_set_base(crtc, x, y, fb);
  4157. intel_update_watermarks(dev);
  4158. return ret;
  4159. }
  4160. /*
  4161. * Initialize reference clocks when the driver loads
  4162. */
  4163. void ironlake_init_pch_refclk(struct drm_device *dev)
  4164. {
  4165. struct drm_i915_private *dev_priv = dev->dev_private;
  4166. struct drm_mode_config *mode_config = &dev->mode_config;
  4167. struct intel_encoder *encoder;
  4168. u32 temp;
  4169. bool has_lvds = false;
  4170. bool has_cpu_edp = false;
  4171. bool has_pch_edp = false;
  4172. bool has_panel = false;
  4173. bool has_ck505 = false;
  4174. bool can_ssc = false;
  4175. /* We need to take the global config into account */
  4176. list_for_each_entry(encoder, &mode_config->encoder_list,
  4177. base.head) {
  4178. switch (encoder->type) {
  4179. case INTEL_OUTPUT_LVDS:
  4180. has_panel = true;
  4181. has_lvds = true;
  4182. break;
  4183. case INTEL_OUTPUT_EDP:
  4184. has_panel = true;
  4185. if (intel_encoder_is_pch_edp(&encoder->base))
  4186. has_pch_edp = true;
  4187. else
  4188. has_cpu_edp = true;
  4189. break;
  4190. }
  4191. }
  4192. if (HAS_PCH_IBX(dev)) {
  4193. has_ck505 = dev_priv->display_clock_mode;
  4194. can_ssc = has_ck505;
  4195. } else {
  4196. has_ck505 = false;
  4197. can_ssc = true;
  4198. }
  4199. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  4200. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  4201. has_ck505);
  4202. /* Ironlake: try to setup display ref clock before DPLL
  4203. * enabling. This is only under driver's control after
  4204. * PCH B stepping, previous chipset stepping should be
  4205. * ignoring this setting.
  4206. */
  4207. temp = I915_READ(PCH_DREF_CONTROL);
  4208. /* Always enable nonspread source */
  4209. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  4210. if (has_ck505)
  4211. temp |= DREF_NONSPREAD_CK505_ENABLE;
  4212. else
  4213. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  4214. if (has_panel) {
  4215. temp &= ~DREF_SSC_SOURCE_MASK;
  4216. temp |= DREF_SSC_SOURCE_ENABLE;
  4217. /* SSC must be turned on before enabling the CPU output */
  4218. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4219. DRM_DEBUG_KMS("Using SSC on panel\n");
  4220. temp |= DREF_SSC1_ENABLE;
  4221. } else
  4222. temp &= ~DREF_SSC1_ENABLE;
  4223. /* Get SSC going before enabling the outputs */
  4224. I915_WRITE(PCH_DREF_CONTROL, temp);
  4225. POSTING_READ(PCH_DREF_CONTROL);
  4226. udelay(200);
  4227. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4228. /* Enable CPU source on CPU attached eDP */
  4229. if (has_cpu_edp) {
  4230. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4231. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4232. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4233. }
  4234. else
  4235. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4236. } else
  4237. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4238. I915_WRITE(PCH_DREF_CONTROL, temp);
  4239. POSTING_READ(PCH_DREF_CONTROL);
  4240. udelay(200);
  4241. } else {
  4242. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4243. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4244. /* Turn off CPU output */
  4245. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4246. I915_WRITE(PCH_DREF_CONTROL, temp);
  4247. POSTING_READ(PCH_DREF_CONTROL);
  4248. udelay(200);
  4249. /* Turn off the SSC source */
  4250. temp &= ~DREF_SSC_SOURCE_MASK;
  4251. temp |= DREF_SSC_SOURCE_DISABLE;
  4252. /* Turn off SSC1 */
  4253. temp &= ~ DREF_SSC1_ENABLE;
  4254. I915_WRITE(PCH_DREF_CONTROL, temp);
  4255. POSTING_READ(PCH_DREF_CONTROL);
  4256. udelay(200);
  4257. }
  4258. }
  4259. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4260. {
  4261. struct drm_device *dev = crtc->dev;
  4262. struct drm_i915_private *dev_priv = dev->dev_private;
  4263. struct intel_encoder *encoder;
  4264. struct intel_encoder *edp_encoder = NULL;
  4265. int num_connectors = 0;
  4266. bool is_lvds = false;
  4267. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4268. switch (encoder->type) {
  4269. case INTEL_OUTPUT_LVDS:
  4270. is_lvds = true;
  4271. break;
  4272. case INTEL_OUTPUT_EDP:
  4273. edp_encoder = encoder;
  4274. break;
  4275. }
  4276. num_connectors++;
  4277. }
  4278. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4279. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4280. dev_priv->lvds_ssc_freq);
  4281. return dev_priv->lvds_ssc_freq * 1000;
  4282. }
  4283. return 120000;
  4284. }
  4285. static void ironlake_set_pipeconf(struct drm_crtc *crtc,
  4286. struct drm_display_mode *adjusted_mode,
  4287. bool dither)
  4288. {
  4289. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4290. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4291. int pipe = intel_crtc->pipe;
  4292. uint32_t val;
  4293. val = I915_READ(PIPECONF(pipe));
  4294. val &= ~PIPE_BPC_MASK;
  4295. switch (intel_crtc->bpp) {
  4296. case 18:
  4297. val |= PIPE_6BPC;
  4298. break;
  4299. case 24:
  4300. val |= PIPE_8BPC;
  4301. break;
  4302. case 30:
  4303. val |= PIPE_10BPC;
  4304. break;
  4305. case 36:
  4306. val |= PIPE_12BPC;
  4307. break;
  4308. default:
  4309. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4310. BUG();
  4311. }
  4312. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4313. if (dither)
  4314. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4315. val &= ~PIPECONF_INTERLACE_MASK;
  4316. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4317. val |= PIPECONF_INTERLACED_ILK;
  4318. else
  4319. val |= PIPECONF_PROGRESSIVE;
  4320. I915_WRITE(PIPECONF(pipe), val);
  4321. POSTING_READ(PIPECONF(pipe));
  4322. }
  4323. static void haswell_set_pipeconf(struct drm_crtc *crtc,
  4324. struct drm_display_mode *adjusted_mode,
  4325. bool dither)
  4326. {
  4327. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4328. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4329. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  4330. uint32_t val;
  4331. val = I915_READ(PIPECONF(cpu_transcoder));
  4332. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4333. if (dither)
  4334. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4335. val &= ~PIPECONF_INTERLACE_MASK_HSW;
  4336. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
  4337. val |= PIPECONF_INTERLACED_ILK;
  4338. else
  4339. val |= PIPECONF_PROGRESSIVE;
  4340. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4341. POSTING_READ(PIPECONF(cpu_transcoder));
  4342. }
  4343. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4344. struct drm_display_mode *adjusted_mode,
  4345. intel_clock_t *clock,
  4346. bool *has_reduced_clock,
  4347. intel_clock_t *reduced_clock)
  4348. {
  4349. struct drm_device *dev = crtc->dev;
  4350. struct drm_i915_private *dev_priv = dev->dev_private;
  4351. struct intel_encoder *intel_encoder;
  4352. int refclk;
  4353. const intel_limit_t *limit;
  4354. bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
  4355. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4356. switch (intel_encoder->type) {
  4357. case INTEL_OUTPUT_LVDS:
  4358. is_lvds = true;
  4359. break;
  4360. case INTEL_OUTPUT_SDVO:
  4361. case INTEL_OUTPUT_HDMI:
  4362. is_sdvo = true;
  4363. if (intel_encoder->needs_tv_clock)
  4364. is_tv = true;
  4365. break;
  4366. case INTEL_OUTPUT_TVOUT:
  4367. is_tv = true;
  4368. break;
  4369. }
  4370. }
  4371. refclk = ironlake_get_refclk(crtc);
  4372. /*
  4373. * Returns a set of divisors for the desired target clock with the given
  4374. * refclk, or FALSE. The returned values represent the clock equation:
  4375. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4376. */
  4377. limit = intel_limit(crtc, refclk);
  4378. ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4379. clock);
  4380. if (!ret)
  4381. return false;
  4382. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4383. /*
  4384. * Ensure we match the reduced clock's P to the target clock.
  4385. * If the clocks don't match, we can't switch the display clock
  4386. * by using the FP0/FP1. In such case we will disable the LVDS
  4387. * downclock feature.
  4388. */
  4389. *has_reduced_clock = limit->find_pll(limit, crtc,
  4390. dev_priv->lvds_downclock,
  4391. refclk,
  4392. clock,
  4393. reduced_clock);
  4394. }
  4395. if (is_sdvo && is_tv)
  4396. i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
  4397. return true;
  4398. }
  4399. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4400. {
  4401. struct drm_i915_private *dev_priv = dev->dev_private;
  4402. uint32_t temp;
  4403. temp = I915_READ(SOUTH_CHICKEN1);
  4404. if (temp & FDI_BC_BIFURCATION_SELECT)
  4405. return;
  4406. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4407. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4408. temp |= FDI_BC_BIFURCATION_SELECT;
  4409. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4410. I915_WRITE(SOUTH_CHICKEN1, temp);
  4411. POSTING_READ(SOUTH_CHICKEN1);
  4412. }
  4413. static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
  4414. {
  4415. struct drm_device *dev = intel_crtc->base.dev;
  4416. struct drm_i915_private *dev_priv = dev->dev_private;
  4417. struct intel_crtc *pipe_B_crtc =
  4418. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  4419. DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
  4420. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4421. if (intel_crtc->fdi_lanes > 4) {
  4422. DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
  4423. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4424. /* Clamp lanes to avoid programming the hw with bogus values. */
  4425. intel_crtc->fdi_lanes = 4;
  4426. return false;
  4427. }
  4428. if (dev_priv->num_pipe == 2)
  4429. return true;
  4430. switch (intel_crtc->pipe) {
  4431. case PIPE_A:
  4432. return true;
  4433. case PIPE_B:
  4434. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  4435. intel_crtc->fdi_lanes > 2) {
  4436. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
  4437. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4438. /* Clamp lanes to avoid programming the hw with bogus values. */
  4439. intel_crtc->fdi_lanes = 2;
  4440. return false;
  4441. }
  4442. if (intel_crtc->fdi_lanes > 2)
  4443. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4444. else
  4445. cpt_enable_fdi_bc_bifurcation(dev);
  4446. return true;
  4447. case PIPE_C:
  4448. if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
  4449. if (intel_crtc->fdi_lanes > 2) {
  4450. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
  4451. intel_crtc->pipe, intel_crtc->fdi_lanes);
  4452. /* Clamp lanes to avoid programming the hw with bogus values. */
  4453. intel_crtc->fdi_lanes = 2;
  4454. return false;
  4455. }
  4456. } else {
  4457. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  4458. return false;
  4459. }
  4460. cpt_enable_fdi_bc_bifurcation(dev);
  4461. return true;
  4462. default:
  4463. BUG();
  4464. }
  4465. }
  4466. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4467. {
  4468. /*
  4469. * Account for spread spectrum to avoid
  4470. * oversubscribing the link. Max center spread
  4471. * is 2.5%; use 5% for safety's sake.
  4472. */
  4473. u32 bps = target_clock * bpp * 21 / 20;
  4474. return bps / (link_bw * 8) + 1;
  4475. }
  4476. static void ironlake_set_m_n(struct drm_crtc *crtc,
  4477. struct drm_display_mode *mode,
  4478. struct drm_display_mode *adjusted_mode)
  4479. {
  4480. struct drm_device *dev = crtc->dev;
  4481. struct drm_i915_private *dev_priv = dev->dev_private;
  4482. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4483. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  4484. struct intel_encoder *intel_encoder, *edp_encoder = NULL;
  4485. struct fdi_m_n m_n = {0};
  4486. int target_clock, pixel_multiplier, lane, link_bw;
  4487. bool is_dp = false, is_cpu_edp = false;
  4488. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4489. switch (intel_encoder->type) {
  4490. case INTEL_OUTPUT_DISPLAYPORT:
  4491. is_dp = true;
  4492. break;
  4493. case INTEL_OUTPUT_EDP:
  4494. is_dp = true;
  4495. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  4496. is_cpu_edp = true;
  4497. edp_encoder = intel_encoder;
  4498. break;
  4499. }
  4500. }
  4501. /* FDI link */
  4502. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4503. lane = 0;
  4504. /* CPU eDP doesn't require FDI link, so just set DP M/N
  4505. according to current link config */
  4506. if (is_cpu_edp) {
  4507. intel_edp_link_config(edp_encoder, &lane, &link_bw);
  4508. } else {
  4509. /* FDI is a binary signal running at ~2.7GHz, encoding
  4510. * each output octet as 10 bits. The actual frequency
  4511. * is stored as a divider into a 100MHz clock, and the
  4512. * mode pixel clock is stored in units of 1KHz.
  4513. * Hence the bw of each lane in terms of the mode signal
  4514. * is:
  4515. */
  4516. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  4517. }
  4518. /* [e]DP over FDI requires target mode clock instead of link clock. */
  4519. if (edp_encoder)
  4520. target_clock = intel_edp_target_clock(edp_encoder, mode);
  4521. else if (is_dp)
  4522. target_clock = mode->clock;
  4523. else
  4524. target_clock = adjusted_mode->clock;
  4525. if (!lane)
  4526. lane = ironlake_get_lanes_required(target_clock, link_bw,
  4527. intel_crtc->bpp);
  4528. intel_crtc->fdi_lanes = lane;
  4529. if (pixel_multiplier > 1)
  4530. link_bw *= pixel_multiplier;
  4531. ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
  4532. &m_n);
  4533. I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
  4534. I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
  4535. I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
  4536. I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
  4537. }
  4538. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4539. struct drm_display_mode *adjusted_mode,
  4540. intel_clock_t *clock, u32 fp)
  4541. {
  4542. struct drm_crtc *crtc = &intel_crtc->base;
  4543. struct drm_device *dev = crtc->dev;
  4544. struct drm_i915_private *dev_priv = dev->dev_private;
  4545. struct intel_encoder *intel_encoder;
  4546. uint32_t dpll;
  4547. int factor, pixel_multiplier, num_connectors = 0;
  4548. bool is_lvds = false, is_sdvo = false, is_tv = false;
  4549. bool is_dp = false, is_cpu_edp = false;
  4550. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4551. switch (intel_encoder->type) {
  4552. case INTEL_OUTPUT_LVDS:
  4553. is_lvds = true;
  4554. break;
  4555. case INTEL_OUTPUT_SDVO:
  4556. case INTEL_OUTPUT_HDMI:
  4557. is_sdvo = true;
  4558. if (intel_encoder->needs_tv_clock)
  4559. is_tv = true;
  4560. break;
  4561. case INTEL_OUTPUT_TVOUT:
  4562. is_tv = true;
  4563. break;
  4564. case INTEL_OUTPUT_DISPLAYPORT:
  4565. is_dp = true;
  4566. break;
  4567. case INTEL_OUTPUT_EDP:
  4568. is_dp = true;
  4569. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  4570. is_cpu_edp = true;
  4571. break;
  4572. }
  4573. num_connectors++;
  4574. }
  4575. /* Enable autotuning of the PLL clock (if permissible) */
  4576. factor = 21;
  4577. if (is_lvds) {
  4578. if ((intel_panel_use_ssc(dev_priv) &&
  4579. dev_priv->lvds_ssc_freq == 100) ||
  4580. (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
  4581. factor = 25;
  4582. } else if (is_sdvo && is_tv)
  4583. factor = 20;
  4584. if (clock->m < factor * clock->n)
  4585. fp |= FP_CB_TUNE;
  4586. dpll = 0;
  4587. if (is_lvds)
  4588. dpll |= DPLLB_MODE_LVDS;
  4589. else
  4590. dpll |= DPLLB_MODE_DAC_SERIAL;
  4591. if (is_sdvo) {
  4592. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4593. if (pixel_multiplier > 1) {
  4594. dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4595. }
  4596. dpll |= DPLL_DVO_HIGH_SPEED;
  4597. }
  4598. if (is_dp && !is_cpu_edp)
  4599. dpll |= DPLL_DVO_HIGH_SPEED;
  4600. /* compute bitmask from p1 value */
  4601. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4602. /* also FPA1 */
  4603. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4604. switch (clock->p2) {
  4605. case 5:
  4606. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4607. break;
  4608. case 7:
  4609. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4610. break;
  4611. case 10:
  4612. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4613. break;
  4614. case 14:
  4615. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4616. break;
  4617. }
  4618. if (is_sdvo && is_tv)
  4619. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4620. else if (is_tv)
  4621. /* XXX: just matching BIOS for now */
  4622. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4623. dpll |= 3;
  4624. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4625. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4626. else
  4627. dpll |= PLL_REF_INPUT_DREFCLK;
  4628. return dpll;
  4629. }
  4630. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4631. struct drm_display_mode *mode,
  4632. struct drm_display_mode *adjusted_mode,
  4633. int x, int y,
  4634. struct drm_framebuffer *fb)
  4635. {
  4636. struct drm_device *dev = crtc->dev;
  4637. struct drm_i915_private *dev_priv = dev->dev_private;
  4638. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4639. int pipe = intel_crtc->pipe;
  4640. int plane = intel_crtc->plane;
  4641. int num_connectors = 0;
  4642. intel_clock_t clock, reduced_clock;
  4643. u32 dpll, fp = 0, fp2 = 0;
  4644. bool ok, has_reduced_clock = false;
  4645. bool is_lvds = false, is_dp = false, is_cpu_edp = false;
  4646. struct intel_encoder *encoder;
  4647. u32 temp;
  4648. int ret;
  4649. bool dither, fdi_config_ok;
  4650. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4651. switch (encoder->type) {
  4652. case INTEL_OUTPUT_LVDS:
  4653. is_lvds = true;
  4654. break;
  4655. case INTEL_OUTPUT_DISPLAYPORT:
  4656. is_dp = true;
  4657. break;
  4658. case INTEL_OUTPUT_EDP:
  4659. is_dp = true;
  4660. if (!intel_encoder_is_pch_edp(&encoder->base))
  4661. is_cpu_edp = true;
  4662. break;
  4663. }
  4664. num_connectors++;
  4665. }
  4666. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4667. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4668. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4669. &has_reduced_clock, &reduced_clock);
  4670. if (!ok) {
  4671. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4672. return -EINVAL;
  4673. }
  4674. /* Ensure that the cursor is valid for the new mode before changing... */
  4675. intel_crtc_update_cursor(crtc, true);
  4676. /* determine panel color depth */
  4677. dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
  4678. adjusted_mode);
  4679. if (is_lvds && dev_priv->lvds_dither)
  4680. dither = true;
  4681. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4682. if (has_reduced_clock)
  4683. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4684. reduced_clock.m2;
  4685. dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
  4686. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  4687. drm_mode_debug_printmodeline(mode);
  4688. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4689. if (!is_cpu_edp) {
  4690. struct intel_pch_pll *pll;
  4691. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4692. if (pll == NULL) {
  4693. DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
  4694. pipe);
  4695. return -EINVAL;
  4696. }
  4697. } else
  4698. intel_put_pch_pll(intel_crtc);
  4699. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4700. * This is an exception to the general rule that mode_set doesn't turn
  4701. * things on.
  4702. */
  4703. if (is_lvds) {
  4704. temp = I915_READ(PCH_LVDS);
  4705. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4706. if (HAS_PCH_CPT(dev)) {
  4707. temp &= ~PORT_TRANS_SEL_MASK;
  4708. temp |= PORT_TRANS_SEL_CPT(pipe);
  4709. } else {
  4710. if (pipe == 1)
  4711. temp |= LVDS_PIPEB_SELECT;
  4712. else
  4713. temp &= ~LVDS_PIPEB_SELECT;
  4714. }
  4715. /* set the corresponsding LVDS_BORDER bit */
  4716. temp |= dev_priv->lvds_border_bits;
  4717. /* Set the B0-B3 data pairs corresponding to whether we're going to
  4718. * set the DPLLs for dual-channel mode or not.
  4719. */
  4720. if (clock.p2 == 7)
  4721. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4722. else
  4723. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  4724. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  4725. * appropriately here, but we need to look more thoroughly into how
  4726. * panels behave in the two modes.
  4727. */
  4728. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4729. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4730. temp |= LVDS_HSYNC_POLARITY;
  4731. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4732. temp |= LVDS_VSYNC_POLARITY;
  4733. I915_WRITE(PCH_LVDS, temp);
  4734. }
  4735. if (is_dp && !is_cpu_edp) {
  4736. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4737. } else {
  4738. /* For non-DP output, clear any trans DP clock recovery setting.*/
  4739. I915_WRITE(TRANSDATA_M1(pipe), 0);
  4740. I915_WRITE(TRANSDATA_N1(pipe), 0);
  4741. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  4742. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  4743. }
  4744. if (intel_crtc->pch_pll) {
  4745. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4746. /* Wait for the clocks to stabilize. */
  4747. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4748. udelay(150);
  4749. /* The pixel multiplier can only be updated once the
  4750. * DPLL is enabled and the clocks are stable.
  4751. *
  4752. * So write it again.
  4753. */
  4754. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4755. }
  4756. intel_crtc->lowfreq_avail = false;
  4757. if (intel_crtc->pch_pll) {
  4758. if (is_lvds && has_reduced_clock && i915_powersave) {
  4759. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4760. intel_crtc->lowfreq_avail = true;
  4761. } else {
  4762. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4763. }
  4764. }
  4765. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4766. /* Note, this also computes intel_crtc->fdi_lanes which is used below in
  4767. * ironlake_check_fdi_lanes. */
  4768. ironlake_set_m_n(crtc, mode, adjusted_mode);
  4769. fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
  4770. if (is_cpu_edp)
  4771. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  4772. ironlake_set_pipeconf(crtc, adjusted_mode, dither);
  4773. intel_wait_for_vblank(dev, pipe);
  4774. /* Set up the display plane register */
  4775. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4776. POSTING_READ(DSPCNTR(plane));
  4777. ret = intel_pipe_set_base(crtc, x, y, fb);
  4778. intel_update_watermarks(dev);
  4779. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4780. return fdi_config_ok ? ret : -EINVAL;
  4781. }
  4782. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4783. struct drm_display_mode *mode,
  4784. struct drm_display_mode *adjusted_mode,
  4785. int x, int y,
  4786. struct drm_framebuffer *fb)
  4787. {
  4788. struct drm_device *dev = crtc->dev;
  4789. struct drm_i915_private *dev_priv = dev->dev_private;
  4790. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4791. int pipe = intel_crtc->pipe;
  4792. int plane = intel_crtc->plane;
  4793. int num_connectors = 0;
  4794. intel_clock_t clock, reduced_clock;
  4795. u32 dpll = 0, fp = 0, fp2 = 0;
  4796. bool ok, has_reduced_clock = false;
  4797. bool is_lvds = false, is_dp = false, is_cpu_edp = false;
  4798. struct intel_encoder *encoder;
  4799. u32 temp;
  4800. int ret;
  4801. bool dither;
  4802. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4803. switch (encoder->type) {
  4804. case INTEL_OUTPUT_LVDS:
  4805. is_lvds = true;
  4806. break;
  4807. case INTEL_OUTPUT_DISPLAYPORT:
  4808. is_dp = true;
  4809. break;
  4810. case INTEL_OUTPUT_EDP:
  4811. is_dp = true;
  4812. if (!intel_encoder_is_pch_edp(&encoder->base))
  4813. is_cpu_edp = true;
  4814. break;
  4815. }
  4816. num_connectors++;
  4817. }
  4818. if (is_cpu_edp)
  4819. intel_crtc->cpu_transcoder = TRANSCODER_EDP;
  4820. else
  4821. intel_crtc->cpu_transcoder = pipe;
  4822. /* We are not sure yet this won't happen. */
  4823. WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
  4824. INTEL_PCH_TYPE(dev));
  4825. WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
  4826. num_connectors, pipe_name(pipe));
  4827. WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
  4828. (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
  4829. WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
  4830. if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
  4831. return -EINVAL;
  4832. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4833. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4834. &has_reduced_clock,
  4835. &reduced_clock);
  4836. if (!ok) {
  4837. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4838. return -EINVAL;
  4839. }
  4840. }
  4841. /* Ensure that the cursor is valid for the new mode before changing... */
  4842. intel_crtc_update_cursor(crtc, true);
  4843. /* determine panel color depth */
  4844. dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
  4845. adjusted_mode);
  4846. if (is_lvds && dev_priv->lvds_dither)
  4847. dither = true;
  4848. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  4849. drm_mode_debug_printmodeline(mode);
  4850. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4851. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4852. if (has_reduced_clock)
  4853. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4854. reduced_clock.m2;
  4855. dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
  4856. fp);
  4857. /* CPU eDP is the only output that doesn't need a PCH PLL of its
  4858. * own on pre-Haswell/LPT generation */
  4859. if (!is_cpu_edp) {
  4860. struct intel_pch_pll *pll;
  4861. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4862. if (pll == NULL) {
  4863. DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
  4864. pipe);
  4865. return -EINVAL;
  4866. }
  4867. } else
  4868. intel_put_pch_pll(intel_crtc);
  4869. /* The LVDS pin pair needs to be on before the DPLLs are
  4870. * enabled. This is an exception to the general rule that
  4871. * mode_set doesn't turn things on.
  4872. */
  4873. if (is_lvds) {
  4874. temp = I915_READ(PCH_LVDS);
  4875. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4876. if (HAS_PCH_CPT(dev)) {
  4877. temp &= ~PORT_TRANS_SEL_MASK;
  4878. temp |= PORT_TRANS_SEL_CPT(pipe);
  4879. } else {
  4880. if (pipe == 1)
  4881. temp |= LVDS_PIPEB_SELECT;
  4882. else
  4883. temp &= ~LVDS_PIPEB_SELECT;
  4884. }
  4885. /* set the corresponsding LVDS_BORDER bit */
  4886. temp |= dev_priv->lvds_border_bits;
  4887. /* Set the B0-B3 data pairs corresponding to whether
  4888. * we're going to set the DPLLs for dual-channel mode or
  4889. * not.
  4890. */
  4891. if (clock.p2 == 7)
  4892. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4893. else
  4894. temp &= ~(LVDS_B0B3_POWER_UP |
  4895. LVDS_CLKB_POWER_UP);
  4896. /* It would be nice to set 24 vs 18-bit mode
  4897. * (LVDS_A3_POWER_UP) appropriately here, but we need to
  4898. * look more thoroughly into how panels behave in the
  4899. * two modes.
  4900. */
  4901. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4902. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4903. temp |= LVDS_HSYNC_POLARITY;
  4904. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4905. temp |= LVDS_VSYNC_POLARITY;
  4906. I915_WRITE(PCH_LVDS, temp);
  4907. }
  4908. }
  4909. if (is_dp && !is_cpu_edp) {
  4910. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4911. } else {
  4912. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4913. /* For non-DP output, clear any trans DP clock recovery
  4914. * setting.*/
  4915. I915_WRITE(TRANSDATA_M1(pipe), 0);
  4916. I915_WRITE(TRANSDATA_N1(pipe), 0);
  4917. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  4918. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  4919. }
  4920. }
  4921. intel_crtc->lowfreq_avail = false;
  4922. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  4923. if (intel_crtc->pch_pll) {
  4924. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4925. /* Wait for the clocks to stabilize. */
  4926. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4927. udelay(150);
  4928. /* The pixel multiplier can only be updated once the
  4929. * DPLL is enabled and the clocks are stable.
  4930. *
  4931. * So write it again.
  4932. */
  4933. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4934. }
  4935. if (intel_crtc->pch_pll) {
  4936. if (is_lvds && has_reduced_clock && i915_powersave) {
  4937. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4938. intel_crtc->lowfreq_avail = true;
  4939. } else {
  4940. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4941. }
  4942. }
  4943. }
  4944. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4945. if (!is_dp || is_cpu_edp)
  4946. ironlake_set_m_n(crtc, mode, adjusted_mode);
  4947. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4948. if (is_cpu_edp)
  4949. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  4950. haswell_set_pipeconf(crtc, adjusted_mode, dither);
  4951. /* Set up the display plane register */
  4952. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4953. POSTING_READ(DSPCNTR(plane));
  4954. ret = intel_pipe_set_base(crtc, x, y, fb);
  4955. intel_update_watermarks(dev);
  4956. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4957. return ret;
  4958. }
  4959. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  4960. struct drm_display_mode *mode,
  4961. struct drm_display_mode *adjusted_mode,
  4962. int x, int y,
  4963. struct drm_framebuffer *fb)
  4964. {
  4965. struct drm_device *dev = crtc->dev;
  4966. struct drm_i915_private *dev_priv = dev->dev_private;
  4967. struct drm_encoder_helper_funcs *encoder_funcs;
  4968. struct intel_encoder *encoder;
  4969. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4970. int pipe = intel_crtc->pipe;
  4971. int ret;
  4972. drm_vblank_pre_modeset(dev, pipe);
  4973. ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
  4974. x, y, fb);
  4975. drm_vblank_post_modeset(dev, pipe);
  4976. if (ret != 0)
  4977. return ret;
  4978. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4979. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  4980. encoder->base.base.id,
  4981. drm_get_encoder_name(&encoder->base),
  4982. mode->base.id, mode->name);
  4983. encoder_funcs = encoder->base.helper_private;
  4984. encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
  4985. }
  4986. return 0;
  4987. }
  4988. static bool intel_eld_uptodate(struct drm_connector *connector,
  4989. int reg_eldv, uint32_t bits_eldv,
  4990. int reg_elda, uint32_t bits_elda,
  4991. int reg_edid)
  4992. {
  4993. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4994. uint8_t *eld = connector->eld;
  4995. uint32_t i;
  4996. i = I915_READ(reg_eldv);
  4997. i &= bits_eldv;
  4998. if (!eld[0])
  4999. return !i;
  5000. if (!i)
  5001. return false;
  5002. i = I915_READ(reg_elda);
  5003. i &= ~bits_elda;
  5004. I915_WRITE(reg_elda, i);
  5005. for (i = 0; i < eld[2]; i++)
  5006. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5007. return false;
  5008. return true;
  5009. }
  5010. static void g4x_write_eld(struct drm_connector *connector,
  5011. struct drm_crtc *crtc)
  5012. {
  5013. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5014. uint8_t *eld = connector->eld;
  5015. uint32_t eldv;
  5016. uint32_t len;
  5017. uint32_t i;
  5018. i = I915_READ(G4X_AUD_VID_DID);
  5019. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5020. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5021. else
  5022. eldv = G4X_ELDV_DEVCTG;
  5023. if (intel_eld_uptodate(connector,
  5024. G4X_AUD_CNTL_ST, eldv,
  5025. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5026. G4X_HDMIW_HDMIEDID))
  5027. return;
  5028. i = I915_READ(G4X_AUD_CNTL_ST);
  5029. i &= ~(eldv | G4X_ELD_ADDR);
  5030. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5031. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5032. if (!eld[0])
  5033. return;
  5034. len = min_t(uint8_t, eld[2], len);
  5035. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5036. for (i = 0; i < len; i++)
  5037. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5038. i = I915_READ(G4X_AUD_CNTL_ST);
  5039. i |= eldv;
  5040. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5041. }
  5042. static void haswell_write_eld(struct drm_connector *connector,
  5043. struct drm_crtc *crtc)
  5044. {
  5045. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5046. uint8_t *eld = connector->eld;
  5047. struct drm_device *dev = crtc->dev;
  5048. uint32_t eldv;
  5049. uint32_t i;
  5050. int len;
  5051. int pipe = to_intel_crtc(crtc)->pipe;
  5052. int tmp;
  5053. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5054. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5055. int aud_config = HSW_AUD_CFG(pipe);
  5056. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5057. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5058. /* Audio output enable */
  5059. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5060. tmp = I915_READ(aud_cntrl_st2);
  5061. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5062. I915_WRITE(aud_cntrl_st2, tmp);
  5063. /* Wait for 1 vertical blank */
  5064. intel_wait_for_vblank(dev, pipe);
  5065. /* Set ELD valid state */
  5066. tmp = I915_READ(aud_cntrl_st2);
  5067. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5068. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5069. I915_WRITE(aud_cntrl_st2, tmp);
  5070. tmp = I915_READ(aud_cntrl_st2);
  5071. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5072. /* Enable HDMI mode */
  5073. tmp = I915_READ(aud_config);
  5074. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5075. /* clear N_programing_enable and N_value_index */
  5076. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5077. I915_WRITE(aud_config, tmp);
  5078. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5079. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5080. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5081. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5082. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5083. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5084. } else
  5085. I915_WRITE(aud_config, 0);
  5086. if (intel_eld_uptodate(connector,
  5087. aud_cntrl_st2, eldv,
  5088. aud_cntl_st, IBX_ELD_ADDRESS,
  5089. hdmiw_hdmiedid))
  5090. return;
  5091. i = I915_READ(aud_cntrl_st2);
  5092. i &= ~eldv;
  5093. I915_WRITE(aud_cntrl_st2, i);
  5094. if (!eld[0])
  5095. return;
  5096. i = I915_READ(aud_cntl_st);
  5097. i &= ~IBX_ELD_ADDRESS;
  5098. I915_WRITE(aud_cntl_st, i);
  5099. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5100. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5101. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5102. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5103. for (i = 0; i < len; i++)
  5104. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5105. i = I915_READ(aud_cntrl_st2);
  5106. i |= eldv;
  5107. I915_WRITE(aud_cntrl_st2, i);
  5108. }
  5109. static void ironlake_write_eld(struct drm_connector *connector,
  5110. struct drm_crtc *crtc)
  5111. {
  5112. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5113. uint8_t *eld = connector->eld;
  5114. uint32_t eldv;
  5115. uint32_t i;
  5116. int len;
  5117. int hdmiw_hdmiedid;
  5118. int aud_config;
  5119. int aud_cntl_st;
  5120. int aud_cntrl_st2;
  5121. int pipe = to_intel_crtc(crtc)->pipe;
  5122. if (HAS_PCH_IBX(connector->dev)) {
  5123. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5124. aud_config = IBX_AUD_CFG(pipe);
  5125. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5126. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5127. } else {
  5128. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5129. aud_config = CPT_AUD_CFG(pipe);
  5130. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5131. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5132. }
  5133. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5134. i = I915_READ(aud_cntl_st);
  5135. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5136. if (!i) {
  5137. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5138. /* operate blindly on all ports */
  5139. eldv = IBX_ELD_VALIDB;
  5140. eldv |= IBX_ELD_VALIDB << 4;
  5141. eldv |= IBX_ELD_VALIDB << 8;
  5142. } else {
  5143. DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
  5144. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5145. }
  5146. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5147. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5148. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5149. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5150. } else
  5151. I915_WRITE(aud_config, 0);
  5152. if (intel_eld_uptodate(connector,
  5153. aud_cntrl_st2, eldv,
  5154. aud_cntl_st, IBX_ELD_ADDRESS,
  5155. hdmiw_hdmiedid))
  5156. return;
  5157. i = I915_READ(aud_cntrl_st2);
  5158. i &= ~eldv;
  5159. I915_WRITE(aud_cntrl_st2, i);
  5160. if (!eld[0])
  5161. return;
  5162. i = I915_READ(aud_cntl_st);
  5163. i &= ~IBX_ELD_ADDRESS;
  5164. I915_WRITE(aud_cntl_st, i);
  5165. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5166. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5167. for (i = 0; i < len; i++)
  5168. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5169. i = I915_READ(aud_cntrl_st2);
  5170. i |= eldv;
  5171. I915_WRITE(aud_cntrl_st2, i);
  5172. }
  5173. void intel_write_eld(struct drm_encoder *encoder,
  5174. struct drm_display_mode *mode)
  5175. {
  5176. struct drm_crtc *crtc = encoder->crtc;
  5177. struct drm_connector *connector;
  5178. struct drm_device *dev = encoder->dev;
  5179. struct drm_i915_private *dev_priv = dev->dev_private;
  5180. connector = drm_select_eld(encoder, mode);
  5181. if (!connector)
  5182. return;
  5183. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5184. connector->base.id,
  5185. drm_get_connector_name(connector),
  5186. connector->encoder->base.id,
  5187. drm_get_encoder_name(connector->encoder));
  5188. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5189. if (dev_priv->display.write_eld)
  5190. dev_priv->display.write_eld(connector, crtc);
  5191. }
  5192. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5193. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5194. {
  5195. struct drm_device *dev = crtc->dev;
  5196. struct drm_i915_private *dev_priv = dev->dev_private;
  5197. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5198. int palreg = PALETTE(intel_crtc->pipe);
  5199. int i;
  5200. /* The clocks have to be on to load the palette. */
  5201. if (!crtc->enabled || !intel_crtc->active)
  5202. return;
  5203. /* use legacy palette for Ironlake */
  5204. if (HAS_PCH_SPLIT(dev))
  5205. palreg = LGC_PALETTE(intel_crtc->pipe);
  5206. for (i = 0; i < 256; i++) {
  5207. I915_WRITE(palreg + 4 * i,
  5208. (intel_crtc->lut_r[i] << 16) |
  5209. (intel_crtc->lut_g[i] << 8) |
  5210. intel_crtc->lut_b[i]);
  5211. }
  5212. }
  5213. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5214. {
  5215. struct drm_device *dev = crtc->dev;
  5216. struct drm_i915_private *dev_priv = dev->dev_private;
  5217. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5218. bool visible = base != 0;
  5219. u32 cntl;
  5220. if (intel_crtc->cursor_visible == visible)
  5221. return;
  5222. cntl = I915_READ(_CURACNTR);
  5223. if (visible) {
  5224. /* On these chipsets we can only modify the base whilst
  5225. * the cursor is disabled.
  5226. */
  5227. I915_WRITE(_CURABASE, base);
  5228. cntl &= ~(CURSOR_FORMAT_MASK);
  5229. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5230. cntl |= CURSOR_ENABLE |
  5231. CURSOR_GAMMA_ENABLE |
  5232. CURSOR_FORMAT_ARGB;
  5233. } else
  5234. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5235. I915_WRITE(_CURACNTR, cntl);
  5236. intel_crtc->cursor_visible = visible;
  5237. }
  5238. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5239. {
  5240. struct drm_device *dev = crtc->dev;
  5241. struct drm_i915_private *dev_priv = dev->dev_private;
  5242. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5243. int pipe = intel_crtc->pipe;
  5244. bool visible = base != 0;
  5245. if (intel_crtc->cursor_visible != visible) {
  5246. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5247. if (base) {
  5248. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5249. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5250. cntl |= pipe << 28; /* Connect to correct pipe */
  5251. } else {
  5252. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5253. cntl |= CURSOR_MODE_DISABLE;
  5254. }
  5255. I915_WRITE(CURCNTR(pipe), cntl);
  5256. intel_crtc->cursor_visible = visible;
  5257. }
  5258. /* and commit changes on next vblank */
  5259. I915_WRITE(CURBASE(pipe), base);
  5260. }
  5261. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5262. {
  5263. struct drm_device *dev = crtc->dev;
  5264. struct drm_i915_private *dev_priv = dev->dev_private;
  5265. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5266. int pipe = intel_crtc->pipe;
  5267. bool visible = base != 0;
  5268. if (intel_crtc->cursor_visible != visible) {
  5269. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5270. if (base) {
  5271. cntl &= ~CURSOR_MODE;
  5272. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5273. } else {
  5274. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5275. cntl |= CURSOR_MODE_DISABLE;
  5276. }
  5277. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5278. intel_crtc->cursor_visible = visible;
  5279. }
  5280. /* and commit changes on next vblank */
  5281. I915_WRITE(CURBASE_IVB(pipe), base);
  5282. }
  5283. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5284. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5285. bool on)
  5286. {
  5287. struct drm_device *dev = crtc->dev;
  5288. struct drm_i915_private *dev_priv = dev->dev_private;
  5289. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5290. int pipe = intel_crtc->pipe;
  5291. int x = intel_crtc->cursor_x;
  5292. int y = intel_crtc->cursor_y;
  5293. u32 base, pos;
  5294. bool visible;
  5295. pos = 0;
  5296. if (on && crtc->enabled && crtc->fb) {
  5297. base = intel_crtc->cursor_addr;
  5298. if (x > (int) crtc->fb->width)
  5299. base = 0;
  5300. if (y > (int) crtc->fb->height)
  5301. base = 0;
  5302. } else
  5303. base = 0;
  5304. if (x < 0) {
  5305. if (x + intel_crtc->cursor_width < 0)
  5306. base = 0;
  5307. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5308. x = -x;
  5309. }
  5310. pos |= x << CURSOR_X_SHIFT;
  5311. if (y < 0) {
  5312. if (y + intel_crtc->cursor_height < 0)
  5313. base = 0;
  5314. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5315. y = -y;
  5316. }
  5317. pos |= y << CURSOR_Y_SHIFT;
  5318. visible = base != 0;
  5319. if (!visible && !intel_crtc->cursor_visible)
  5320. return;
  5321. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5322. I915_WRITE(CURPOS_IVB(pipe), pos);
  5323. ivb_update_cursor(crtc, base);
  5324. } else {
  5325. I915_WRITE(CURPOS(pipe), pos);
  5326. if (IS_845G(dev) || IS_I865G(dev))
  5327. i845_update_cursor(crtc, base);
  5328. else
  5329. i9xx_update_cursor(crtc, base);
  5330. }
  5331. }
  5332. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5333. struct drm_file *file,
  5334. uint32_t handle,
  5335. uint32_t width, uint32_t height)
  5336. {
  5337. struct drm_device *dev = crtc->dev;
  5338. struct drm_i915_private *dev_priv = dev->dev_private;
  5339. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5340. struct drm_i915_gem_object *obj;
  5341. uint32_t addr;
  5342. int ret;
  5343. /* if we want to turn off the cursor ignore width and height */
  5344. if (!handle) {
  5345. DRM_DEBUG_KMS("cursor off\n");
  5346. addr = 0;
  5347. obj = NULL;
  5348. mutex_lock(&dev->struct_mutex);
  5349. goto finish;
  5350. }
  5351. /* Currently we only support 64x64 cursors */
  5352. if (width != 64 || height != 64) {
  5353. DRM_ERROR("we currently only support 64x64 cursors\n");
  5354. return -EINVAL;
  5355. }
  5356. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5357. if (&obj->base == NULL)
  5358. return -ENOENT;
  5359. if (obj->base.size < width * height * 4) {
  5360. DRM_ERROR("buffer is to small\n");
  5361. ret = -ENOMEM;
  5362. goto fail;
  5363. }
  5364. /* we only need to pin inside GTT if cursor is non-phy */
  5365. mutex_lock(&dev->struct_mutex);
  5366. if (!dev_priv->info->cursor_needs_physical) {
  5367. if (obj->tiling_mode) {
  5368. DRM_ERROR("cursor cannot be tiled\n");
  5369. ret = -EINVAL;
  5370. goto fail_locked;
  5371. }
  5372. ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
  5373. if (ret) {
  5374. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5375. goto fail_locked;
  5376. }
  5377. ret = i915_gem_object_put_fence(obj);
  5378. if (ret) {
  5379. DRM_ERROR("failed to release fence for cursor");
  5380. goto fail_unpin;
  5381. }
  5382. addr = obj->gtt_offset;
  5383. } else {
  5384. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5385. ret = i915_gem_attach_phys_object(dev, obj,
  5386. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5387. align);
  5388. if (ret) {
  5389. DRM_ERROR("failed to attach phys object\n");
  5390. goto fail_locked;
  5391. }
  5392. addr = obj->phys_obj->handle->busaddr;
  5393. }
  5394. if (IS_GEN2(dev))
  5395. I915_WRITE(CURSIZE, (height << 12) | width);
  5396. finish:
  5397. if (intel_crtc->cursor_bo) {
  5398. if (dev_priv->info->cursor_needs_physical) {
  5399. if (intel_crtc->cursor_bo != obj)
  5400. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5401. } else
  5402. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5403. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5404. }
  5405. mutex_unlock(&dev->struct_mutex);
  5406. intel_crtc->cursor_addr = addr;
  5407. intel_crtc->cursor_bo = obj;
  5408. intel_crtc->cursor_width = width;
  5409. intel_crtc->cursor_height = height;
  5410. intel_crtc_update_cursor(crtc, true);
  5411. return 0;
  5412. fail_unpin:
  5413. i915_gem_object_unpin(obj);
  5414. fail_locked:
  5415. mutex_unlock(&dev->struct_mutex);
  5416. fail:
  5417. drm_gem_object_unreference_unlocked(&obj->base);
  5418. return ret;
  5419. }
  5420. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5421. {
  5422. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5423. intel_crtc->cursor_x = x;
  5424. intel_crtc->cursor_y = y;
  5425. intel_crtc_update_cursor(crtc, true);
  5426. return 0;
  5427. }
  5428. /** Sets the color ramps on behalf of RandR */
  5429. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5430. u16 blue, int regno)
  5431. {
  5432. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5433. intel_crtc->lut_r[regno] = red >> 8;
  5434. intel_crtc->lut_g[regno] = green >> 8;
  5435. intel_crtc->lut_b[regno] = blue >> 8;
  5436. }
  5437. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5438. u16 *blue, int regno)
  5439. {
  5440. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5441. *red = intel_crtc->lut_r[regno] << 8;
  5442. *green = intel_crtc->lut_g[regno] << 8;
  5443. *blue = intel_crtc->lut_b[regno] << 8;
  5444. }
  5445. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5446. u16 *blue, uint32_t start, uint32_t size)
  5447. {
  5448. int end = (start + size > 256) ? 256 : start + size, i;
  5449. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5450. for (i = start; i < end; i++) {
  5451. intel_crtc->lut_r[i] = red[i] >> 8;
  5452. intel_crtc->lut_g[i] = green[i] >> 8;
  5453. intel_crtc->lut_b[i] = blue[i] >> 8;
  5454. }
  5455. intel_crtc_load_lut(crtc);
  5456. }
  5457. /**
  5458. * Get a pipe with a simple mode set on it for doing load-based monitor
  5459. * detection.
  5460. *
  5461. * It will be up to the load-detect code to adjust the pipe as appropriate for
  5462. * its requirements. The pipe will be connected to no other encoders.
  5463. *
  5464. * Currently this code will only succeed if there is a pipe with no encoders
  5465. * configured for it. In the future, it could choose to temporarily disable
  5466. * some outputs to free up a pipe for its use.
  5467. *
  5468. * \return crtc, or NULL if no pipes are available.
  5469. */
  5470. /* VESA 640x480x72Hz mode to set on the pipe */
  5471. static struct drm_display_mode load_detect_mode = {
  5472. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5473. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5474. };
  5475. static struct drm_framebuffer *
  5476. intel_framebuffer_create(struct drm_device *dev,
  5477. struct drm_mode_fb_cmd2 *mode_cmd,
  5478. struct drm_i915_gem_object *obj)
  5479. {
  5480. struct intel_framebuffer *intel_fb;
  5481. int ret;
  5482. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5483. if (!intel_fb) {
  5484. drm_gem_object_unreference_unlocked(&obj->base);
  5485. return ERR_PTR(-ENOMEM);
  5486. }
  5487. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5488. if (ret) {
  5489. drm_gem_object_unreference_unlocked(&obj->base);
  5490. kfree(intel_fb);
  5491. return ERR_PTR(ret);
  5492. }
  5493. return &intel_fb->base;
  5494. }
  5495. static u32
  5496. intel_framebuffer_pitch_for_width(int width, int bpp)
  5497. {
  5498. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5499. return ALIGN(pitch, 64);
  5500. }
  5501. static u32
  5502. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5503. {
  5504. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5505. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5506. }
  5507. static struct drm_framebuffer *
  5508. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5509. struct drm_display_mode *mode,
  5510. int depth, int bpp)
  5511. {
  5512. struct drm_i915_gem_object *obj;
  5513. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5514. obj = i915_gem_alloc_object(dev,
  5515. intel_framebuffer_size_for_mode(mode, bpp));
  5516. if (obj == NULL)
  5517. return ERR_PTR(-ENOMEM);
  5518. mode_cmd.width = mode->hdisplay;
  5519. mode_cmd.height = mode->vdisplay;
  5520. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5521. bpp);
  5522. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5523. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5524. }
  5525. static struct drm_framebuffer *
  5526. mode_fits_in_fbdev(struct drm_device *dev,
  5527. struct drm_display_mode *mode)
  5528. {
  5529. struct drm_i915_private *dev_priv = dev->dev_private;
  5530. struct drm_i915_gem_object *obj;
  5531. struct drm_framebuffer *fb;
  5532. if (dev_priv->fbdev == NULL)
  5533. return NULL;
  5534. obj = dev_priv->fbdev->ifb.obj;
  5535. if (obj == NULL)
  5536. return NULL;
  5537. fb = &dev_priv->fbdev->ifb.base;
  5538. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5539. fb->bits_per_pixel))
  5540. return NULL;
  5541. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5542. return NULL;
  5543. return fb;
  5544. }
  5545. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5546. struct drm_display_mode *mode,
  5547. struct intel_load_detect_pipe *old)
  5548. {
  5549. struct intel_crtc *intel_crtc;
  5550. struct intel_encoder *intel_encoder =
  5551. intel_attached_encoder(connector);
  5552. struct drm_crtc *possible_crtc;
  5553. struct drm_encoder *encoder = &intel_encoder->base;
  5554. struct drm_crtc *crtc = NULL;
  5555. struct drm_device *dev = encoder->dev;
  5556. struct drm_framebuffer *fb;
  5557. int i = -1;
  5558. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5559. connector->base.id, drm_get_connector_name(connector),
  5560. encoder->base.id, drm_get_encoder_name(encoder));
  5561. /*
  5562. * Algorithm gets a little messy:
  5563. *
  5564. * - if the connector already has an assigned crtc, use it (but make
  5565. * sure it's on first)
  5566. *
  5567. * - try to find the first unused crtc that can drive this connector,
  5568. * and use that if we find one
  5569. */
  5570. /* See if we already have a CRTC for this connector */
  5571. if (encoder->crtc) {
  5572. crtc = encoder->crtc;
  5573. old->dpms_mode = connector->dpms;
  5574. old->load_detect_temp = false;
  5575. /* Make sure the crtc and connector are running */
  5576. if (connector->dpms != DRM_MODE_DPMS_ON)
  5577. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5578. return true;
  5579. }
  5580. /* Find an unused one (if possible) */
  5581. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5582. i++;
  5583. if (!(encoder->possible_crtcs & (1 << i)))
  5584. continue;
  5585. if (!possible_crtc->enabled) {
  5586. crtc = possible_crtc;
  5587. break;
  5588. }
  5589. }
  5590. /*
  5591. * If we didn't find an unused CRTC, don't use any.
  5592. */
  5593. if (!crtc) {
  5594. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5595. return false;
  5596. }
  5597. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5598. to_intel_connector(connector)->new_encoder = intel_encoder;
  5599. intel_crtc = to_intel_crtc(crtc);
  5600. old->dpms_mode = connector->dpms;
  5601. old->load_detect_temp = true;
  5602. old->release_fb = NULL;
  5603. if (!mode)
  5604. mode = &load_detect_mode;
  5605. /* We need a framebuffer large enough to accommodate all accesses
  5606. * that the plane may generate whilst we perform load detection.
  5607. * We can not rely on the fbcon either being present (we get called
  5608. * during its initialisation to detect all boot displays, or it may
  5609. * not even exist) or that it is large enough to satisfy the
  5610. * requested mode.
  5611. */
  5612. fb = mode_fits_in_fbdev(dev, mode);
  5613. if (fb == NULL) {
  5614. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5615. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5616. old->release_fb = fb;
  5617. } else
  5618. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5619. if (IS_ERR(fb)) {
  5620. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5621. return false;
  5622. }
  5623. if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
  5624. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5625. if (old->release_fb)
  5626. old->release_fb->funcs->destroy(old->release_fb);
  5627. return false;
  5628. }
  5629. /* let the connector get through one full cycle before testing */
  5630. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5631. return true;
  5632. }
  5633. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5634. struct intel_load_detect_pipe *old)
  5635. {
  5636. struct intel_encoder *intel_encoder =
  5637. intel_attached_encoder(connector);
  5638. struct drm_encoder *encoder = &intel_encoder->base;
  5639. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5640. connector->base.id, drm_get_connector_name(connector),
  5641. encoder->base.id, drm_get_encoder_name(encoder));
  5642. if (old->load_detect_temp) {
  5643. struct drm_crtc *crtc = encoder->crtc;
  5644. to_intel_connector(connector)->new_encoder = NULL;
  5645. intel_encoder->new_crtc = NULL;
  5646. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5647. if (old->release_fb)
  5648. old->release_fb->funcs->destroy(old->release_fb);
  5649. return;
  5650. }
  5651. /* Switch crtc and encoder back off if necessary */
  5652. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5653. connector->funcs->dpms(connector, old->dpms_mode);
  5654. }
  5655. /* Returns the clock of the currently programmed mode of the given pipe. */
  5656. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5657. {
  5658. struct drm_i915_private *dev_priv = dev->dev_private;
  5659. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5660. int pipe = intel_crtc->pipe;
  5661. u32 dpll = I915_READ(DPLL(pipe));
  5662. u32 fp;
  5663. intel_clock_t clock;
  5664. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5665. fp = I915_READ(FP0(pipe));
  5666. else
  5667. fp = I915_READ(FP1(pipe));
  5668. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5669. if (IS_PINEVIEW(dev)) {
  5670. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5671. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5672. } else {
  5673. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5674. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5675. }
  5676. if (!IS_GEN2(dev)) {
  5677. if (IS_PINEVIEW(dev))
  5678. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5679. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5680. else
  5681. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5682. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5683. switch (dpll & DPLL_MODE_MASK) {
  5684. case DPLLB_MODE_DAC_SERIAL:
  5685. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5686. 5 : 10;
  5687. break;
  5688. case DPLLB_MODE_LVDS:
  5689. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5690. 7 : 14;
  5691. break;
  5692. default:
  5693. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5694. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5695. return 0;
  5696. }
  5697. /* XXX: Handle the 100Mhz refclk */
  5698. intel_clock(dev, 96000, &clock);
  5699. } else {
  5700. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5701. if (is_lvds) {
  5702. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5703. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5704. clock.p2 = 14;
  5705. if ((dpll & PLL_REF_INPUT_MASK) ==
  5706. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5707. /* XXX: might not be 66MHz */
  5708. intel_clock(dev, 66000, &clock);
  5709. } else
  5710. intel_clock(dev, 48000, &clock);
  5711. } else {
  5712. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5713. clock.p1 = 2;
  5714. else {
  5715. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5716. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5717. }
  5718. if (dpll & PLL_P2_DIVIDE_BY_4)
  5719. clock.p2 = 4;
  5720. else
  5721. clock.p2 = 2;
  5722. intel_clock(dev, 48000, &clock);
  5723. }
  5724. }
  5725. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5726. * i830PllIsValid() because it relies on the xf86_config connector
  5727. * configuration being accurate, which it isn't necessarily.
  5728. */
  5729. return clock.dot;
  5730. }
  5731. /** Returns the currently programmed mode of the given pipe. */
  5732. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5733. struct drm_crtc *crtc)
  5734. {
  5735. struct drm_i915_private *dev_priv = dev->dev_private;
  5736. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5737. enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
  5738. struct drm_display_mode *mode;
  5739. int htot = I915_READ(HTOTAL(cpu_transcoder));
  5740. int hsync = I915_READ(HSYNC(cpu_transcoder));
  5741. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  5742. int vsync = I915_READ(VSYNC(cpu_transcoder));
  5743. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5744. if (!mode)
  5745. return NULL;
  5746. mode->clock = intel_crtc_clock_get(dev, crtc);
  5747. mode->hdisplay = (htot & 0xffff) + 1;
  5748. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5749. mode->hsync_start = (hsync & 0xffff) + 1;
  5750. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5751. mode->vdisplay = (vtot & 0xffff) + 1;
  5752. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5753. mode->vsync_start = (vsync & 0xffff) + 1;
  5754. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5755. drm_mode_set_name(mode);
  5756. return mode;
  5757. }
  5758. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5759. {
  5760. struct drm_device *dev = crtc->dev;
  5761. drm_i915_private_t *dev_priv = dev->dev_private;
  5762. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5763. int pipe = intel_crtc->pipe;
  5764. int dpll_reg = DPLL(pipe);
  5765. int dpll;
  5766. if (HAS_PCH_SPLIT(dev))
  5767. return;
  5768. if (!dev_priv->lvds_downclock_avail)
  5769. return;
  5770. dpll = I915_READ(dpll_reg);
  5771. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5772. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5773. assert_panel_unlocked(dev_priv, pipe);
  5774. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5775. I915_WRITE(dpll_reg, dpll);
  5776. intel_wait_for_vblank(dev, pipe);
  5777. dpll = I915_READ(dpll_reg);
  5778. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5779. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5780. }
  5781. }
  5782. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5783. {
  5784. struct drm_device *dev = crtc->dev;
  5785. drm_i915_private_t *dev_priv = dev->dev_private;
  5786. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5787. if (HAS_PCH_SPLIT(dev))
  5788. return;
  5789. if (!dev_priv->lvds_downclock_avail)
  5790. return;
  5791. /*
  5792. * Since this is called by a timer, we should never get here in
  5793. * the manual case.
  5794. */
  5795. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5796. int pipe = intel_crtc->pipe;
  5797. int dpll_reg = DPLL(pipe);
  5798. int dpll;
  5799. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5800. assert_panel_unlocked(dev_priv, pipe);
  5801. dpll = I915_READ(dpll_reg);
  5802. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5803. I915_WRITE(dpll_reg, dpll);
  5804. intel_wait_for_vblank(dev, pipe);
  5805. dpll = I915_READ(dpll_reg);
  5806. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5807. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5808. }
  5809. }
  5810. void intel_mark_busy(struct drm_device *dev)
  5811. {
  5812. i915_update_gfx_val(dev->dev_private);
  5813. }
  5814. void intel_mark_idle(struct drm_device *dev)
  5815. {
  5816. }
  5817. void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
  5818. {
  5819. struct drm_device *dev = obj->base.dev;
  5820. struct drm_crtc *crtc;
  5821. if (!i915_powersave)
  5822. return;
  5823. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5824. if (!crtc->fb)
  5825. continue;
  5826. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5827. intel_increase_pllclock(crtc);
  5828. }
  5829. }
  5830. void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
  5831. {
  5832. struct drm_device *dev = obj->base.dev;
  5833. struct drm_crtc *crtc;
  5834. if (!i915_powersave)
  5835. return;
  5836. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5837. if (!crtc->fb)
  5838. continue;
  5839. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5840. intel_decrease_pllclock(crtc);
  5841. }
  5842. }
  5843. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5844. {
  5845. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5846. struct drm_device *dev = crtc->dev;
  5847. struct intel_unpin_work *work;
  5848. unsigned long flags;
  5849. spin_lock_irqsave(&dev->event_lock, flags);
  5850. work = intel_crtc->unpin_work;
  5851. intel_crtc->unpin_work = NULL;
  5852. spin_unlock_irqrestore(&dev->event_lock, flags);
  5853. if (work) {
  5854. cancel_work_sync(&work->work);
  5855. kfree(work);
  5856. }
  5857. drm_crtc_cleanup(crtc);
  5858. kfree(intel_crtc);
  5859. }
  5860. static void intel_unpin_work_fn(struct work_struct *__work)
  5861. {
  5862. struct intel_unpin_work *work =
  5863. container_of(__work, struct intel_unpin_work, work);
  5864. struct drm_device *dev = work->crtc->dev;
  5865. mutex_lock(&dev->struct_mutex);
  5866. intel_unpin_fb_obj(work->old_fb_obj);
  5867. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5868. drm_gem_object_unreference(&work->old_fb_obj->base);
  5869. intel_update_fbc(dev);
  5870. mutex_unlock(&dev->struct_mutex);
  5871. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  5872. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  5873. kfree(work);
  5874. }
  5875. static void do_intel_finish_page_flip(struct drm_device *dev,
  5876. struct drm_crtc *crtc)
  5877. {
  5878. drm_i915_private_t *dev_priv = dev->dev_private;
  5879. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5880. struct intel_unpin_work *work;
  5881. struct drm_i915_gem_object *obj;
  5882. unsigned long flags;
  5883. /* Ignore early vblank irqs */
  5884. if (intel_crtc == NULL)
  5885. return;
  5886. spin_lock_irqsave(&dev->event_lock, flags);
  5887. work = intel_crtc->unpin_work;
  5888. /* Ensure we don't miss a work->pending update ... */
  5889. smp_rmb();
  5890. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  5891. spin_unlock_irqrestore(&dev->event_lock, flags);
  5892. return;
  5893. }
  5894. /* and that the unpin work is consistent wrt ->pending. */
  5895. smp_rmb();
  5896. intel_crtc->unpin_work = NULL;
  5897. if (work->event)
  5898. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  5899. drm_vblank_put(dev, intel_crtc->pipe);
  5900. spin_unlock_irqrestore(&dev->event_lock, flags);
  5901. obj = work->old_fb_obj;
  5902. atomic_clear_mask(1 << intel_crtc->plane,
  5903. &obj->pending_flip.counter);
  5904. wake_up(&dev_priv->pending_flip_queue);
  5905. queue_work(dev_priv->wq, &work->work);
  5906. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  5907. }
  5908. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  5909. {
  5910. drm_i915_private_t *dev_priv = dev->dev_private;
  5911. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  5912. do_intel_finish_page_flip(dev, crtc);
  5913. }
  5914. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  5915. {
  5916. drm_i915_private_t *dev_priv = dev->dev_private;
  5917. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  5918. do_intel_finish_page_flip(dev, crtc);
  5919. }
  5920. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  5921. {
  5922. drm_i915_private_t *dev_priv = dev->dev_private;
  5923. struct intel_crtc *intel_crtc =
  5924. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  5925. unsigned long flags;
  5926. /* NB: An MMIO update of the plane base pointer will also
  5927. * generate a page-flip completion irq, i.e. every modeset
  5928. * is also accompanied by a spurious intel_prepare_page_flip().
  5929. */
  5930. spin_lock_irqsave(&dev->event_lock, flags);
  5931. if (intel_crtc->unpin_work)
  5932. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  5933. spin_unlock_irqrestore(&dev->event_lock, flags);
  5934. }
  5935. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  5936. {
  5937. /* Ensure that the work item is consistent when activating it ... */
  5938. smp_wmb();
  5939. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  5940. /* and that it is marked active as soon as the irq could fire. */
  5941. smp_wmb();
  5942. }
  5943. static int intel_gen2_queue_flip(struct drm_device *dev,
  5944. struct drm_crtc *crtc,
  5945. struct drm_framebuffer *fb,
  5946. struct drm_i915_gem_object *obj)
  5947. {
  5948. struct drm_i915_private *dev_priv = dev->dev_private;
  5949. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5950. u32 flip_mask;
  5951. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5952. int ret;
  5953. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5954. if (ret)
  5955. goto err;
  5956. ret = intel_ring_begin(ring, 6);
  5957. if (ret)
  5958. goto err_unpin;
  5959. /* Can't queue multiple flips, so wait for the previous
  5960. * one to finish before executing the next.
  5961. */
  5962. if (intel_crtc->plane)
  5963. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5964. else
  5965. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5966. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  5967. intel_ring_emit(ring, MI_NOOP);
  5968. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5969. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5970. intel_ring_emit(ring, fb->pitches[0]);
  5971. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5972. intel_ring_emit(ring, 0); /* aux display base address, unused */
  5973. intel_mark_page_flip_active(intel_crtc);
  5974. intel_ring_advance(ring);
  5975. return 0;
  5976. err_unpin:
  5977. intel_unpin_fb_obj(obj);
  5978. err:
  5979. return ret;
  5980. }
  5981. static int intel_gen3_queue_flip(struct drm_device *dev,
  5982. struct drm_crtc *crtc,
  5983. struct drm_framebuffer *fb,
  5984. struct drm_i915_gem_object *obj)
  5985. {
  5986. struct drm_i915_private *dev_priv = dev->dev_private;
  5987. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5988. u32 flip_mask;
  5989. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5990. int ret;
  5991. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5992. if (ret)
  5993. goto err;
  5994. ret = intel_ring_begin(ring, 6);
  5995. if (ret)
  5996. goto err_unpin;
  5997. if (intel_crtc->plane)
  5998. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5999. else
  6000. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6001. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6002. intel_ring_emit(ring, MI_NOOP);
  6003. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6004. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6005. intel_ring_emit(ring, fb->pitches[0]);
  6006. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6007. intel_ring_emit(ring, MI_NOOP);
  6008. intel_mark_page_flip_active(intel_crtc);
  6009. intel_ring_advance(ring);
  6010. return 0;
  6011. err_unpin:
  6012. intel_unpin_fb_obj(obj);
  6013. err:
  6014. return ret;
  6015. }
  6016. static int intel_gen4_queue_flip(struct drm_device *dev,
  6017. struct drm_crtc *crtc,
  6018. struct drm_framebuffer *fb,
  6019. struct drm_i915_gem_object *obj)
  6020. {
  6021. struct drm_i915_private *dev_priv = dev->dev_private;
  6022. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6023. uint32_t pf, pipesrc;
  6024. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6025. int ret;
  6026. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6027. if (ret)
  6028. goto err;
  6029. ret = intel_ring_begin(ring, 4);
  6030. if (ret)
  6031. goto err_unpin;
  6032. /* i965+ uses the linear or tiled offsets from the
  6033. * Display Registers (which do not change across a page-flip)
  6034. * so we need only reprogram the base address.
  6035. */
  6036. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6037. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6038. intel_ring_emit(ring, fb->pitches[0]);
  6039. intel_ring_emit(ring,
  6040. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  6041. obj->tiling_mode);
  6042. /* XXX Enabling the panel-fitter across page-flip is so far
  6043. * untested on non-native modes, so ignore it for now.
  6044. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6045. */
  6046. pf = 0;
  6047. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6048. intel_ring_emit(ring, pf | pipesrc);
  6049. intel_mark_page_flip_active(intel_crtc);
  6050. intel_ring_advance(ring);
  6051. return 0;
  6052. err_unpin:
  6053. intel_unpin_fb_obj(obj);
  6054. err:
  6055. return ret;
  6056. }
  6057. static int intel_gen6_queue_flip(struct drm_device *dev,
  6058. struct drm_crtc *crtc,
  6059. struct drm_framebuffer *fb,
  6060. struct drm_i915_gem_object *obj)
  6061. {
  6062. struct drm_i915_private *dev_priv = dev->dev_private;
  6063. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6064. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6065. uint32_t pf, pipesrc;
  6066. int ret;
  6067. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6068. if (ret)
  6069. goto err;
  6070. ret = intel_ring_begin(ring, 4);
  6071. if (ret)
  6072. goto err_unpin;
  6073. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6074. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6075. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6076. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6077. /* Contrary to the suggestions in the documentation,
  6078. * "Enable Panel Fitter" does not seem to be required when page
  6079. * flipping with a non-native mode, and worse causes a normal
  6080. * modeset to fail.
  6081. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6082. */
  6083. pf = 0;
  6084. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6085. intel_ring_emit(ring, pf | pipesrc);
  6086. intel_mark_page_flip_active(intel_crtc);
  6087. intel_ring_advance(ring);
  6088. return 0;
  6089. err_unpin:
  6090. intel_unpin_fb_obj(obj);
  6091. err:
  6092. return ret;
  6093. }
  6094. /*
  6095. * On gen7 we currently use the blit ring because (in early silicon at least)
  6096. * the render ring doesn't give us interrpts for page flip completion, which
  6097. * means clients will hang after the first flip is queued. Fortunately the
  6098. * blit ring generates interrupts properly, so use it instead.
  6099. */
  6100. static int intel_gen7_queue_flip(struct drm_device *dev,
  6101. struct drm_crtc *crtc,
  6102. struct drm_framebuffer *fb,
  6103. struct drm_i915_gem_object *obj)
  6104. {
  6105. struct drm_i915_private *dev_priv = dev->dev_private;
  6106. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6107. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6108. uint32_t plane_bit = 0;
  6109. int ret;
  6110. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6111. if (ret)
  6112. goto err;
  6113. switch(intel_crtc->plane) {
  6114. case PLANE_A:
  6115. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6116. break;
  6117. case PLANE_B:
  6118. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6119. break;
  6120. case PLANE_C:
  6121. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6122. break;
  6123. default:
  6124. WARN_ONCE(1, "unknown plane in flip command\n");
  6125. ret = -ENODEV;
  6126. goto err_unpin;
  6127. }
  6128. ret = intel_ring_begin(ring, 4);
  6129. if (ret)
  6130. goto err_unpin;
  6131. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6132. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6133. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6134. intel_ring_emit(ring, (MI_NOOP));
  6135. intel_mark_page_flip_active(intel_crtc);
  6136. intel_ring_advance(ring);
  6137. return 0;
  6138. err_unpin:
  6139. intel_unpin_fb_obj(obj);
  6140. err:
  6141. return ret;
  6142. }
  6143. static int intel_default_queue_flip(struct drm_device *dev,
  6144. struct drm_crtc *crtc,
  6145. struct drm_framebuffer *fb,
  6146. struct drm_i915_gem_object *obj)
  6147. {
  6148. return -ENODEV;
  6149. }
  6150. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6151. struct drm_framebuffer *fb,
  6152. struct drm_pending_vblank_event *event)
  6153. {
  6154. struct drm_device *dev = crtc->dev;
  6155. struct drm_i915_private *dev_priv = dev->dev_private;
  6156. struct intel_framebuffer *intel_fb;
  6157. struct drm_i915_gem_object *obj;
  6158. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6159. struct intel_unpin_work *work;
  6160. unsigned long flags;
  6161. int ret;
  6162. /* Can't change pixel format via MI display flips. */
  6163. if (fb->pixel_format != crtc->fb->pixel_format)
  6164. return -EINVAL;
  6165. /*
  6166. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6167. * Note that pitch changes could also affect these register.
  6168. */
  6169. if (INTEL_INFO(dev)->gen > 3 &&
  6170. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6171. fb->pitches[0] != crtc->fb->pitches[0]))
  6172. return -EINVAL;
  6173. work = kzalloc(sizeof *work, GFP_KERNEL);
  6174. if (work == NULL)
  6175. return -ENOMEM;
  6176. work->event = event;
  6177. work->crtc = crtc;
  6178. intel_fb = to_intel_framebuffer(crtc->fb);
  6179. work->old_fb_obj = intel_fb->obj;
  6180. INIT_WORK(&work->work, intel_unpin_work_fn);
  6181. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6182. if (ret)
  6183. goto free_work;
  6184. /* We borrow the event spin lock for protecting unpin_work */
  6185. spin_lock_irqsave(&dev->event_lock, flags);
  6186. if (intel_crtc->unpin_work) {
  6187. spin_unlock_irqrestore(&dev->event_lock, flags);
  6188. kfree(work);
  6189. drm_vblank_put(dev, intel_crtc->pipe);
  6190. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6191. return -EBUSY;
  6192. }
  6193. intel_crtc->unpin_work = work;
  6194. spin_unlock_irqrestore(&dev->event_lock, flags);
  6195. intel_fb = to_intel_framebuffer(fb);
  6196. obj = intel_fb->obj;
  6197. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6198. flush_workqueue(dev_priv->wq);
  6199. ret = i915_mutex_lock_interruptible(dev);
  6200. if (ret)
  6201. goto cleanup;
  6202. /* Reference the objects for the scheduled work. */
  6203. drm_gem_object_reference(&work->old_fb_obj->base);
  6204. drm_gem_object_reference(&obj->base);
  6205. crtc->fb = fb;
  6206. work->pending_flip_obj = obj;
  6207. work->enable_stall_check = true;
  6208. /* Block clients from rendering to the new back buffer until
  6209. * the flip occurs and the object is no longer visible.
  6210. */
  6211. atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6212. atomic_inc(&intel_crtc->unpin_work_count);
  6213. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6214. if (ret)
  6215. goto cleanup_pending;
  6216. intel_disable_fbc(dev);
  6217. intel_mark_fb_busy(obj);
  6218. mutex_unlock(&dev->struct_mutex);
  6219. trace_i915_flip_request(intel_crtc->plane, obj);
  6220. return 0;
  6221. cleanup_pending:
  6222. atomic_dec(&intel_crtc->unpin_work_count);
  6223. atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  6224. drm_gem_object_unreference(&work->old_fb_obj->base);
  6225. drm_gem_object_unreference(&obj->base);
  6226. mutex_unlock(&dev->struct_mutex);
  6227. cleanup:
  6228. spin_lock_irqsave(&dev->event_lock, flags);
  6229. intel_crtc->unpin_work = NULL;
  6230. spin_unlock_irqrestore(&dev->event_lock, flags);
  6231. drm_vblank_put(dev, intel_crtc->pipe);
  6232. free_work:
  6233. kfree(work);
  6234. return ret;
  6235. }
  6236. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6237. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6238. .load_lut = intel_crtc_load_lut,
  6239. .disable = intel_crtc_noop,
  6240. };
  6241. bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
  6242. {
  6243. struct intel_encoder *other_encoder;
  6244. struct drm_crtc *crtc = &encoder->new_crtc->base;
  6245. if (WARN_ON(!crtc))
  6246. return false;
  6247. list_for_each_entry(other_encoder,
  6248. &crtc->dev->mode_config.encoder_list,
  6249. base.head) {
  6250. if (&other_encoder->new_crtc->base != crtc ||
  6251. encoder == other_encoder)
  6252. continue;
  6253. else
  6254. return true;
  6255. }
  6256. return false;
  6257. }
  6258. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6259. struct drm_crtc *crtc)
  6260. {
  6261. struct drm_device *dev;
  6262. struct drm_crtc *tmp;
  6263. int crtc_mask = 1;
  6264. WARN(!crtc, "checking null crtc?\n");
  6265. dev = crtc->dev;
  6266. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6267. if (tmp == crtc)
  6268. break;
  6269. crtc_mask <<= 1;
  6270. }
  6271. if (encoder->possible_crtcs & crtc_mask)
  6272. return true;
  6273. return false;
  6274. }
  6275. /**
  6276. * intel_modeset_update_staged_output_state
  6277. *
  6278. * Updates the staged output configuration state, e.g. after we've read out the
  6279. * current hw state.
  6280. */
  6281. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6282. {
  6283. struct intel_encoder *encoder;
  6284. struct intel_connector *connector;
  6285. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6286. base.head) {
  6287. connector->new_encoder =
  6288. to_intel_encoder(connector->base.encoder);
  6289. }
  6290. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6291. base.head) {
  6292. encoder->new_crtc =
  6293. to_intel_crtc(encoder->base.crtc);
  6294. }
  6295. }
  6296. /**
  6297. * intel_modeset_commit_output_state
  6298. *
  6299. * This function copies the stage display pipe configuration to the real one.
  6300. */
  6301. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6302. {
  6303. struct intel_encoder *encoder;
  6304. struct intel_connector *connector;
  6305. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6306. base.head) {
  6307. connector->base.encoder = &connector->new_encoder->base;
  6308. }
  6309. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6310. base.head) {
  6311. encoder->base.crtc = &encoder->new_crtc->base;
  6312. }
  6313. }
  6314. static struct drm_display_mode *
  6315. intel_modeset_adjusted_mode(struct drm_crtc *crtc,
  6316. struct drm_display_mode *mode)
  6317. {
  6318. struct drm_device *dev = crtc->dev;
  6319. struct drm_display_mode *adjusted_mode;
  6320. struct drm_encoder_helper_funcs *encoder_funcs;
  6321. struct intel_encoder *encoder;
  6322. adjusted_mode = drm_mode_duplicate(dev, mode);
  6323. if (!adjusted_mode)
  6324. return ERR_PTR(-ENOMEM);
  6325. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6326. * adjust it according to limitations or connector properties, and also
  6327. * a chance to reject the mode entirely.
  6328. */
  6329. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6330. base.head) {
  6331. if (&encoder->new_crtc->base != crtc)
  6332. continue;
  6333. encoder_funcs = encoder->base.helper_private;
  6334. if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
  6335. adjusted_mode))) {
  6336. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6337. goto fail;
  6338. }
  6339. }
  6340. if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
  6341. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6342. goto fail;
  6343. }
  6344. DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
  6345. return adjusted_mode;
  6346. fail:
  6347. drm_mode_destroy(dev, adjusted_mode);
  6348. return ERR_PTR(-EINVAL);
  6349. }
  6350. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6351. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6352. static void
  6353. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6354. unsigned *prepare_pipes, unsigned *disable_pipes)
  6355. {
  6356. struct intel_crtc *intel_crtc;
  6357. struct drm_device *dev = crtc->dev;
  6358. struct intel_encoder *encoder;
  6359. struct intel_connector *connector;
  6360. struct drm_crtc *tmp_crtc;
  6361. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6362. /* Check which crtcs have changed outputs connected to them, these need
  6363. * to be part of the prepare_pipes mask. We don't (yet) support global
  6364. * modeset across multiple crtcs, so modeset_pipes will only have one
  6365. * bit set at most. */
  6366. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6367. base.head) {
  6368. if (connector->base.encoder == &connector->new_encoder->base)
  6369. continue;
  6370. if (connector->base.encoder) {
  6371. tmp_crtc = connector->base.encoder->crtc;
  6372. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6373. }
  6374. if (connector->new_encoder)
  6375. *prepare_pipes |=
  6376. 1 << connector->new_encoder->new_crtc->pipe;
  6377. }
  6378. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6379. base.head) {
  6380. if (encoder->base.crtc == &encoder->new_crtc->base)
  6381. continue;
  6382. if (encoder->base.crtc) {
  6383. tmp_crtc = encoder->base.crtc;
  6384. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6385. }
  6386. if (encoder->new_crtc)
  6387. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6388. }
  6389. /* Check for any pipes that will be fully disabled ... */
  6390. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6391. base.head) {
  6392. bool used = false;
  6393. /* Don't try to disable disabled crtcs. */
  6394. if (!intel_crtc->base.enabled)
  6395. continue;
  6396. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6397. base.head) {
  6398. if (encoder->new_crtc == intel_crtc)
  6399. used = true;
  6400. }
  6401. if (!used)
  6402. *disable_pipes |= 1 << intel_crtc->pipe;
  6403. }
  6404. /* set_mode is also used to update properties on life display pipes. */
  6405. intel_crtc = to_intel_crtc(crtc);
  6406. if (crtc->enabled)
  6407. *prepare_pipes |= 1 << intel_crtc->pipe;
  6408. /* We only support modeset on one single crtc, hence we need to do that
  6409. * only for the passed in crtc iff we change anything else than just
  6410. * disable crtcs.
  6411. *
  6412. * This is actually not true, to be fully compatible with the old crtc
  6413. * helper we automatically disable _any_ output (i.e. doesn't need to be
  6414. * connected to the crtc we're modesetting on) if it's disconnected.
  6415. * Which is a rather nutty api (since changed the output configuration
  6416. * without userspace's explicit request can lead to confusion), but
  6417. * alas. Hence we currently need to modeset on all pipes we prepare. */
  6418. if (*prepare_pipes)
  6419. *modeset_pipes = *prepare_pipes;
  6420. /* ... and mask these out. */
  6421. *modeset_pipes &= ~(*disable_pipes);
  6422. *prepare_pipes &= ~(*disable_pipes);
  6423. }
  6424. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6425. {
  6426. struct drm_encoder *encoder;
  6427. struct drm_device *dev = crtc->dev;
  6428. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6429. if (encoder->crtc == crtc)
  6430. return true;
  6431. return false;
  6432. }
  6433. static void
  6434. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6435. {
  6436. struct intel_encoder *intel_encoder;
  6437. struct intel_crtc *intel_crtc;
  6438. struct drm_connector *connector;
  6439. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6440. base.head) {
  6441. if (!intel_encoder->base.crtc)
  6442. continue;
  6443. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6444. if (prepare_pipes & (1 << intel_crtc->pipe))
  6445. intel_encoder->connectors_active = false;
  6446. }
  6447. intel_modeset_commit_output_state(dev);
  6448. /* Update computed state. */
  6449. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6450. base.head) {
  6451. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6452. }
  6453. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6454. if (!connector->encoder || !connector->encoder->crtc)
  6455. continue;
  6456. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6457. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6458. struct drm_property *dpms_property =
  6459. dev->mode_config.dpms_property;
  6460. connector->dpms = DRM_MODE_DPMS_ON;
  6461. drm_object_property_set_value(&connector->base,
  6462. dpms_property,
  6463. DRM_MODE_DPMS_ON);
  6464. intel_encoder = to_intel_encoder(connector->encoder);
  6465. intel_encoder->connectors_active = true;
  6466. }
  6467. }
  6468. }
  6469. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6470. list_for_each_entry((intel_crtc), \
  6471. &(dev)->mode_config.crtc_list, \
  6472. base.head) \
  6473. if (mask & (1 <<(intel_crtc)->pipe)) \
  6474. void
  6475. intel_modeset_check_state(struct drm_device *dev)
  6476. {
  6477. struct intel_crtc *crtc;
  6478. struct intel_encoder *encoder;
  6479. struct intel_connector *connector;
  6480. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6481. base.head) {
  6482. /* This also checks the encoder/connector hw state with the
  6483. * ->get_hw_state callbacks. */
  6484. intel_connector_check_state(connector);
  6485. WARN(&connector->new_encoder->base != connector->base.encoder,
  6486. "connector's staged encoder doesn't match current encoder\n");
  6487. }
  6488. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6489. base.head) {
  6490. bool enabled = false;
  6491. bool active = false;
  6492. enum pipe pipe, tracked_pipe;
  6493. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6494. encoder->base.base.id,
  6495. drm_get_encoder_name(&encoder->base));
  6496. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6497. "encoder's stage crtc doesn't match current crtc\n");
  6498. WARN(encoder->connectors_active && !encoder->base.crtc,
  6499. "encoder's active_connectors set, but no crtc\n");
  6500. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6501. base.head) {
  6502. if (connector->base.encoder != &encoder->base)
  6503. continue;
  6504. enabled = true;
  6505. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6506. active = true;
  6507. }
  6508. WARN(!!encoder->base.crtc != enabled,
  6509. "encoder's enabled state mismatch "
  6510. "(expected %i, found %i)\n",
  6511. !!encoder->base.crtc, enabled);
  6512. WARN(active && !encoder->base.crtc,
  6513. "active encoder with no crtc\n");
  6514. WARN(encoder->connectors_active != active,
  6515. "encoder's computed active state doesn't match tracked active state "
  6516. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6517. active = encoder->get_hw_state(encoder, &pipe);
  6518. WARN(active != encoder->connectors_active,
  6519. "encoder's hw state doesn't match sw tracking "
  6520. "(expected %i, found %i)\n",
  6521. encoder->connectors_active, active);
  6522. if (!encoder->base.crtc)
  6523. continue;
  6524. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6525. WARN(active && pipe != tracked_pipe,
  6526. "active encoder's pipe doesn't match"
  6527. "(expected %i, found %i)\n",
  6528. tracked_pipe, pipe);
  6529. }
  6530. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6531. base.head) {
  6532. bool enabled = false;
  6533. bool active = false;
  6534. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6535. crtc->base.base.id);
  6536. WARN(crtc->active && !crtc->base.enabled,
  6537. "active crtc, but not enabled in sw tracking\n");
  6538. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6539. base.head) {
  6540. if (encoder->base.crtc != &crtc->base)
  6541. continue;
  6542. enabled = true;
  6543. if (encoder->connectors_active)
  6544. active = true;
  6545. }
  6546. WARN(active != crtc->active,
  6547. "crtc's computed active state doesn't match tracked active state "
  6548. "(expected %i, found %i)\n", active, crtc->active);
  6549. WARN(enabled != crtc->base.enabled,
  6550. "crtc's computed enabled state doesn't match tracked enabled state "
  6551. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6552. assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
  6553. }
  6554. }
  6555. bool intel_set_mode(struct drm_crtc *crtc,
  6556. struct drm_display_mode *mode,
  6557. int x, int y, struct drm_framebuffer *fb)
  6558. {
  6559. struct drm_device *dev = crtc->dev;
  6560. drm_i915_private_t *dev_priv = dev->dev_private;
  6561. struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
  6562. struct intel_crtc *intel_crtc;
  6563. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  6564. bool ret = true;
  6565. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  6566. &prepare_pipes, &disable_pipes);
  6567. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6568. modeset_pipes, prepare_pipes, disable_pipes);
  6569. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  6570. intel_crtc_disable(&intel_crtc->base);
  6571. saved_hwmode = crtc->hwmode;
  6572. saved_mode = crtc->mode;
  6573. /* Hack: Because we don't (yet) support global modeset on multiple
  6574. * crtcs, we don't keep track of the new mode for more than one crtc.
  6575. * Hence simply check whether any bit is set in modeset_pipes in all the
  6576. * pieces of code that are not yet converted to deal with mutliple crtcs
  6577. * changing their mode at the same time. */
  6578. adjusted_mode = NULL;
  6579. if (modeset_pipes) {
  6580. adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
  6581. if (IS_ERR(adjusted_mode)) {
  6582. return false;
  6583. }
  6584. }
  6585. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  6586. if (intel_crtc->base.enabled)
  6587. dev_priv->display.crtc_disable(&intel_crtc->base);
  6588. }
  6589. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  6590. * to set it here already despite that we pass it down the callchain.
  6591. */
  6592. if (modeset_pipes)
  6593. crtc->mode = *mode;
  6594. /* Only after disabling all output pipelines that will be changed can we
  6595. * update the the output configuration. */
  6596. intel_modeset_update_state(dev, prepare_pipes);
  6597. if (dev_priv->display.modeset_global_resources)
  6598. dev_priv->display.modeset_global_resources(dev);
  6599. /* Set up the DPLL and any encoders state that needs to adjust or depend
  6600. * on the DPLL.
  6601. */
  6602. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  6603. ret = !intel_crtc_mode_set(&intel_crtc->base,
  6604. mode, adjusted_mode,
  6605. x, y, fb);
  6606. if (!ret)
  6607. goto done;
  6608. }
  6609. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  6610. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  6611. dev_priv->display.crtc_enable(&intel_crtc->base);
  6612. if (modeset_pipes) {
  6613. /* Store real post-adjustment hardware mode. */
  6614. crtc->hwmode = *adjusted_mode;
  6615. /* Calculate and store various constants which
  6616. * are later needed by vblank and swap-completion
  6617. * timestamping. They are derived from true hwmode.
  6618. */
  6619. drm_calc_timestamping_constants(crtc);
  6620. }
  6621. /* FIXME: add subpixel order */
  6622. done:
  6623. drm_mode_destroy(dev, adjusted_mode);
  6624. if (!ret && crtc->enabled) {
  6625. crtc->hwmode = saved_hwmode;
  6626. crtc->mode = saved_mode;
  6627. } else {
  6628. intel_modeset_check_state(dev);
  6629. }
  6630. return ret;
  6631. }
  6632. #undef for_each_intel_crtc_masked
  6633. static void intel_set_config_free(struct intel_set_config *config)
  6634. {
  6635. if (!config)
  6636. return;
  6637. kfree(config->save_connector_encoders);
  6638. kfree(config->save_encoder_crtcs);
  6639. kfree(config);
  6640. }
  6641. static int intel_set_config_save_state(struct drm_device *dev,
  6642. struct intel_set_config *config)
  6643. {
  6644. struct drm_encoder *encoder;
  6645. struct drm_connector *connector;
  6646. int count;
  6647. config->save_encoder_crtcs =
  6648. kcalloc(dev->mode_config.num_encoder,
  6649. sizeof(struct drm_crtc *), GFP_KERNEL);
  6650. if (!config->save_encoder_crtcs)
  6651. return -ENOMEM;
  6652. config->save_connector_encoders =
  6653. kcalloc(dev->mode_config.num_connector,
  6654. sizeof(struct drm_encoder *), GFP_KERNEL);
  6655. if (!config->save_connector_encoders)
  6656. return -ENOMEM;
  6657. /* Copy data. Note that driver private data is not affected.
  6658. * Should anything bad happen only the expected state is
  6659. * restored, not the drivers personal bookkeeping.
  6660. */
  6661. count = 0;
  6662. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  6663. config->save_encoder_crtcs[count++] = encoder->crtc;
  6664. }
  6665. count = 0;
  6666. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6667. config->save_connector_encoders[count++] = connector->encoder;
  6668. }
  6669. return 0;
  6670. }
  6671. static void intel_set_config_restore_state(struct drm_device *dev,
  6672. struct intel_set_config *config)
  6673. {
  6674. struct intel_encoder *encoder;
  6675. struct intel_connector *connector;
  6676. int count;
  6677. count = 0;
  6678. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6679. encoder->new_crtc =
  6680. to_intel_crtc(config->save_encoder_crtcs[count++]);
  6681. }
  6682. count = 0;
  6683. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  6684. connector->new_encoder =
  6685. to_intel_encoder(config->save_connector_encoders[count++]);
  6686. }
  6687. }
  6688. static void
  6689. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  6690. struct intel_set_config *config)
  6691. {
  6692. /* We should be able to check here if the fb has the same properties
  6693. * and then just flip_or_move it */
  6694. if (set->crtc->fb != set->fb) {
  6695. /* If we have no fb then treat it as a full mode set */
  6696. if (set->crtc->fb == NULL) {
  6697. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  6698. config->mode_changed = true;
  6699. } else if (set->fb == NULL) {
  6700. config->mode_changed = true;
  6701. } else if (set->fb->depth != set->crtc->fb->depth) {
  6702. config->mode_changed = true;
  6703. } else if (set->fb->bits_per_pixel !=
  6704. set->crtc->fb->bits_per_pixel) {
  6705. config->mode_changed = true;
  6706. } else
  6707. config->fb_changed = true;
  6708. }
  6709. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  6710. config->fb_changed = true;
  6711. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  6712. DRM_DEBUG_KMS("modes are different, full mode set\n");
  6713. drm_mode_debug_printmodeline(&set->crtc->mode);
  6714. drm_mode_debug_printmodeline(set->mode);
  6715. config->mode_changed = true;
  6716. }
  6717. }
  6718. static int
  6719. intel_modeset_stage_output_state(struct drm_device *dev,
  6720. struct drm_mode_set *set,
  6721. struct intel_set_config *config)
  6722. {
  6723. struct drm_crtc *new_crtc;
  6724. struct intel_connector *connector;
  6725. struct intel_encoder *encoder;
  6726. int count, ro;
  6727. /* The upper layers ensure that we either disabl a crtc or have a list
  6728. * of connectors. For paranoia, double-check this. */
  6729. WARN_ON(!set->fb && (set->num_connectors != 0));
  6730. WARN_ON(set->fb && (set->num_connectors == 0));
  6731. count = 0;
  6732. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6733. base.head) {
  6734. /* Otherwise traverse passed in connector list and get encoders
  6735. * for them. */
  6736. for (ro = 0; ro < set->num_connectors; ro++) {
  6737. if (set->connectors[ro] == &connector->base) {
  6738. connector->new_encoder = connector->encoder;
  6739. break;
  6740. }
  6741. }
  6742. /* If we disable the crtc, disable all its connectors. Also, if
  6743. * the connector is on the changing crtc but not on the new
  6744. * connector list, disable it. */
  6745. if ((!set->fb || ro == set->num_connectors) &&
  6746. connector->base.encoder &&
  6747. connector->base.encoder->crtc == set->crtc) {
  6748. connector->new_encoder = NULL;
  6749. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  6750. connector->base.base.id,
  6751. drm_get_connector_name(&connector->base));
  6752. }
  6753. if (&connector->new_encoder->base != connector->base.encoder) {
  6754. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  6755. config->mode_changed = true;
  6756. }
  6757. /* Disable all disconnected encoders. */
  6758. if (connector->base.status == connector_status_disconnected)
  6759. connector->new_encoder = NULL;
  6760. }
  6761. /* connector->new_encoder is now updated for all connectors. */
  6762. /* Update crtc of enabled connectors. */
  6763. count = 0;
  6764. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6765. base.head) {
  6766. if (!connector->new_encoder)
  6767. continue;
  6768. new_crtc = connector->new_encoder->base.crtc;
  6769. for (ro = 0; ro < set->num_connectors; ro++) {
  6770. if (set->connectors[ro] == &connector->base)
  6771. new_crtc = set->crtc;
  6772. }
  6773. /* Make sure the new CRTC will work with the encoder */
  6774. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  6775. new_crtc)) {
  6776. return -EINVAL;
  6777. }
  6778. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  6779. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  6780. connector->base.base.id,
  6781. drm_get_connector_name(&connector->base),
  6782. new_crtc->base.id);
  6783. }
  6784. /* Check for any encoders that needs to be disabled. */
  6785. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6786. base.head) {
  6787. list_for_each_entry(connector,
  6788. &dev->mode_config.connector_list,
  6789. base.head) {
  6790. if (connector->new_encoder == encoder) {
  6791. WARN_ON(!connector->new_encoder->new_crtc);
  6792. goto next_encoder;
  6793. }
  6794. }
  6795. encoder->new_crtc = NULL;
  6796. next_encoder:
  6797. /* Only now check for crtc changes so we don't miss encoders
  6798. * that will be disabled. */
  6799. if (&encoder->new_crtc->base != encoder->base.crtc) {
  6800. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  6801. config->mode_changed = true;
  6802. }
  6803. }
  6804. /* Now we've also updated encoder->new_crtc for all encoders. */
  6805. return 0;
  6806. }
  6807. static int intel_crtc_set_config(struct drm_mode_set *set)
  6808. {
  6809. struct drm_device *dev;
  6810. struct drm_mode_set save_set;
  6811. struct intel_set_config *config;
  6812. int ret;
  6813. BUG_ON(!set);
  6814. BUG_ON(!set->crtc);
  6815. BUG_ON(!set->crtc->helper_private);
  6816. if (!set->mode)
  6817. set->fb = NULL;
  6818. /* The fb helper likes to play gross jokes with ->mode_set_config.
  6819. * Unfortunately the crtc helper doesn't do much at all for this case,
  6820. * so we have to cope with this madness until the fb helper is fixed up. */
  6821. if (set->fb && set->num_connectors == 0)
  6822. return 0;
  6823. if (set->fb) {
  6824. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  6825. set->crtc->base.id, set->fb->base.id,
  6826. (int)set->num_connectors, set->x, set->y);
  6827. } else {
  6828. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  6829. }
  6830. dev = set->crtc->dev;
  6831. ret = -ENOMEM;
  6832. config = kzalloc(sizeof(*config), GFP_KERNEL);
  6833. if (!config)
  6834. goto out_config;
  6835. ret = intel_set_config_save_state(dev, config);
  6836. if (ret)
  6837. goto out_config;
  6838. save_set.crtc = set->crtc;
  6839. save_set.mode = &set->crtc->mode;
  6840. save_set.x = set->crtc->x;
  6841. save_set.y = set->crtc->y;
  6842. save_set.fb = set->crtc->fb;
  6843. /* Compute whether we need a full modeset, only an fb base update or no
  6844. * change at all. In the future we might also check whether only the
  6845. * mode changed, e.g. for LVDS where we only change the panel fitter in
  6846. * such cases. */
  6847. intel_set_config_compute_mode_changes(set, config);
  6848. ret = intel_modeset_stage_output_state(dev, set, config);
  6849. if (ret)
  6850. goto fail;
  6851. if (config->mode_changed) {
  6852. if (set->mode) {
  6853. DRM_DEBUG_KMS("attempting to set mode from"
  6854. " userspace\n");
  6855. drm_mode_debug_printmodeline(set->mode);
  6856. }
  6857. if (!intel_set_mode(set->crtc, set->mode,
  6858. set->x, set->y, set->fb)) {
  6859. DRM_ERROR("failed to set mode on [CRTC:%d]\n",
  6860. set->crtc->base.id);
  6861. ret = -EINVAL;
  6862. goto fail;
  6863. }
  6864. } else if (config->fb_changed) {
  6865. ret = intel_pipe_set_base(set->crtc,
  6866. set->x, set->y, set->fb);
  6867. }
  6868. intel_set_config_free(config);
  6869. return 0;
  6870. fail:
  6871. intel_set_config_restore_state(dev, config);
  6872. /* Try to restore the config */
  6873. if (config->mode_changed &&
  6874. !intel_set_mode(save_set.crtc, save_set.mode,
  6875. save_set.x, save_set.y, save_set.fb))
  6876. DRM_ERROR("failed to restore config after modeset failure\n");
  6877. out_config:
  6878. intel_set_config_free(config);
  6879. return ret;
  6880. }
  6881. static const struct drm_crtc_funcs intel_crtc_funcs = {
  6882. .cursor_set = intel_crtc_cursor_set,
  6883. .cursor_move = intel_crtc_cursor_move,
  6884. .gamma_set = intel_crtc_gamma_set,
  6885. .set_config = intel_crtc_set_config,
  6886. .destroy = intel_crtc_destroy,
  6887. .page_flip = intel_crtc_page_flip,
  6888. };
  6889. static void intel_cpu_pll_init(struct drm_device *dev)
  6890. {
  6891. if (IS_HASWELL(dev))
  6892. intel_ddi_pll_init(dev);
  6893. }
  6894. static void intel_pch_pll_init(struct drm_device *dev)
  6895. {
  6896. drm_i915_private_t *dev_priv = dev->dev_private;
  6897. int i;
  6898. if (dev_priv->num_pch_pll == 0) {
  6899. DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
  6900. return;
  6901. }
  6902. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  6903. dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
  6904. dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
  6905. dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
  6906. }
  6907. }
  6908. static void intel_crtc_init(struct drm_device *dev, int pipe)
  6909. {
  6910. drm_i915_private_t *dev_priv = dev->dev_private;
  6911. struct intel_crtc *intel_crtc;
  6912. int i;
  6913. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  6914. if (intel_crtc == NULL)
  6915. return;
  6916. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  6917. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  6918. for (i = 0; i < 256; i++) {
  6919. intel_crtc->lut_r[i] = i;
  6920. intel_crtc->lut_g[i] = i;
  6921. intel_crtc->lut_b[i] = i;
  6922. }
  6923. /* Swap pipes & planes for FBC on pre-965 */
  6924. intel_crtc->pipe = pipe;
  6925. intel_crtc->plane = pipe;
  6926. intel_crtc->cpu_transcoder = pipe;
  6927. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  6928. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  6929. intel_crtc->plane = !pipe;
  6930. }
  6931. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  6932. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  6933. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  6934. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  6935. intel_crtc->bpp = 24; /* default for pre-Ironlake */
  6936. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  6937. }
  6938. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  6939. struct drm_file *file)
  6940. {
  6941. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  6942. struct drm_mode_object *drmmode_obj;
  6943. struct intel_crtc *crtc;
  6944. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  6945. return -ENODEV;
  6946. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  6947. DRM_MODE_OBJECT_CRTC);
  6948. if (!drmmode_obj) {
  6949. DRM_ERROR("no such CRTC id\n");
  6950. return -EINVAL;
  6951. }
  6952. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  6953. pipe_from_crtc_id->pipe = crtc->pipe;
  6954. return 0;
  6955. }
  6956. static int intel_encoder_clones(struct intel_encoder *encoder)
  6957. {
  6958. struct drm_device *dev = encoder->base.dev;
  6959. struct intel_encoder *source_encoder;
  6960. int index_mask = 0;
  6961. int entry = 0;
  6962. list_for_each_entry(source_encoder,
  6963. &dev->mode_config.encoder_list, base.head) {
  6964. if (encoder == source_encoder)
  6965. index_mask |= (1 << entry);
  6966. /* Intel hw has only one MUX where enocoders could be cloned. */
  6967. if (encoder->cloneable && source_encoder->cloneable)
  6968. index_mask |= (1 << entry);
  6969. entry++;
  6970. }
  6971. return index_mask;
  6972. }
  6973. static bool has_edp_a(struct drm_device *dev)
  6974. {
  6975. struct drm_i915_private *dev_priv = dev->dev_private;
  6976. if (!IS_MOBILE(dev))
  6977. return false;
  6978. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  6979. return false;
  6980. if (IS_GEN5(dev) &&
  6981. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  6982. return false;
  6983. return true;
  6984. }
  6985. static void intel_setup_outputs(struct drm_device *dev)
  6986. {
  6987. struct drm_i915_private *dev_priv = dev->dev_private;
  6988. struct intel_encoder *encoder;
  6989. bool dpd_is_edp = false;
  6990. bool has_lvds;
  6991. has_lvds = intel_lvds_init(dev);
  6992. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  6993. /* disable the panel fitter on everything but LVDS */
  6994. I915_WRITE(PFIT_CONTROL, 0);
  6995. }
  6996. if (!(IS_HASWELL(dev) &&
  6997. (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)))
  6998. intel_crt_init(dev);
  6999. if (IS_HASWELL(dev)) {
  7000. int found;
  7001. /* Haswell uses DDI functions to detect digital outputs */
  7002. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  7003. /* DDI A only supports eDP */
  7004. if (found)
  7005. intel_ddi_init(dev, PORT_A);
  7006. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  7007. * register */
  7008. found = I915_READ(SFUSE_STRAP);
  7009. if (found & SFUSE_STRAP_DDIB_DETECTED)
  7010. intel_ddi_init(dev, PORT_B);
  7011. if (found & SFUSE_STRAP_DDIC_DETECTED)
  7012. intel_ddi_init(dev, PORT_C);
  7013. if (found & SFUSE_STRAP_DDID_DETECTED)
  7014. intel_ddi_init(dev, PORT_D);
  7015. } else if (HAS_PCH_SPLIT(dev)) {
  7016. int found;
  7017. dpd_is_edp = intel_dpd_is_edp(dev);
  7018. if (has_edp_a(dev))
  7019. intel_dp_init(dev, DP_A, PORT_A);
  7020. if (I915_READ(HDMIB) & PORT_DETECTED) {
  7021. /* PCH SDVOB multiplex with HDMIB */
  7022. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7023. if (!found)
  7024. intel_hdmi_init(dev, HDMIB, PORT_B);
  7025. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7026. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7027. }
  7028. if (I915_READ(HDMIC) & PORT_DETECTED)
  7029. intel_hdmi_init(dev, HDMIC, PORT_C);
  7030. if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
  7031. intel_hdmi_init(dev, HDMID, PORT_D);
  7032. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7033. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7034. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7035. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7036. } else if (IS_VALLEYVIEW(dev)) {
  7037. int found;
  7038. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7039. if (I915_READ(DP_C) & DP_DETECTED)
  7040. intel_dp_init(dev, DP_C, PORT_C);
  7041. if (I915_READ(SDVOB) & PORT_DETECTED) {
  7042. /* SDVOB multiplex with HDMIB */
  7043. found = intel_sdvo_init(dev, SDVOB, true);
  7044. if (!found)
  7045. intel_hdmi_init(dev, SDVOB, PORT_B);
  7046. if (!found && (I915_READ(DP_B) & DP_DETECTED))
  7047. intel_dp_init(dev, DP_B, PORT_B);
  7048. }
  7049. if (I915_READ(SDVOC) & PORT_DETECTED)
  7050. intel_hdmi_init(dev, SDVOC, PORT_C);
  7051. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7052. bool found = false;
  7053. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  7054. DRM_DEBUG_KMS("probing SDVOB\n");
  7055. found = intel_sdvo_init(dev, SDVOB, true);
  7056. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7057. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7058. intel_hdmi_init(dev, SDVOB, PORT_B);
  7059. }
  7060. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  7061. DRM_DEBUG_KMS("probing DP_B\n");
  7062. intel_dp_init(dev, DP_B, PORT_B);
  7063. }
  7064. }
  7065. /* Before G4X SDVOC doesn't have its own detect register */
  7066. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  7067. DRM_DEBUG_KMS("probing SDVOC\n");
  7068. found = intel_sdvo_init(dev, SDVOC, false);
  7069. }
  7070. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  7071. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7072. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7073. intel_hdmi_init(dev, SDVOC, PORT_C);
  7074. }
  7075. if (SUPPORTS_INTEGRATED_DP(dev)) {
  7076. DRM_DEBUG_KMS("probing DP_C\n");
  7077. intel_dp_init(dev, DP_C, PORT_C);
  7078. }
  7079. }
  7080. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7081. (I915_READ(DP_D) & DP_DETECTED)) {
  7082. DRM_DEBUG_KMS("probing DP_D\n");
  7083. intel_dp_init(dev, DP_D, PORT_D);
  7084. }
  7085. } else if (IS_GEN2(dev))
  7086. intel_dvo_init(dev);
  7087. if (SUPPORTS_TV(dev))
  7088. intel_tv_init(dev);
  7089. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7090. encoder->base.possible_crtcs = encoder->crtc_mask;
  7091. encoder->base.possible_clones =
  7092. intel_encoder_clones(encoder);
  7093. }
  7094. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  7095. ironlake_init_pch_refclk(dev);
  7096. drm_helper_move_panel_connectors_to_head(dev);
  7097. }
  7098. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  7099. {
  7100. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7101. drm_framebuffer_cleanup(fb);
  7102. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  7103. kfree(intel_fb);
  7104. }
  7105. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  7106. struct drm_file *file,
  7107. unsigned int *handle)
  7108. {
  7109. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7110. struct drm_i915_gem_object *obj = intel_fb->obj;
  7111. return drm_gem_handle_create(file, &obj->base, handle);
  7112. }
  7113. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7114. .destroy = intel_user_framebuffer_destroy,
  7115. .create_handle = intel_user_framebuffer_create_handle,
  7116. };
  7117. int intel_framebuffer_init(struct drm_device *dev,
  7118. struct intel_framebuffer *intel_fb,
  7119. struct drm_mode_fb_cmd2 *mode_cmd,
  7120. struct drm_i915_gem_object *obj)
  7121. {
  7122. int ret;
  7123. if (obj->tiling_mode == I915_TILING_Y)
  7124. return -EINVAL;
  7125. if (mode_cmd->pitches[0] & 63)
  7126. return -EINVAL;
  7127. /* FIXME <= Gen4 stride limits are bit unclear */
  7128. if (mode_cmd->pitches[0] > 32768)
  7129. return -EINVAL;
  7130. if (obj->tiling_mode != I915_TILING_NONE &&
  7131. mode_cmd->pitches[0] != obj->stride)
  7132. return -EINVAL;
  7133. /* Reject formats not supported by any plane early. */
  7134. switch (mode_cmd->pixel_format) {
  7135. case DRM_FORMAT_C8:
  7136. case DRM_FORMAT_RGB565:
  7137. case DRM_FORMAT_XRGB8888:
  7138. case DRM_FORMAT_ARGB8888:
  7139. break;
  7140. case DRM_FORMAT_XRGB1555:
  7141. case DRM_FORMAT_ARGB1555:
  7142. if (INTEL_INFO(dev)->gen > 3)
  7143. return -EINVAL;
  7144. break;
  7145. case DRM_FORMAT_XBGR8888:
  7146. case DRM_FORMAT_ABGR8888:
  7147. case DRM_FORMAT_XRGB2101010:
  7148. case DRM_FORMAT_ARGB2101010:
  7149. case DRM_FORMAT_XBGR2101010:
  7150. case DRM_FORMAT_ABGR2101010:
  7151. if (INTEL_INFO(dev)->gen < 4)
  7152. return -EINVAL;
  7153. break;
  7154. case DRM_FORMAT_YUYV:
  7155. case DRM_FORMAT_UYVY:
  7156. case DRM_FORMAT_YVYU:
  7157. case DRM_FORMAT_VYUY:
  7158. if (INTEL_INFO(dev)->gen < 6)
  7159. return -EINVAL;
  7160. break;
  7161. default:
  7162. DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
  7163. return -EINVAL;
  7164. }
  7165. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  7166. if (mode_cmd->offsets[0] != 0)
  7167. return -EINVAL;
  7168. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7169. if (ret) {
  7170. DRM_ERROR("framebuffer init failed %d\n", ret);
  7171. return ret;
  7172. }
  7173. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7174. intel_fb->obj = obj;
  7175. return 0;
  7176. }
  7177. static struct drm_framebuffer *
  7178. intel_user_framebuffer_create(struct drm_device *dev,
  7179. struct drm_file *filp,
  7180. struct drm_mode_fb_cmd2 *mode_cmd)
  7181. {
  7182. struct drm_i915_gem_object *obj;
  7183. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7184. mode_cmd->handles[0]));
  7185. if (&obj->base == NULL)
  7186. return ERR_PTR(-ENOENT);
  7187. return intel_framebuffer_create(dev, mode_cmd, obj);
  7188. }
  7189. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7190. .fb_create = intel_user_framebuffer_create,
  7191. .output_poll_changed = intel_fb_output_poll_changed,
  7192. };
  7193. /* Set up chip specific display functions */
  7194. static void intel_init_display(struct drm_device *dev)
  7195. {
  7196. struct drm_i915_private *dev_priv = dev->dev_private;
  7197. /* We always want a DPMS function */
  7198. if (IS_HASWELL(dev)) {
  7199. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  7200. dev_priv->display.crtc_enable = haswell_crtc_enable;
  7201. dev_priv->display.crtc_disable = haswell_crtc_disable;
  7202. dev_priv->display.off = haswell_crtc_off;
  7203. dev_priv->display.update_plane = ironlake_update_plane;
  7204. } else if (HAS_PCH_SPLIT(dev)) {
  7205. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7206. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  7207. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  7208. dev_priv->display.off = ironlake_crtc_off;
  7209. dev_priv->display.update_plane = ironlake_update_plane;
  7210. } else {
  7211. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7212. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  7213. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7214. dev_priv->display.off = i9xx_crtc_off;
  7215. dev_priv->display.update_plane = i9xx_update_plane;
  7216. }
  7217. /* Returns the core display clock speed */
  7218. if (IS_VALLEYVIEW(dev))
  7219. dev_priv->display.get_display_clock_speed =
  7220. valleyview_get_display_clock_speed;
  7221. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7222. dev_priv->display.get_display_clock_speed =
  7223. i945_get_display_clock_speed;
  7224. else if (IS_I915G(dev))
  7225. dev_priv->display.get_display_clock_speed =
  7226. i915_get_display_clock_speed;
  7227. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7228. dev_priv->display.get_display_clock_speed =
  7229. i9xx_misc_get_display_clock_speed;
  7230. else if (IS_I915GM(dev))
  7231. dev_priv->display.get_display_clock_speed =
  7232. i915gm_get_display_clock_speed;
  7233. else if (IS_I865G(dev))
  7234. dev_priv->display.get_display_clock_speed =
  7235. i865_get_display_clock_speed;
  7236. else if (IS_I85X(dev))
  7237. dev_priv->display.get_display_clock_speed =
  7238. i855_get_display_clock_speed;
  7239. else /* 852, 830 */
  7240. dev_priv->display.get_display_clock_speed =
  7241. i830_get_display_clock_speed;
  7242. if (HAS_PCH_SPLIT(dev)) {
  7243. if (IS_GEN5(dev)) {
  7244. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7245. dev_priv->display.write_eld = ironlake_write_eld;
  7246. } else if (IS_GEN6(dev)) {
  7247. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7248. dev_priv->display.write_eld = ironlake_write_eld;
  7249. } else if (IS_IVYBRIDGE(dev)) {
  7250. /* FIXME: detect B0+ stepping and use auto training */
  7251. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7252. dev_priv->display.write_eld = ironlake_write_eld;
  7253. dev_priv->display.modeset_global_resources =
  7254. ivb_modeset_global_resources;
  7255. } else if (IS_HASWELL(dev)) {
  7256. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  7257. dev_priv->display.write_eld = haswell_write_eld;
  7258. } else
  7259. dev_priv->display.update_wm = NULL;
  7260. } else if (IS_G4X(dev)) {
  7261. dev_priv->display.write_eld = g4x_write_eld;
  7262. }
  7263. /* Default just returns -ENODEV to indicate unsupported */
  7264. dev_priv->display.queue_flip = intel_default_queue_flip;
  7265. switch (INTEL_INFO(dev)->gen) {
  7266. case 2:
  7267. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7268. break;
  7269. case 3:
  7270. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7271. break;
  7272. case 4:
  7273. case 5:
  7274. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7275. break;
  7276. case 6:
  7277. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7278. break;
  7279. case 7:
  7280. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7281. break;
  7282. }
  7283. }
  7284. /*
  7285. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7286. * resume, or other times. This quirk makes sure that's the case for
  7287. * affected systems.
  7288. */
  7289. static void quirk_pipea_force(struct drm_device *dev)
  7290. {
  7291. struct drm_i915_private *dev_priv = dev->dev_private;
  7292. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7293. DRM_INFO("applying pipe a force quirk\n");
  7294. }
  7295. /*
  7296. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7297. */
  7298. static void quirk_ssc_force_disable(struct drm_device *dev)
  7299. {
  7300. struct drm_i915_private *dev_priv = dev->dev_private;
  7301. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7302. DRM_INFO("applying lvds SSC disable quirk\n");
  7303. }
  7304. /*
  7305. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7306. * brightness value
  7307. */
  7308. static void quirk_invert_brightness(struct drm_device *dev)
  7309. {
  7310. struct drm_i915_private *dev_priv = dev->dev_private;
  7311. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7312. DRM_INFO("applying inverted panel brightness quirk\n");
  7313. }
  7314. struct intel_quirk {
  7315. int device;
  7316. int subsystem_vendor;
  7317. int subsystem_device;
  7318. void (*hook)(struct drm_device *dev);
  7319. };
  7320. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7321. struct intel_dmi_quirk {
  7322. void (*hook)(struct drm_device *dev);
  7323. const struct dmi_system_id (*dmi_id_list)[];
  7324. };
  7325. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7326. {
  7327. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7328. return 1;
  7329. }
  7330. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7331. {
  7332. .dmi_id_list = &(const struct dmi_system_id[]) {
  7333. {
  7334. .callback = intel_dmi_reverse_brightness,
  7335. .ident = "NCR Corporation",
  7336. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7337. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7338. },
  7339. },
  7340. { } /* terminating entry */
  7341. },
  7342. .hook = quirk_invert_brightness,
  7343. },
  7344. };
  7345. static struct intel_quirk intel_quirks[] = {
  7346. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7347. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7348. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7349. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7350. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7351. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7352. /* 830/845 need to leave pipe A & dpll A up */
  7353. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7354. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7355. /* Lenovo U160 cannot use SSC on LVDS */
  7356. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7357. /* Sony Vaio Y cannot use SSC on LVDS */
  7358. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7359. /* Acer Aspire 5734Z must invert backlight brightness */
  7360. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  7361. };
  7362. static void intel_init_quirks(struct drm_device *dev)
  7363. {
  7364. struct pci_dev *d = dev->pdev;
  7365. int i;
  7366. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7367. struct intel_quirk *q = &intel_quirks[i];
  7368. if (d->device == q->device &&
  7369. (d->subsystem_vendor == q->subsystem_vendor ||
  7370. q->subsystem_vendor == PCI_ANY_ID) &&
  7371. (d->subsystem_device == q->subsystem_device ||
  7372. q->subsystem_device == PCI_ANY_ID))
  7373. q->hook(dev);
  7374. }
  7375. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  7376. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  7377. intel_dmi_quirks[i].hook(dev);
  7378. }
  7379. }
  7380. /* Disable the VGA plane that we never use */
  7381. static void i915_disable_vga(struct drm_device *dev)
  7382. {
  7383. struct drm_i915_private *dev_priv = dev->dev_private;
  7384. u8 sr1;
  7385. u32 vga_reg;
  7386. if (HAS_PCH_SPLIT(dev))
  7387. vga_reg = CPU_VGACNTRL;
  7388. else
  7389. vga_reg = VGACNTRL;
  7390. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7391. outb(SR01, VGA_SR_INDEX);
  7392. sr1 = inb(VGA_SR_DATA);
  7393. outb(sr1 | 1<<5, VGA_SR_DATA);
  7394. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7395. udelay(300);
  7396. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7397. POSTING_READ(vga_reg);
  7398. }
  7399. void intel_modeset_init_hw(struct drm_device *dev)
  7400. {
  7401. /* We attempt to init the necessary power wells early in the initialization
  7402. * time, so the subsystems that expect power to be enabled can work.
  7403. */
  7404. intel_init_power_wells(dev);
  7405. intel_prepare_ddi(dev);
  7406. intel_init_clock_gating(dev);
  7407. mutex_lock(&dev->struct_mutex);
  7408. intel_enable_gt_powersave(dev);
  7409. mutex_unlock(&dev->struct_mutex);
  7410. }
  7411. void intel_modeset_init(struct drm_device *dev)
  7412. {
  7413. struct drm_i915_private *dev_priv = dev->dev_private;
  7414. int i, ret;
  7415. drm_mode_config_init(dev);
  7416. dev->mode_config.min_width = 0;
  7417. dev->mode_config.min_height = 0;
  7418. dev->mode_config.preferred_depth = 24;
  7419. dev->mode_config.prefer_shadow = 1;
  7420. dev->mode_config.funcs = &intel_mode_funcs;
  7421. intel_init_quirks(dev);
  7422. intel_init_pm(dev);
  7423. intel_init_display(dev);
  7424. if (IS_GEN2(dev)) {
  7425. dev->mode_config.max_width = 2048;
  7426. dev->mode_config.max_height = 2048;
  7427. } else if (IS_GEN3(dev)) {
  7428. dev->mode_config.max_width = 4096;
  7429. dev->mode_config.max_height = 4096;
  7430. } else {
  7431. dev->mode_config.max_width = 8192;
  7432. dev->mode_config.max_height = 8192;
  7433. }
  7434. dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
  7435. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7436. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  7437. for (i = 0; i < dev_priv->num_pipe; i++) {
  7438. intel_crtc_init(dev, i);
  7439. ret = intel_plane_init(dev, i);
  7440. if (ret)
  7441. DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
  7442. }
  7443. intel_cpu_pll_init(dev);
  7444. intel_pch_pll_init(dev);
  7445. /* Just disable it once at startup */
  7446. i915_disable_vga(dev);
  7447. intel_setup_outputs(dev);
  7448. }
  7449. static void
  7450. intel_connector_break_all_links(struct intel_connector *connector)
  7451. {
  7452. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7453. connector->base.encoder = NULL;
  7454. connector->encoder->connectors_active = false;
  7455. connector->encoder->base.crtc = NULL;
  7456. }
  7457. static void intel_enable_pipe_a(struct drm_device *dev)
  7458. {
  7459. struct intel_connector *connector;
  7460. struct drm_connector *crt = NULL;
  7461. struct intel_load_detect_pipe load_detect_temp;
  7462. /* We can't just switch on the pipe A, we need to set things up with a
  7463. * proper mode and output configuration. As a gross hack, enable pipe A
  7464. * by enabling the load detect pipe once. */
  7465. list_for_each_entry(connector,
  7466. &dev->mode_config.connector_list,
  7467. base.head) {
  7468. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  7469. crt = &connector->base;
  7470. break;
  7471. }
  7472. }
  7473. if (!crt)
  7474. return;
  7475. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  7476. intel_release_load_detect_pipe(crt, &load_detect_temp);
  7477. }
  7478. static bool
  7479. intel_check_plane_mapping(struct intel_crtc *crtc)
  7480. {
  7481. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  7482. u32 reg, val;
  7483. if (dev_priv->num_pipe == 1)
  7484. return true;
  7485. reg = DSPCNTR(!crtc->plane);
  7486. val = I915_READ(reg);
  7487. if ((val & DISPLAY_PLANE_ENABLE) &&
  7488. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  7489. return false;
  7490. return true;
  7491. }
  7492. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  7493. {
  7494. struct drm_device *dev = crtc->base.dev;
  7495. struct drm_i915_private *dev_priv = dev->dev_private;
  7496. u32 reg;
  7497. /* Clear any frame start delays used for debugging left by the BIOS */
  7498. reg = PIPECONF(crtc->cpu_transcoder);
  7499. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  7500. /* We need to sanitize the plane -> pipe mapping first because this will
  7501. * disable the crtc (and hence change the state) if it is wrong. Note
  7502. * that gen4+ has a fixed plane -> pipe mapping. */
  7503. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  7504. struct intel_connector *connector;
  7505. bool plane;
  7506. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  7507. crtc->base.base.id);
  7508. /* Pipe has the wrong plane attached and the plane is active.
  7509. * Temporarily change the plane mapping and disable everything
  7510. * ... */
  7511. plane = crtc->plane;
  7512. crtc->plane = !plane;
  7513. dev_priv->display.crtc_disable(&crtc->base);
  7514. crtc->plane = plane;
  7515. /* ... and break all links. */
  7516. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7517. base.head) {
  7518. if (connector->encoder->base.crtc != &crtc->base)
  7519. continue;
  7520. intel_connector_break_all_links(connector);
  7521. }
  7522. WARN_ON(crtc->active);
  7523. crtc->base.enabled = false;
  7524. }
  7525. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  7526. crtc->pipe == PIPE_A && !crtc->active) {
  7527. /* BIOS forgot to enable pipe A, this mostly happens after
  7528. * resume. Force-enable the pipe to fix this, the update_dpms
  7529. * call below we restore the pipe to the right state, but leave
  7530. * the required bits on. */
  7531. intel_enable_pipe_a(dev);
  7532. }
  7533. /* Adjust the state of the output pipe according to whether we
  7534. * have active connectors/encoders. */
  7535. intel_crtc_update_dpms(&crtc->base);
  7536. if (crtc->active != crtc->base.enabled) {
  7537. struct intel_encoder *encoder;
  7538. /* This can happen either due to bugs in the get_hw_state
  7539. * functions or because the pipe is force-enabled due to the
  7540. * pipe A quirk. */
  7541. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  7542. crtc->base.base.id,
  7543. crtc->base.enabled ? "enabled" : "disabled",
  7544. crtc->active ? "enabled" : "disabled");
  7545. crtc->base.enabled = crtc->active;
  7546. /* Because we only establish the connector -> encoder ->
  7547. * crtc links if something is active, this means the
  7548. * crtc is now deactivated. Break the links. connector
  7549. * -> encoder links are only establish when things are
  7550. * actually up, hence no need to break them. */
  7551. WARN_ON(crtc->active);
  7552. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  7553. WARN_ON(encoder->connectors_active);
  7554. encoder->base.crtc = NULL;
  7555. }
  7556. }
  7557. }
  7558. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  7559. {
  7560. struct intel_connector *connector;
  7561. struct drm_device *dev = encoder->base.dev;
  7562. /* We need to check both for a crtc link (meaning that the
  7563. * encoder is active and trying to read from a pipe) and the
  7564. * pipe itself being active. */
  7565. bool has_active_crtc = encoder->base.crtc &&
  7566. to_intel_crtc(encoder->base.crtc)->active;
  7567. if (encoder->connectors_active && !has_active_crtc) {
  7568. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  7569. encoder->base.base.id,
  7570. drm_get_encoder_name(&encoder->base));
  7571. /* Connector is active, but has no active pipe. This is
  7572. * fallout from our resume register restoring. Disable
  7573. * the encoder manually again. */
  7574. if (encoder->base.crtc) {
  7575. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  7576. encoder->base.base.id,
  7577. drm_get_encoder_name(&encoder->base));
  7578. encoder->disable(encoder);
  7579. }
  7580. /* Inconsistent output/port/pipe state happens presumably due to
  7581. * a bug in one of the get_hw_state functions. Or someplace else
  7582. * in our code, like the register restore mess on resume. Clamp
  7583. * things to off as a safer default. */
  7584. list_for_each_entry(connector,
  7585. &dev->mode_config.connector_list,
  7586. base.head) {
  7587. if (connector->encoder != encoder)
  7588. continue;
  7589. intel_connector_break_all_links(connector);
  7590. }
  7591. }
  7592. /* Enabled encoders without active connectors will be fixed in
  7593. * the crtc fixup. */
  7594. }
  7595. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  7596. * and i915 state tracking structures. */
  7597. void intel_modeset_setup_hw_state(struct drm_device *dev,
  7598. bool force_restore)
  7599. {
  7600. struct drm_i915_private *dev_priv = dev->dev_private;
  7601. enum pipe pipe;
  7602. u32 tmp;
  7603. struct intel_crtc *crtc;
  7604. struct intel_encoder *encoder;
  7605. struct intel_connector *connector;
  7606. if (IS_HASWELL(dev)) {
  7607. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  7608. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  7609. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  7610. case TRANS_DDI_EDP_INPUT_A_ON:
  7611. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  7612. pipe = PIPE_A;
  7613. break;
  7614. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  7615. pipe = PIPE_B;
  7616. break;
  7617. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  7618. pipe = PIPE_C;
  7619. break;
  7620. }
  7621. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7622. crtc->cpu_transcoder = TRANSCODER_EDP;
  7623. DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
  7624. pipe_name(pipe));
  7625. }
  7626. }
  7627. for_each_pipe(pipe) {
  7628. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7629. tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
  7630. if (tmp & PIPECONF_ENABLE)
  7631. crtc->active = true;
  7632. else
  7633. crtc->active = false;
  7634. crtc->base.enabled = crtc->active;
  7635. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  7636. crtc->base.base.id,
  7637. crtc->active ? "enabled" : "disabled");
  7638. }
  7639. if (IS_HASWELL(dev))
  7640. intel_ddi_setup_hw_pll_state(dev);
  7641. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7642. base.head) {
  7643. pipe = 0;
  7644. if (encoder->get_hw_state(encoder, &pipe)) {
  7645. encoder->base.crtc =
  7646. dev_priv->pipe_to_crtc_mapping[pipe];
  7647. } else {
  7648. encoder->base.crtc = NULL;
  7649. }
  7650. encoder->connectors_active = false;
  7651. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  7652. encoder->base.base.id,
  7653. drm_get_encoder_name(&encoder->base),
  7654. encoder->base.crtc ? "enabled" : "disabled",
  7655. pipe);
  7656. }
  7657. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7658. base.head) {
  7659. if (connector->get_hw_state(connector)) {
  7660. connector->base.dpms = DRM_MODE_DPMS_ON;
  7661. connector->encoder->connectors_active = true;
  7662. connector->base.encoder = &connector->encoder->base;
  7663. } else {
  7664. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7665. connector->base.encoder = NULL;
  7666. }
  7667. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  7668. connector->base.base.id,
  7669. drm_get_connector_name(&connector->base),
  7670. connector->base.encoder ? "enabled" : "disabled");
  7671. }
  7672. /* HW state is read out, now we need to sanitize this mess. */
  7673. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7674. base.head) {
  7675. intel_sanitize_encoder(encoder);
  7676. }
  7677. for_each_pipe(pipe) {
  7678. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7679. intel_sanitize_crtc(crtc);
  7680. }
  7681. if (force_restore) {
  7682. for_each_pipe(pipe) {
  7683. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7684. intel_set_mode(&crtc->base, &crtc->base.mode,
  7685. crtc->base.x, crtc->base.y, crtc->base.fb);
  7686. }
  7687. } else {
  7688. intel_modeset_update_staged_output_state(dev);
  7689. }
  7690. intel_modeset_check_state(dev);
  7691. drm_mode_config_reset(dev);
  7692. }
  7693. void intel_modeset_gem_init(struct drm_device *dev)
  7694. {
  7695. intel_modeset_init_hw(dev);
  7696. intel_setup_overlay(dev);
  7697. intel_modeset_setup_hw_state(dev, false);
  7698. }
  7699. void intel_modeset_cleanup(struct drm_device *dev)
  7700. {
  7701. struct drm_i915_private *dev_priv = dev->dev_private;
  7702. struct drm_crtc *crtc;
  7703. struct intel_crtc *intel_crtc;
  7704. drm_kms_helper_poll_fini(dev);
  7705. mutex_lock(&dev->struct_mutex);
  7706. intel_unregister_dsm_handler();
  7707. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  7708. /* Skip inactive CRTCs */
  7709. if (!crtc->fb)
  7710. continue;
  7711. intel_crtc = to_intel_crtc(crtc);
  7712. intel_increase_pllclock(crtc);
  7713. }
  7714. intel_disable_fbc(dev);
  7715. intel_disable_gt_powersave(dev);
  7716. ironlake_teardown_rc6(dev);
  7717. if (IS_VALLEYVIEW(dev))
  7718. vlv_init_dpio(dev);
  7719. mutex_unlock(&dev->struct_mutex);
  7720. /* Disable the irq before mode object teardown, for the irq might
  7721. * enqueue unpin/hotplug work. */
  7722. drm_irq_uninstall(dev);
  7723. cancel_work_sync(&dev_priv->hotplug_work);
  7724. cancel_work_sync(&dev_priv->rps.work);
  7725. /* flush any delayed tasks or pending work */
  7726. flush_scheduled_work();
  7727. drm_mode_config_cleanup(dev);
  7728. }
  7729. /*
  7730. * Return which encoder is currently attached for connector.
  7731. */
  7732. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  7733. {
  7734. return &intel_attached_encoder(connector)->base;
  7735. }
  7736. void intel_connector_attach_encoder(struct intel_connector *connector,
  7737. struct intel_encoder *encoder)
  7738. {
  7739. connector->encoder = encoder;
  7740. drm_mode_connector_attach_encoder(&connector->base,
  7741. &encoder->base);
  7742. }
  7743. /*
  7744. * set vga decode state - true == enable VGA decode
  7745. */
  7746. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  7747. {
  7748. struct drm_i915_private *dev_priv = dev->dev_private;
  7749. u16 gmch_ctrl;
  7750. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  7751. if (state)
  7752. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  7753. else
  7754. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  7755. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  7756. return 0;
  7757. }
  7758. #ifdef CONFIG_DEBUG_FS
  7759. #include <linux/seq_file.h>
  7760. struct intel_display_error_state {
  7761. struct intel_cursor_error_state {
  7762. u32 control;
  7763. u32 position;
  7764. u32 base;
  7765. u32 size;
  7766. } cursor[I915_MAX_PIPES];
  7767. struct intel_pipe_error_state {
  7768. u32 conf;
  7769. u32 source;
  7770. u32 htotal;
  7771. u32 hblank;
  7772. u32 hsync;
  7773. u32 vtotal;
  7774. u32 vblank;
  7775. u32 vsync;
  7776. } pipe[I915_MAX_PIPES];
  7777. struct intel_plane_error_state {
  7778. u32 control;
  7779. u32 stride;
  7780. u32 size;
  7781. u32 pos;
  7782. u32 addr;
  7783. u32 surface;
  7784. u32 tile_offset;
  7785. } plane[I915_MAX_PIPES];
  7786. };
  7787. struct intel_display_error_state *
  7788. intel_display_capture_error_state(struct drm_device *dev)
  7789. {
  7790. drm_i915_private_t *dev_priv = dev->dev_private;
  7791. struct intel_display_error_state *error;
  7792. enum transcoder cpu_transcoder;
  7793. int i;
  7794. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  7795. if (error == NULL)
  7796. return NULL;
  7797. for_each_pipe(i) {
  7798. cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
  7799. error->cursor[i].control = I915_READ(CURCNTR(i));
  7800. error->cursor[i].position = I915_READ(CURPOS(i));
  7801. error->cursor[i].base = I915_READ(CURBASE(i));
  7802. error->plane[i].control = I915_READ(DSPCNTR(i));
  7803. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  7804. error->plane[i].size = I915_READ(DSPSIZE(i));
  7805. error->plane[i].pos = I915_READ(DSPPOS(i));
  7806. error->plane[i].addr = I915_READ(DSPADDR(i));
  7807. if (INTEL_INFO(dev)->gen >= 4) {
  7808. error->plane[i].surface = I915_READ(DSPSURF(i));
  7809. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  7810. }
  7811. error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  7812. error->pipe[i].source = I915_READ(PIPESRC(i));
  7813. error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  7814. error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  7815. error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  7816. error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  7817. error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  7818. error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  7819. }
  7820. return error;
  7821. }
  7822. void
  7823. intel_display_print_error_state(struct seq_file *m,
  7824. struct drm_device *dev,
  7825. struct intel_display_error_state *error)
  7826. {
  7827. drm_i915_private_t *dev_priv = dev->dev_private;
  7828. int i;
  7829. seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
  7830. for_each_pipe(i) {
  7831. seq_printf(m, "Pipe [%d]:\n", i);
  7832. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  7833. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  7834. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  7835. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  7836. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  7837. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  7838. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  7839. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  7840. seq_printf(m, "Plane [%d]:\n", i);
  7841. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  7842. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  7843. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  7844. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  7845. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  7846. if (INTEL_INFO(dev)->gen >= 4) {
  7847. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  7848. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  7849. }
  7850. seq_printf(m, "Cursor [%d]:\n", i);
  7851. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  7852. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  7853. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  7854. }
  7855. }
  7856. #endif