kvm_main.c 61 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <asm/processor.h>
  45. #include <asm/io.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/pgtable.h>
  48. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  49. #include "coalesced_mmio.h"
  50. #endif
  51. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  52. #include <linux/pci.h>
  53. #include <linux/interrupt.h>
  54. #include "irq.h"
  55. #endif
  56. MODULE_AUTHOR("Qumranet");
  57. MODULE_LICENSE("GPL");
  58. /*
  59. * Ordering of locks:
  60. *
  61. * kvm->lock --> kvm->irq_lock
  62. */
  63. DEFINE_SPINLOCK(kvm_lock);
  64. LIST_HEAD(vm_list);
  65. static cpumask_var_t cpus_hardware_enabled;
  66. struct kmem_cache *kvm_vcpu_cache;
  67. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  68. static __read_mostly struct preempt_ops kvm_preempt_ops;
  69. struct dentry *kvm_debugfs_dir;
  70. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  71. unsigned long arg);
  72. static bool kvm_rebooting;
  73. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  74. static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
  75. int assigned_dev_id)
  76. {
  77. struct list_head *ptr;
  78. struct kvm_assigned_dev_kernel *match;
  79. list_for_each(ptr, head) {
  80. match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
  81. if (match->assigned_dev_id == assigned_dev_id)
  82. return match;
  83. }
  84. return NULL;
  85. }
  86. static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
  87. *assigned_dev, int irq)
  88. {
  89. int i, index;
  90. struct msix_entry *host_msix_entries;
  91. host_msix_entries = assigned_dev->host_msix_entries;
  92. index = -1;
  93. for (i = 0; i < assigned_dev->entries_nr; i++)
  94. if (irq == host_msix_entries[i].vector) {
  95. index = i;
  96. break;
  97. }
  98. if (index < 0) {
  99. printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
  100. return 0;
  101. }
  102. return index;
  103. }
  104. static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
  105. {
  106. struct kvm_assigned_dev_kernel *assigned_dev;
  107. struct kvm *kvm;
  108. int i;
  109. assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
  110. interrupt_work);
  111. kvm = assigned_dev->kvm;
  112. mutex_lock(&kvm->irq_lock);
  113. spin_lock_irq(&assigned_dev->assigned_dev_lock);
  114. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  115. struct kvm_guest_msix_entry *guest_entries =
  116. assigned_dev->guest_msix_entries;
  117. for (i = 0; i < assigned_dev->entries_nr; i++) {
  118. if (!(guest_entries[i].flags &
  119. KVM_ASSIGNED_MSIX_PENDING))
  120. continue;
  121. guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
  122. kvm_set_irq(assigned_dev->kvm,
  123. assigned_dev->irq_source_id,
  124. guest_entries[i].vector, 1);
  125. }
  126. } else
  127. kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
  128. assigned_dev->guest_irq, 1);
  129. spin_unlock_irq(&assigned_dev->assigned_dev_lock);
  130. mutex_unlock(&assigned_dev->kvm->irq_lock);
  131. }
  132. static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
  133. {
  134. unsigned long flags;
  135. struct kvm_assigned_dev_kernel *assigned_dev =
  136. (struct kvm_assigned_dev_kernel *) dev_id;
  137. spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
  138. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  139. int index = find_index_from_host_irq(assigned_dev, irq);
  140. if (index < 0)
  141. goto out;
  142. assigned_dev->guest_msix_entries[index].flags |=
  143. KVM_ASSIGNED_MSIX_PENDING;
  144. }
  145. schedule_work(&assigned_dev->interrupt_work);
  146. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_GUEST_INTX) {
  147. disable_irq_nosync(irq);
  148. assigned_dev->host_irq_disabled = true;
  149. }
  150. out:
  151. spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
  152. return IRQ_HANDLED;
  153. }
  154. /* Ack the irq line for an assigned device */
  155. static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
  156. {
  157. struct kvm_assigned_dev_kernel *dev;
  158. unsigned long flags;
  159. if (kian->gsi == -1)
  160. return;
  161. dev = container_of(kian, struct kvm_assigned_dev_kernel,
  162. ack_notifier);
  163. kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
  164. /* The guest irq may be shared so this ack may be
  165. * from another device.
  166. */
  167. spin_lock_irqsave(&dev->assigned_dev_lock, flags);
  168. if (dev->host_irq_disabled) {
  169. enable_irq(dev->host_irq);
  170. dev->host_irq_disabled = false;
  171. }
  172. spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
  173. }
  174. static void deassign_guest_irq(struct kvm *kvm,
  175. struct kvm_assigned_dev_kernel *assigned_dev)
  176. {
  177. kvm_unregister_irq_ack_notifier(kvm, &assigned_dev->ack_notifier);
  178. assigned_dev->ack_notifier.gsi = -1;
  179. if (assigned_dev->irq_source_id != -1)
  180. kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
  181. assigned_dev->irq_source_id = -1;
  182. assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
  183. }
  184. /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
  185. static void deassign_host_irq(struct kvm *kvm,
  186. struct kvm_assigned_dev_kernel *assigned_dev)
  187. {
  188. /*
  189. * In kvm_free_device_irq, cancel_work_sync return true if:
  190. * 1. work is scheduled, and then cancelled.
  191. * 2. work callback is executed.
  192. *
  193. * The first one ensured that the irq is disabled and no more events
  194. * would happen. But for the second one, the irq may be enabled (e.g.
  195. * for MSI). So we disable irq here to prevent further events.
  196. *
  197. * Notice this maybe result in nested disable if the interrupt type is
  198. * INTx, but it's OK for we are going to free it.
  199. *
  200. * If this function is a part of VM destroy, please ensure that till
  201. * now, the kvm state is still legal for probably we also have to wait
  202. * interrupt_work done.
  203. */
  204. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  205. int i;
  206. for (i = 0; i < assigned_dev->entries_nr; i++)
  207. disable_irq_nosync(assigned_dev->
  208. host_msix_entries[i].vector);
  209. cancel_work_sync(&assigned_dev->interrupt_work);
  210. for (i = 0; i < assigned_dev->entries_nr; i++)
  211. free_irq(assigned_dev->host_msix_entries[i].vector,
  212. (void *)assigned_dev);
  213. assigned_dev->entries_nr = 0;
  214. kfree(assigned_dev->host_msix_entries);
  215. kfree(assigned_dev->guest_msix_entries);
  216. pci_disable_msix(assigned_dev->dev);
  217. } else {
  218. /* Deal with MSI and INTx */
  219. disable_irq_nosync(assigned_dev->host_irq);
  220. cancel_work_sync(&assigned_dev->interrupt_work);
  221. free_irq(assigned_dev->host_irq, (void *)assigned_dev);
  222. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
  223. pci_disable_msi(assigned_dev->dev);
  224. }
  225. assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
  226. }
  227. static int kvm_deassign_irq(struct kvm *kvm,
  228. struct kvm_assigned_dev_kernel *assigned_dev,
  229. unsigned long irq_requested_type)
  230. {
  231. unsigned long guest_irq_type, host_irq_type;
  232. if (!irqchip_in_kernel(kvm))
  233. return -EINVAL;
  234. /* no irq assignment to deassign */
  235. if (!assigned_dev->irq_requested_type)
  236. return -ENXIO;
  237. host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
  238. guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
  239. if (host_irq_type)
  240. deassign_host_irq(kvm, assigned_dev);
  241. if (guest_irq_type)
  242. deassign_guest_irq(kvm, assigned_dev);
  243. return 0;
  244. }
  245. static void kvm_free_assigned_irq(struct kvm *kvm,
  246. struct kvm_assigned_dev_kernel *assigned_dev)
  247. {
  248. kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
  249. }
  250. static void kvm_free_assigned_device(struct kvm *kvm,
  251. struct kvm_assigned_dev_kernel
  252. *assigned_dev)
  253. {
  254. kvm_free_assigned_irq(kvm, assigned_dev);
  255. pci_reset_function(assigned_dev->dev);
  256. pci_release_regions(assigned_dev->dev);
  257. pci_disable_device(assigned_dev->dev);
  258. pci_dev_put(assigned_dev->dev);
  259. list_del(&assigned_dev->list);
  260. kfree(assigned_dev);
  261. }
  262. void kvm_free_all_assigned_devices(struct kvm *kvm)
  263. {
  264. struct list_head *ptr, *ptr2;
  265. struct kvm_assigned_dev_kernel *assigned_dev;
  266. list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
  267. assigned_dev = list_entry(ptr,
  268. struct kvm_assigned_dev_kernel,
  269. list);
  270. kvm_free_assigned_device(kvm, assigned_dev);
  271. }
  272. }
  273. static int assigned_device_enable_host_intx(struct kvm *kvm,
  274. struct kvm_assigned_dev_kernel *dev)
  275. {
  276. dev->host_irq = dev->dev->irq;
  277. /* Even though this is PCI, we don't want to use shared
  278. * interrupts. Sharing host devices with guest-assigned devices
  279. * on the same interrupt line is not a happy situation: there
  280. * are going to be long delays in accepting, acking, etc.
  281. */
  282. if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
  283. 0, "kvm_assigned_intx_device", (void *)dev))
  284. return -EIO;
  285. return 0;
  286. }
  287. #ifdef __KVM_HAVE_MSI
  288. static int assigned_device_enable_host_msi(struct kvm *kvm,
  289. struct kvm_assigned_dev_kernel *dev)
  290. {
  291. int r;
  292. if (!dev->dev->msi_enabled) {
  293. r = pci_enable_msi(dev->dev);
  294. if (r)
  295. return r;
  296. }
  297. dev->host_irq = dev->dev->irq;
  298. if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
  299. "kvm_assigned_msi_device", (void *)dev)) {
  300. pci_disable_msi(dev->dev);
  301. return -EIO;
  302. }
  303. return 0;
  304. }
  305. #endif
  306. #ifdef __KVM_HAVE_MSIX
  307. static int assigned_device_enable_host_msix(struct kvm *kvm,
  308. struct kvm_assigned_dev_kernel *dev)
  309. {
  310. int i, r = -EINVAL;
  311. /* host_msix_entries and guest_msix_entries should have been
  312. * initialized */
  313. if (dev->entries_nr == 0)
  314. return r;
  315. r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
  316. if (r)
  317. return r;
  318. for (i = 0; i < dev->entries_nr; i++) {
  319. r = request_irq(dev->host_msix_entries[i].vector,
  320. kvm_assigned_dev_intr, 0,
  321. "kvm_assigned_msix_device",
  322. (void *)dev);
  323. /* FIXME: free requested_irq's on failure */
  324. if (r)
  325. return r;
  326. }
  327. return 0;
  328. }
  329. #endif
  330. static int assigned_device_enable_guest_intx(struct kvm *kvm,
  331. struct kvm_assigned_dev_kernel *dev,
  332. struct kvm_assigned_irq *irq)
  333. {
  334. dev->guest_irq = irq->guest_irq;
  335. dev->ack_notifier.gsi = irq->guest_irq;
  336. return 0;
  337. }
  338. #ifdef __KVM_HAVE_MSI
  339. static int assigned_device_enable_guest_msi(struct kvm *kvm,
  340. struct kvm_assigned_dev_kernel *dev,
  341. struct kvm_assigned_irq *irq)
  342. {
  343. dev->guest_irq = irq->guest_irq;
  344. dev->ack_notifier.gsi = -1;
  345. dev->host_irq_disabled = false;
  346. return 0;
  347. }
  348. #endif
  349. #ifdef __KVM_HAVE_MSIX
  350. static int assigned_device_enable_guest_msix(struct kvm *kvm,
  351. struct kvm_assigned_dev_kernel *dev,
  352. struct kvm_assigned_irq *irq)
  353. {
  354. dev->guest_irq = irq->guest_irq;
  355. dev->ack_notifier.gsi = -1;
  356. dev->host_irq_disabled = false;
  357. return 0;
  358. }
  359. #endif
  360. static int assign_host_irq(struct kvm *kvm,
  361. struct kvm_assigned_dev_kernel *dev,
  362. __u32 host_irq_type)
  363. {
  364. int r = -EEXIST;
  365. if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
  366. return r;
  367. switch (host_irq_type) {
  368. case KVM_DEV_IRQ_HOST_INTX:
  369. r = assigned_device_enable_host_intx(kvm, dev);
  370. break;
  371. #ifdef __KVM_HAVE_MSI
  372. case KVM_DEV_IRQ_HOST_MSI:
  373. r = assigned_device_enable_host_msi(kvm, dev);
  374. break;
  375. #endif
  376. #ifdef __KVM_HAVE_MSIX
  377. case KVM_DEV_IRQ_HOST_MSIX:
  378. r = assigned_device_enable_host_msix(kvm, dev);
  379. break;
  380. #endif
  381. default:
  382. r = -EINVAL;
  383. }
  384. if (!r)
  385. dev->irq_requested_type |= host_irq_type;
  386. return r;
  387. }
  388. static int assign_guest_irq(struct kvm *kvm,
  389. struct kvm_assigned_dev_kernel *dev,
  390. struct kvm_assigned_irq *irq,
  391. unsigned long guest_irq_type)
  392. {
  393. int id;
  394. int r = -EEXIST;
  395. if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
  396. return r;
  397. id = kvm_request_irq_source_id(kvm);
  398. if (id < 0)
  399. return id;
  400. dev->irq_source_id = id;
  401. switch (guest_irq_type) {
  402. case KVM_DEV_IRQ_GUEST_INTX:
  403. r = assigned_device_enable_guest_intx(kvm, dev, irq);
  404. break;
  405. #ifdef __KVM_HAVE_MSI
  406. case KVM_DEV_IRQ_GUEST_MSI:
  407. r = assigned_device_enable_guest_msi(kvm, dev, irq);
  408. break;
  409. #endif
  410. #ifdef __KVM_HAVE_MSIX
  411. case KVM_DEV_IRQ_GUEST_MSIX:
  412. r = assigned_device_enable_guest_msix(kvm, dev, irq);
  413. break;
  414. #endif
  415. default:
  416. r = -EINVAL;
  417. }
  418. if (!r) {
  419. dev->irq_requested_type |= guest_irq_type;
  420. kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
  421. } else
  422. kvm_free_irq_source_id(kvm, dev->irq_source_id);
  423. return r;
  424. }
  425. /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
  426. static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
  427. struct kvm_assigned_irq *assigned_irq)
  428. {
  429. int r = -EINVAL;
  430. struct kvm_assigned_dev_kernel *match;
  431. unsigned long host_irq_type, guest_irq_type;
  432. if (!capable(CAP_SYS_RAWIO))
  433. return -EPERM;
  434. if (!irqchip_in_kernel(kvm))
  435. return r;
  436. mutex_lock(&kvm->lock);
  437. r = -ENODEV;
  438. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  439. assigned_irq->assigned_dev_id);
  440. if (!match)
  441. goto out;
  442. host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
  443. guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
  444. r = -EINVAL;
  445. /* can only assign one type at a time */
  446. if (hweight_long(host_irq_type) > 1)
  447. goto out;
  448. if (hweight_long(guest_irq_type) > 1)
  449. goto out;
  450. if (host_irq_type == 0 && guest_irq_type == 0)
  451. goto out;
  452. r = 0;
  453. if (host_irq_type)
  454. r = assign_host_irq(kvm, match, host_irq_type);
  455. if (r)
  456. goto out;
  457. if (guest_irq_type)
  458. r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
  459. out:
  460. mutex_unlock(&kvm->lock);
  461. return r;
  462. }
  463. static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
  464. struct kvm_assigned_irq
  465. *assigned_irq)
  466. {
  467. int r = -ENODEV;
  468. struct kvm_assigned_dev_kernel *match;
  469. mutex_lock(&kvm->lock);
  470. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  471. assigned_irq->assigned_dev_id);
  472. if (!match)
  473. goto out;
  474. r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
  475. out:
  476. mutex_unlock(&kvm->lock);
  477. return r;
  478. }
  479. static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
  480. struct kvm_assigned_pci_dev *assigned_dev)
  481. {
  482. int r = 0;
  483. struct kvm_assigned_dev_kernel *match;
  484. struct pci_dev *dev;
  485. down_read(&kvm->slots_lock);
  486. mutex_lock(&kvm->lock);
  487. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  488. assigned_dev->assigned_dev_id);
  489. if (match) {
  490. /* device already assigned */
  491. r = -EEXIST;
  492. goto out;
  493. }
  494. match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
  495. if (match == NULL) {
  496. printk(KERN_INFO "%s: Couldn't allocate memory\n",
  497. __func__);
  498. r = -ENOMEM;
  499. goto out;
  500. }
  501. dev = pci_get_bus_and_slot(assigned_dev->busnr,
  502. assigned_dev->devfn);
  503. if (!dev) {
  504. printk(KERN_INFO "%s: host device not found\n", __func__);
  505. r = -EINVAL;
  506. goto out_free;
  507. }
  508. if (pci_enable_device(dev)) {
  509. printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
  510. r = -EBUSY;
  511. goto out_put;
  512. }
  513. r = pci_request_regions(dev, "kvm_assigned_device");
  514. if (r) {
  515. printk(KERN_INFO "%s: Could not get access to device regions\n",
  516. __func__);
  517. goto out_disable;
  518. }
  519. pci_reset_function(dev);
  520. match->assigned_dev_id = assigned_dev->assigned_dev_id;
  521. match->host_busnr = assigned_dev->busnr;
  522. match->host_devfn = assigned_dev->devfn;
  523. match->flags = assigned_dev->flags;
  524. match->dev = dev;
  525. spin_lock_init(&match->assigned_dev_lock);
  526. match->irq_source_id = -1;
  527. match->kvm = kvm;
  528. match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
  529. INIT_WORK(&match->interrupt_work,
  530. kvm_assigned_dev_interrupt_work_handler);
  531. list_add(&match->list, &kvm->arch.assigned_dev_head);
  532. if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
  533. if (!kvm->arch.iommu_domain) {
  534. r = kvm_iommu_map_guest(kvm);
  535. if (r)
  536. goto out_list_del;
  537. }
  538. r = kvm_assign_device(kvm, match);
  539. if (r)
  540. goto out_list_del;
  541. }
  542. out:
  543. mutex_unlock(&kvm->lock);
  544. up_read(&kvm->slots_lock);
  545. return r;
  546. out_list_del:
  547. list_del(&match->list);
  548. pci_release_regions(dev);
  549. out_disable:
  550. pci_disable_device(dev);
  551. out_put:
  552. pci_dev_put(dev);
  553. out_free:
  554. kfree(match);
  555. mutex_unlock(&kvm->lock);
  556. up_read(&kvm->slots_lock);
  557. return r;
  558. }
  559. #endif
  560. #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
  561. static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
  562. struct kvm_assigned_pci_dev *assigned_dev)
  563. {
  564. int r = 0;
  565. struct kvm_assigned_dev_kernel *match;
  566. mutex_lock(&kvm->lock);
  567. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  568. assigned_dev->assigned_dev_id);
  569. if (!match) {
  570. printk(KERN_INFO "%s: device hasn't been assigned before, "
  571. "so cannot be deassigned\n", __func__);
  572. r = -EINVAL;
  573. goto out;
  574. }
  575. if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
  576. kvm_deassign_device(kvm, match);
  577. kvm_free_assigned_device(kvm, match);
  578. out:
  579. mutex_unlock(&kvm->lock);
  580. return r;
  581. }
  582. #endif
  583. inline int kvm_is_mmio_pfn(pfn_t pfn)
  584. {
  585. if (pfn_valid(pfn)) {
  586. struct page *page = compound_head(pfn_to_page(pfn));
  587. return PageReserved(page);
  588. }
  589. return true;
  590. }
  591. /*
  592. * Switches to specified vcpu, until a matching vcpu_put()
  593. */
  594. void vcpu_load(struct kvm_vcpu *vcpu)
  595. {
  596. int cpu;
  597. mutex_lock(&vcpu->mutex);
  598. cpu = get_cpu();
  599. preempt_notifier_register(&vcpu->preempt_notifier);
  600. kvm_arch_vcpu_load(vcpu, cpu);
  601. put_cpu();
  602. }
  603. void vcpu_put(struct kvm_vcpu *vcpu)
  604. {
  605. preempt_disable();
  606. kvm_arch_vcpu_put(vcpu);
  607. preempt_notifier_unregister(&vcpu->preempt_notifier);
  608. preempt_enable();
  609. mutex_unlock(&vcpu->mutex);
  610. }
  611. static void ack_flush(void *_completed)
  612. {
  613. }
  614. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  615. {
  616. int i, cpu, me;
  617. cpumask_var_t cpus;
  618. bool called = true;
  619. struct kvm_vcpu *vcpu;
  620. if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
  621. cpumask_clear(cpus);
  622. me = get_cpu();
  623. spin_lock(&kvm->requests_lock);
  624. kvm_for_each_vcpu(i, vcpu, kvm) {
  625. if (test_and_set_bit(req, &vcpu->requests))
  626. continue;
  627. cpu = vcpu->cpu;
  628. if (cpus != NULL && cpu != -1 && cpu != me)
  629. cpumask_set_cpu(cpu, cpus);
  630. }
  631. if (unlikely(cpus == NULL))
  632. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  633. else if (!cpumask_empty(cpus))
  634. smp_call_function_many(cpus, ack_flush, NULL, 1);
  635. else
  636. called = false;
  637. spin_unlock(&kvm->requests_lock);
  638. put_cpu();
  639. free_cpumask_var(cpus);
  640. return called;
  641. }
  642. void kvm_flush_remote_tlbs(struct kvm *kvm)
  643. {
  644. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  645. ++kvm->stat.remote_tlb_flush;
  646. }
  647. void kvm_reload_remote_mmus(struct kvm *kvm)
  648. {
  649. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  650. }
  651. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  652. {
  653. struct page *page;
  654. int r;
  655. mutex_init(&vcpu->mutex);
  656. vcpu->cpu = -1;
  657. vcpu->kvm = kvm;
  658. vcpu->vcpu_id = id;
  659. init_waitqueue_head(&vcpu->wq);
  660. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  661. if (!page) {
  662. r = -ENOMEM;
  663. goto fail;
  664. }
  665. vcpu->run = page_address(page);
  666. r = kvm_arch_vcpu_init(vcpu);
  667. if (r < 0)
  668. goto fail_free_run;
  669. return 0;
  670. fail_free_run:
  671. free_page((unsigned long)vcpu->run);
  672. fail:
  673. return r;
  674. }
  675. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  676. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  677. {
  678. kvm_arch_vcpu_uninit(vcpu);
  679. free_page((unsigned long)vcpu->run);
  680. }
  681. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  682. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  683. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  684. {
  685. return container_of(mn, struct kvm, mmu_notifier);
  686. }
  687. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  688. struct mm_struct *mm,
  689. unsigned long address)
  690. {
  691. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  692. int need_tlb_flush;
  693. /*
  694. * When ->invalidate_page runs, the linux pte has been zapped
  695. * already but the page is still allocated until
  696. * ->invalidate_page returns. So if we increase the sequence
  697. * here the kvm page fault will notice if the spte can't be
  698. * established because the page is going to be freed. If
  699. * instead the kvm page fault establishes the spte before
  700. * ->invalidate_page runs, kvm_unmap_hva will release it
  701. * before returning.
  702. *
  703. * The sequence increase only need to be seen at spin_unlock
  704. * time, and not at spin_lock time.
  705. *
  706. * Increasing the sequence after the spin_unlock would be
  707. * unsafe because the kvm page fault could then establish the
  708. * pte after kvm_unmap_hva returned, without noticing the page
  709. * is going to be freed.
  710. */
  711. spin_lock(&kvm->mmu_lock);
  712. kvm->mmu_notifier_seq++;
  713. need_tlb_flush = kvm_unmap_hva(kvm, address);
  714. spin_unlock(&kvm->mmu_lock);
  715. /* we've to flush the tlb before the pages can be freed */
  716. if (need_tlb_flush)
  717. kvm_flush_remote_tlbs(kvm);
  718. }
  719. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  720. struct mm_struct *mm,
  721. unsigned long start,
  722. unsigned long end)
  723. {
  724. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  725. int need_tlb_flush = 0;
  726. spin_lock(&kvm->mmu_lock);
  727. /*
  728. * The count increase must become visible at unlock time as no
  729. * spte can be established without taking the mmu_lock and
  730. * count is also read inside the mmu_lock critical section.
  731. */
  732. kvm->mmu_notifier_count++;
  733. for (; start < end; start += PAGE_SIZE)
  734. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  735. spin_unlock(&kvm->mmu_lock);
  736. /* we've to flush the tlb before the pages can be freed */
  737. if (need_tlb_flush)
  738. kvm_flush_remote_tlbs(kvm);
  739. }
  740. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  741. struct mm_struct *mm,
  742. unsigned long start,
  743. unsigned long end)
  744. {
  745. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  746. spin_lock(&kvm->mmu_lock);
  747. /*
  748. * This sequence increase will notify the kvm page fault that
  749. * the page that is going to be mapped in the spte could have
  750. * been freed.
  751. */
  752. kvm->mmu_notifier_seq++;
  753. /*
  754. * The above sequence increase must be visible before the
  755. * below count decrease but both values are read by the kvm
  756. * page fault under mmu_lock spinlock so we don't need to add
  757. * a smb_wmb() here in between the two.
  758. */
  759. kvm->mmu_notifier_count--;
  760. spin_unlock(&kvm->mmu_lock);
  761. BUG_ON(kvm->mmu_notifier_count < 0);
  762. }
  763. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  764. struct mm_struct *mm,
  765. unsigned long address)
  766. {
  767. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  768. int young;
  769. spin_lock(&kvm->mmu_lock);
  770. young = kvm_age_hva(kvm, address);
  771. spin_unlock(&kvm->mmu_lock);
  772. if (young)
  773. kvm_flush_remote_tlbs(kvm);
  774. return young;
  775. }
  776. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  777. struct mm_struct *mm)
  778. {
  779. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  780. kvm_arch_flush_shadow(kvm);
  781. }
  782. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  783. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  784. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  785. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  786. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  787. .release = kvm_mmu_notifier_release,
  788. };
  789. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  790. static struct kvm *kvm_create_vm(void)
  791. {
  792. struct kvm *kvm = kvm_arch_create_vm();
  793. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  794. struct page *page;
  795. #endif
  796. if (IS_ERR(kvm))
  797. goto out;
  798. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  799. INIT_LIST_HEAD(&kvm->irq_routing);
  800. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  801. #endif
  802. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  803. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  804. if (!page) {
  805. kfree(kvm);
  806. return ERR_PTR(-ENOMEM);
  807. }
  808. kvm->coalesced_mmio_ring =
  809. (struct kvm_coalesced_mmio_ring *)page_address(page);
  810. #endif
  811. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  812. {
  813. int err;
  814. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  815. err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  816. if (err) {
  817. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  818. put_page(page);
  819. #endif
  820. kfree(kvm);
  821. return ERR_PTR(err);
  822. }
  823. }
  824. #endif
  825. kvm->mm = current->mm;
  826. atomic_inc(&kvm->mm->mm_count);
  827. spin_lock_init(&kvm->mmu_lock);
  828. spin_lock_init(&kvm->requests_lock);
  829. kvm_io_bus_init(&kvm->pio_bus);
  830. kvm_irqfd_init(kvm);
  831. mutex_init(&kvm->lock);
  832. mutex_init(&kvm->irq_lock);
  833. kvm_io_bus_init(&kvm->mmio_bus);
  834. init_rwsem(&kvm->slots_lock);
  835. atomic_set(&kvm->users_count, 1);
  836. spin_lock(&kvm_lock);
  837. list_add(&kvm->vm_list, &vm_list);
  838. spin_unlock(&kvm_lock);
  839. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  840. kvm_coalesced_mmio_init(kvm);
  841. #endif
  842. out:
  843. return kvm;
  844. }
  845. /*
  846. * Free any memory in @free but not in @dont.
  847. */
  848. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  849. struct kvm_memory_slot *dont)
  850. {
  851. if (!dont || free->rmap != dont->rmap)
  852. vfree(free->rmap);
  853. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  854. vfree(free->dirty_bitmap);
  855. if (!dont || free->lpage_info != dont->lpage_info)
  856. vfree(free->lpage_info);
  857. free->npages = 0;
  858. free->dirty_bitmap = NULL;
  859. free->rmap = NULL;
  860. free->lpage_info = NULL;
  861. }
  862. void kvm_free_physmem(struct kvm *kvm)
  863. {
  864. int i;
  865. for (i = 0; i < kvm->nmemslots; ++i)
  866. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  867. }
  868. static void kvm_destroy_vm(struct kvm *kvm)
  869. {
  870. struct mm_struct *mm = kvm->mm;
  871. kvm_arch_sync_events(kvm);
  872. spin_lock(&kvm_lock);
  873. list_del(&kvm->vm_list);
  874. spin_unlock(&kvm_lock);
  875. kvm_free_irq_routing(kvm);
  876. kvm_io_bus_destroy(&kvm->pio_bus);
  877. kvm_io_bus_destroy(&kvm->mmio_bus);
  878. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  879. if (kvm->coalesced_mmio_ring != NULL)
  880. free_page((unsigned long)kvm->coalesced_mmio_ring);
  881. #endif
  882. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  883. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  884. #else
  885. kvm_arch_flush_shadow(kvm);
  886. #endif
  887. kvm_arch_destroy_vm(kvm);
  888. mmdrop(mm);
  889. }
  890. void kvm_get_kvm(struct kvm *kvm)
  891. {
  892. atomic_inc(&kvm->users_count);
  893. }
  894. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  895. void kvm_put_kvm(struct kvm *kvm)
  896. {
  897. if (atomic_dec_and_test(&kvm->users_count))
  898. kvm_destroy_vm(kvm);
  899. }
  900. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  901. static int kvm_vm_release(struct inode *inode, struct file *filp)
  902. {
  903. struct kvm *kvm = filp->private_data;
  904. kvm_irqfd_release(kvm);
  905. kvm_put_kvm(kvm);
  906. return 0;
  907. }
  908. /*
  909. * Allocate some memory and give it an address in the guest physical address
  910. * space.
  911. *
  912. * Discontiguous memory is allowed, mostly for framebuffers.
  913. *
  914. * Must be called holding mmap_sem for write.
  915. */
  916. int __kvm_set_memory_region(struct kvm *kvm,
  917. struct kvm_userspace_memory_region *mem,
  918. int user_alloc)
  919. {
  920. int r;
  921. gfn_t base_gfn;
  922. unsigned long npages, ugfn;
  923. unsigned long largepages, i;
  924. struct kvm_memory_slot *memslot;
  925. struct kvm_memory_slot old, new;
  926. r = -EINVAL;
  927. /* General sanity checks */
  928. if (mem->memory_size & (PAGE_SIZE - 1))
  929. goto out;
  930. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  931. goto out;
  932. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  933. goto out;
  934. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  935. goto out;
  936. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  937. goto out;
  938. memslot = &kvm->memslots[mem->slot];
  939. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  940. npages = mem->memory_size >> PAGE_SHIFT;
  941. if (!npages)
  942. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  943. new = old = *memslot;
  944. new.base_gfn = base_gfn;
  945. new.npages = npages;
  946. new.flags = mem->flags;
  947. /* Disallow changing a memory slot's size. */
  948. r = -EINVAL;
  949. if (npages && old.npages && npages != old.npages)
  950. goto out_free;
  951. /* Check for overlaps */
  952. r = -EEXIST;
  953. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  954. struct kvm_memory_slot *s = &kvm->memslots[i];
  955. if (s == memslot || !s->npages)
  956. continue;
  957. if (!((base_gfn + npages <= s->base_gfn) ||
  958. (base_gfn >= s->base_gfn + s->npages)))
  959. goto out_free;
  960. }
  961. /* Free page dirty bitmap if unneeded */
  962. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  963. new.dirty_bitmap = NULL;
  964. r = -ENOMEM;
  965. /* Allocate if a slot is being created */
  966. #ifndef CONFIG_S390
  967. if (npages && !new.rmap) {
  968. new.rmap = vmalloc(npages * sizeof(struct page *));
  969. if (!new.rmap)
  970. goto out_free;
  971. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  972. new.user_alloc = user_alloc;
  973. /*
  974. * hva_to_rmmap() serialzies with the mmu_lock and to be
  975. * safe it has to ignore memslots with !user_alloc &&
  976. * !userspace_addr.
  977. */
  978. if (user_alloc)
  979. new.userspace_addr = mem->userspace_addr;
  980. else
  981. new.userspace_addr = 0;
  982. }
  983. if (npages && !new.lpage_info) {
  984. largepages = 1 + (base_gfn + npages - 1) / KVM_PAGES_PER_HPAGE;
  985. largepages -= base_gfn / KVM_PAGES_PER_HPAGE;
  986. new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
  987. if (!new.lpage_info)
  988. goto out_free;
  989. memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
  990. if (base_gfn % KVM_PAGES_PER_HPAGE)
  991. new.lpage_info[0].write_count = 1;
  992. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
  993. new.lpage_info[largepages-1].write_count = 1;
  994. ugfn = new.userspace_addr >> PAGE_SHIFT;
  995. /*
  996. * If the gfn and userspace address are not aligned wrt each
  997. * other, disable large page support for this slot
  998. */
  999. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE - 1))
  1000. for (i = 0; i < largepages; ++i)
  1001. new.lpage_info[i].write_count = 1;
  1002. }
  1003. /* Allocate page dirty bitmap if needed */
  1004. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  1005. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  1006. new.dirty_bitmap = vmalloc(dirty_bytes);
  1007. if (!new.dirty_bitmap)
  1008. goto out_free;
  1009. memset(new.dirty_bitmap, 0, dirty_bytes);
  1010. if (old.npages)
  1011. kvm_arch_flush_shadow(kvm);
  1012. }
  1013. #endif /* not defined CONFIG_S390 */
  1014. if (!npages)
  1015. kvm_arch_flush_shadow(kvm);
  1016. spin_lock(&kvm->mmu_lock);
  1017. if (mem->slot >= kvm->nmemslots)
  1018. kvm->nmemslots = mem->slot + 1;
  1019. *memslot = new;
  1020. spin_unlock(&kvm->mmu_lock);
  1021. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  1022. if (r) {
  1023. spin_lock(&kvm->mmu_lock);
  1024. *memslot = old;
  1025. spin_unlock(&kvm->mmu_lock);
  1026. goto out_free;
  1027. }
  1028. kvm_free_physmem_slot(&old, npages ? &new : NULL);
  1029. /* Slot deletion case: we have to update the current slot */
  1030. spin_lock(&kvm->mmu_lock);
  1031. if (!npages)
  1032. *memslot = old;
  1033. spin_unlock(&kvm->mmu_lock);
  1034. #ifdef CONFIG_DMAR
  1035. /* map the pages in iommu page table */
  1036. r = kvm_iommu_map_pages(kvm, base_gfn, npages);
  1037. if (r)
  1038. goto out;
  1039. #endif
  1040. return 0;
  1041. out_free:
  1042. kvm_free_physmem_slot(&new, &old);
  1043. out:
  1044. return r;
  1045. }
  1046. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  1047. int kvm_set_memory_region(struct kvm *kvm,
  1048. struct kvm_userspace_memory_region *mem,
  1049. int user_alloc)
  1050. {
  1051. int r;
  1052. down_write(&kvm->slots_lock);
  1053. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  1054. up_write(&kvm->slots_lock);
  1055. return r;
  1056. }
  1057. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  1058. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  1059. struct
  1060. kvm_userspace_memory_region *mem,
  1061. int user_alloc)
  1062. {
  1063. if (mem->slot >= KVM_MEMORY_SLOTS)
  1064. return -EINVAL;
  1065. return kvm_set_memory_region(kvm, mem, user_alloc);
  1066. }
  1067. int kvm_get_dirty_log(struct kvm *kvm,
  1068. struct kvm_dirty_log *log, int *is_dirty)
  1069. {
  1070. struct kvm_memory_slot *memslot;
  1071. int r, i;
  1072. int n;
  1073. unsigned long any = 0;
  1074. r = -EINVAL;
  1075. if (log->slot >= KVM_MEMORY_SLOTS)
  1076. goto out;
  1077. memslot = &kvm->memslots[log->slot];
  1078. r = -ENOENT;
  1079. if (!memslot->dirty_bitmap)
  1080. goto out;
  1081. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1082. for (i = 0; !any && i < n/sizeof(long); ++i)
  1083. any = memslot->dirty_bitmap[i];
  1084. r = -EFAULT;
  1085. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  1086. goto out;
  1087. if (any)
  1088. *is_dirty = 1;
  1089. r = 0;
  1090. out:
  1091. return r;
  1092. }
  1093. int is_error_page(struct page *page)
  1094. {
  1095. return page == bad_page;
  1096. }
  1097. EXPORT_SYMBOL_GPL(is_error_page);
  1098. int is_error_pfn(pfn_t pfn)
  1099. {
  1100. return pfn == bad_pfn;
  1101. }
  1102. EXPORT_SYMBOL_GPL(is_error_pfn);
  1103. static inline unsigned long bad_hva(void)
  1104. {
  1105. return PAGE_OFFSET;
  1106. }
  1107. int kvm_is_error_hva(unsigned long addr)
  1108. {
  1109. return addr == bad_hva();
  1110. }
  1111. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  1112. struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
  1113. {
  1114. int i;
  1115. for (i = 0; i < kvm->nmemslots; ++i) {
  1116. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  1117. if (gfn >= memslot->base_gfn
  1118. && gfn < memslot->base_gfn + memslot->npages)
  1119. return memslot;
  1120. }
  1121. return NULL;
  1122. }
  1123. EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
  1124. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  1125. {
  1126. gfn = unalias_gfn(kvm, gfn);
  1127. return gfn_to_memslot_unaliased(kvm, gfn);
  1128. }
  1129. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  1130. {
  1131. int i;
  1132. gfn = unalias_gfn(kvm, gfn);
  1133. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1134. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  1135. if (gfn >= memslot->base_gfn
  1136. && gfn < memslot->base_gfn + memslot->npages)
  1137. return 1;
  1138. }
  1139. return 0;
  1140. }
  1141. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  1142. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  1143. {
  1144. struct kvm_memory_slot *slot;
  1145. gfn = unalias_gfn(kvm, gfn);
  1146. slot = gfn_to_memslot_unaliased(kvm, gfn);
  1147. if (!slot)
  1148. return bad_hva();
  1149. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  1150. }
  1151. EXPORT_SYMBOL_GPL(gfn_to_hva);
  1152. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  1153. {
  1154. struct page *page[1];
  1155. unsigned long addr;
  1156. int npages;
  1157. pfn_t pfn;
  1158. might_sleep();
  1159. addr = gfn_to_hva(kvm, gfn);
  1160. if (kvm_is_error_hva(addr)) {
  1161. get_page(bad_page);
  1162. return page_to_pfn(bad_page);
  1163. }
  1164. npages = get_user_pages_fast(addr, 1, 1, page);
  1165. if (unlikely(npages != 1)) {
  1166. struct vm_area_struct *vma;
  1167. down_read(&current->mm->mmap_sem);
  1168. vma = find_vma(current->mm, addr);
  1169. if (vma == NULL || addr < vma->vm_start ||
  1170. !(vma->vm_flags & VM_PFNMAP)) {
  1171. up_read(&current->mm->mmap_sem);
  1172. get_page(bad_page);
  1173. return page_to_pfn(bad_page);
  1174. }
  1175. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1176. up_read(&current->mm->mmap_sem);
  1177. BUG_ON(!kvm_is_mmio_pfn(pfn));
  1178. } else
  1179. pfn = page_to_pfn(page[0]);
  1180. return pfn;
  1181. }
  1182. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  1183. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  1184. {
  1185. pfn_t pfn;
  1186. pfn = gfn_to_pfn(kvm, gfn);
  1187. if (!kvm_is_mmio_pfn(pfn))
  1188. return pfn_to_page(pfn);
  1189. WARN_ON(kvm_is_mmio_pfn(pfn));
  1190. get_page(bad_page);
  1191. return bad_page;
  1192. }
  1193. EXPORT_SYMBOL_GPL(gfn_to_page);
  1194. void kvm_release_page_clean(struct page *page)
  1195. {
  1196. kvm_release_pfn_clean(page_to_pfn(page));
  1197. }
  1198. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1199. void kvm_release_pfn_clean(pfn_t pfn)
  1200. {
  1201. if (!kvm_is_mmio_pfn(pfn))
  1202. put_page(pfn_to_page(pfn));
  1203. }
  1204. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1205. void kvm_release_page_dirty(struct page *page)
  1206. {
  1207. kvm_release_pfn_dirty(page_to_pfn(page));
  1208. }
  1209. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1210. void kvm_release_pfn_dirty(pfn_t pfn)
  1211. {
  1212. kvm_set_pfn_dirty(pfn);
  1213. kvm_release_pfn_clean(pfn);
  1214. }
  1215. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1216. void kvm_set_page_dirty(struct page *page)
  1217. {
  1218. kvm_set_pfn_dirty(page_to_pfn(page));
  1219. }
  1220. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1221. void kvm_set_pfn_dirty(pfn_t pfn)
  1222. {
  1223. if (!kvm_is_mmio_pfn(pfn)) {
  1224. struct page *page = pfn_to_page(pfn);
  1225. if (!PageReserved(page))
  1226. SetPageDirty(page);
  1227. }
  1228. }
  1229. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1230. void kvm_set_pfn_accessed(pfn_t pfn)
  1231. {
  1232. if (!kvm_is_mmio_pfn(pfn))
  1233. mark_page_accessed(pfn_to_page(pfn));
  1234. }
  1235. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1236. void kvm_get_pfn(pfn_t pfn)
  1237. {
  1238. if (!kvm_is_mmio_pfn(pfn))
  1239. get_page(pfn_to_page(pfn));
  1240. }
  1241. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1242. static int next_segment(unsigned long len, int offset)
  1243. {
  1244. if (len > PAGE_SIZE - offset)
  1245. return PAGE_SIZE - offset;
  1246. else
  1247. return len;
  1248. }
  1249. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1250. int len)
  1251. {
  1252. int r;
  1253. unsigned long addr;
  1254. addr = gfn_to_hva(kvm, gfn);
  1255. if (kvm_is_error_hva(addr))
  1256. return -EFAULT;
  1257. r = copy_from_user(data, (void __user *)addr + offset, len);
  1258. if (r)
  1259. return -EFAULT;
  1260. return 0;
  1261. }
  1262. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1263. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1264. {
  1265. gfn_t gfn = gpa >> PAGE_SHIFT;
  1266. int seg;
  1267. int offset = offset_in_page(gpa);
  1268. int ret;
  1269. while ((seg = next_segment(len, offset)) != 0) {
  1270. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1271. if (ret < 0)
  1272. return ret;
  1273. offset = 0;
  1274. len -= seg;
  1275. data += seg;
  1276. ++gfn;
  1277. }
  1278. return 0;
  1279. }
  1280. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1281. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1282. unsigned long len)
  1283. {
  1284. int r;
  1285. unsigned long addr;
  1286. gfn_t gfn = gpa >> PAGE_SHIFT;
  1287. int offset = offset_in_page(gpa);
  1288. addr = gfn_to_hva(kvm, gfn);
  1289. if (kvm_is_error_hva(addr))
  1290. return -EFAULT;
  1291. pagefault_disable();
  1292. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1293. pagefault_enable();
  1294. if (r)
  1295. return -EFAULT;
  1296. return 0;
  1297. }
  1298. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1299. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1300. int offset, int len)
  1301. {
  1302. int r;
  1303. unsigned long addr;
  1304. addr = gfn_to_hva(kvm, gfn);
  1305. if (kvm_is_error_hva(addr))
  1306. return -EFAULT;
  1307. r = copy_to_user((void __user *)addr + offset, data, len);
  1308. if (r)
  1309. return -EFAULT;
  1310. mark_page_dirty(kvm, gfn);
  1311. return 0;
  1312. }
  1313. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1314. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1315. unsigned long len)
  1316. {
  1317. gfn_t gfn = gpa >> PAGE_SHIFT;
  1318. int seg;
  1319. int offset = offset_in_page(gpa);
  1320. int ret;
  1321. while ((seg = next_segment(len, offset)) != 0) {
  1322. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1323. if (ret < 0)
  1324. return ret;
  1325. offset = 0;
  1326. len -= seg;
  1327. data += seg;
  1328. ++gfn;
  1329. }
  1330. return 0;
  1331. }
  1332. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1333. {
  1334. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  1335. }
  1336. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1337. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1338. {
  1339. gfn_t gfn = gpa >> PAGE_SHIFT;
  1340. int seg;
  1341. int offset = offset_in_page(gpa);
  1342. int ret;
  1343. while ((seg = next_segment(len, offset)) != 0) {
  1344. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1345. if (ret < 0)
  1346. return ret;
  1347. offset = 0;
  1348. len -= seg;
  1349. ++gfn;
  1350. }
  1351. return 0;
  1352. }
  1353. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1354. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1355. {
  1356. struct kvm_memory_slot *memslot;
  1357. gfn = unalias_gfn(kvm, gfn);
  1358. memslot = gfn_to_memslot_unaliased(kvm, gfn);
  1359. if (memslot && memslot->dirty_bitmap) {
  1360. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1361. /* avoid RMW */
  1362. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  1363. set_bit(rel_gfn, memslot->dirty_bitmap);
  1364. }
  1365. }
  1366. /*
  1367. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1368. */
  1369. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1370. {
  1371. DEFINE_WAIT(wait);
  1372. for (;;) {
  1373. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1374. if ((kvm_arch_interrupt_allowed(vcpu) &&
  1375. kvm_cpu_has_interrupt(vcpu)) ||
  1376. kvm_arch_vcpu_runnable(vcpu)) {
  1377. set_bit(KVM_REQ_UNHALT, &vcpu->requests);
  1378. break;
  1379. }
  1380. if (kvm_cpu_has_pending_timer(vcpu))
  1381. break;
  1382. if (signal_pending(current))
  1383. break;
  1384. vcpu_put(vcpu);
  1385. schedule();
  1386. vcpu_load(vcpu);
  1387. }
  1388. finish_wait(&vcpu->wq, &wait);
  1389. }
  1390. void kvm_resched(struct kvm_vcpu *vcpu)
  1391. {
  1392. if (!need_resched())
  1393. return;
  1394. cond_resched();
  1395. }
  1396. EXPORT_SYMBOL_GPL(kvm_resched);
  1397. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1398. {
  1399. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1400. struct page *page;
  1401. if (vmf->pgoff == 0)
  1402. page = virt_to_page(vcpu->run);
  1403. #ifdef CONFIG_X86
  1404. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1405. page = virt_to_page(vcpu->arch.pio_data);
  1406. #endif
  1407. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1408. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1409. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1410. #endif
  1411. else
  1412. return VM_FAULT_SIGBUS;
  1413. get_page(page);
  1414. vmf->page = page;
  1415. return 0;
  1416. }
  1417. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1418. .fault = kvm_vcpu_fault,
  1419. };
  1420. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1421. {
  1422. vma->vm_ops = &kvm_vcpu_vm_ops;
  1423. return 0;
  1424. }
  1425. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1426. {
  1427. struct kvm_vcpu *vcpu = filp->private_data;
  1428. kvm_put_kvm(vcpu->kvm);
  1429. return 0;
  1430. }
  1431. static struct file_operations kvm_vcpu_fops = {
  1432. .release = kvm_vcpu_release,
  1433. .unlocked_ioctl = kvm_vcpu_ioctl,
  1434. .compat_ioctl = kvm_vcpu_ioctl,
  1435. .mmap = kvm_vcpu_mmap,
  1436. };
  1437. /*
  1438. * Allocates an inode for the vcpu.
  1439. */
  1440. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1441. {
  1442. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
  1443. }
  1444. /*
  1445. * Creates some virtual cpus. Good luck creating more than one.
  1446. */
  1447. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1448. {
  1449. int r;
  1450. struct kvm_vcpu *vcpu, *v;
  1451. vcpu = kvm_arch_vcpu_create(kvm, id);
  1452. if (IS_ERR(vcpu))
  1453. return PTR_ERR(vcpu);
  1454. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1455. r = kvm_arch_vcpu_setup(vcpu);
  1456. if (r)
  1457. return r;
  1458. mutex_lock(&kvm->lock);
  1459. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1460. r = -EINVAL;
  1461. goto vcpu_destroy;
  1462. }
  1463. kvm_for_each_vcpu(r, v, kvm)
  1464. if (v->vcpu_id == id) {
  1465. r = -EEXIST;
  1466. goto vcpu_destroy;
  1467. }
  1468. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1469. /* Now it's all set up, let userspace reach it */
  1470. kvm_get_kvm(kvm);
  1471. r = create_vcpu_fd(vcpu);
  1472. if (r < 0) {
  1473. kvm_put_kvm(kvm);
  1474. goto vcpu_destroy;
  1475. }
  1476. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1477. smp_wmb();
  1478. atomic_inc(&kvm->online_vcpus);
  1479. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1480. if (kvm->bsp_vcpu_id == id)
  1481. kvm->bsp_vcpu = vcpu;
  1482. #endif
  1483. mutex_unlock(&kvm->lock);
  1484. return r;
  1485. vcpu_destroy:
  1486. mutex_unlock(&kvm->lock);
  1487. kvm_arch_vcpu_destroy(vcpu);
  1488. return r;
  1489. }
  1490. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1491. {
  1492. if (sigset) {
  1493. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1494. vcpu->sigset_active = 1;
  1495. vcpu->sigset = *sigset;
  1496. } else
  1497. vcpu->sigset_active = 0;
  1498. return 0;
  1499. }
  1500. #ifdef __KVM_HAVE_MSIX
  1501. static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
  1502. struct kvm_assigned_msix_nr *entry_nr)
  1503. {
  1504. int r = 0;
  1505. struct kvm_assigned_dev_kernel *adev;
  1506. mutex_lock(&kvm->lock);
  1507. adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  1508. entry_nr->assigned_dev_id);
  1509. if (!adev) {
  1510. r = -EINVAL;
  1511. goto msix_nr_out;
  1512. }
  1513. if (adev->entries_nr == 0) {
  1514. adev->entries_nr = entry_nr->entry_nr;
  1515. if (adev->entries_nr == 0 ||
  1516. adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
  1517. r = -EINVAL;
  1518. goto msix_nr_out;
  1519. }
  1520. adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
  1521. entry_nr->entry_nr,
  1522. GFP_KERNEL);
  1523. if (!adev->host_msix_entries) {
  1524. r = -ENOMEM;
  1525. goto msix_nr_out;
  1526. }
  1527. adev->guest_msix_entries = kzalloc(
  1528. sizeof(struct kvm_guest_msix_entry) *
  1529. entry_nr->entry_nr, GFP_KERNEL);
  1530. if (!adev->guest_msix_entries) {
  1531. kfree(adev->host_msix_entries);
  1532. r = -ENOMEM;
  1533. goto msix_nr_out;
  1534. }
  1535. } else /* Not allowed set MSI-X number twice */
  1536. r = -EINVAL;
  1537. msix_nr_out:
  1538. mutex_unlock(&kvm->lock);
  1539. return r;
  1540. }
  1541. static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
  1542. struct kvm_assigned_msix_entry *entry)
  1543. {
  1544. int r = 0, i;
  1545. struct kvm_assigned_dev_kernel *adev;
  1546. mutex_lock(&kvm->lock);
  1547. adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  1548. entry->assigned_dev_id);
  1549. if (!adev) {
  1550. r = -EINVAL;
  1551. goto msix_entry_out;
  1552. }
  1553. for (i = 0; i < adev->entries_nr; i++)
  1554. if (adev->guest_msix_entries[i].vector == 0 ||
  1555. adev->guest_msix_entries[i].entry == entry->entry) {
  1556. adev->guest_msix_entries[i].entry = entry->entry;
  1557. adev->guest_msix_entries[i].vector = entry->gsi;
  1558. adev->host_msix_entries[i].entry = entry->entry;
  1559. break;
  1560. }
  1561. if (i == adev->entries_nr) {
  1562. r = -ENOSPC;
  1563. goto msix_entry_out;
  1564. }
  1565. msix_entry_out:
  1566. mutex_unlock(&kvm->lock);
  1567. return r;
  1568. }
  1569. #endif
  1570. static long kvm_vcpu_ioctl(struct file *filp,
  1571. unsigned int ioctl, unsigned long arg)
  1572. {
  1573. struct kvm_vcpu *vcpu = filp->private_data;
  1574. void __user *argp = (void __user *)arg;
  1575. int r;
  1576. struct kvm_fpu *fpu = NULL;
  1577. struct kvm_sregs *kvm_sregs = NULL;
  1578. if (vcpu->kvm->mm != current->mm)
  1579. return -EIO;
  1580. switch (ioctl) {
  1581. case KVM_RUN:
  1582. r = -EINVAL;
  1583. if (arg)
  1584. goto out;
  1585. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1586. break;
  1587. case KVM_GET_REGS: {
  1588. struct kvm_regs *kvm_regs;
  1589. r = -ENOMEM;
  1590. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1591. if (!kvm_regs)
  1592. goto out;
  1593. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1594. if (r)
  1595. goto out_free1;
  1596. r = -EFAULT;
  1597. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1598. goto out_free1;
  1599. r = 0;
  1600. out_free1:
  1601. kfree(kvm_regs);
  1602. break;
  1603. }
  1604. case KVM_SET_REGS: {
  1605. struct kvm_regs *kvm_regs;
  1606. r = -ENOMEM;
  1607. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1608. if (!kvm_regs)
  1609. goto out;
  1610. r = -EFAULT;
  1611. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1612. goto out_free2;
  1613. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1614. if (r)
  1615. goto out_free2;
  1616. r = 0;
  1617. out_free2:
  1618. kfree(kvm_regs);
  1619. break;
  1620. }
  1621. case KVM_GET_SREGS: {
  1622. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1623. r = -ENOMEM;
  1624. if (!kvm_sregs)
  1625. goto out;
  1626. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1627. if (r)
  1628. goto out;
  1629. r = -EFAULT;
  1630. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1631. goto out;
  1632. r = 0;
  1633. break;
  1634. }
  1635. case KVM_SET_SREGS: {
  1636. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1637. r = -ENOMEM;
  1638. if (!kvm_sregs)
  1639. goto out;
  1640. r = -EFAULT;
  1641. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1642. goto out;
  1643. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1644. if (r)
  1645. goto out;
  1646. r = 0;
  1647. break;
  1648. }
  1649. case KVM_GET_MP_STATE: {
  1650. struct kvm_mp_state mp_state;
  1651. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1652. if (r)
  1653. goto out;
  1654. r = -EFAULT;
  1655. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1656. goto out;
  1657. r = 0;
  1658. break;
  1659. }
  1660. case KVM_SET_MP_STATE: {
  1661. struct kvm_mp_state mp_state;
  1662. r = -EFAULT;
  1663. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1664. goto out;
  1665. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1666. if (r)
  1667. goto out;
  1668. r = 0;
  1669. break;
  1670. }
  1671. case KVM_TRANSLATE: {
  1672. struct kvm_translation tr;
  1673. r = -EFAULT;
  1674. if (copy_from_user(&tr, argp, sizeof tr))
  1675. goto out;
  1676. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1677. if (r)
  1678. goto out;
  1679. r = -EFAULT;
  1680. if (copy_to_user(argp, &tr, sizeof tr))
  1681. goto out;
  1682. r = 0;
  1683. break;
  1684. }
  1685. case KVM_SET_GUEST_DEBUG: {
  1686. struct kvm_guest_debug dbg;
  1687. r = -EFAULT;
  1688. if (copy_from_user(&dbg, argp, sizeof dbg))
  1689. goto out;
  1690. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1691. if (r)
  1692. goto out;
  1693. r = 0;
  1694. break;
  1695. }
  1696. case KVM_SET_SIGNAL_MASK: {
  1697. struct kvm_signal_mask __user *sigmask_arg = argp;
  1698. struct kvm_signal_mask kvm_sigmask;
  1699. sigset_t sigset, *p;
  1700. p = NULL;
  1701. if (argp) {
  1702. r = -EFAULT;
  1703. if (copy_from_user(&kvm_sigmask, argp,
  1704. sizeof kvm_sigmask))
  1705. goto out;
  1706. r = -EINVAL;
  1707. if (kvm_sigmask.len != sizeof sigset)
  1708. goto out;
  1709. r = -EFAULT;
  1710. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1711. sizeof sigset))
  1712. goto out;
  1713. p = &sigset;
  1714. }
  1715. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1716. break;
  1717. }
  1718. case KVM_GET_FPU: {
  1719. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1720. r = -ENOMEM;
  1721. if (!fpu)
  1722. goto out;
  1723. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1724. if (r)
  1725. goto out;
  1726. r = -EFAULT;
  1727. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1728. goto out;
  1729. r = 0;
  1730. break;
  1731. }
  1732. case KVM_SET_FPU: {
  1733. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1734. r = -ENOMEM;
  1735. if (!fpu)
  1736. goto out;
  1737. r = -EFAULT;
  1738. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1739. goto out;
  1740. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1741. if (r)
  1742. goto out;
  1743. r = 0;
  1744. break;
  1745. }
  1746. default:
  1747. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1748. }
  1749. out:
  1750. kfree(fpu);
  1751. kfree(kvm_sregs);
  1752. return r;
  1753. }
  1754. static long kvm_vm_ioctl(struct file *filp,
  1755. unsigned int ioctl, unsigned long arg)
  1756. {
  1757. struct kvm *kvm = filp->private_data;
  1758. void __user *argp = (void __user *)arg;
  1759. int r;
  1760. if (kvm->mm != current->mm)
  1761. return -EIO;
  1762. switch (ioctl) {
  1763. case KVM_CREATE_VCPU:
  1764. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1765. if (r < 0)
  1766. goto out;
  1767. break;
  1768. case KVM_SET_USER_MEMORY_REGION: {
  1769. struct kvm_userspace_memory_region kvm_userspace_mem;
  1770. r = -EFAULT;
  1771. if (copy_from_user(&kvm_userspace_mem, argp,
  1772. sizeof kvm_userspace_mem))
  1773. goto out;
  1774. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1775. if (r)
  1776. goto out;
  1777. break;
  1778. }
  1779. case KVM_GET_DIRTY_LOG: {
  1780. struct kvm_dirty_log log;
  1781. r = -EFAULT;
  1782. if (copy_from_user(&log, argp, sizeof log))
  1783. goto out;
  1784. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1785. if (r)
  1786. goto out;
  1787. break;
  1788. }
  1789. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1790. case KVM_REGISTER_COALESCED_MMIO: {
  1791. struct kvm_coalesced_mmio_zone zone;
  1792. r = -EFAULT;
  1793. if (copy_from_user(&zone, argp, sizeof zone))
  1794. goto out;
  1795. r = -ENXIO;
  1796. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1797. if (r)
  1798. goto out;
  1799. r = 0;
  1800. break;
  1801. }
  1802. case KVM_UNREGISTER_COALESCED_MMIO: {
  1803. struct kvm_coalesced_mmio_zone zone;
  1804. r = -EFAULT;
  1805. if (copy_from_user(&zone, argp, sizeof zone))
  1806. goto out;
  1807. r = -ENXIO;
  1808. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1809. if (r)
  1810. goto out;
  1811. r = 0;
  1812. break;
  1813. }
  1814. #endif
  1815. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1816. case KVM_ASSIGN_PCI_DEVICE: {
  1817. struct kvm_assigned_pci_dev assigned_dev;
  1818. r = -EFAULT;
  1819. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1820. goto out;
  1821. r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
  1822. if (r)
  1823. goto out;
  1824. break;
  1825. }
  1826. case KVM_ASSIGN_IRQ: {
  1827. r = -EOPNOTSUPP;
  1828. break;
  1829. }
  1830. #ifdef KVM_CAP_ASSIGN_DEV_IRQ
  1831. case KVM_ASSIGN_DEV_IRQ: {
  1832. struct kvm_assigned_irq assigned_irq;
  1833. r = -EFAULT;
  1834. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1835. goto out;
  1836. r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
  1837. if (r)
  1838. goto out;
  1839. break;
  1840. }
  1841. case KVM_DEASSIGN_DEV_IRQ: {
  1842. struct kvm_assigned_irq assigned_irq;
  1843. r = -EFAULT;
  1844. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1845. goto out;
  1846. r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
  1847. if (r)
  1848. goto out;
  1849. break;
  1850. }
  1851. #endif
  1852. #endif
  1853. #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
  1854. case KVM_DEASSIGN_PCI_DEVICE: {
  1855. struct kvm_assigned_pci_dev assigned_dev;
  1856. r = -EFAULT;
  1857. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1858. goto out;
  1859. r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
  1860. if (r)
  1861. goto out;
  1862. break;
  1863. }
  1864. #endif
  1865. #ifdef KVM_CAP_IRQ_ROUTING
  1866. case KVM_SET_GSI_ROUTING: {
  1867. struct kvm_irq_routing routing;
  1868. struct kvm_irq_routing __user *urouting;
  1869. struct kvm_irq_routing_entry *entries;
  1870. r = -EFAULT;
  1871. if (copy_from_user(&routing, argp, sizeof(routing)))
  1872. goto out;
  1873. r = -EINVAL;
  1874. if (routing.nr >= KVM_MAX_IRQ_ROUTES)
  1875. goto out;
  1876. if (routing.flags)
  1877. goto out;
  1878. r = -ENOMEM;
  1879. entries = vmalloc(routing.nr * sizeof(*entries));
  1880. if (!entries)
  1881. goto out;
  1882. r = -EFAULT;
  1883. urouting = argp;
  1884. if (copy_from_user(entries, urouting->entries,
  1885. routing.nr * sizeof(*entries)))
  1886. goto out_free_irq_routing;
  1887. r = kvm_set_irq_routing(kvm, entries, routing.nr,
  1888. routing.flags);
  1889. out_free_irq_routing:
  1890. vfree(entries);
  1891. break;
  1892. }
  1893. #ifdef __KVM_HAVE_MSIX
  1894. case KVM_ASSIGN_SET_MSIX_NR: {
  1895. struct kvm_assigned_msix_nr entry_nr;
  1896. r = -EFAULT;
  1897. if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
  1898. goto out;
  1899. r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
  1900. if (r)
  1901. goto out;
  1902. break;
  1903. }
  1904. case KVM_ASSIGN_SET_MSIX_ENTRY: {
  1905. struct kvm_assigned_msix_entry entry;
  1906. r = -EFAULT;
  1907. if (copy_from_user(&entry, argp, sizeof entry))
  1908. goto out;
  1909. r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
  1910. if (r)
  1911. goto out;
  1912. break;
  1913. }
  1914. #endif
  1915. #endif /* KVM_CAP_IRQ_ROUTING */
  1916. case KVM_IRQFD: {
  1917. struct kvm_irqfd data;
  1918. r = -EFAULT;
  1919. if (copy_from_user(&data, argp, sizeof data))
  1920. goto out;
  1921. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1922. break;
  1923. }
  1924. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1925. case KVM_SET_BOOT_CPU_ID:
  1926. r = 0;
  1927. if (atomic_read(&kvm->online_vcpus) != 0)
  1928. r = -EBUSY;
  1929. else
  1930. kvm->bsp_vcpu_id = arg;
  1931. break;
  1932. #endif
  1933. default:
  1934. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1935. }
  1936. out:
  1937. return r;
  1938. }
  1939. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1940. {
  1941. struct page *page[1];
  1942. unsigned long addr;
  1943. int npages;
  1944. gfn_t gfn = vmf->pgoff;
  1945. struct kvm *kvm = vma->vm_file->private_data;
  1946. addr = gfn_to_hva(kvm, gfn);
  1947. if (kvm_is_error_hva(addr))
  1948. return VM_FAULT_SIGBUS;
  1949. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1950. NULL);
  1951. if (unlikely(npages != 1))
  1952. return VM_FAULT_SIGBUS;
  1953. vmf->page = page[0];
  1954. return 0;
  1955. }
  1956. static struct vm_operations_struct kvm_vm_vm_ops = {
  1957. .fault = kvm_vm_fault,
  1958. };
  1959. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1960. {
  1961. vma->vm_ops = &kvm_vm_vm_ops;
  1962. return 0;
  1963. }
  1964. static struct file_operations kvm_vm_fops = {
  1965. .release = kvm_vm_release,
  1966. .unlocked_ioctl = kvm_vm_ioctl,
  1967. .compat_ioctl = kvm_vm_ioctl,
  1968. .mmap = kvm_vm_mmap,
  1969. };
  1970. static int kvm_dev_ioctl_create_vm(void)
  1971. {
  1972. int fd;
  1973. struct kvm *kvm;
  1974. kvm = kvm_create_vm();
  1975. if (IS_ERR(kvm))
  1976. return PTR_ERR(kvm);
  1977. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
  1978. if (fd < 0)
  1979. kvm_put_kvm(kvm);
  1980. return fd;
  1981. }
  1982. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1983. {
  1984. switch (arg) {
  1985. case KVM_CAP_USER_MEMORY:
  1986. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1987. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1988. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1989. case KVM_CAP_SET_BOOT_CPU_ID:
  1990. #endif
  1991. return 1;
  1992. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1993. case KVM_CAP_IRQ_ROUTING:
  1994. return KVM_MAX_IRQ_ROUTES;
  1995. #endif
  1996. default:
  1997. break;
  1998. }
  1999. return kvm_dev_ioctl_check_extension(arg);
  2000. }
  2001. static long kvm_dev_ioctl(struct file *filp,
  2002. unsigned int ioctl, unsigned long arg)
  2003. {
  2004. long r = -EINVAL;
  2005. switch (ioctl) {
  2006. case KVM_GET_API_VERSION:
  2007. r = -EINVAL;
  2008. if (arg)
  2009. goto out;
  2010. r = KVM_API_VERSION;
  2011. break;
  2012. case KVM_CREATE_VM:
  2013. r = -EINVAL;
  2014. if (arg)
  2015. goto out;
  2016. r = kvm_dev_ioctl_create_vm();
  2017. break;
  2018. case KVM_CHECK_EXTENSION:
  2019. r = kvm_dev_ioctl_check_extension_generic(arg);
  2020. break;
  2021. case KVM_GET_VCPU_MMAP_SIZE:
  2022. r = -EINVAL;
  2023. if (arg)
  2024. goto out;
  2025. r = PAGE_SIZE; /* struct kvm_run */
  2026. #ifdef CONFIG_X86
  2027. r += PAGE_SIZE; /* pio data page */
  2028. #endif
  2029. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  2030. r += PAGE_SIZE; /* coalesced mmio ring page */
  2031. #endif
  2032. break;
  2033. case KVM_TRACE_ENABLE:
  2034. case KVM_TRACE_PAUSE:
  2035. case KVM_TRACE_DISABLE:
  2036. r = kvm_trace_ioctl(ioctl, arg);
  2037. break;
  2038. default:
  2039. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  2040. }
  2041. out:
  2042. return r;
  2043. }
  2044. static struct file_operations kvm_chardev_ops = {
  2045. .unlocked_ioctl = kvm_dev_ioctl,
  2046. .compat_ioctl = kvm_dev_ioctl,
  2047. };
  2048. static struct miscdevice kvm_dev = {
  2049. KVM_MINOR,
  2050. "kvm",
  2051. &kvm_chardev_ops,
  2052. };
  2053. static void hardware_enable(void *junk)
  2054. {
  2055. int cpu = raw_smp_processor_id();
  2056. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2057. return;
  2058. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  2059. kvm_arch_hardware_enable(NULL);
  2060. }
  2061. static void hardware_disable(void *junk)
  2062. {
  2063. int cpu = raw_smp_processor_id();
  2064. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2065. return;
  2066. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  2067. kvm_arch_hardware_disable(NULL);
  2068. }
  2069. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2070. void *v)
  2071. {
  2072. int cpu = (long)v;
  2073. val &= ~CPU_TASKS_FROZEN;
  2074. switch (val) {
  2075. case CPU_DYING:
  2076. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2077. cpu);
  2078. hardware_disable(NULL);
  2079. break;
  2080. case CPU_UP_CANCELED:
  2081. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2082. cpu);
  2083. smp_call_function_single(cpu, hardware_disable, NULL, 1);
  2084. break;
  2085. case CPU_ONLINE:
  2086. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2087. cpu);
  2088. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  2089. break;
  2090. }
  2091. return NOTIFY_OK;
  2092. }
  2093. asmlinkage void kvm_handle_fault_on_reboot(void)
  2094. {
  2095. if (kvm_rebooting)
  2096. /* spin while reset goes on */
  2097. while (true)
  2098. ;
  2099. /* Fault while not rebooting. We want the trace. */
  2100. BUG();
  2101. }
  2102. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  2103. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2104. void *v)
  2105. {
  2106. /*
  2107. * Some (well, at least mine) BIOSes hang on reboot if
  2108. * in vmx root mode.
  2109. *
  2110. * And Intel TXT required VMX off for all cpu when system shutdown.
  2111. */
  2112. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2113. kvm_rebooting = true;
  2114. on_each_cpu(hardware_disable, NULL, 1);
  2115. return NOTIFY_OK;
  2116. }
  2117. static struct notifier_block kvm_reboot_notifier = {
  2118. .notifier_call = kvm_reboot,
  2119. .priority = 0,
  2120. };
  2121. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2122. {
  2123. memset(bus, 0, sizeof(*bus));
  2124. }
  2125. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2126. {
  2127. int i;
  2128. for (i = 0; i < bus->dev_count; i++) {
  2129. struct kvm_io_device *pos = bus->devs[i];
  2130. kvm_iodevice_destructor(pos);
  2131. }
  2132. }
  2133. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
  2134. gpa_t addr, int len, int is_write)
  2135. {
  2136. int i;
  2137. for (i = 0; i < bus->dev_count; i++) {
  2138. struct kvm_io_device *pos = bus->devs[i];
  2139. if (kvm_iodevice_in_range(pos, addr, len, is_write))
  2140. return pos;
  2141. }
  2142. return NULL;
  2143. }
  2144. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2145. {
  2146. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2147. bus->devs[bus->dev_count++] = dev;
  2148. }
  2149. static struct notifier_block kvm_cpu_notifier = {
  2150. .notifier_call = kvm_cpu_hotplug,
  2151. .priority = 20, /* must be > scheduler priority */
  2152. };
  2153. static int vm_stat_get(void *_offset, u64 *val)
  2154. {
  2155. unsigned offset = (long)_offset;
  2156. struct kvm *kvm;
  2157. *val = 0;
  2158. spin_lock(&kvm_lock);
  2159. list_for_each_entry(kvm, &vm_list, vm_list)
  2160. *val += *(u32 *)((void *)kvm + offset);
  2161. spin_unlock(&kvm_lock);
  2162. return 0;
  2163. }
  2164. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  2165. static int vcpu_stat_get(void *_offset, u64 *val)
  2166. {
  2167. unsigned offset = (long)_offset;
  2168. struct kvm *kvm;
  2169. struct kvm_vcpu *vcpu;
  2170. int i;
  2171. *val = 0;
  2172. spin_lock(&kvm_lock);
  2173. list_for_each_entry(kvm, &vm_list, vm_list)
  2174. kvm_for_each_vcpu(i, vcpu, kvm)
  2175. *val += *(u32 *)((void *)vcpu + offset);
  2176. spin_unlock(&kvm_lock);
  2177. return 0;
  2178. }
  2179. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2180. static struct file_operations *stat_fops[] = {
  2181. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2182. [KVM_STAT_VM] = &vm_stat_fops,
  2183. };
  2184. static void kvm_init_debug(void)
  2185. {
  2186. struct kvm_stats_debugfs_item *p;
  2187. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2188. for (p = debugfs_entries; p->name; ++p)
  2189. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2190. (void *)(long)p->offset,
  2191. stat_fops[p->kind]);
  2192. }
  2193. static void kvm_exit_debug(void)
  2194. {
  2195. struct kvm_stats_debugfs_item *p;
  2196. for (p = debugfs_entries; p->name; ++p)
  2197. debugfs_remove(p->dentry);
  2198. debugfs_remove(kvm_debugfs_dir);
  2199. }
  2200. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2201. {
  2202. hardware_disable(NULL);
  2203. return 0;
  2204. }
  2205. static int kvm_resume(struct sys_device *dev)
  2206. {
  2207. hardware_enable(NULL);
  2208. return 0;
  2209. }
  2210. static struct sysdev_class kvm_sysdev_class = {
  2211. .name = "kvm",
  2212. .suspend = kvm_suspend,
  2213. .resume = kvm_resume,
  2214. };
  2215. static struct sys_device kvm_sysdev = {
  2216. .id = 0,
  2217. .cls = &kvm_sysdev_class,
  2218. };
  2219. struct page *bad_page;
  2220. pfn_t bad_pfn;
  2221. static inline
  2222. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2223. {
  2224. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2225. }
  2226. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2227. {
  2228. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2229. kvm_arch_vcpu_load(vcpu, cpu);
  2230. }
  2231. static void kvm_sched_out(struct preempt_notifier *pn,
  2232. struct task_struct *next)
  2233. {
  2234. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2235. kvm_arch_vcpu_put(vcpu);
  2236. }
  2237. int kvm_init(void *opaque, unsigned int vcpu_size,
  2238. struct module *module)
  2239. {
  2240. int r;
  2241. int cpu;
  2242. kvm_init_debug();
  2243. r = kvm_arch_init(opaque);
  2244. if (r)
  2245. goto out_fail;
  2246. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2247. if (bad_page == NULL) {
  2248. r = -ENOMEM;
  2249. goto out;
  2250. }
  2251. bad_pfn = page_to_pfn(bad_page);
  2252. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2253. r = -ENOMEM;
  2254. goto out_free_0;
  2255. }
  2256. r = kvm_arch_hardware_setup();
  2257. if (r < 0)
  2258. goto out_free_0a;
  2259. for_each_online_cpu(cpu) {
  2260. smp_call_function_single(cpu,
  2261. kvm_arch_check_processor_compat,
  2262. &r, 1);
  2263. if (r < 0)
  2264. goto out_free_1;
  2265. }
  2266. on_each_cpu(hardware_enable, NULL, 1);
  2267. r = register_cpu_notifier(&kvm_cpu_notifier);
  2268. if (r)
  2269. goto out_free_2;
  2270. register_reboot_notifier(&kvm_reboot_notifier);
  2271. r = sysdev_class_register(&kvm_sysdev_class);
  2272. if (r)
  2273. goto out_free_3;
  2274. r = sysdev_register(&kvm_sysdev);
  2275. if (r)
  2276. goto out_free_4;
  2277. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2278. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2279. __alignof__(struct kvm_vcpu),
  2280. 0, NULL);
  2281. if (!kvm_vcpu_cache) {
  2282. r = -ENOMEM;
  2283. goto out_free_5;
  2284. }
  2285. kvm_chardev_ops.owner = module;
  2286. kvm_vm_fops.owner = module;
  2287. kvm_vcpu_fops.owner = module;
  2288. r = misc_register(&kvm_dev);
  2289. if (r) {
  2290. printk(KERN_ERR "kvm: misc device register failed\n");
  2291. goto out_free;
  2292. }
  2293. kvm_preempt_ops.sched_in = kvm_sched_in;
  2294. kvm_preempt_ops.sched_out = kvm_sched_out;
  2295. return 0;
  2296. out_free:
  2297. kmem_cache_destroy(kvm_vcpu_cache);
  2298. out_free_5:
  2299. sysdev_unregister(&kvm_sysdev);
  2300. out_free_4:
  2301. sysdev_class_unregister(&kvm_sysdev_class);
  2302. out_free_3:
  2303. unregister_reboot_notifier(&kvm_reboot_notifier);
  2304. unregister_cpu_notifier(&kvm_cpu_notifier);
  2305. out_free_2:
  2306. on_each_cpu(hardware_disable, NULL, 1);
  2307. out_free_1:
  2308. kvm_arch_hardware_unsetup();
  2309. out_free_0a:
  2310. free_cpumask_var(cpus_hardware_enabled);
  2311. out_free_0:
  2312. __free_page(bad_page);
  2313. out:
  2314. kvm_arch_exit();
  2315. kvm_exit_debug();
  2316. out_fail:
  2317. return r;
  2318. }
  2319. EXPORT_SYMBOL_GPL(kvm_init);
  2320. void kvm_exit(void)
  2321. {
  2322. kvm_trace_cleanup();
  2323. misc_deregister(&kvm_dev);
  2324. kmem_cache_destroy(kvm_vcpu_cache);
  2325. sysdev_unregister(&kvm_sysdev);
  2326. sysdev_class_unregister(&kvm_sysdev_class);
  2327. unregister_reboot_notifier(&kvm_reboot_notifier);
  2328. unregister_cpu_notifier(&kvm_cpu_notifier);
  2329. on_each_cpu(hardware_disable, NULL, 1);
  2330. kvm_arch_hardware_unsetup();
  2331. kvm_arch_exit();
  2332. kvm_exit_debug();
  2333. free_cpumask_var(cpus_hardware_enabled);
  2334. __free_page(bad_page);
  2335. }
  2336. EXPORT_SYMBOL_GPL(kvm_exit);