x86.c 116 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <asm/uaccess.h>
  39. #include <asm/msr.h>
  40. #include <asm/desc.h>
  41. #include <asm/mtrr.h>
  42. #include <asm/mce.h>
  43. #define MAX_IO_MSRS 256
  44. #define CR0_RESERVED_BITS \
  45. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  46. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  47. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  48. #define CR4_RESERVED_BITS \
  49. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  50. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  51. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  52. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  53. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  54. #define KVM_MAX_MCE_BANKS 32
  55. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  56. /* EFER defaults:
  57. * - enable syscall per default because its emulated by KVM
  58. * - enable LME and LMA per default on 64 bit KVM
  59. */
  60. #ifdef CONFIG_X86_64
  61. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  62. #else
  63. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  64. #endif
  65. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  66. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  67. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  68. struct kvm_cpuid_entry2 __user *entries);
  69. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  70. u32 function, u32 index);
  71. struct kvm_x86_ops *kvm_x86_ops;
  72. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  73. struct kvm_stats_debugfs_item debugfs_entries[] = {
  74. { "pf_fixed", VCPU_STAT(pf_fixed) },
  75. { "pf_guest", VCPU_STAT(pf_guest) },
  76. { "tlb_flush", VCPU_STAT(tlb_flush) },
  77. { "invlpg", VCPU_STAT(invlpg) },
  78. { "exits", VCPU_STAT(exits) },
  79. { "io_exits", VCPU_STAT(io_exits) },
  80. { "mmio_exits", VCPU_STAT(mmio_exits) },
  81. { "signal_exits", VCPU_STAT(signal_exits) },
  82. { "irq_window", VCPU_STAT(irq_window_exits) },
  83. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  84. { "halt_exits", VCPU_STAT(halt_exits) },
  85. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  86. { "hypercalls", VCPU_STAT(hypercalls) },
  87. { "request_irq", VCPU_STAT(request_irq_exits) },
  88. { "irq_exits", VCPU_STAT(irq_exits) },
  89. { "host_state_reload", VCPU_STAT(host_state_reload) },
  90. { "efer_reload", VCPU_STAT(efer_reload) },
  91. { "fpu_reload", VCPU_STAT(fpu_reload) },
  92. { "insn_emulation", VCPU_STAT(insn_emulation) },
  93. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  94. { "irq_injections", VCPU_STAT(irq_injections) },
  95. { "nmi_injections", VCPU_STAT(nmi_injections) },
  96. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  97. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  98. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  99. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  100. { "mmu_flooded", VM_STAT(mmu_flooded) },
  101. { "mmu_recycled", VM_STAT(mmu_recycled) },
  102. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  103. { "mmu_unsync", VM_STAT(mmu_unsync) },
  104. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  105. { "largepages", VM_STAT(lpages) },
  106. { NULL }
  107. };
  108. unsigned long segment_base(u16 selector)
  109. {
  110. struct descriptor_table gdt;
  111. struct desc_struct *d;
  112. unsigned long table_base;
  113. unsigned long v;
  114. if (selector == 0)
  115. return 0;
  116. asm("sgdt %0" : "=m"(gdt));
  117. table_base = gdt.base;
  118. if (selector & 4) { /* from ldt */
  119. u16 ldt_selector;
  120. asm("sldt %0" : "=g"(ldt_selector));
  121. table_base = segment_base(ldt_selector);
  122. }
  123. d = (struct desc_struct *)(table_base + (selector & ~7));
  124. v = d->base0 | ((unsigned long)d->base1 << 16) |
  125. ((unsigned long)d->base2 << 24);
  126. #ifdef CONFIG_X86_64
  127. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  128. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  129. #endif
  130. return v;
  131. }
  132. EXPORT_SYMBOL_GPL(segment_base);
  133. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  134. {
  135. if (irqchip_in_kernel(vcpu->kvm))
  136. return vcpu->arch.apic_base;
  137. else
  138. return vcpu->arch.apic_base;
  139. }
  140. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  141. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  142. {
  143. /* TODO: reserve bits check */
  144. if (irqchip_in_kernel(vcpu->kvm))
  145. kvm_lapic_set_base(vcpu, data);
  146. else
  147. vcpu->arch.apic_base = data;
  148. }
  149. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  150. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  151. {
  152. WARN_ON(vcpu->arch.exception.pending);
  153. vcpu->arch.exception.pending = true;
  154. vcpu->arch.exception.has_error_code = false;
  155. vcpu->arch.exception.nr = nr;
  156. }
  157. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  158. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  159. u32 error_code)
  160. {
  161. ++vcpu->stat.pf_guest;
  162. if (vcpu->arch.exception.pending) {
  163. if (vcpu->arch.exception.nr == PF_VECTOR) {
  164. printk(KERN_DEBUG "kvm: inject_page_fault:"
  165. " double fault 0x%lx\n", addr);
  166. vcpu->arch.exception.nr = DF_VECTOR;
  167. vcpu->arch.exception.error_code = 0;
  168. } else if (vcpu->arch.exception.nr == DF_VECTOR) {
  169. /* triple fault -> shutdown */
  170. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  171. }
  172. return;
  173. }
  174. vcpu->arch.cr2 = addr;
  175. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  176. }
  177. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  178. {
  179. vcpu->arch.nmi_pending = 1;
  180. }
  181. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  182. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  183. {
  184. WARN_ON(vcpu->arch.exception.pending);
  185. vcpu->arch.exception.pending = true;
  186. vcpu->arch.exception.has_error_code = true;
  187. vcpu->arch.exception.nr = nr;
  188. vcpu->arch.exception.error_code = error_code;
  189. }
  190. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  191. static void __queue_exception(struct kvm_vcpu *vcpu)
  192. {
  193. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  194. vcpu->arch.exception.has_error_code,
  195. vcpu->arch.exception.error_code);
  196. }
  197. /*
  198. * Load the pae pdptrs. Return true is they are all valid.
  199. */
  200. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  201. {
  202. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  203. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  204. int i;
  205. int ret;
  206. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  207. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  208. offset * sizeof(u64), sizeof(pdpte));
  209. if (ret < 0) {
  210. ret = 0;
  211. goto out;
  212. }
  213. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  214. if (is_present_gpte(pdpte[i]) &&
  215. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  216. ret = 0;
  217. goto out;
  218. }
  219. }
  220. ret = 1;
  221. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  222. __set_bit(VCPU_EXREG_PDPTR,
  223. (unsigned long *)&vcpu->arch.regs_avail);
  224. __set_bit(VCPU_EXREG_PDPTR,
  225. (unsigned long *)&vcpu->arch.regs_dirty);
  226. out:
  227. return ret;
  228. }
  229. EXPORT_SYMBOL_GPL(load_pdptrs);
  230. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  231. {
  232. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  233. bool changed = true;
  234. int r;
  235. if (is_long_mode(vcpu) || !is_pae(vcpu))
  236. return false;
  237. if (!test_bit(VCPU_EXREG_PDPTR,
  238. (unsigned long *)&vcpu->arch.regs_avail))
  239. return true;
  240. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  241. if (r < 0)
  242. goto out;
  243. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  244. out:
  245. return changed;
  246. }
  247. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  248. {
  249. if (cr0 & CR0_RESERVED_BITS) {
  250. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  251. cr0, vcpu->arch.cr0);
  252. kvm_inject_gp(vcpu, 0);
  253. return;
  254. }
  255. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  256. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  257. kvm_inject_gp(vcpu, 0);
  258. return;
  259. }
  260. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  261. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  262. "and a clear PE flag\n");
  263. kvm_inject_gp(vcpu, 0);
  264. return;
  265. }
  266. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  267. #ifdef CONFIG_X86_64
  268. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  269. int cs_db, cs_l;
  270. if (!is_pae(vcpu)) {
  271. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  272. "in long mode while PAE is disabled\n");
  273. kvm_inject_gp(vcpu, 0);
  274. return;
  275. }
  276. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  277. if (cs_l) {
  278. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  279. "in long mode while CS.L == 1\n");
  280. kvm_inject_gp(vcpu, 0);
  281. return;
  282. }
  283. } else
  284. #endif
  285. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  286. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  287. "reserved bits\n");
  288. kvm_inject_gp(vcpu, 0);
  289. return;
  290. }
  291. }
  292. kvm_x86_ops->set_cr0(vcpu, cr0);
  293. vcpu->arch.cr0 = cr0;
  294. kvm_mmu_reset_context(vcpu);
  295. return;
  296. }
  297. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  298. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  299. {
  300. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  301. KVMTRACE_1D(LMSW, vcpu,
  302. (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
  303. handler);
  304. }
  305. EXPORT_SYMBOL_GPL(kvm_lmsw);
  306. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  307. {
  308. unsigned long old_cr4 = vcpu->arch.cr4;
  309. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  310. if (cr4 & CR4_RESERVED_BITS) {
  311. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  312. kvm_inject_gp(vcpu, 0);
  313. return;
  314. }
  315. if (is_long_mode(vcpu)) {
  316. if (!(cr4 & X86_CR4_PAE)) {
  317. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  318. "in long mode\n");
  319. kvm_inject_gp(vcpu, 0);
  320. return;
  321. }
  322. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  323. && ((cr4 ^ old_cr4) & pdptr_bits)
  324. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  325. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  326. kvm_inject_gp(vcpu, 0);
  327. return;
  328. }
  329. if (cr4 & X86_CR4_VMXE) {
  330. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  331. kvm_inject_gp(vcpu, 0);
  332. return;
  333. }
  334. kvm_x86_ops->set_cr4(vcpu, cr4);
  335. vcpu->arch.cr4 = cr4;
  336. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  337. kvm_mmu_reset_context(vcpu);
  338. }
  339. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  340. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  341. {
  342. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  343. kvm_mmu_sync_roots(vcpu);
  344. kvm_mmu_flush_tlb(vcpu);
  345. return;
  346. }
  347. if (is_long_mode(vcpu)) {
  348. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  349. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  350. kvm_inject_gp(vcpu, 0);
  351. return;
  352. }
  353. } else {
  354. if (is_pae(vcpu)) {
  355. if (cr3 & CR3_PAE_RESERVED_BITS) {
  356. printk(KERN_DEBUG
  357. "set_cr3: #GP, reserved bits\n");
  358. kvm_inject_gp(vcpu, 0);
  359. return;
  360. }
  361. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  362. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  363. "reserved bits\n");
  364. kvm_inject_gp(vcpu, 0);
  365. return;
  366. }
  367. }
  368. /*
  369. * We don't check reserved bits in nonpae mode, because
  370. * this isn't enforced, and VMware depends on this.
  371. */
  372. }
  373. /*
  374. * Does the new cr3 value map to physical memory? (Note, we
  375. * catch an invalid cr3 even in real-mode, because it would
  376. * cause trouble later on when we turn on paging anyway.)
  377. *
  378. * A real CPU would silently accept an invalid cr3 and would
  379. * attempt to use it - with largely undefined (and often hard
  380. * to debug) behavior on the guest side.
  381. */
  382. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  383. kvm_inject_gp(vcpu, 0);
  384. else {
  385. vcpu->arch.cr3 = cr3;
  386. vcpu->arch.mmu.new_cr3(vcpu);
  387. }
  388. }
  389. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  390. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  391. {
  392. if (cr8 & CR8_RESERVED_BITS) {
  393. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  394. kvm_inject_gp(vcpu, 0);
  395. return;
  396. }
  397. if (irqchip_in_kernel(vcpu->kvm))
  398. kvm_lapic_set_tpr(vcpu, cr8);
  399. else
  400. vcpu->arch.cr8 = cr8;
  401. }
  402. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  403. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  404. {
  405. if (irqchip_in_kernel(vcpu->kvm))
  406. return kvm_lapic_get_cr8(vcpu);
  407. else
  408. return vcpu->arch.cr8;
  409. }
  410. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  411. static inline u32 bit(int bitno)
  412. {
  413. return 1 << (bitno & 31);
  414. }
  415. /*
  416. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  417. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  418. *
  419. * This list is modified at module load time to reflect the
  420. * capabilities of the host cpu.
  421. */
  422. static u32 msrs_to_save[] = {
  423. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  424. MSR_K6_STAR,
  425. #ifdef CONFIG_X86_64
  426. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  427. #endif
  428. MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  429. MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  430. };
  431. static unsigned num_msrs_to_save;
  432. static u32 emulated_msrs[] = {
  433. MSR_IA32_MISC_ENABLE,
  434. };
  435. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  436. {
  437. if (efer & efer_reserved_bits) {
  438. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  439. efer);
  440. kvm_inject_gp(vcpu, 0);
  441. return;
  442. }
  443. if (is_paging(vcpu)
  444. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  445. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  446. kvm_inject_gp(vcpu, 0);
  447. return;
  448. }
  449. if (efer & EFER_FFXSR) {
  450. struct kvm_cpuid_entry2 *feat;
  451. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  452. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  453. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  454. kvm_inject_gp(vcpu, 0);
  455. return;
  456. }
  457. }
  458. if (efer & EFER_SVME) {
  459. struct kvm_cpuid_entry2 *feat;
  460. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  461. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  462. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  463. kvm_inject_gp(vcpu, 0);
  464. return;
  465. }
  466. }
  467. kvm_x86_ops->set_efer(vcpu, efer);
  468. efer &= ~EFER_LMA;
  469. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  470. vcpu->arch.shadow_efer = efer;
  471. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  472. kvm_mmu_reset_context(vcpu);
  473. }
  474. void kvm_enable_efer_bits(u64 mask)
  475. {
  476. efer_reserved_bits &= ~mask;
  477. }
  478. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  479. /*
  480. * Writes msr value into into the appropriate "register".
  481. * Returns 0 on success, non-0 otherwise.
  482. * Assumes vcpu_load() was already called.
  483. */
  484. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  485. {
  486. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  487. }
  488. /*
  489. * Adapt set_msr() to msr_io()'s calling convention
  490. */
  491. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  492. {
  493. return kvm_set_msr(vcpu, index, *data);
  494. }
  495. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  496. {
  497. static int version;
  498. struct pvclock_wall_clock wc;
  499. struct timespec now, sys, boot;
  500. if (!wall_clock)
  501. return;
  502. version++;
  503. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  504. /*
  505. * The guest calculates current wall clock time by adding
  506. * system time (updated by kvm_write_guest_time below) to the
  507. * wall clock specified here. guest system time equals host
  508. * system time for us, thus we must fill in host boot time here.
  509. */
  510. now = current_kernel_time();
  511. ktime_get_ts(&sys);
  512. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  513. wc.sec = boot.tv_sec;
  514. wc.nsec = boot.tv_nsec;
  515. wc.version = version;
  516. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  517. version++;
  518. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  519. }
  520. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  521. {
  522. uint32_t quotient, remainder;
  523. /* Don't try to replace with do_div(), this one calculates
  524. * "(dividend << 32) / divisor" */
  525. __asm__ ( "divl %4"
  526. : "=a" (quotient), "=d" (remainder)
  527. : "0" (0), "1" (dividend), "r" (divisor) );
  528. return quotient;
  529. }
  530. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  531. {
  532. uint64_t nsecs = 1000000000LL;
  533. int32_t shift = 0;
  534. uint64_t tps64;
  535. uint32_t tps32;
  536. tps64 = tsc_khz * 1000LL;
  537. while (tps64 > nsecs*2) {
  538. tps64 >>= 1;
  539. shift--;
  540. }
  541. tps32 = (uint32_t)tps64;
  542. while (tps32 <= (uint32_t)nsecs) {
  543. tps32 <<= 1;
  544. shift++;
  545. }
  546. hv_clock->tsc_shift = shift;
  547. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  548. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  549. __func__, tsc_khz, hv_clock->tsc_shift,
  550. hv_clock->tsc_to_system_mul);
  551. }
  552. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  553. static void kvm_write_guest_time(struct kvm_vcpu *v)
  554. {
  555. struct timespec ts;
  556. unsigned long flags;
  557. struct kvm_vcpu_arch *vcpu = &v->arch;
  558. void *shared_kaddr;
  559. unsigned long this_tsc_khz;
  560. if ((!vcpu->time_page))
  561. return;
  562. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  563. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  564. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  565. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  566. }
  567. put_cpu_var(cpu_tsc_khz);
  568. /* Keep irq disabled to prevent changes to the clock */
  569. local_irq_save(flags);
  570. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  571. ktime_get_ts(&ts);
  572. local_irq_restore(flags);
  573. /* With all the info we got, fill in the values */
  574. vcpu->hv_clock.system_time = ts.tv_nsec +
  575. (NSEC_PER_SEC * (u64)ts.tv_sec);
  576. /*
  577. * The interface expects us to write an even number signaling that the
  578. * update is finished. Since the guest won't see the intermediate
  579. * state, we just increase by 2 at the end.
  580. */
  581. vcpu->hv_clock.version += 2;
  582. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  583. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  584. sizeof(vcpu->hv_clock));
  585. kunmap_atomic(shared_kaddr, KM_USER0);
  586. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  587. }
  588. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  589. {
  590. struct kvm_vcpu_arch *vcpu = &v->arch;
  591. if (!vcpu->time_page)
  592. return 0;
  593. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  594. return 1;
  595. }
  596. static bool msr_mtrr_valid(unsigned msr)
  597. {
  598. switch (msr) {
  599. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  600. case MSR_MTRRfix64K_00000:
  601. case MSR_MTRRfix16K_80000:
  602. case MSR_MTRRfix16K_A0000:
  603. case MSR_MTRRfix4K_C0000:
  604. case MSR_MTRRfix4K_C8000:
  605. case MSR_MTRRfix4K_D0000:
  606. case MSR_MTRRfix4K_D8000:
  607. case MSR_MTRRfix4K_E0000:
  608. case MSR_MTRRfix4K_E8000:
  609. case MSR_MTRRfix4K_F0000:
  610. case MSR_MTRRfix4K_F8000:
  611. case MSR_MTRRdefType:
  612. case MSR_IA32_CR_PAT:
  613. return true;
  614. case 0x2f8:
  615. return true;
  616. }
  617. return false;
  618. }
  619. static bool valid_pat_type(unsigned t)
  620. {
  621. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  622. }
  623. static bool valid_mtrr_type(unsigned t)
  624. {
  625. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  626. }
  627. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  628. {
  629. int i;
  630. if (!msr_mtrr_valid(msr))
  631. return false;
  632. if (msr == MSR_IA32_CR_PAT) {
  633. for (i = 0; i < 8; i++)
  634. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  635. return false;
  636. return true;
  637. } else if (msr == MSR_MTRRdefType) {
  638. if (data & ~0xcff)
  639. return false;
  640. return valid_mtrr_type(data & 0xff);
  641. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  642. for (i = 0; i < 8 ; i++)
  643. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  644. return false;
  645. return true;
  646. }
  647. /* variable MTRRs */
  648. return valid_mtrr_type(data & 0xff);
  649. }
  650. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  651. {
  652. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  653. if (!mtrr_valid(vcpu, msr, data))
  654. return 1;
  655. if (msr == MSR_MTRRdefType) {
  656. vcpu->arch.mtrr_state.def_type = data;
  657. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  658. } else if (msr == MSR_MTRRfix64K_00000)
  659. p[0] = data;
  660. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  661. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  662. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  663. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  664. else if (msr == MSR_IA32_CR_PAT)
  665. vcpu->arch.pat = data;
  666. else { /* Variable MTRRs */
  667. int idx, is_mtrr_mask;
  668. u64 *pt;
  669. idx = (msr - 0x200) / 2;
  670. is_mtrr_mask = msr - 0x200 - 2 * idx;
  671. if (!is_mtrr_mask)
  672. pt =
  673. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  674. else
  675. pt =
  676. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  677. *pt = data;
  678. }
  679. kvm_mmu_reset_context(vcpu);
  680. return 0;
  681. }
  682. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  683. {
  684. u64 mcg_cap = vcpu->arch.mcg_cap;
  685. unsigned bank_num = mcg_cap & 0xff;
  686. switch (msr) {
  687. case MSR_IA32_MCG_STATUS:
  688. vcpu->arch.mcg_status = data;
  689. break;
  690. case MSR_IA32_MCG_CTL:
  691. if (!(mcg_cap & MCG_CTL_P))
  692. return 1;
  693. if (data != 0 && data != ~(u64)0)
  694. return -1;
  695. vcpu->arch.mcg_ctl = data;
  696. break;
  697. default:
  698. if (msr >= MSR_IA32_MC0_CTL &&
  699. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  700. u32 offset = msr - MSR_IA32_MC0_CTL;
  701. /* only 0 or all 1s can be written to IA32_MCi_CTL */
  702. if ((offset & 0x3) == 0 &&
  703. data != 0 && data != ~(u64)0)
  704. return -1;
  705. vcpu->arch.mce_banks[offset] = data;
  706. break;
  707. }
  708. return 1;
  709. }
  710. return 0;
  711. }
  712. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  713. {
  714. switch (msr) {
  715. case MSR_EFER:
  716. set_efer(vcpu, data);
  717. break;
  718. case MSR_IA32_DEBUGCTLMSR:
  719. if (!data) {
  720. /* We support the non-activated case already */
  721. break;
  722. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  723. /* Values other than LBR and BTF are vendor-specific,
  724. thus reserved and should throw a #GP */
  725. return 1;
  726. }
  727. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  728. __func__, data);
  729. break;
  730. case MSR_IA32_UCODE_REV:
  731. case MSR_IA32_UCODE_WRITE:
  732. case MSR_VM_HSAVE_PA:
  733. break;
  734. case 0x200 ... 0x2ff:
  735. return set_msr_mtrr(vcpu, msr, data);
  736. case MSR_IA32_APICBASE:
  737. kvm_set_apic_base(vcpu, data);
  738. break;
  739. case MSR_IA32_MISC_ENABLE:
  740. vcpu->arch.ia32_misc_enable_msr = data;
  741. break;
  742. case MSR_KVM_WALL_CLOCK:
  743. vcpu->kvm->arch.wall_clock = data;
  744. kvm_write_wall_clock(vcpu->kvm, data);
  745. break;
  746. case MSR_KVM_SYSTEM_TIME: {
  747. if (vcpu->arch.time_page) {
  748. kvm_release_page_dirty(vcpu->arch.time_page);
  749. vcpu->arch.time_page = NULL;
  750. }
  751. vcpu->arch.time = data;
  752. /* we verify if the enable bit is set... */
  753. if (!(data & 1))
  754. break;
  755. /* ...but clean it before doing the actual write */
  756. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  757. vcpu->arch.time_page =
  758. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  759. if (is_error_page(vcpu->arch.time_page)) {
  760. kvm_release_page_clean(vcpu->arch.time_page);
  761. vcpu->arch.time_page = NULL;
  762. }
  763. kvm_request_guest_time_update(vcpu);
  764. break;
  765. }
  766. case MSR_IA32_MCG_CTL:
  767. case MSR_IA32_MCG_STATUS:
  768. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  769. return set_msr_mce(vcpu, msr, data);
  770. default:
  771. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
  772. return 1;
  773. }
  774. return 0;
  775. }
  776. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  777. /*
  778. * Reads an msr value (of 'msr_index') into 'pdata'.
  779. * Returns 0 on success, non-0 otherwise.
  780. * Assumes vcpu_load() was already called.
  781. */
  782. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  783. {
  784. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  785. }
  786. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  787. {
  788. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  789. if (!msr_mtrr_valid(msr))
  790. return 1;
  791. if (msr == MSR_MTRRdefType)
  792. *pdata = vcpu->arch.mtrr_state.def_type +
  793. (vcpu->arch.mtrr_state.enabled << 10);
  794. else if (msr == MSR_MTRRfix64K_00000)
  795. *pdata = p[0];
  796. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  797. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  798. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  799. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  800. else if (msr == MSR_IA32_CR_PAT)
  801. *pdata = vcpu->arch.pat;
  802. else { /* Variable MTRRs */
  803. int idx, is_mtrr_mask;
  804. u64 *pt;
  805. idx = (msr - 0x200) / 2;
  806. is_mtrr_mask = msr - 0x200 - 2 * idx;
  807. if (!is_mtrr_mask)
  808. pt =
  809. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  810. else
  811. pt =
  812. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  813. *pdata = *pt;
  814. }
  815. return 0;
  816. }
  817. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  818. {
  819. u64 data;
  820. u64 mcg_cap = vcpu->arch.mcg_cap;
  821. unsigned bank_num = mcg_cap & 0xff;
  822. switch (msr) {
  823. case MSR_IA32_P5_MC_ADDR:
  824. case MSR_IA32_P5_MC_TYPE:
  825. data = 0;
  826. break;
  827. case MSR_IA32_MCG_CAP:
  828. data = vcpu->arch.mcg_cap;
  829. break;
  830. case MSR_IA32_MCG_CTL:
  831. if (!(mcg_cap & MCG_CTL_P))
  832. return 1;
  833. data = vcpu->arch.mcg_ctl;
  834. break;
  835. case MSR_IA32_MCG_STATUS:
  836. data = vcpu->arch.mcg_status;
  837. break;
  838. default:
  839. if (msr >= MSR_IA32_MC0_CTL &&
  840. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  841. u32 offset = msr - MSR_IA32_MC0_CTL;
  842. data = vcpu->arch.mce_banks[offset];
  843. break;
  844. }
  845. return 1;
  846. }
  847. *pdata = data;
  848. return 0;
  849. }
  850. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  851. {
  852. u64 data;
  853. switch (msr) {
  854. case MSR_IA32_PLATFORM_ID:
  855. case MSR_IA32_UCODE_REV:
  856. case MSR_IA32_EBL_CR_POWERON:
  857. case MSR_IA32_DEBUGCTLMSR:
  858. case MSR_IA32_LASTBRANCHFROMIP:
  859. case MSR_IA32_LASTBRANCHTOIP:
  860. case MSR_IA32_LASTINTFROMIP:
  861. case MSR_IA32_LASTINTTOIP:
  862. case MSR_K8_SYSCFG:
  863. case MSR_K7_HWCR:
  864. case MSR_VM_HSAVE_PA:
  865. case MSR_P6_EVNTSEL0:
  866. case MSR_P6_EVNTSEL1:
  867. case MSR_K7_EVNTSEL0:
  868. data = 0;
  869. break;
  870. case MSR_MTRRcap:
  871. data = 0x500 | KVM_NR_VAR_MTRR;
  872. break;
  873. case 0x200 ... 0x2ff:
  874. return get_msr_mtrr(vcpu, msr, pdata);
  875. case 0xcd: /* fsb frequency */
  876. data = 3;
  877. break;
  878. case MSR_IA32_APICBASE:
  879. data = kvm_get_apic_base(vcpu);
  880. break;
  881. case MSR_IA32_MISC_ENABLE:
  882. data = vcpu->arch.ia32_misc_enable_msr;
  883. break;
  884. case MSR_IA32_PERF_STATUS:
  885. /* TSC increment by tick */
  886. data = 1000ULL;
  887. /* CPU multiplier */
  888. data |= (((uint64_t)4ULL) << 40);
  889. break;
  890. case MSR_EFER:
  891. data = vcpu->arch.shadow_efer;
  892. break;
  893. case MSR_KVM_WALL_CLOCK:
  894. data = vcpu->kvm->arch.wall_clock;
  895. break;
  896. case MSR_KVM_SYSTEM_TIME:
  897. data = vcpu->arch.time;
  898. break;
  899. case MSR_IA32_P5_MC_ADDR:
  900. case MSR_IA32_P5_MC_TYPE:
  901. case MSR_IA32_MCG_CAP:
  902. case MSR_IA32_MCG_CTL:
  903. case MSR_IA32_MCG_STATUS:
  904. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  905. return get_msr_mce(vcpu, msr, pdata);
  906. default:
  907. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  908. return 1;
  909. }
  910. *pdata = data;
  911. return 0;
  912. }
  913. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  914. /*
  915. * Read or write a bunch of msrs. All parameters are kernel addresses.
  916. *
  917. * @return number of msrs set successfully.
  918. */
  919. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  920. struct kvm_msr_entry *entries,
  921. int (*do_msr)(struct kvm_vcpu *vcpu,
  922. unsigned index, u64 *data))
  923. {
  924. int i;
  925. vcpu_load(vcpu);
  926. down_read(&vcpu->kvm->slots_lock);
  927. for (i = 0; i < msrs->nmsrs; ++i)
  928. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  929. break;
  930. up_read(&vcpu->kvm->slots_lock);
  931. vcpu_put(vcpu);
  932. return i;
  933. }
  934. /*
  935. * Read or write a bunch of msrs. Parameters are user addresses.
  936. *
  937. * @return number of msrs set successfully.
  938. */
  939. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  940. int (*do_msr)(struct kvm_vcpu *vcpu,
  941. unsigned index, u64 *data),
  942. int writeback)
  943. {
  944. struct kvm_msrs msrs;
  945. struct kvm_msr_entry *entries;
  946. int r, n;
  947. unsigned size;
  948. r = -EFAULT;
  949. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  950. goto out;
  951. r = -E2BIG;
  952. if (msrs.nmsrs >= MAX_IO_MSRS)
  953. goto out;
  954. r = -ENOMEM;
  955. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  956. entries = vmalloc(size);
  957. if (!entries)
  958. goto out;
  959. r = -EFAULT;
  960. if (copy_from_user(entries, user_msrs->entries, size))
  961. goto out_free;
  962. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  963. if (r < 0)
  964. goto out_free;
  965. r = -EFAULT;
  966. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  967. goto out_free;
  968. r = n;
  969. out_free:
  970. vfree(entries);
  971. out:
  972. return r;
  973. }
  974. int kvm_dev_ioctl_check_extension(long ext)
  975. {
  976. int r;
  977. switch (ext) {
  978. case KVM_CAP_IRQCHIP:
  979. case KVM_CAP_HLT:
  980. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  981. case KVM_CAP_SET_TSS_ADDR:
  982. case KVM_CAP_EXT_CPUID:
  983. case KVM_CAP_CLOCKSOURCE:
  984. case KVM_CAP_PIT:
  985. case KVM_CAP_NOP_IO_DELAY:
  986. case KVM_CAP_MP_STATE:
  987. case KVM_CAP_SYNC_MMU:
  988. case KVM_CAP_REINJECT_CONTROL:
  989. case KVM_CAP_IRQ_INJECT_STATUS:
  990. case KVM_CAP_ASSIGN_DEV_IRQ:
  991. case KVM_CAP_IRQFD:
  992. case KVM_CAP_PIT2:
  993. r = 1;
  994. break;
  995. case KVM_CAP_COALESCED_MMIO:
  996. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  997. break;
  998. case KVM_CAP_VAPIC:
  999. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1000. break;
  1001. case KVM_CAP_NR_VCPUS:
  1002. r = KVM_MAX_VCPUS;
  1003. break;
  1004. case KVM_CAP_NR_MEMSLOTS:
  1005. r = KVM_MEMORY_SLOTS;
  1006. break;
  1007. case KVM_CAP_PV_MMU:
  1008. r = !tdp_enabled;
  1009. break;
  1010. case KVM_CAP_IOMMU:
  1011. r = iommu_found();
  1012. break;
  1013. case KVM_CAP_MCE:
  1014. r = KVM_MAX_MCE_BANKS;
  1015. break;
  1016. default:
  1017. r = 0;
  1018. break;
  1019. }
  1020. return r;
  1021. }
  1022. long kvm_arch_dev_ioctl(struct file *filp,
  1023. unsigned int ioctl, unsigned long arg)
  1024. {
  1025. void __user *argp = (void __user *)arg;
  1026. long r;
  1027. switch (ioctl) {
  1028. case KVM_GET_MSR_INDEX_LIST: {
  1029. struct kvm_msr_list __user *user_msr_list = argp;
  1030. struct kvm_msr_list msr_list;
  1031. unsigned n;
  1032. r = -EFAULT;
  1033. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1034. goto out;
  1035. n = msr_list.nmsrs;
  1036. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1037. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1038. goto out;
  1039. r = -E2BIG;
  1040. if (n < msr_list.nmsrs)
  1041. goto out;
  1042. r = -EFAULT;
  1043. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1044. num_msrs_to_save * sizeof(u32)))
  1045. goto out;
  1046. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1047. &emulated_msrs,
  1048. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1049. goto out;
  1050. r = 0;
  1051. break;
  1052. }
  1053. case KVM_GET_SUPPORTED_CPUID: {
  1054. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1055. struct kvm_cpuid2 cpuid;
  1056. r = -EFAULT;
  1057. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1058. goto out;
  1059. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1060. cpuid_arg->entries);
  1061. if (r)
  1062. goto out;
  1063. r = -EFAULT;
  1064. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1065. goto out;
  1066. r = 0;
  1067. break;
  1068. }
  1069. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1070. u64 mce_cap;
  1071. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1072. r = -EFAULT;
  1073. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1074. goto out;
  1075. r = 0;
  1076. break;
  1077. }
  1078. default:
  1079. r = -EINVAL;
  1080. }
  1081. out:
  1082. return r;
  1083. }
  1084. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1085. {
  1086. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1087. kvm_request_guest_time_update(vcpu);
  1088. }
  1089. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1090. {
  1091. kvm_x86_ops->vcpu_put(vcpu);
  1092. kvm_put_guest_fpu(vcpu);
  1093. }
  1094. static int is_efer_nx(void)
  1095. {
  1096. unsigned long long efer = 0;
  1097. rdmsrl_safe(MSR_EFER, &efer);
  1098. return efer & EFER_NX;
  1099. }
  1100. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1101. {
  1102. int i;
  1103. struct kvm_cpuid_entry2 *e, *entry;
  1104. entry = NULL;
  1105. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1106. e = &vcpu->arch.cpuid_entries[i];
  1107. if (e->function == 0x80000001) {
  1108. entry = e;
  1109. break;
  1110. }
  1111. }
  1112. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1113. entry->edx &= ~(1 << 20);
  1114. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1115. }
  1116. }
  1117. /* when an old userspace process fills a new kernel module */
  1118. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1119. struct kvm_cpuid *cpuid,
  1120. struct kvm_cpuid_entry __user *entries)
  1121. {
  1122. int r, i;
  1123. struct kvm_cpuid_entry *cpuid_entries;
  1124. r = -E2BIG;
  1125. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1126. goto out;
  1127. r = -ENOMEM;
  1128. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1129. if (!cpuid_entries)
  1130. goto out;
  1131. r = -EFAULT;
  1132. if (copy_from_user(cpuid_entries, entries,
  1133. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1134. goto out_free;
  1135. for (i = 0; i < cpuid->nent; i++) {
  1136. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1137. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1138. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1139. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1140. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1141. vcpu->arch.cpuid_entries[i].index = 0;
  1142. vcpu->arch.cpuid_entries[i].flags = 0;
  1143. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1144. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1145. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1146. }
  1147. vcpu->arch.cpuid_nent = cpuid->nent;
  1148. cpuid_fix_nx_cap(vcpu);
  1149. r = 0;
  1150. out_free:
  1151. vfree(cpuid_entries);
  1152. out:
  1153. return r;
  1154. }
  1155. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1156. struct kvm_cpuid2 *cpuid,
  1157. struct kvm_cpuid_entry2 __user *entries)
  1158. {
  1159. int r;
  1160. r = -E2BIG;
  1161. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1162. goto out;
  1163. r = -EFAULT;
  1164. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1165. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1166. goto out;
  1167. vcpu->arch.cpuid_nent = cpuid->nent;
  1168. return 0;
  1169. out:
  1170. return r;
  1171. }
  1172. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1173. struct kvm_cpuid2 *cpuid,
  1174. struct kvm_cpuid_entry2 __user *entries)
  1175. {
  1176. int r;
  1177. r = -E2BIG;
  1178. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1179. goto out;
  1180. r = -EFAULT;
  1181. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1182. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1183. goto out;
  1184. return 0;
  1185. out:
  1186. cpuid->nent = vcpu->arch.cpuid_nent;
  1187. return r;
  1188. }
  1189. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1190. u32 index)
  1191. {
  1192. entry->function = function;
  1193. entry->index = index;
  1194. cpuid_count(entry->function, entry->index,
  1195. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1196. entry->flags = 0;
  1197. }
  1198. #define F(x) bit(X86_FEATURE_##x)
  1199. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1200. u32 index, int *nent, int maxnent)
  1201. {
  1202. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1203. #ifdef CONFIG_X86_64
  1204. unsigned f_lm = F(LM);
  1205. #else
  1206. unsigned f_lm = 0;
  1207. #endif
  1208. /* cpuid 1.edx */
  1209. const u32 kvm_supported_word0_x86_features =
  1210. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1211. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1212. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1213. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1214. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1215. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1216. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1217. 0 /* HTT, TM, Reserved, PBE */;
  1218. /* cpuid 0x80000001.edx */
  1219. const u32 kvm_supported_word1_x86_features =
  1220. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1221. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1222. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1223. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1224. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1225. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1226. F(FXSR) | F(FXSR_OPT) | 0 /* GBPAGES */ | 0 /* RDTSCP */ |
  1227. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1228. /* cpuid 1.ecx */
  1229. const u32 kvm_supported_word4_x86_features =
  1230. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1231. 0 /* DS-CPL, VMX, SMX, EST */ |
  1232. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1233. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1234. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1235. F(XMM4_2) | 0 /* x2APIC */ | F(MOVBE) | F(POPCNT) |
  1236. 0 /* Reserved, XSAVE, OSXSAVE */;
  1237. /* cpuid 0x80000001.ecx */
  1238. const u32 kvm_supported_word6_x86_features =
  1239. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1240. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1241. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1242. 0 /* SKINIT */ | 0 /* WDT */;
  1243. /* all calls to cpuid_count() should be made on the same cpu */
  1244. get_cpu();
  1245. do_cpuid_1_ent(entry, function, index);
  1246. ++*nent;
  1247. switch (function) {
  1248. case 0:
  1249. entry->eax = min(entry->eax, (u32)0xb);
  1250. break;
  1251. case 1:
  1252. entry->edx &= kvm_supported_word0_x86_features;
  1253. entry->ecx &= kvm_supported_word4_x86_features;
  1254. break;
  1255. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1256. * may return different values. This forces us to get_cpu() before
  1257. * issuing the first command, and also to emulate this annoying behavior
  1258. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1259. case 2: {
  1260. int t, times = entry->eax & 0xff;
  1261. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1262. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1263. for (t = 1; t < times && *nent < maxnent; ++t) {
  1264. do_cpuid_1_ent(&entry[t], function, 0);
  1265. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1266. ++*nent;
  1267. }
  1268. break;
  1269. }
  1270. /* function 4 and 0xb have additional index. */
  1271. case 4: {
  1272. int i, cache_type;
  1273. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1274. /* read more entries until cache_type is zero */
  1275. for (i = 1; *nent < maxnent; ++i) {
  1276. cache_type = entry[i - 1].eax & 0x1f;
  1277. if (!cache_type)
  1278. break;
  1279. do_cpuid_1_ent(&entry[i], function, i);
  1280. entry[i].flags |=
  1281. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1282. ++*nent;
  1283. }
  1284. break;
  1285. }
  1286. case 0xb: {
  1287. int i, level_type;
  1288. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1289. /* read more entries until level_type is zero */
  1290. for (i = 1; *nent < maxnent; ++i) {
  1291. level_type = entry[i - 1].ecx & 0xff00;
  1292. if (!level_type)
  1293. break;
  1294. do_cpuid_1_ent(&entry[i], function, i);
  1295. entry[i].flags |=
  1296. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1297. ++*nent;
  1298. }
  1299. break;
  1300. }
  1301. case 0x80000000:
  1302. entry->eax = min(entry->eax, 0x8000001a);
  1303. break;
  1304. case 0x80000001:
  1305. entry->edx &= kvm_supported_word1_x86_features;
  1306. entry->ecx &= kvm_supported_word6_x86_features;
  1307. break;
  1308. }
  1309. put_cpu();
  1310. }
  1311. #undef F
  1312. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1313. struct kvm_cpuid_entry2 __user *entries)
  1314. {
  1315. struct kvm_cpuid_entry2 *cpuid_entries;
  1316. int limit, nent = 0, r = -E2BIG;
  1317. u32 func;
  1318. if (cpuid->nent < 1)
  1319. goto out;
  1320. r = -ENOMEM;
  1321. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1322. if (!cpuid_entries)
  1323. goto out;
  1324. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1325. limit = cpuid_entries[0].eax;
  1326. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1327. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1328. &nent, cpuid->nent);
  1329. r = -E2BIG;
  1330. if (nent >= cpuid->nent)
  1331. goto out_free;
  1332. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1333. limit = cpuid_entries[nent - 1].eax;
  1334. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1335. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1336. &nent, cpuid->nent);
  1337. r = -E2BIG;
  1338. if (nent >= cpuid->nent)
  1339. goto out_free;
  1340. r = -EFAULT;
  1341. if (copy_to_user(entries, cpuid_entries,
  1342. nent * sizeof(struct kvm_cpuid_entry2)))
  1343. goto out_free;
  1344. cpuid->nent = nent;
  1345. r = 0;
  1346. out_free:
  1347. vfree(cpuid_entries);
  1348. out:
  1349. return r;
  1350. }
  1351. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1352. struct kvm_lapic_state *s)
  1353. {
  1354. vcpu_load(vcpu);
  1355. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1356. vcpu_put(vcpu);
  1357. return 0;
  1358. }
  1359. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1360. struct kvm_lapic_state *s)
  1361. {
  1362. vcpu_load(vcpu);
  1363. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1364. kvm_apic_post_state_restore(vcpu);
  1365. vcpu_put(vcpu);
  1366. return 0;
  1367. }
  1368. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1369. struct kvm_interrupt *irq)
  1370. {
  1371. if (irq->irq < 0 || irq->irq >= 256)
  1372. return -EINVAL;
  1373. if (irqchip_in_kernel(vcpu->kvm))
  1374. return -ENXIO;
  1375. vcpu_load(vcpu);
  1376. kvm_queue_interrupt(vcpu, irq->irq, false);
  1377. vcpu_put(vcpu);
  1378. return 0;
  1379. }
  1380. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1381. {
  1382. vcpu_load(vcpu);
  1383. kvm_inject_nmi(vcpu);
  1384. vcpu_put(vcpu);
  1385. return 0;
  1386. }
  1387. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1388. struct kvm_tpr_access_ctl *tac)
  1389. {
  1390. if (tac->flags)
  1391. return -EINVAL;
  1392. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1393. return 0;
  1394. }
  1395. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1396. u64 mcg_cap)
  1397. {
  1398. int r;
  1399. unsigned bank_num = mcg_cap & 0xff, bank;
  1400. r = -EINVAL;
  1401. if (!bank_num)
  1402. goto out;
  1403. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1404. goto out;
  1405. r = 0;
  1406. vcpu->arch.mcg_cap = mcg_cap;
  1407. /* Init IA32_MCG_CTL to all 1s */
  1408. if (mcg_cap & MCG_CTL_P)
  1409. vcpu->arch.mcg_ctl = ~(u64)0;
  1410. /* Init IA32_MCi_CTL to all 1s */
  1411. for (bank = 0; bank < bank_num; bank++)
  1412. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1413. out:
  1414. return r;
  1415. }
  1416. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1417. struct kvm_x86_mce *mce)
  1418. {
  1419. u64 mcg_cap = vcpu->arch.mcg_cap;
  1420. unsigned bank_num = mcg_cap & 0xff;
  1421. u64 *banks = vcpu->arch.mce_banks;
  1422. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1423. return -EINVAL;
  1424. /*
  1425. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1426. * reporting is disabled
  1427. */
  1428. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1429. vcpu->arch.mcg_ctl != ~(u64)0)
  1430. return 0;
  1431. banks += 4 * mce->bank;
  1432. /*
  1433. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1434. * reporting is disabled for the bank
  1435. */
  1436. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1437. return 0;
  1438. if (mce->status & MCI_STATUS_UC) {
  1439. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1440. !(vcpu->arch.cr4 & X86_CR4_MCE)) {
  1441. printk(KERN_DEBUG "kvm: set_mce: "
  1442. "injects mce exception while "
  1443. "previous one is in progress!\n");
  1444. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1445. return 0;
  1446. }
  1447. if (banks[1] & MCI_STATUS_VAL)
  1448. mce->status |= MCI_STATUS_OVER;
  1449. banks[2] = mce->addr;
  1450. banks[3] = mce->misc;
  1451. vcpu->arch.mcg_status = mce->mcg_status;
  1452. banks[1] = mce->status;
  1453. kvm_queue_exception(vcpu, MC_VECTOR);
  1454. } else if (!(banks[1] & MCI_STATUS_VAL)
  1455. || !(banks[1] & MCI_STATUS_UC)) {
  1456. if (banks[1] & MCI_STATUS_VAL)
  1457. mce->status |= MCI_STATUS_OVER;
  1458. banks[2] = mce->addr;
  1459. banks[3] = mce->misc;
  1460. banks[1] = mce->status;
  1461. } else
  1462. banks[1] |= MCI_STATUS_OVER;
  1463. return 0;
  1464. }
  1465. long kvm_arch_vcpu_ioctl(struct file *filp,
  1466. unsigned int ioctl, unsigned long arg)
  1467. {
  1468. struct kvm_vcpu *vcpu = filp->private_data;
  1469. void __user *argp = (void __user *)arg;
  1470. int r;
  1471. struct kvm_lapic_state *lapic = NULL;
  1472. switch (ioctl) {
  1473. case KVM_GET_LAPIC: {
  1474. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1475. r = -ENOMEM;
  1476. if (!lapic)
  1477. goto out;
  1478. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1479. if (r)
  1480. goto out;
  1481. r = -EFAULT;
  1482. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1483. goto out;
  1484. r = 0;
  1485. break;
  1486. }
  1487. case KVM_SET_LAPIC: {
  1488. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1489. r = -ENOMEM;
  1490. if (!lapic)
  1491. goto out;
  1492. r = -EFAULT;
  1493. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1494. goto out;
  1495. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1496. if (r)
  1497. goto out;
  1498. r = 0;
  1499. break;
  1500. }
  1501. case KVM_INTERRUPT: {
  1502. struct kvm_interrupt irq;
  1503. r = -EFAULT;
  1504. if (copy_from_user(&irq, argp, sizeof irq))
  1505. goto out;
  1506. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1507. if (r)
  1508. goto out;
  1509. r = 0;
  1510. break;
  1511. }
  1512. case KVM_NMI: {
  1513. r = kvm_vcpu_ioctl_nmi(vcpu);
  1514. if (r)
  1515. goto out;
  1516. r = 0;
  1517. break;
  1518. }
  1519. case KVM_SET_CPUID: {
  1520. struct kvm_cpuid __user *cpuid_arg = argp;
  1521. struct kvm_cpuid cpuid;
  1522. r = -EFAULT;
  1523. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1524. goto out;
  1525. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1526. if (r)
  1527. goto out;
  1528. break;
  1529. }
  1530. case KVM_SET_CPUID2: {
  1531. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1532. struct kvm_cpuid2 cpuid;
  1533. r = -EFAULT;
  1534. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1535. goto out;
  1536. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1537. cpuid_arg->entries);
  1538. if (r)
  1539. goto out;
  1540. break;
  1541. }
  1542. case KVM_GET_CPUID2: {
  1543. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1544. struct kvm_cpuid2 cpuid;
  1545. r = -EFAULT;
  1546. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1547. goto out;
  1548. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1549. cpuid_arg->entries);
  1550. if (r)
  1551. goto out;
  1552. r = -EFAULT;
  1553. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1554. goto out;
  1555. r = 0;
  1556. break;
  1557. }
  1558. case KVM_GET_MSRS:
  1559. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1560. break;
  1561. case KVM_SET_MSRS:
  1562. r = msr_io(vcpu, argp, do_set_msr, 0);
  1563. break;
  1564. case KVM_TPR_ACCESS_REPORTING: {
  1565. struct kvm_tpr_access_ctl tac;
  1566. r = -EFAULT;
  1567. if (copy_from_user(&tac, argp, sizeof tac))
  1568. goto out;
  1569. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1570. if (r)
  1571. goto out;
  1572. r = -EFAULT;
  1573. if (copy_to_user(argp, &tac, sizeof tac))
  1574. goto out;
  1575. r = 0;
  1576. break;
  1577. };
  1578. case KVM_SET_VAPIC_ADDR: {
  1579. struct kvm_vapic_addr va;
  1580. r = -EINVAL;
  1581. if (!irqchip_in_kernel(vcpu->kvm))
  1582. goto out;
  1583. r = -EFAULT;
  1584. if (copy_from_user(&va, argp, sizeof va))
  1585. goto out;
  1586. r = 0;
  1587. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1588. break;
  1589. }
  1590. case KVM_X86_SETUP_MCE: {
  1591. u64 mcg_cap;
  1592. r = -EFAULT;
  1593. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  1594. goto out;
  1595. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  1596. break;
  1597. }
  1598. case KVM_X86_SET_MCE: {
  1599. struct kvm_x86_mce mce;
  1600. r = -EFAULT;
  1601. if (copy_from_user(&mce, argp, sizeof mce))
  1602. goto out;
  1603. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  1604. break;
  1605. }
  1606. default:
  1607. r = -EINVAL;
  1608. }
  1609. out:
  1610. kfree(lapic);
  1611. return r;
  1612. }
  1613. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1614. {
  1615. int ret;
  1616. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1617. return -1;
  1618. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1619. return ret;
  1620. }
  1621. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1622. u32 kvm_nr_mmu_pages)
  1623. {
  1624. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1625. return -EINVAL;
  1626. down_write(&kvm->slots_lock);
  1627. spin_lock(&kvm->mmu_lock);
  1628. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1629. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1630. spin_unlock(&kvm->mmu_lock);
  1631. up_write(&kvm->slots_lock);
  1632. return 0;
  1633. }
  1634. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1635. {
  1636. return kvm->arch.n_alloc_mmu_pages;
  1637. }
  1638. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1639. {
  1640. int i;
  1641. struct kvm_mem_alias *alias;
  1642. for (i = 0; i < kvm->arch.naliases; ++i) {
  1643. alias = &kvm->arch.aliases[i];
  1644. if (gfn >= alias->base_gfn
  1645. && gfn < alias->base_gfn + alias->npages)
  1646. return alias->target_gfn + gfn - alias->base_gfn;
  1647. }
  1648. return gfn;
  1649. }
  1650. /*
  1651. * Set a new alias region. Aliases map a portion of physical memory into
  1652. * another portion. This is useful for memory windows, for example the PC
  1653. * VGA region.
  1654. */
  1655. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1656. struct kvm_memory_alias *alias)
  1657. {
  1658. int r, n;
  1659. struct kvm_mem_alias *p;
  1660. r = -EINVAL;
  1661. /* General sanity checks */
  1662. if (alias->memory_size & (PAGE_SIZE - 1))
  1663. goto out;
  1664. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1665. goto out;
  1666. if (alias->slot >= KVM_ALIAS_SLOTS)
  1667. goto out;
  1668. if (alias->guest_phys_addr + alias->memory_size
  1669. < alias->guest_phys_addr)
  1670. goto out;
  1671. if (alias->target_phys_addr + alias->memory_size
  1672. < alias->target_phys_addr)
  1673. goto out;
  1674. down_write(&kvm->slots_lock);
  1675. spin_lock(&kvm->mmu_lock);
  1676. p = &kvm->arch.aliases[alias->slot];
  1677. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1678. p->npages = alias->memory_size >> PAGE_SHIFT;
  1679. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1680. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1681. if (kvm->arch.aliases[n - 1].npages)
  1682. break;
  1683. kvm->arch.naliases = n;
  1684. spin_unlock(&kvm->mmu_lock);
  1685. kvm_mmu_zap_all(kvm);
  1686. up_write(&kvm->slots_lock);
  1687. return 0;
  1688. out:
  1689. return r;
  1690. }
  1691. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1692. {
  1693. int r;
  1694. r = 0;
  1695. switch (chip->chip_id) {
  1696. case KVM_IRQCHIP_PIC_MASTER:
  1697. memcpy(&chip->chip.pic,
  1698. &pic_irqchip(kvm)->pics[0],
  1699. sizeof(struct kvm_pic_state));
  1700. break;
  1701. case KVM_IRQCHIP_PIC_SLAVE:
  1702. memcpy(&chip->chip.pic,
  1703. &pic_irqchip(kvm)->pics[1],
  1704. sizeof(struct kvm_pic_state));
  1705. break;
  1706. case KVM_IRQCHIP_IOAPIC:
  1707. memcpy(&chip->chip.ioapic,
  1708. ioapic_irqchip(kvm),
  1709. sizeof(struct kvm_ioapic_state));
  1710. break;
  1711. default:
  1712. r = -EINVAL;
  1713. break;
  1714. }
  1715. return r;
  1716. }
  1717. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1718. {
  1719. int r;
  1720. r = 0;
  1721. switch (chip->chip_id) {
  1722. case KVM_IRQCHIP_PIC_MASTER:
  1723. memcpy(&pic_irqchip(kvm)->pics[0],
  1724. &chip->chip.pic,
  1725. sizeof(struct kvm_pic_state));
  1726. break;
  1727. case KVM_IRQCHIP_PIC_SLAVE:
  1728. memcpy(&pic_irqchip(kvm)->pics[1],
  1729. &chip->chip.pic,
  1730. sizeof(struct kvm_pic_state));
  1731. break;
  1732. case KVM_IRQCHIP_IOAPIC:
  1733. memcpy(ioapic_irqchip(kvm),
  1734. &chip->chip.ioapic,
  1735. sizeof(struct kvm_ioapic_state));
  1736. break;
  1737. default:
  1738. r = -EINVAL;
  1739. break;
  1740. }
  1741. kvm_pic_update_irq(pic_irqchip(kvm));
  1742. return r;
  1743. }
  1744. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1745. {
  1746. int r = 0;
  1747. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1748. return r;
  1749. }
  1750. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1751. {
  1752. int r = 0;
  1753. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1754. kvm_pit_load_count(kvm, 0, ps->channels[0].count);
  1755. return r;
  1756. }
  1757. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  1758. struct kvm_reinject_control *control)
  1759. {
  1760. if (!kvm->arch.vpit)
  1761. return -ENXIO;
  1762. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  1763. return 0;
  1764. }
  1765. /*
  1766. * Get (and clear) the dirty memory log for a memory slot.
  1767. */
  1768. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1769. struct kvm_dirty_log *log)
  1770. {
  1771. int r;
  1772. int n;
  1773. struct kvm_memory_slot *memslot;
  1774. int is_dirty = 0;
  1775. down_write(&kvm->slots_lock);
  1776. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1777. if (r)
  1778. goto out;
  1779. /* If nothing is dirty, don't bother messing with page tables. */
  1780. if (is_dirty) {
  1781. spin_lock(&kvm->mmu_lock);
  1782. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1783. spin_unlock(&kvm->mmu_lock);
  1784. kvm_flush_remote_tlbs(kvm);
  1785. memslot = &kvm->memslots[log->slot];
  1786. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1787. memset(memslot->dirty_bitmap, 0, n);
  1788. }
  1789. r = 0;
  1790. out:
  1791. up_write(&kvm->slots_lock);
  1792. return r;
  1793. }
  1794. long kvm_arch_vm_ioctl(struct file *filp,
  1795. unsigned int ioctl, unsigned long arg)
  1796. {
  1797. struct kvm *kvm = filp->private_data;
  1798. void __user *argp = (void __user *)arg;
  1799. int r = -EINVAL;
  1800. /*
  1801. * This union makes it completely explicit to gcc-3.x
  1802. * that these two variables' stack usage should be
  1803. * combined, not added together.
  1804. */
  1805. union {
  1806. struct kvm_pit_state ps;
  1807. struct kvm_memory_alias alias;
  1808. struct kvm_pit_config pit_config;
  1809. } u;
  1810. switch (ioctl) {
  1811. case KVM_SET_TSS_ADDR:
  1812. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1813. if (r < 0)
  1814. goto out;
  1815. break;
  1816. case KVM_SET_MEMORY_REGION: {
  1817. struct kvm_memory_region kvm_mem;
  1818. struct kvm_userspace_memory_region kvm_userspace_mem;
  1819. r = -EFAULT;
  1820. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1821. goto out;
  1822. kvm_userspace_mem.slot = kvm_mem.slot;
  1823. kvm_userspace_mem.flags = kvm_mem.flags;
  1824. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1825. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1826. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1827. if (r)
  1828. goto out;
  1829. break;
  1830. }
  1831. case KVM_SET_NR_MMU_PAGES:
  1832. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1833. if (r)
  1834. goto out;
  1835. break;
  1836. case KVM_GET_NR_MMU_PAGES:
  1837. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1838. break;
  1839. case KVM_SET_MEMORY_ALIAS:
  1840. r = -EFAULT;
  1841. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  1842. goto out;
  1843. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  1844. if (r)
  1845. goto out;
  1846. break;
  1847. case KVM_CREATE_IRQCHIP:
  1848. r = -ENOMEM;
  1849. kvm->arch.vpic = kvm_create_pic(kvm);
  1850. if (kvm->arch.vpic) {
  1851. r = kvm_ioapic_init(kvm);
  1852. if (r) {
  1853. kfree(kvm->arch.vpic);
  1854. kvm->arch.vpic = NULL;
  1855. goto out;
  1856. }
  1857. } else
  1858. goto out;
  1859. r = kvm_setup_default_irq_routing(kvm);
  1860. if (r) {
  1861. kfree(kvm->arch.vpic);
  1862. kfree(kvm->arch.vioapic);
  1863. goto out;
  1864. }
  1865. break;
  1866. case KVM_CREATE_PIT:
  1867. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  1868. goto create_pit;
  1869. case KVM_CREATE_PIT2:
  1870. r = -EFAULT;
  1871. if (copy_from_user(&u.pit_config, argp,
  1872. sizeof(struct kvm_pit_config)))
  1873. goto out;
  1874. create_pit:
  1875. mutex_lock(&kvm->lock);
  1876. r = -EEXIST;
  1877. if (kvm->arch.vpit)
  1878. goto create_pit_unlock;
  1879. r = -ENOMEM;
  1880. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  1881. if (kvm->arch.vpit)
  1882. r = 0;
  1883. create_pit_unlock:
  1884. mutex_unlock(&kvm->lock);
  1885. break;
  1886. case KVM_IRQ_LINE_STATUS:
  1887. case KVM_IRQ_LINE: {
  1888. struct kvm_irq_level irq_event;
  1889. r = -EFAULT;
  1890. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1891. goto out;
  1892. if (irqchip_in_kernel(kvm)) {
  1893. __s32 status;
  1894. mutex_lock(&kvm->irq_lock);
  1895. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  1896. irq_event.irq, irq_event.level);
  1897. mutex_unlock(&kvm->irq_lock);
  1898. if (ioctl == KVM_IRQ_LINE_STATUS) {
  1899. irq_event.status = status;
  1900. if (copy_to_user(argp, &irq_event,
  1901. sizeof irq_event))
  1902. goto out;
  1903. }
  1904. r = 0;
  1905. }
  1906. break;
  1907. }
  1908. case KVM_GET_IRQCHIP: {
  1909. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1910. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1911. r = -ENOMEM;
  1912. if (!chip)
  1913. goto out;
  1914. r = -EFAULT;
  1915. if (copy_from_user(chip, argp, sizeof *chip))
  1916. goto get_irqchip_out;
  1917. r = -ENXIO;
  1918. if (!irqchip_in_kernel(kvm))
  1919. goto get_irqchip_out;
  1920. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  1921. if (r)
  1922. goto get_irqchip_out;
  1923. r = -EFAULT;
  1924. if (copy_to_user(argp, chip, sizeof *chip))
  1925. goto get_irqchip_out;
  1926. r = 0;
  1927. get_irqchip_out:
  1928. kfree(chip);
  1929. if (r)
  1930. goto out;
  1931. break;
  1932. }
  1933. case KVM_SET_IRQCHIP: {
  1934. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1935. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1936. r = -ENOMEM;
  1937. if (!chip)
  1938. goto out;
  1939. r = -EFAULT;
  1940. if (copy_from_user(chip, argp, sizeof *chip))
  1941. goto set_irqchip_out;
  1942. r = -ENXIO;
  1943. if (!irqchip_in_kernel(kvm))
  1944. goto set_irqchip_out;
  1945. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  1946. if (r)
  1947. goto set_irqchip_out;
  1948. r = 0;
  1949. set_irqchip_out:
  1950. kfree(chip);
  1951. if (r)
  1952. goto out;
  1953. break;
  1954. }
  1955. case KVM_GET_PIT: {
  1956. r = -EFAULT;
  1957. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  1958. goto out;
  1959. r = -ENXIO;
  1960. if (!kvm->arch.vpit)
  1961. goto out;
  1962. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  1963. if (r)
  1964. goto out;
  1965. r = -EFAULT;
  1966. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  1967. goto out;
  1968. r = 0;
  1969. break;
  1970. }
  1971. case KVM_SET_PIT: {
  1972. r = -EFAULT;
  1973. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  1974. goto out;
  1975. r = -ENXIO;
  1976. if (!kvm->arch.vpit)
  1977. goto out;
  1978. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  1979. if (r)
  1980. goto out;
  1981. r = 0;
  1982. break;
  1983. }
  1984. case KVM_REINJECT_CONTROL: {
  1985. struct kvm_reinject_control control;
  1986. r = -EFAULT;
  1987. if (copy_from_user(&control, argp, sizeof(control)))
  1988. goto out;
  1989. r = kvm_vm_ioctl_reinject(kvm, &control);
  1990. if (r)
  1991. goto out;
  1992. r = 0;
  1993. break;
  1994. }
  1995. default:
  1996. ;
  1997. }
  1998. out:
  1999. return r;
  2000. }
  2001. static void kvm_init_msr_list(void)
  2002. {
  2003. u32 dummy[2];
  2004. unsigned i, j;
  2005. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  2006. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2007. continue;
  2008. if (j < i)
  2009. msrs_to_save[j] = msrs_to_save[i];
  2010. j++;
  2011. }
  2012. num_msrs_to_save = j;
  2013. }
  2014. /*
  2015. * Only apic need an MMIO device hook, so shortcut now..
  2016. */
  2017. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  2018. gpa_t addr, int len,
  2019. int is_write)
  2020. {
  2021. struct kvm_io_device *dev;
  2022. if (vcpu->arch.apic) {
  2023. dev = &vcpu->arch.apic->dev;
  2024. if (kvm_iodevice_in_range(dev, addr, len, is_write))
  2025. return dev;
  2026. }
  2027. return NULL;
  2028. }
  2029. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  2030. gpa_t addr, int len,
  2031. int is_write)
  2032. {
  2033. struct kvm_io_device *dev;
  2034. dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
  2035. if (dev == NULL)
  2036. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
  2037. is_write);
  2038. return dev;
  2039. }
  2040. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2041. struct kvm_vcpu *vcpu)
  2042. {
  2043. void *data = val;
  2044. int r = X86EMUL_CONTINUE;
  2045. while (bytes) {
  2046. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2047. unsigned offset = addr & (PAGE_SIZE-1);
  2048. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2049. int ret;
  2050. if (gpa == UNMAPPED_GVA) {
  2051. r = X86EMUL_PROPAGATE_FAULT;
  2052. goto out;
  2053. }
  2054. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2055. if (ret < 0) {
  2056. r = X86EMUL_UNHANDLEABLE;
  2057. goto out;
  2058. }
  2059. bytes -= toread;
  2060. data += toread;
  2061. addr += toread;
  2062. }
  2063. out:
  2064. return r;
  2065. }
  2066. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2067. struct kvm_vcpu *vcpu)
  2068. {
  2069. void *data = val;
  2070. int r = X86EMUL_CONTINUE;
  2071. while (bytes) {
  2072. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2073. unsigned offset = addr & (PAGE_SIZE-1);
  2074. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2075. int ret;
  2076. if (gpa == UNMAPPED_GVA) {
  2077. r = X86EMUL_PROPAGATE_FAULT;
  2078. goto out;
  2079. }
  2080. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2081. if (ret < 0) {
  2082. r = X86EMUL_UNHANDLEABLE;
  2083. goto out;
  2084. }
  2085. bytes -= towrite;
  2086. data += towrite;
  2087. addr += towrite;
  2088. }
  2089. out:
  2090. return r;
  2091. }
  2092. static int emulator_read_emulated(unsigned long addr,
  2093. void *val,
  2094. unsigned int bytes,
  2095. struct kvm_vcpu *vcpu)
  2096. {
  2097. struct kvm_io_device *mmio_dev;
  2098. gpa_t gpa;
  2099. if (vcpu->mmio_read_completed) {
  2100. memcpy(val, vcpu->mmio_data, bytes);
  2101. vcpu->mmio_read_completed = 0;
  2102. return X86EMUL_CONTINUE;
  2103. }
  2104. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2105. /* For APIC access vmexit */
  2106. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2107. goto mmio;
  2108. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  2109. == X86EMUL_CONTINUE)
  2110. return X86EMUL_CONTINUE;
  2111. if (gpa == UNMAPPED_GVA)
  2112. return X86EMUL_PROPAGATE_FAULT;
  2113. mmio:
  2114. /*
  2115. * Is this MMIO handled locally?
  2116. */
  2117. mutex_lock(&vcpu->kvm->lock);
  2118. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
  2119. mutex_unlock(&vcpu->kvm->lock);
  2120. if (mmio_dev) {
  2121. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  2122. return X86EMUL_CONTINUE;
  2123. }
  2124. vcpu->mmio_needed = 1;
  2125. vcpu->mmio_phys_addr = gpa;
  2126. vcpu->mmio_size = bytes;
  2127. vcpu->mmio_is_write = 0;
  2128. return X86EMUL_UNHANDLEABLE;
  2129. }
  2130. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2131. const void *val, int bytes)
  2132. {
  2133. int ret;
  2134. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2135. if (ret < 0)
  2136. return 0;
  2137. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2138. return 1;
  2139. }
  2140. static int emulator_write_emulated_onepage(unsigned long addr,
  2141. const void *val,
  2142. unsigned int bytes,
  2143. struct kvm_vcpu *vcpu)
  2144. {
  2145. struct kvm_io_device *mmio_dev;
  2146. gpa_t gpa;
  2147. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2148. if (gpa == UNMAPPED_GVA) {
  2149. kvm_inject_page_fault(vcpu, addr, 2);
  2150. return X86EMUL_PROPAGATE_FAULT;
  2151. }
  2152. /* For APIC access vmexit */
  2153. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2154. goto mmio;
  2155. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2156. return X86EMUL_CONTINUE;
  2157. mmio:
  2158. /*
  2159. * Is this MMIO handled locally?
  2160. */
  2161. mutex_lock(&vcpu->kvm->lock);
  2162. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
  2163. mutex_unlock(&vcpu->kvm->lock);
  2164. if (mmio_dev) {
  2165. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  2166. return X86EMUL_CONTINUE;
  2167. }
  2168. vcpu->mmio_needed = 1;
  2169. vcpu->mmio_phys_addr = gpa;
  2170. vcpu->mmio_size = bytes;
  2171. vcpu->mmio_is_write = 1;
  2172. memcpy(vcpu->mmio_data, val, bytes);
  2173. return X86EMUL_CONTINUE;
  2174. }
  2175. int emulator_write_emulated(unsigned long addr,
  2176. const void *val,
  2177. unsigned int bytes,
  2178. struct kvm_vcpu *vcpu)
  2179. {
  2180. /* Crossing a page boundary? */
  2181. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2182. int rc, now;
  2183. now = -addr & ~PAGE_MASK;
  2184. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2185. if (rc != X86EMUL_CONTINUE)
  2186. return rc;
  2187. addr += now;
  2188. val += now;
  2189. bytes -= now;
  2190. }
  2191. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2192. }
  2193. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2194. static int emulator_cmpxchg_emulated(unsigned long addr,
  2195. const void *old,
  2196. const void *new,
  2197. unsigned int bytes,
  2198. struct kvm_vcpu *vcpu)
  2199. {
  2200. static int reported;
  2201. if (!reported) {
  2202. reported = 1;
  2203. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  2204. }
  2205. #ifndef CONFIG_X86_64
  2206. /* guests cmpxchg8b have to be emulated atomically */
  2207. if (bytes == 8) {
  2208. gpa_t gpa;
  2209. struct page *page;
  2210. char *kaddr;
  2211. u64 val;
  2212. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2213. if (gpa == UNMAPPED_GVA ||
  2214. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2215. goto emul_write;
  2216. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2217. goto emul_write;
  2218. val = *(u64 *)new;
  2219. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2220. kaddr = kmap_atomic(page, KM_USER0);
  2221. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2222. kunmap_atomic(kaddr, KM_USER0);
  2223. kvm_release_page_dirty(page);
  2224. }
  2225. emul_write:
  2226. #endif
  2227. return emulator_write_emulated(addr, new, bytes, vcpu);
  2228. }
  2229. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2230. {
  2231. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2232. }
  2233. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2234. {
  2235. kvm_mmu_invlpg(vcpu, address);
  2236. return X86EMUL_CONTINUE;
  2237. }
  2238. int emulate_clts(struct kvm_vcpu *vcpu)
  2239. {
  2240. KVMTRACE_0D(CLTS, vcpu, handler);
  2241. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  2242. return X86EMUL_CONTINUE;
  2243. }
  2244. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2245. {
  2246. struct kvm_vcpu *vcpu = ctxt->vcpu;
  2247. switch (dr) {
  2248. case 0 ... 3:
  2249. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  2250. return X86EMUL_CONTINUE;
  2251. default:
  2252. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  2253. return X86EMUL_UNHANDLEABLE;
  2254. }
  2255. }
  2256. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2257. {
  2258. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2259. int exception;
  2260. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  2261. if (exception) {
  2262. /* FIXME: better handling */
  2263. return X86EMUL_UNHANDLEABLE;
  2264. }
  2265. return X86EMUL_CONTINUE;
  2266. }
  2267. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2268. {
  2269. u8 opcodes[4];
  2270. unsigned long rip = kvm_rip_read(vcpu);
  2271. unsigned long rip_linear;
  2272. if (!printk_ratelimit())
  2273. return;
  2274. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2275. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2276. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2277. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2278. }
  2279. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2280. static struct x86_emulate_ops emulate_ops = {
  2281. .read_std = kvm_read_guest_virt,
  2282. .read_emulated = emulator_read_emulated,
  2283. .write_emulated = emulator_write_emulated,
  2284. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2285. };
  2286. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2287. {
  2288. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2289. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2290. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2291. vcpu->arch.regs_dirty = ~0;
  2292. }
  2293. int emulate_instruction(struct kvm_vcpu *vcpu,
  2294. struct kvm_run *run,
  2295. unsigned long cr2,
  2296. u16 error_code,
  2297. int emulation_type)
  2298. {
  2299. int r, shadow_mask;
  2300. struct decode_cache *c;
  2301. kvm_clear_exception_queue(vcpu);
  2302. vcpu->arch.mmio_fault_cr2 = cr2;
  2303. /*
  2304. * TODO: fix x86_emulate.c to use guest_read/write_register
  2305. * instead of direct ->regs accesses, can save hundred cycles
  2306. * on Intel for instructions that don't read/change RSP, for
  2307. * for example.
  2308. */
  2309. cache_all_regs(vcpu);
  2310. vcpu->mmio_is_write = 0;
  2311. vcpu->arch.pio.string = 0;
  2312. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2313. int cs_db, cs_l;
  2314. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2315. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2316. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  2317. vcpu->arch.emulate_ctxt.mode =
  2318. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2319. ? X86EMUL_MODE_REAL : cs_l
  2320. ? X86EMUL_MODE_PROT64 : cs_db
  2321. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2322. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2323. /* Reject the instructions other than VMCALL/VMMCALL when
  2324. * try to emulate invalid opcode */
  2325. c = &vcpu->arch.emulate_ctxt.decode;
  2326. if ((emulation_type & EMULTYPE_TRAP_UD) &&
  2327. (!(c->twobyte && c->b == 0x01 &&
  2328. (c->modrm_reg == 0 || c->modrm_reg == 3) &&
  2329. c->modrm_mod == 3 && c->modrm_rm == 1)))
  2330. return EMULATE_FAIL;
  2331. ++vcpu->stat.insn_emulation;
  2332. if (r) {
  2333. ++vcpu->stat.insn_emulation_fail;
  2334. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2335. return EMULATE_DONE;
  2336. return EMULATE_FAIL;
  2337. }
  2338. }
  2339. if (emulation_type & EMULTYPE_SKIP) {
  2340. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  2341. return EMULATE_DONE;
  2342. }
  2343. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2344. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  2345. if (r == 0)
  2346. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  2347. if (vcpu->arch.pio.string)
  2348. return EMULATE_DO_MMIO;
  2349. if ((r || vcpu->mmio_is_write) && run) {
  2350. run->exit_reason = KVM_EXIT_MMIO;
  2351. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2352. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2353. run->mmio.len = vcpu->mmio_size;
  2354. run->mmio.is_write = vcpu->mmio_is_write;
  2355. }
  2356. if (r) {
  2357. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2358. return EMULATE_DONE;
  2359. if (!vcpu->mmio_needed) {
  2360. kvm_report_emulation_failure(vcpu, "mmio");
  2361. return EMULATE_FAIL;
  2362. }
  2363. return EMULATE_DO_MMIO;
  2364. }
  2365. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2366. if (vcpu->mmio_is_write) {
  2367. vcpu->mmio_needed = 0;
  2368. return EMULATE_DO_MMIO;
  2369. }
  2370. return EMULATE_DONE;
  2371. }
  2372. EXPORT_SYMBOL_GPL(emulate_instruction);
  2373. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2374. {
  2375. void *p = vcpu->arch.pio_data;
  2376. gva_t q = vcpu->arch.pio.guest_gva;
  2377. unsigned bytes;
  2378. int ret;
  2379. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2380. if (vcpu->arch.pio.in)
  2381. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  2382. else
  2383. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  2384. return ret;
  2385. }
  2386. int complete_pio(struct kvm_vcpu *vcpu)
  2387. {
  2388. struct kvm_pio_request *io = &vcpu->arch.pio;
  2389. long delta;
  2390. int r;
  2391. unsigned long val;
  2392. if (!io->string) {
  2393. if (io->in) {
  2394. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2395. memcpy(&val, vcpu->arch.pio_data, io->size);
  2396. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2397. }
  2398. } else {
  2399. if (io->in) {
  2400. r = pio_copy_data(vcpu);
  2401. if (r)
  2402. return r;
  2403. }
  2404. delta = 1;
  2405. if (io->rep) {
  2406. delta *= io->cur_count;
  2407. /*
  2408. * The size of the register should really depend on
  2409. * current address size.
  2410. */
  2411. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2412. val -= delta;
  2413. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2414. }
  2415. if (io->down)
  2416. delta = -delta;
  2417. delta *= io->size;
  2418. if (io->in) {
  2419. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2420. val += delta;
  2421. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2422. } else {
  2423. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2424. val += delta;
  2425. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2426. }
  2427. }
  2428. io->count -= io->cur_count;
  2429. io->cur_count = 0;
  2430. return 0;
  2431. }
  2432. static void kernel_pio(struct kvm_io_device *pio_dev,
  2433. struct kvm_vcpu *vcpu,
  2434. void *pd)
  2435. {
  2436. /* TODO: String I/O for in kernel device */
  2437. if (vcpu->arch.pio.in)
  2438. kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
  2439. vcpu->arch.pio.size,
  2440. pd);
  2441. else
  2442. kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
  2443. vcpu->arch.pio.size,
  2444. pd);
  2445. }
  2446. static void pio_string_write(struct kvm_io_device *pio_dev,
  2447. struct kvm_vcpu *vcpu)
  2448. {
  2449. struct kvm_pio_request *io = &vcpu->arch.pio;
  2450. void *pd = vcpu->arch.pio_data;
  2451. int i;
  2452. for (i = 0; i < io->cur_count; i++) {
  2453. kvm_iodevice_write(pio_dev, io->port,
  2454. io->size,
  2455. pd);
  2456. pd += io->size;
  2457. }
  2458. }
  2459. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  2460. gpa_t addr, int len,
  2461. int is_write)
  2462. {
  2463. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
  2464. }
  2465. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2466. int size, unsigned port)
  2467. {
  2468. struct kvm_io_device *pio_dev;
  2469. unsigned long val;
  2470. vcpu->run->exit_reason = KVM_EXIT_IO;
  2471. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2472. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2473. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2474. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2475. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2476. vcpu->arch.pio.in = in;
  2477. vcpu->arch.pio.string = 0;
  2478. vcpu->arch.pio.down = 0;
  2479. vcpu->arch.pio.rep = 0;
  2480. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2481. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2482. handler);
  2483. else
  2484. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2485. handler);
  2486. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2487. memcpy(vcpu->arch.pio_data, &val, 4);
  2488. mutex_lock(&vcpu->kvm->lock);
  2489. pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
  2490. mutex_unlock(&vcpu->kvm->lock);
  2491. if (pio_dev) {
  2492. kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
  2493. complete_pio(vcpu);
  2494. return 1;
  2495. }
  2496. return 0;
  2497. }
  2498. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2499. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2500. int size, unsigned long count, int down,
  2501. gva_t address, int rep, unsigned port)
  2502. {
  2503. unsigned now, in_page;
  2504. int ret = 0;
  2505. struct kvm_io_device *pio_dev;
  2506. vcpu->run->exit_reason = KVM_EXIT_IO;
  2507. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2508. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2509. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2510. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2511. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2512. vcpu->arch.pio.in = in;
  2513. vcpu->arch.pio.string = 1;
  2514. vcpu->arch.pio.down = down;
  2515. vcpu->arch.pio.rep = rep;
  2516. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2517. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2518. handler);
  2519. else
  2520. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2521. handler);
  2522. if (!count) {
  2523. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2524. return 1;
  2525. }
  2526. if (!down)
  2527. in_page = PAGE_SIZE - offset_in_page(address);
  2528. else
  2529. in_page = offset_in_page(address) + size;
  2530. now = min(count, (unsigned long)in_page / size);
  2531. if (!now)
  2532. now = 1;
  2533. if (down) {
  2534. /*
  2535. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2536. */
  2537. pr_unimpl(vcpu, "guest string pio down\n");
  2538. kvm_inject_gp(vcpu, 0);
  2539. return 1;
  2540. }
  2541. vcpu->run->io.count = now;
  2542. vcpu->arch.pio.cur_count = now;
  2543. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2544. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2545. vcpu->arch.pio.guest_gva = address;
  2546. mutex_lock(&vcpu->kvm->lock);
  2547. pio_dev = vcpu_find_pio_dev(vcpu, port,
  2548. vcpu->arch.pio.cur_count,
  2549. !vcpu->arch.pio.in);
  2550. mutex_unlock(&vcpu->kvm->lock);
  2551. if (!vcpu->arch.pio.in) {
  2552. /* string PIO write */
  2553. ret = pio_copy_data(vcpu);
  2554. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2555. kvm_inject_gp(vcpu, 0);
  2556. return 1;
  2557. }
  2558. if (ret == 0 && pio_dev) {
  2559. pio_string_write(pio_dev, vcpu);
  2560. complete_pio(vcpu);
  2561. if (vcpu->arch.pio.count == 0)
  2562. ret = 1;
  2563. }
  2564. } else if (pio_dev)
  2565. pr_unimpl(vcpu, "no string pio read support yet, "
  2566. "port %x size %d count %ld\n",
  2567. port, size, count);
  2568. return ret;
  2569. }
  2570. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2571. static void bounce_off(void *info)
  2572. {
  2573. /* nothing */
  2574. }
  2575. static unsigned int ref_freq;
  2576. static unsigned long tsc_khz_ref;
  2577. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  2578. void *data)
  2579. {
  2580. struct cpufreq_freqs *freq = data;
  2581. struct kvm *kvm;
  2582. struct kvm_vcpu *vcpu;
  2583. int i, send_ipi = 0;
  2584. if (!ref_freq)
  2585. ref_freq = freq->old;
  2586. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  2587. return 0;
  2588. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  2589. return 0;
  2590. per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  2591. spin_lock(&kvm_lock);
  2592. list_for_each_entry(kvm, &vm_list, vm_list) {
  2593. kvm_for_each_vcpu(i, vcpu, kvm) {
  2594. if (vcpu->cpu != freq->cpu)
  2595. continue;
  2596. if (!kvm_request_guest_time_update(vcpu))
  2597. continue;
  2598. if (vcpu->cpu != smp_processor_id())
  2599. send_ipi++;
  2600. }
  2601. }
  2602. spin_unlock(&kvm_lock);
  2603. if (freq->old < freq->new && send_ipi) {
  2604. /*
  2605. * We upscale the frequency. Must make the guest
  2606. * doesn't see old kvmclock values while running with
  2607. * the new frequency, otherwise we risk the guest sees
  2608. * time go backwards.
  2609. *
  2610. * In case we update the frequency for another cpu
  2611. * (which might be in guest context) send an interrupt
  2612. * to kick the cpu out of guest context. Next time
  2613. * guest context is entered kvmclock will be updated,
  2614. * so the guest will not see stale values.
  2615. */
  2616. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  2617. }
  2618. return 0;
  2619. }
  2620. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  2621. .notifier_call = kvmclock_cpufreq_notifier
  2622. };
  2623. int kvm_arch_init(void *opaque)
  2624. {
  2625. int r, cpu;
  2626. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2627. if (kvm_x86_ops) {
  2628. printk(KERN_ERR "kvm: already loaded the other module\n");
  2629. r = -EEXIST;
  2630. goto out;
  2631. }
  2632. if (!ops->cpu_has_kvm_support()) {
  2633. printk(KERN_ERR "kvm: no hardware support\n");
  2634. r = -EOPNOTSUPP;
  2635. goto out;
  2636. }
  2637. if (ops->disabled_by_bios()) {
  2638. printk(KERN_ERR "kvm: disabled by bios\n");
  2639. r = -EOPNOTSUPP;
  2640. goto out;
  2641. }
  2642. r = kvm_mmu_module_init();
  2643. if (r)
  2644. goto out;
  2645. kvm_init_msr_list();
  2646. kvm_x86_ops = ops;
  2647. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2648. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2649. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2650. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  2651. for_each_possible_cpu(cpu)
  2652. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  2653. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  2654. tsc_khz_ref = tsc_khz;
  2655. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  2656. CPUFREQ_TRANSITION_NOTIFIER);
  2657. }
  2658. return 0;
  2659. out:
  2660. return r;
  2661. }
  2662. void kvm_arch_exit(void)
  2663. {
  2664. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  2665. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  2666. CPUFREQ_TRANSITION_NOTIFIER);
  2667. kvm_x86_ops = NULL;
  2668. kvm_mmu_module_exit();
  2669. }
  2670. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2671. {
  2672. ++vcpu->stat.halt_exits;
  2673. KVMTRACE_0D(HLT, vcpu, handler);
  2674. if (irqchip_in_kernel(vcpu->kvm)) {
  2675. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2676. return 1;
  2677. } else {
  2678. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2679. return 0;
  2680. }
  2681. }
  2682. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2683. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2684. unsigned long a1)
  2685. {
  2686. if (is_long_mode(vcpu))
  2687. return a0;
  2688. else
  2689. return a0 | ((gpa_t)a1 << 32);
  2690. }
  2691. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2692. {
  2693. unsigned long nr, a0, a1, a2, a3, ret;
  2694. int r = 1;
  2695. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2696. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2697. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2698. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2699. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2700. KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
  2701. if (!is_long_mode(vcpu)) {
  2702. nr &= 0xFFFFFFFF;
  2703. a0 &= 0xFFFFFFFF;
  2704. a1 &= 0xFFFFFFFF;
  2705. a2 &= 0xFFFFFFFF;
  2706. a3 &= 0xFFFFFFFF;
  2707. }
  2708. switch (nr) {
  2709. case KVM_HC_VAPIC_POLL_IRQ:
  2710. ret = 0;
  2711. break;
  2712. case KVM_HC_MMU_OP:
  2713. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2714. break;
  2715. default:
  2716. ret = -KVM_ENOSYS;
  2717. break;
  2718. }
  2719. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  2720. ++vcpu->stat.hypercalls;
  2721. return r;
  2722. }
  2723. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2724. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2725. {
  2726. char instruction[3];
  2727. int ret = 0;
  2728. unsigned long rip = kvm_rip_read(vcpu);
  2729. /*
  2730. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2731. * to ensure that the updated hypercall appears atomically across all
  2732. * VCPUs.
  2733. */
  2734. kvm_mmu_zap_all(vcpu->kvm);
  2735. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2736. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  2737. != X86EMUL_CONTINUE)
  2738. ret = -EFAULT;
  2739. return ret;
  2740. }
  2741. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2742. {
  2743. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2744. }
  2745. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2746. {
  2747. struct descriptor_table dt = { limit, base };
  2748. kvm_x86_ops->set_gdt(vcpu, &dt);
  2749. }
  2750. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2751. {
  2752. struct descriptor_table dt = { limit, base };
  2753. kvm_x86_ops->set_idt(vcpu, &dt);
  2754. }
  2755. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2756. unsigned long *rflags)
  2757. {
  2758. kvm_lmsw(vcpu, msw);
  2759. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2760. }
  2761. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2762. {
  2763. unsigned long value;
  2764. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2765. switch (cr) {
  2766. case 0:
  2767. value = vcpu->arch.cr0;
  2768. break;
  2769. case 2:
  2770. value = vcpu->arch.cr2;
  2771. break;
  2772. case 3:
  2773. value = vcpu->arch.cr3;
  2774. break;
  2775. case 4:
  2776. value = vcpu->arch.cr4;
  2777. break;
  2778. case 8:
  2779. value = kvm_get_cr8(vcpu);
  2780. break;
  2781. default:
  2782. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2783. return 0;
  2784. }
  2785. KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
  2786. (u32)((u64)value >> 32), handler);
  2787. return value;
  2788. }
  2789. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2790. unsigned long *rflags)
  2791. {
  2792. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
  2793. (u32)((u64)val >> 32), handler);
  2794. switch (cr) {
  2795. case 0:
  2796. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2797. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2798. break;
  2799. case 2:
  2800. vcpu->arch.cr2 = val;
  2801. break;
  2802. case 3:
  2803. kvm_set_cr3(vcpu, val);
  2804. break;
  2805. case 4:
  2806. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2807. break;
  2808. case 8:
  2809. kvm_set_cr8(vcpu, val & 0xfUL);
  2810. break;
  2811. default:
  2812. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2813. }
  2814. }
  2815. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2816. {
  2817. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2818. int j, nent = vcpu->arch.cpuid_nent;
  2819. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2820. /* when no next entry is found, the current entry[i] is reselected */
  2821. for (j = i + 1; ; j = (j + 1) % nent) {
  2822. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2823. if (ej->function == e->function) {
  2824. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2825. return j;
  2826. }
  2827. }
  2828. return 0; /* silence gcc, even though control never reaches here */
  2829. }
  2830. /* find an entry with matching function, matching index (if needed), and that
  2831. * should be read next (if it's stateful) */
  2832. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2833. u32 function, u32 index)
  2834. {
  2835. if (e->function != function)
  2836. return 0;
  2837. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2838. return 0;
  2839. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2840. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2841. return 0;
  2842. return 1;
  2843. }
  2844. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  2845. u32 function, u32 index)
  2846. {
  2847. int i;
  2848. struct kvm_cpuid_entry2 *best = NULL;
  2849. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2850. struct kvm_cpuid_entry2 *e;
  2851. e = &vcpu->arch.cpuid_entries[i];
  2852. if (is_matching_cpuid_entry(e, function, index)) {
  2853. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2854. move_to_next_stateful_cpuid_entry(vcpu, i);
  2855. best = e;
  2856. break;
  2857. }
  2858. /*
  2859. * Both basic or both extended?
  2860. */
  2861. if (((e->function ^ function) & 0x80000000) == 0)
  2862. if (!best || e->function > best->function)
  2863. best = e;
  2864. }
  2865. return best;
  2866. }
  2867. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  2868. {
  2869. struct kvm_cpuid_entry2 *best;
  2870. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  2871. if (best)
  2872. return best->eax & 0xff;
  2873. return 36;
  2874. }
  2875. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2876. {
  2877. u32 function, index;
  2878. struct kvm_cpuid_entry2 *best;
  2879. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2880. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2881. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  2882. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  2883. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  2884. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  2885. best = kvm_find_cpuid_entry(vcpu, function, index);
  2886. if (best) {
  2887. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  2888. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  2889. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  2890. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  2891. }
  2892. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2893. KVMTRACE_5D(CPUID, vcpu, function,
  2894. (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
  2895. (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
  2896. (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
  2897. (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
  2898. }
  2899. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2900. /*
  2901. * Check if userspace requested an interrupt window, and that the
  2902. * interrupt window is open.
  2903. *
  2904. * No need to exit to userspace if we already have an interrupt queued.
  2905. */
  2906. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2907. struct kvm_run *kvm_run)
  2908. {
  2909. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  2910. kvm_run->request_interrupt_window &&
  2911. kvm_arch_interrupt_allowed(vcpu));
  2912. }
  2913. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2914. struct kvm_run *kvm_run)
  2915. {
  2916. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2917. kvm_run->cr8 = kvm_get_cr8(vcpu);
  2918. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2919. if (irqchip_in_kernel(vcpu->kvm))
  2920. kvm_run->ready_for_interrupt_injection = 1;
  2921. else
  2922. kvm_run->ready_for_interrupt_injection =
  2923. kvm_arch_interrupt_allowed(vcpu) &&
  2924. !kvm_cpu_has_interrupt(vcpu) &&
  2925. !kvm_event_needs_reinjection(vcpu);
  2926. }
  2927. static void vapic_enter(struct kvm_vcpu *vcpu)
  2928. {
  2929. struct kvm_lapic *apic = vcpu->arch.apic;
  2930. struct page *page;
  2931. if (!apic || !apic->vapic_addr)
  2932. return;
  2933. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2934. vcpu->arch.apic->vapic_page = page;
  2935. }
  2936. static void vapic_exit(struct kvm_vcpu *vcpu)
  2937. {
  2938. struct kvm_lapic *apic = vcpu->arch.apic;
  2939. if (!apic || !apic->vapic_addr)
  2940. return;
  2941. down_read(&vcpu->kvm->slots_lock);
  2942. kvm_release_page_dirty(apic->vapic_page);
  2943. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2944. up_read(&vcpu->kvm->slots_lock);
  2945. }
  2946. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  2947. {
  2948. int max_irr, tpr;
  2949. if (!kvm_x86_ops->update_cr8_intercept)
  2950. return;
  2951. if (!vcpu->arch.apic->vapic_addr)
  2952. max_irr = kvm_lapic_find_highest_irr(vcpu);
  2953. else
  2954. max_irr = -1;
  2955. if (max_irr != -1)
  2956. max_irr >>= 4;
  2957. tpr = kvm_lapic_get_cr8(vcpu);
  2958. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  2959. }
  2960. static void inject_pending_irq(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2961. {
  2962. /* try to reinject previous events if any */
  2963. if (vcpu->arch.nmi_injected) {
  2964. kvm_x86_ops->set_nmi(vcpu);
  2965. return;
  2966. }
  2967. if (vcpu->arch.interrupt.pending) {
  2968. kvm_x86_ops->set_irq(vcpu);
  2969. return;
  2970. }
  2971. /* try to inject new event if pending */
  2972. if (vcpu->arch.nmi_pending) {
  2973. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  2974. vcpu->arch.nmi_pending = false;
  2975. vcpu->arch.nmi_injected = true;
  2976. kvm_x86_ops->set_nmi(vcpu);
  2977. }
  2978. } else if (kvm_cpu_has_interrupt(vcpu)) {
  2979. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  2980. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  2981. false);
  2982. kvm_x86_ops->set_irq(vcpu);
  2983. }
  2984. }
  2985. }
  2986. static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2987. {
  2988. int r;
  2989. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  2990. kvm_run->request_interrupt_window;
  2991. if (vcpu->requests)
  2992. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  2993. kvm_mmu_unload(vcpu);
  2994. r = kvm_mmu_reload(vcpu);
  2995. if (unlikely(r))
  2996. goto out;
  2997. if (vcpu->requests) {
  2998. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  2999. __kvm_migrate_timers(vcpu);
  3000. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3001. kvm_write_guest_time(vcpu);
  3002. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3003. kvm_mmu_sync_roots(vcpu);
  3004. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3005. kvm_x86_ops->tlb_flush(vcpu);
  3006. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3007. &vcpu->requests)) {
  3008. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3009. r = 0;
  3010. goto out;
  3011. }
  3012. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3013. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  3014. r = 0;
  3015. goto out;
  3016. }
  3017. }
  3018. preempt_disable();
  3019. kvm_x86_ops->prepare_guest_switch(vcpu);
  3020. kvm_load_guest_fpu(vcpu);
  3021. local_irq_disable();
  3022. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3023. smp_mb__after_clear_bit();
  3024. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3025. local_irq_enable();
  3026. preempt_enable();
  3027. r = 1;
  3028. goto out;
  3029. }
  3030. if (vcpu->arch.exception.pending)
  3031. __queue_exception(vcpu);
  3032. else
  3033. inject_pending_irq(vcpu, kvm_run);
  3034. /* enable NMI/IRQ window open exits if needed */
  3035. if (vcpu->arch.nmi_pending)
  3036. kvm_x86_ops->enable_nmi_window(vcpu);
  3037. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3038. kvm_x86_ops->enable_irq_window(vcpu);
  3039. if (kvm_lapic_enabled(vcpu)) {
  3040. update_cr8_intercept(vcpu);
  3041. kvm_lapic_sync_to_vapic(vcpu);
  3042. }
  3043. up_read(&vcpu->kvm->slots_lock);
  3044. kvm_guest_enter();
  3045. get_debugreg(vcpu->arch.host_dr6, 6);
  3046. get_debugreg(vcpu->arch.host_dr7, 7);
  3047. if (unlikely(vcpu->arch.switch_db_regs)) {
  3048. get_debugreg(vcpu->arch.host_db[0], 0);
  3049. get_debugreg(vcpu->arch.host_db[1], 1);
  3050. get_debugreg(vcpu->arch.host_db[2], 2);
  3051. get_debugreg(vcpu->arch.host_db[3], 3);
  3052. set_debugreg(0, 7);
  3053. set_debugreg(vcpu->arch.eff_db[0], 0);
  3054. set_debugreg(vcpu->arch.eff_db[1], 1);
  3055. set_debugreg(vcpu->arch.eff_db[2], 2);
  3056. set_debugreg(vcpu->arch.eff_db[3], 3);
  3057. }
  3058. KVMTRACE_0D(VMENTRY, vcpu, entryexit);
  3059. kvm_x86_ops->run(vcpu, kvm_run);
  3060. if (unlikely(vcpu->arch.switch_db_regs)) {
  3061. set_debugreg(0, 7);
  3062. set_debugreg(vcpu->arch.host_db[0], 0);
  3063. set_debugreg(vcpu->arch.host_db[1], 1);
  3064. set_debugreg(vcpu->arch.host_db[2], 2);
  3065. set_debugreg(vcpu->arch.host_db[3], 3);
  3066. }
  3067. set_debugreg(vcpu->arch.host_dr6, 6);
  3068. set_debugreg(vcpu->arch.host_dr7, 7);
  3069. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3070. local_irq_enable();
  3071. ++vcpu->stat.exits;
  3072. /*
  3073. * We must have an instruction between local_irq_enable() and
  3074. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3075. * the interrupt shadow. The stat.exits increment will do nicely.
  3076. * But we need to prevent reordering, hence this barrier():
  3077. */
  3078. barrier();
  3079. kvm_guest_exit();
  3080. preempt_enable();
  3081. down_read(&vcpu->kvm->slots_lock);
  3082. /*
  3083. * Profile KVM exit RIPs:
  3084. */
  3085. if (unlikely(prof_on == KVM_PROFILING)) {
  3086. unsigned long rip = kvm_rip_read(vcpu);
  3087. profile_hit(KVM_PROFILING, (void *)rip);
  3088. }
  3089. kvm_lapic_sync_from_vapic(vcpu);
  3090. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  3091. out:
  3092. return r;
  3093. }
  3094. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3095. {
  3096. int r;
  3097. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3098. pr_debug("vcpu %d received sipi with vector # %x\n",
  3099. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  3100. kvm_lapic_reset(vcpu);
  3101. r = kvm_arch_vcpu_reset(vcpu);
  3102. if (r)
  3103. return r;
  3104. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3105. }
  3106. down_read(&vcpu->kvm->slots_lock);
  3107. vapic_enter(vcpu);
  3108. r = 1;
  3109. while (r > 0) {
  3110. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  3111. r = vcpu_enter_guest(vcpu, kvm_run);
  3112. else {
  3113. up_read(&vcpu->kvm->slots_lock);
  3114. kvm_vcpu_block(vcpu);
  3115. down_read(&vcpu->kvm->slots_lock);
  3116. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  3117. {
  3118. switch(vcpu->arch.mp_state) {
  3119. case KVM_MP_STATE_HALTED:
  3120. vcpu->arch.mp_state =
  3121. KVM_MP_STATE_RUNNABLE;
  3122. case KVM_MP_STATE_RUNNABLE:
  3123. break;
  3124. case KVM_MP_STATE_SIPI_RECEIVED:
  3125. default:
  3126. r = -EINTR;
  3127. break;
  3128. }
  3129. }
  3130. }
  3131. if (r <= 0)
  3132. break;
  3133. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  3134. if (kvm_cpu_has_pending_timer(vcpu))
  3135. kvm_inject_pending_timer_irqs(vcpu);
  3136. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  3137. r = -EINTR;
  3138. kvm_run->exit_reason = KVM_EXIT_INTR;
  3139. ++vcpu->stat.request_irq_exits;
  3140. }
  3141. if (signal_pending(current)) {
  3142. r = -EINTR;
  3143. kvm_run->exit_reason = KVM_EXIT_INTR;
  3144. ++vcpu->stat.signal_exits;
  3145. }
  3146. if (need_resched()) {
  3147. up_read(&vcpu->kvm->slots_lock);
  3148. kvm_resched(vcpu);
  3149. down_read(&vcpu->kvm->slots_lock);
  3150. }
  3151. }
  3152. up_read(&vcpu->kvm->slots_lock);
  3153. post_kvm_run_save(vcpu, kvm_run);
  3154. vapic_exit(vcpu);
  3155. return r;
  3156. }
  3157. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3158. {
  3159. int r;
  3160. sigset_t sigsaved;
  3161. vcpu_load(vcpu);
  3162. if (vcpu->sigset_active)
  3163. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  3164. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  3165. kvm_vcpu_block(vcpu);
  3166. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  3167. r = -EAGAIN;
  3168. goto out;
  3169. }
  3170. /* re-sync apic's tpr */
  3171. if (!irqchip_in_kernel(vcpu->kvm))
  3172. kvm_set_cr8(vcpu, kvm_run->cr8);
  3173. if (vcpu->arch.pio.cur_count) {
  3174. r = complete_pio(vcpu);
  3175. if (r)
  3176. goto out;
  3177. }
  3178. #if CONFIG_HAS_IOMEM
  3179. if (vcpu->mmio_needed) {
  3180. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3181. vcpu->mmio_read_completed = 1;
  3182. vcpu->mmio_needed = 0;
  3183. down_read(&vcpu->kvm->slots_lock);
  3184. r = emulate_instruction(vcpu, kvm_run,
  3185. vcpu->arch.mmio_fault_cr2, 0,
  3186. EMULTYPE_NO_DECODE);
  3187. up_read(&vcpu->kvm->slots_lock);
  3188. if (r == EMULATE_DO_MMIO) {
  3189. /*
  3190. * Read-modify-write. Back to userspace.
  3191. */
  3192. r = 0;
  3193. goto out;
  3194. }
  3195. }
  3196. #endif
  3197. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3198. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3199. kvm_run->hypercall.ret);
  3200. r = __vcpu_run(vcpu, kvm_run);
  3201. out:
  3202. if (vcpu->sigset_active)
  3203. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3204. vcpu_put(vcpu);
  3205. return r;
  3206. }
  3207. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3208. {
  3209. vcpu_load(vcpu);
  3210. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3211. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3212. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3213. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3214. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3215. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3216. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3217. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3218. #ifdef CONFIG_X86_64
  3219. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  3220. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  3221. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  3222. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  3223. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  3224. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  3225. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  3226. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  3227. #endif
  3228. regs->rip = kvm_rip_read(vcpu);
  3229. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  3230. /*
  3231. * Don't leak debug flags in case they were set for guest debugging
  3232. */
  3233. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3234. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  3235. vcpu_put(vcpu);
  3236. return 0;
  3237. }
  3238. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3239. {
  3240. vcpu_load(vcpu);
  3241. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  3242. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  3243. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  3244. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  3245. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  3246. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  3247. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  3248. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  3249. #ifdef CONFIG_X86_64
  3250. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  3251. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  3252. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  3253. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  3254. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  3255. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  3256. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  3257. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  3258. #endif
  3259. kvm_rip_write(vcpu, regs->rip);
  3260. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  3261. vcpu->arch.exception.pending = false;
  3262. vcpu_put(vcpu);
  3263. return 0;
  3264. }
  3265. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3266. struct kvm_segment *var, int seg)
  3267. {
  3268. kvm_x86_ops->get_segment(vcpu, var, seg);
  3269. }
  3270. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3271. {
  3272. struct kvm_segment cs;
  3273. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3274. *db = cs.db;
  3275. *l = cs.l;
  3276. }
  3277. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  3278. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  3279. struct kvm_sregs *sregs)
  3280. {
  3281. struct descriptor_table dt;
  3282. vcpu_load(vcpu);
  3283. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3284. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3285. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3286. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3287. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3288. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3289. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3290. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3291. kvm_x86_ops->get_idt(vcpu, &dt);
  3292. sregs->idt.limit = dt.limit;
  3293. sregs->idt.base = dt.base;
  3294. kvm_x86_ops->get_gdt(vcpu, &dt);
  3295. sregs->gdt.limit = dt.limit;
  3296. sregs->gdt.base = dt.base;
  3297. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3298. sregs->cr0 = vcpu->arch.cr0;
  3299. sregs->cr2 = vcpu->arch.cr2;
  3300. sregs->cr3 = vcpu->arch.cr3;
  3301. sregs->cr4 = vcpu->arch.cr4;
  3302. sregs->cr8 = kvm_get_cr8(vcpu);
  3303. sregs->efer = vcpu->arch.shadow_efer;
  3304. sregs->apic_base = kvm_get_apic_base(vcpu);
  3305. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  3306. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  3307. set_bit(vcpu->arch.interrupt.nr,
  3308. (unsigned long *)sregs->interrupt_bitmap);
  3309. vcpu_put(vcpu);
  3310. return 0;
  3311. }
  3312. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  3313. struct kvm_mp_state *mp_state)
  3314. {
  3315. vcpu_load(vcpu);
  3316. mp_state->mp_state = vcpu->arch.mp_state;
  3317. vcpu_put(vcpu);
  3318. return 0;
  3319. }
  3320. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  3321. struct kvm_mp_state *mp_state)
  3322. {
  3323. vcpu_load(vcpu);
  3324. vcpu->arch.mp_state = mp_state->mp_state;
  3325. vcpu_put(vcpu);
  3326. return 0;
  3327. }
  3328. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3329. struct kvm_segment *var, int seg)
  3330. {
  3331. kvm_x86_ops->set_segment(vcpu, var, seg);
  3332. }
  3333. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  3334. struct kvm_segment *kvm_desct)
  3335. {
  3336. kvm_desct->base = seg_desc->base0;
  3337. kvm_desct->base |= seg_desc->base1 << 16;
  3338. kvm_desct->base |= seg_desc->base2 << 24;
  3339. kvm_desct->limit = seg_desc->limit0;
  3340. kvm_desct->limit |= seg_desc->limit << 16;
  3341. if (seg_desc->g) {
  3342. kvm_desct->limit <<= 12;
  3343. kvm_desct->limit |= 0xfff;
  3344. }
  3345. kvm_desct->selector = selector;
  3346. kvm_desct->type = seg_desc->type;
  3347. kvm_desct->present = seg_desc->p;
  3348. kvm_desct->dpl = seg_desc->dpl;
  3349. kvm_desct->db = seg_desc->d;
  3350. kvm_desct->s = seg_desc->s;
  3351. kvm_desct->l = seg_desc->l;
  3352. kvm_desct->g = seg_desc->g;
  3353. kvm_desct->avl = seg_desc->avl;
  3354. if (!selector)
  3355. kvm_desct->unusable = 1;
  3356. else
  3357. kvm_desct->unusable = 0;
  3358. kvm_desct->padding = 0;
  3359. }
  3360. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  3361. u16 selector,
  3362. struct descriptor_table *dtable)
  3363. {
  3364. if (selector & 1 << 2) {
  3365. struct kvm_segment kvm_seg;
  3366. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  3367. if (kvm_seg.unusable)
  3368. dtable->limit = 0;
  3369. else
  3370. dtable->limit = kvm_seg.limit;
  3371. dtable->base = kvm_seg.base;
  3372. }
  3373. else
  3374. kvm_x86_ops->get_gdt(vcpu, dtable);
  3375. }
  3376. /* allowed just for 8 bytes segments */
  3377. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3378. struct desc_struct *seg_desc)
  3379. {
  3380. gpa_t gpa;
  3381. struct descriptor_table dtable;
  3382. u16 index = selector >> 3;
  3383. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3384. if (dtable.limit < index * 8 + 7) {
  3385. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  3386. return 1;
  3387. }
  3388. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3389. gpa += index * 8;
  3390. return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
  3391. }
  3392. /* allowed just for 8 bytes segments */
  3393. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3394. struct desc_struct *seg_desc)
  3395. {
  3396. gpa_t gpa;
  3397. struct descriptor_table dtable;
  3398. u16 index = selector >> 3;
  3399. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3400. if (dtable.limit < index * 8 + 7)
  3401. return 1;
  3402. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3403. gpa += index * 8;
  3404. return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
  3405. }
  3406. static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
  3407. struct desc_struct *seg_desc)
  3408. {
  3409. u32 base_addr;
  3410. base_addr = seg_desc->base0;
  3411. base_addr |= (seg_desc->base1 << 16);
  3412. base_addr |= (seg_desc->base2 << 24);
  3413. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3414. }
  3415. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3416. {
  3417. struct kvm_segment kvm_seg;
  3418. kvm_get_segment(vcpu, &kvm_seg, seg);
  3419. return kvm_seg.selector;
  3420. }
  3421. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3422. u16 selector,
  3423. struct kvm_segment *kvm_seg)
  3424. {
  3425. struct desc_struct seg_desc;
  3426. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3427. return 1;
  3428. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3429. return 0;
  3430. }
  3431. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3432. {
  3433. struct kvm_segment segvar = {
  3434. .base = selector << 4,
  3435. .limit = 0xffff,
  3436. .selector = selector,
  3437. .type = 3,
  3438. .present = 1,
  3439. .dpl = 3,
  3440. .db = 0,
  3441. .s = 1,
  3442. .l = 0,
  3443. .g = 0,
  3444. .avl = 0,
  3445. .unusable = 0,
  3446. };
  3447. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3448. return 0;
  3449. }
  3450. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3451. int type_bits, int seg)
  3452. {
  3453. struct kvm_segment kvm_seg;
  3454. if (!(vcpu->arch.cr0 & X86_CR0_PE))
  3455. return kvm_load_realmode_segment(vcpu, selector, seg);
  3456. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3457. return 1;
  3458. kvm_seg.type |= type_bits;
  3459. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3460. seg != VCPU_SREG_LDTR)
  3461. if (!kvm_seg.s)
  3462. kvm_seg.unusable = 1;
  3463. kvm_set_segment(vcpu, &kvm_seg, seg);
  3464. return 0;
  3465. }
  3466. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3467. struct tss_segment_32 *tss)
  3468. {
  3469. tss->cr3 = vcpu->arch.cr3;
  3470. tss->eip = kvm_rip_read(vcpu);
  3471. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  3472. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3473. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3474. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3475. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3476. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3477. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3478. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3479. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3480. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3481. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3482. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3483. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3484. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3485. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3486. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3487. }
  3488. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3489. struct tss_segment_32 *tss)
  3490. {
  3491. kvm_set_cr3(vcpu, tss->cr3);
  3492. kvm_rip_write(vcpu, tss->eip);
  3493. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  3494. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3495. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3496. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3497. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3498. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3499. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3500. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3501. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3502. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3503. return 1;
  3504. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3505. return 1;
  3506. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3507. return 1;
  3508. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3509. return 1;
  3510. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3511. return 1;
  3512. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3513. return 1;
  3514. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3515. return 1;
  3516. return 0;
  3517. }
  3518. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3519. struct tss_segment_16 *tss)
  3520. {
  3521. tss->ip = kvm_rip_read(vcpu);
  3522. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  3523. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3524. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3525. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3526. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3527. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3528. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3529. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3530. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3531. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3532. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3533. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3534. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3535. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3536. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3537. }
  3538. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3539. struct tss_segment_16 *tss)
  3540. {
  3541. kvm_rip_write(vcpu, tss->ip);
  3542. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  3543. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3544. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3545. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3546. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3547. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3548. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3549. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3550. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3551. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3552. return 1;
  3553. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3554. return 1;
  3555. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3556. return 1;
  3557. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3558. return 1;
  3559. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3560. return 1;
  3561. return 0;
  3562. }
  3563. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3564. u16 old_tss_sel, u32 old_tss_base,
  3565. struct desc_struct *nseg_desc)
  3566. {
  3567. struct tss_segment_16 tss_segment_16;
  3568. int ret = 0;
  3569. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3570. sizeof tss_segment_16))
  3571. goto out;
  3572. save_state_to_tss16(vcpu, &tss_segment_16);
  3573. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3574. sizeof tss_segment_16))
  3575. goto out;
  3576. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3577. &tss_segment_16, sizeof tss_segment_16))
  3578. goto out;
  3579. if (old_tss_sel != 0xffff) {
  3580. tss_segment_16.prev_task_link = old_tss_sel;
  3581. if (kvm_write_guest(vcpu->kvm,
  3582. get_tss_base_addr(vcpu, nseg_desc),
  3583. &tss_segment_16.prev_task_link,
  3584. sizeof tss_segment_16.prev_task_link))
  3585. goto out;
  3586. }
  3587. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3588. goto out;
  3589. ret = 1;
  3590. out:
  3591. return ret;
  3592. }
  3593. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3594. u16 old_tss_sel, u32 old_tss_base,
  3595. struct desc_struct *nseg_desc)
  3596. {
  3597. struct tss_segment_32 tss_segment_32;
  3598. int ret = 0;
  3599. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3600. sizeof tss_segment_32))
  3601. goto out;
  3602. save_state_to_tss32(vcpu, &tss_segment_32);
  3603. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3604. sizeof tss_segment_32))
  3605. goto out;
  3606. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3607. &tss_segment_32, sizeof tss_segment_32))
  3608. goto out;
  3609. if (old_tss_sel != 0xffff) {
  3610. tss_segment_32.prev_task_link = old_tss_sel;
  3611. if (kvm_write_guest(vcpu->kvm,
  3612. get_tss_base_addr(vcpu, nseg_desc),
  3613. &tss_segment_32.prev_task_link,
  3614. sizeof tss_segment_32.prev_task_link))
  3615. goto out;
  3616. }
  3617. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3618. goto out;
  3619. ret = 1;
  3620. out:
  3621. return ret;
  3622. }
  3623. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3624. {
  3625. struct kvm_segment tr_seg;
  3626. struct desc_struct cseg_desc;
  3627. struct desc_struct nseg_desc;
  3628. int ret = 0;
  3629. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3630. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3631. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3632. /* FIXME: Handle errors. Failure to read either TSS or their
  3633. * descriptors should generate a pagefault.
  3634. */
  3635. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3636. goto out;
  3637. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3638. goto out;
  3639. if (reason != TASK_SWITCH_IRET) {
  3640. int cpl;
  3641. cpl = kvm_x86_ops->get_cpl(vcpu);
  3642. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3643. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3644. return 1;
  3645. }
  3646. }
  3647. if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
  3648. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3649. return 1;
  3650. }
  3651. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3652. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3653. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3654. }
  3655. if (reason == TASK_SWITCH_IRET) {
  3656. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3657. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3658. }
  3659. /* set back link to prev task only if NT bit is set in eflags
  3660. note that old_tss_sel is not used afetr this point */
  3661. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3662. old_tss_sel = 0xffff;
  3663. /* set back link to prev task only if NT bit is set in eflags
  3664. note that old_tss_sel is not used afetr this point */
  3665. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3666. old_tss_sel = 0xffff;
  3667. if (nseg_desc.type & 8)
  3668. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  3669. old_tss_base, &nseg_desc);
  3670. else
  3671. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  3672. old_tss_base, &nseg_desc);
  3673. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3674. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3675. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3676. }
  3677. if (reason != TASK_SWITCH_IRET) {
  3678. nseg_desc.type |= (1 << 1);
  3679. save_guest_segment_descriptor(vcpu, tss_selector,
  3680. &nseg_desc);
  3681. }
  3682. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3683. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3684. tr_seg.type = 11;
  3685. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3686. out:
  3687. return ret;
  3688. }
  3689. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3690. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3691. struct kvm_sregs *sregs)
  3692. {
  3693. int mmu_reset_needed = 0;
  3694. int pending_vec, max_bits;
  3695. struct descriptor_table dt;
  3696. vcpu_load(vcpu);
  3697. dt.limit = sregs->idt.limit;
  3698. dt.base = sregs->idt.base;
  3699. kvm_x86_ops->set_idt(vcpu, &dt);
  3700. dt.limit = sregs->gdt.limit;
  3701. dt.base = sregs->gdt.base;
  3702. kvm_x86_ops->set_gdt(vcpu, &dt);
  3703. vcpu->arch.cr2 = sregs->cr2;
  3704. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3705. down_read(&vcpu->kvm->slots_lock);
  3706. if (gfn_to_memslot(vcpu->kvm, sregs->cr3 >> PAGE_SHIFT))
  3707. vcpu->arch.cr3 = sregs->cr3;
  3708. else
  3709. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  3710. up_read(&vcpu->kvm->slots_lock);
  3711. kvm_set_cr8(vcpu, sregs->cr8);
  3712. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3713. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3714. kvm_set_apic_base(vcpu, sregs->apic_base);
  3715. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3716. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3717. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3718. vcpu->arch.cr0 = sregs->cr0;
  3719. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3720. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3721. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3722. load_pdptrs(vcpu, vcpu->arch.cr3);
  3723. if (mmu_reset_needed)
  3724. kvm_mmu_reset_context(vcpu);
  3725. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3726. pending_vec = find_first_bit(
  3727. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  3728. if (pending_vec < max_bits) {
  3729. kvm_queue_interrupt(vcpu, pending_vec, false);
  3730. pr_debug("Set back pending irq %d\n", pending_vec);
  3731. if (irqchip_in_kernel(vcpu->kvm))
  3732. kvm_pic_clear_isr_ack(vcpu->kvm);
  3733. }
  3734. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3735. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3736. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3737. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3738. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3739. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3740. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3741. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3742. /* Older userspace won't unhalt the vcpu on reset. */
  3743. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  3744. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  3745. !(vcpu->arch.cr0 & X86_CR0_PE))
  3746. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3747. vcpu_put(vcpu);
  3748. return 0;
  3749. }
  3750. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  3751. struct kvm_guest_debug *dbg)
  3752. {
  3753. int i, r;
  3754. vcpu_load(vcpu);
  3755. if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
  3756. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
  3757. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  3758. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  3759. vcpu->arch.switch_db_regs =
  3760. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  3761. } else {
  3762. for (i = 0; i < KVM_NR_DB_REGS; i++)
  3763. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  3764. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  3765. }
  3766. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3767. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  3768. kvm_queue_exception(vcpu, DB_VECTOR);
  3769. else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
  3770. kvm_queue_exception(vcpu, BP_VECTOR);
  3771. vcpu_put(vcpu);
  3772. return r;
  3773. }
  3774. /*
  3775. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3776. * we have asm/x86/processor.h
  3777. */
  3778. struct fxsave {
  3779. u16 cwd;
  3780. u16 swd;
  3781. u16 twd;
  3782. u16 fop;
  3783. u64 rip;
  3784. u64 rdp;
  3785. u32 mxcsr;
  3786. u32 mxcsr_mask;
  3787. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3788. #ifdef CONFIG_X86_64
  3789. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3790. #else
  3791. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3792. #endif
  3793. };
  3794. /*
  3795. * Translate a guest virtual address to a guest physical address.
  3796. */
  3797. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3798. struct kvm_translation *tr)
  3799. {
  3800. unsigned long vaddr = tr->linear_address;
  3801. gpa_t gpa;
  3802. vcpu_load(vcpu);
  3803. down_read(&vcpu->kvm->slots_lock);
  3804. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3805. up_read(&vcpu->kvm->slots_lock);
  3806. tr->physical_address = gpa;
  3807. tr->valid = gpa != UNMAPPED_GVA;
  3808. tr->writeable = 1;
  3809. tr->usermode = 0;
  3810. vcpu_put(vcpu);
  3811. return 0;
  3812. }
  3813. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3814. {
  3815. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3816. vcpu_load(vcpu);
  3817. memcpy(fpu->fpr, fxsave->st_space, 128);
  3818. fpu->fcw = fxsave->cwd;
  3819. fpu->fsw = fxsave->swd;
  3820. fpu->ftwx = fxsave->twd;
  3821. fpu->last_opcode = fxsave->fop;
  3822. fpu->last_ip = fxsave->rip;
  3823. fpu->last_dp = fxsave->rdp;
  3824. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3825. vcpu_put(vcpu);
  3826. return 0;
  3827. }
  3828. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3829. {
  3830. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3831. vcpu_load(vcpu);
  3832. memcpy(fxsave->st_space, fpu->fpr, 128);
  3833. fxsave->cwd = fpu->fcw;
  3834. fxsave->swd = fpu->fsw;
  3835. fxsave->twd = fpu->ftwx;
  3836. fxsave->fop = fpu->last_opcode;
  3837. fxsave->rip = fpu->last_ip;
  3838. fxsave->rdp = fpu->last_dp;
  3839. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3840. vcpu_put(vcpu);
  3841. return 0;
  3842. }
  3843. void fx_init(struct kvm_vcpu *vcpu)
  3844. {
  3845. unsigned after_mxcsr_mask;
  3846. /*
  3847. * Touch the fpu the first time in non atomic context as if
  3848. * this is the first fpu instruction the exception handler
  3849. * will fire before the instruction returns and it'll have to
  3850. * allocate ram with GFP_KERNEL.
  3851. */
  3852. if (!used_math())
  3853. kvm_fx_save(&vcpu->arch.host_fx_image);
  3854. /* Initialize guest FPU by resetting ours and saving into guest's */
  3855. preempt_disable();
  3856. kvm_fx_save(&vcpu->arch.host_fx_image);
  3857. kvm_fx_finit();
  3858. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3859. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3860. preempt_enable();
  3861. vcpu->arch.cr0 |= X86_CR0_ET;
  3862. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3863. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3864. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3865. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3866. }
  3867. EXPORT_SYMBOL_GPL(fx_init);
  3868. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  3869. {
  3870. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  3871. return;
  3872. vcpu->guest_fpu_loaded = 1;
  3873. kvm_fx_save(&vcpu->arch.host_fx_image);
  3874. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  3875. }
  3876. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  3877. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  3878. {
  3879. if (!vcpu->guest_fpu_loaded)
  3880. return;
  3881. vcpu->guest_fpu_loaded = 0;
  3882. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3883. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3884. ++vcpu->stat.fpu_reload;
  3885. }
  3886. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  3887. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  3888. {
  3889. if (vcpu->arch.time_page) {
  3890. kvm_release_page_dirty(vcpu->arch.time_page);
  3891. vcpu->arch.time_page = NULL;
  3892. }
  3893. kvm_x86_ops->vcpu_free(vcpu);
  3894. }
  3895. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  3896. unsigned int id)
  3897. {
  3898. return kvm_x86_ops->vcpu_create(kvm, id);
  3899. }
  3900. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  3901. {
  3902. int r;
  3903. /* We do fxsave: this must be aligned. */
  3904. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  3905. vcpu->arch.mtrr_state.have_fixed = 1;
  3906. vcpu_load(vcpu);
  3907. r = kvm_arch_vcpu_reset(vcpu);
  3908. if (r == 0)
  3909. r = kvm_mmu_setup(vcpu);
  3910. vcpu_put(vcpu);
  3911. if (r < 0)
  3912. goto free_vcpu;
  3913. return 0;
  3914. free_vcpu:
  3915. kvm_x86_ops->vcpu_free(vcpu);
  3916. return r;
  3917. }
  3918. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  3919. {
  3920. vcpu_load(vcpu);
  3921. kvm_mmu_unload(vcpu);
  3922. vcpu_put(vcpu);
  3923. kvm_x86_ops->vcpu_free(vcpu);
  3924. }
  3925. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  3926. {
  3927. vcpu->arch.nmi_pending = false;
  3928. vcpu->arch.nmi_injected = false;
  3929. vcpu->arch.switch_db_regs = 0;
  3930. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  3931. vcpu->arch.dr6 = DR6_FIXED_1;
  3932. vcpu->arch.dr7 = DR7_FIXED_1;
  3933. return kvm_x86_ops->vcpu_reset(vcpu);
  3934. }
  3935. void kvm_arch_hardware_enable(void *garbage)
  3936. {
  3937. kvm_x86_ops->hardware_enable(garbage);
  3938. }
  3939. void kvm_arch_hardware_disable(void *garbage)
  3940. {
  3941. kvm_x86_ops->hardware_disable(garbage);
  3942. }
  3943. int kvm_arch_hardware_setup(void)
  3944. {
  3945. return kvm_x86_ops->hardware_setup();
  3946. }
  3947. void kvm_arch_hardware_unsetup(void)
  3948. {
  3949. kvm_x86_ops->hardware_unsetup();
  3950. }
  3951. void kvm_arch_check_processor_compat(void *rtn)
  3952. {
  3953. kvm_x86_ops->check_processor_compatibility(rtn);
  3954. }
  3955. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  3956. {
  3957. struct page *page;
  3958. struct kvm *kvm;
  3959. int r;
  3960. BUG_ON(vcpu->kvm == NULL);
  3961. kvm = vcpu->kvm;
  3962. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3963. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  3964. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3965. else
  3966. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  3967. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3968. if (!page) {
  3969. r = -ENOMEM;
  3970. goto fail;
  3971. }
  3972. vcpu->arch.pio_data = page_address(page);
  3973. r = kvm_mmu_create(vcpu);
  3974. if (r < 0)
  3975. goto fail_free_pio_data;
  3976. if (irqchip_in_kernel(kvm)) {
  3977. r = kvm_create_lapic(vcpu);
  3978. if (r < 0)
  3979. goto fail_mmu_destroy;
  3980. }
  3981. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  3982. GFP_KERNEL);
  3983. if (!vcpu->arch.mce_banks) {
  3984. r = -ENOMEM;
  3985. goto fail_mmu_destroy;
  3986. }
  3987. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  3988. return 0;
  3989. fail_mmu_destroy:
  3990. kvm_mmu_destroy(vcpu);
  3991. fail_free_pio_data:
  3992. free_page((unsigned long)vcpu->arch.pio_data);
  3993. fail:
  3994. return r;
  3995. }
  3996. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  3997. {
  3998. kvm_free_lapic(vcpu);
  3999. down_read(&vcpu->kvm->slots_lock);
  4000. kvm_mmu_destroy(vcpu);
  4001. up_read(&vcpu->kvm->slots_lock);
  4002. free_page((unsigned long)vcpu->arch.pio_data);
  4003. }
  4004. struct kvm *kvm_arch_create_vm(void)
  4005. {
  4006. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4007. if (!kvm)
  4008. return ERR_PTR(-ENOMEM);
  4009. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4010. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4011. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4012. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4013. rdtscll(kvm->arch.vm_init_tsc);
  4014. return kvm;
  4015. }
  4016. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4017. {
  4018. vcpu_load(vcpu);
  4019. kvm_mmu_unload(vcpu);
  4020. vcpu_put(vcpu);
  4021. }
  4022. static void kvm_free_vcpus(struct kvm *kvm)
  4023. {
  4024. unsigned int i;
  4025. struct kvm_vcpu *vcpu;
  4026. /*
  4027. * Unpin any mmu pages first.
  4028. */
  4029. kvm_for_each_vcpu(i, vcpu, kvm)
  4030. kvm_unload_vcpu_mmu(vcpu);
  4031. kvm_for_each_vcpu(i, vcpu, kvm)
  4032. kvm_arch_vcpu_free(vcpu);
  4033. mutex_lock(&kvm->lock);
  4034. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4035. kvm->vcpus[i] = NULL;
  4036. atomic_set(&kvm->online_vcpus, 0);
  4037. mutex_unlock(&kvm->lock);
  4038. }
  4039. void kvm_arch_sync_events(struct kvm *kvm)
  4040. {
  4041. kvm_free_all_assigned_devices(kvm);
  4042. }
  4043. void kvm_arch_destroy_vm(struct kvm *kvm)
  4044. {
  4045. kvm_iommu_unmap_guest(kvm);
  4046. kvm_free_pit(kvm);
  4047. kfree(kvm->arch.vpic);
  4048. kfree(kvm->arch.vioapic);
  4049. kvm_free_vcpus(kvm);
  4050. kvm_free_physmem(kvm);
  4051. if (kvm->arch.apic_access_page)
  4052. put_page(kvm->arch.apic_access_page);
  4053. if (kvm->arch.ept_identity_pagetable)
  4054. put_page(kvm->arch.ept_identity_pagetable);
  4055. kfree(kvm);
  4056. }
  4057. int kvm_arch_set_memory_region(struct kvm *kvm,
  4058. struct kvm_userspace_memory_region *mem,
  4059. struct kvm_memory_slot old,
  4060. int user_alloc)
  4061. {
  4062. int npages = mem->memory_size >> PAGE_SHIFT;
  4063. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  4064. /*To keep backward compatibility with older userspace,
  4065. *x86 needs to hanlde !user_alloc case.
  4066. */
  4067. if (!user_alloc) {
  4068. if (npages && !old.rmap) {
  4069. unsigned long userspace_addr;
  4070. down_write(&current->mm->mmap_sem);
  4071. userspace_addr = do_mmap(NULL, 0,
  4072. npages * PAGE_SIZE,
  4073. PROT_READ | PROT_WRITE,
  4074. MAP_PRIVATE | MAP_ANONYMOUS,
  4075. 0);
  4076. up_write(&current->mm->mmap_sem);
  4077. if (IS_ERR((void *)userspace_addr))
  4078. return PTR_ERR((void *)userspace_addr);
  4079. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  4080. spin_lock(&kvm->mmu_lock);
  4081. memslot->userspace_addr = userspace_addr;
  4082. spin_unlock(&kvm->mmu_lock);
  4083. } else {
  4084. if (!old.user_alloc && old.rmap) {
  4085. int ret;
  4086. down_write(&current->mm->mmap_sem);
  4087. ret = do_munmap(current->mm, old.userspace_addr,
  4088. old.npages * PAGE_SIZE);
  4089. up_write(&current->mm->mmap_sem);
  4090. if (ret < 0)
  4091. printk(KERN_WARNING
  4092. "kvm_vm_ioctl_set_memory_region: "
  4093. "failed to munmap memory\n");
  4094. }
  4095. }
  4096. }
  4097. spin_lock(&kvm->mmu_lock);
  4098. if (!kvm->arch.n_requested_mmu_pages) {
  4099. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4100. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4101. }
  4102. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4103. spin_unlock(&kvm->mmu_lock);
  4104. kvm_flush_remote_tlbs(kvm);
  4105. return 0;
  4106. }
  4107. void kvm_arch_flush_shadow(struct kvm *kvm)
  4108. {
  4109. kvm_mmu_zap_all(kvm);
  4110. kvm_reload_remote_mmus(kvm);
  4111. }
  4112. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4113. {
  4114. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4115. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4116. || vcpu->arch.nmi_pending;
  4117. }
  4118. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4119. {
  4120. int me;
  4121. int cpu = vcpu->cpu;
  4122. if (waitqueue_active(&vcpu->wq)) {
  4123. wake_up_interruptible(&vcpu->wq);
  4124. ++vcpu->stat.halt_wakeup;
  4125. }
  4126. me = get_cpu();
  4127. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4128. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  4129. smp_send_reschedule(cpu);
  4130. put_cpu();
  4131. }
  4132. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4133. {
  4134. return kvm_x86_ops->interrupt_allowed(vcpu);
  4135. }