sched.c 159 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/module.h>
  28. #include <linux/nmi.h>
  29. #include <linux/init.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/highmem.h>
  32. #include <linux/smp_lock.h>
  33. #include <asm/mmu_context.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/capability.h>
  36. #include <linux/completion.h>
  37. #include <linux/kernel_stat.h>
  38. #include <linux/debug_locks.h>
  39. #include <linux/security.h>
  40. #include <linux/notifier.h>
  41. #include <linux/profile.h>
  42. #include <linux/freezer.h>
  43. #include <linux/vmalloc.h>
  44. #include <linux/blkdev.h>
  45. #include <linux/delay.h>
  46. #include <linux/smp.h>
  47. #include <linux/threads.h>
  48. #include <linux/timer.h>
  49. #include <linux/rcupdate.h>
  50. #include <linux/cpu.h>
  51. #include <linux/cpuset.h>
  52. #include <linux/percpu.h>
  53. #include <linux/kthread.h>
  54. #include <linux/seq_file.h>
  55. #include <linux/syscalls.h>
  56. #include <linux/times.h>
  57. #include <linux/tsacct_kern.h>
  58. #include <linux/kprobes.h>
  59. #include <linux/delayacct.h>
  60. #include <linux/reciprocal_div.h>
  61. #include <linux/unistd.h>
  62. #include <asm/tlb.h>
  63. /*
  64. * Scheduler clock - returns current time in nanosec units.
  65. * This is default implementation.
  66. * Architectures and sub-architectures can override this.
  67. */
  68. unsigned long long __attribute__((weak)) sched_clock(void)
  69. {
  70. return (unsigned long long)jiffies * (1000000000 / HZ);
  71. }
  72. /*
  73. * Convert user-nice values [ -20 ... 0 ... 19 ]
  74. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  75. * and back.
  76. */
  77. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  78. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  79. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  80. /*
  81. * 'User priority' is the nice value converted to something we
  82. * can work with better when scaling various scheduler parameters,
  83. * it's a [ 0 ... 39 ] range.
  84. */
  85. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  86. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  87. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  88. /*
  89. * Some helpers for converting nanosecond timing to jiffy resolution
  90. */
  91. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  92. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  93. #define NICE_0_LOAD SCHED_LOAD_SCALE
  94. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  95. /*
  96. * These are the 'tuning knobs' of the scheduler:
  97. *
  98. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  99. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  100. * Timeslices get refilled after they expire.
  101. */
  102. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  103. #define DEF_TIMESLICE (100 * HZ / 1000)
  104. #ifdef CONFIG_SMP
  105. /*
  106. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  107. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  108. */
  109. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  110. {
  111. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  112. }
  113. /*
  114. * Each time a sched group cpu_power is changed,
  115. * we must compute its reciprocal value
  116. */
  117. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  118. {
  119. sg->__cpu_power += val;
  120. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  121. }
  122. #endif
  123. #define SCALE_PRIO(x, prio) \
  124. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  125. /*
  126. * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  127. * to time slice values: [800ms ... 100ms ... 5ms]
  128. */
  129. static unsigned int static_prio_timeslice(int static_prio)
  130. {
  131. if (static_prio == NICE_TO_PRIO(19))
  132. return 1;
  133. if (static_prio < NICE_TO_PRIO(0))
  134. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  135. else
  136. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  137. }
  138. static inline int rt_policy(int policy)
  139. {
  140. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  141. return 1;
  142. return 0;
  143. }
  144. static inline int task_has_rt_policy(struct task_struct *p)
  145. {
  146. return rt_policy(p->policy);
  147. }
  148. /*
  149. * This is the priority-queue data structure of the RT scheduling class:
  150. */
  151. struct rt_prio_array {
  152. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  153. struct list_head queue[MAX_RT_PRIO];
  154. };
  155. struct load_stat {
  156. struct load_weight load;
  157. u64 load_update_start, load_update_last;
  158. unsigned long delta_fair, delta_exec, delta_stat;
  159. };
  160. /* CFS-related fields in a runqueue */
  161. struct cfs_rq {
  162. struct load_weight load;
  163. unsigned long nr_running;
  164. s64 fair_clock;
  165. u64 exec_clock;
  166. s64 wait_runtime;
  167. u64 sleeper_bonus;
  168. unsigned long wait_runtime_overruns, wait_runtime_underruns;
  169. struct rb_root tasks_timeline;
  170. struct rb_node *rb_leftmost;
  171. struct rb_node *rb_load_balance_curr;
  172. #ifdef CONFIG_FAIR_GROUP_SCHED
  173. /* 'curr' points to currently running entity on this cfs_rq.
  174. * It is set to NULL otherwise (i.e when none are currently running).
  175. */
  176. struct sched_entity *curr;
  177. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  178. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  179. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  180. * (like users, containers etc.)
  181. *
  182. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  183. * list is used during load balance.
  184. */
  185. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  186. #endif
  187. };
  188. /* Real-Time classes' related field in a runqueue: */
  189. struct rt_rq {
  190. struct rt_prio_array active;
  191. int rt_load_balance_idx;
  192. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  193. };
  194. /*
  195. * This is the main, per-CPU runqueue data structure.
  196. *
  197. * Locking rule: those places that want to lock multiple runqueues
  198. * (such as the load balancing or the thread migration code), lock
  199. * acquire operations must be ordered by ascending &runqueue.
  200. */
  201. struct rq {
  202. spinlock_t lock; /* runqueue lock */
  203. /*
  204. * nr_running and cpu_load should be in the same cacheline because
  205. * remote CPUs use both these fields when doing load calculation.
  206. */
  207. unsigned long nr_running;
  208. #define CPU_LOAD_IDX_MAX 5
  209. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  210. unsigned char idle_at_tick;
  211. #ifdef CONFIG_NO_HZ
  212. unsigned char in_nohz_recently;
  213. #endif
  214. struct load_stat ls; /* capture load from *all* tasks on this cpu */
  215. unsigned long nr_load_updates;
  216. u64 nr_switches;
  217. struct cfs_rq cfs;
  218. #ifdef CONFIG_FAIR_GROUP_SCHED
  219. struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
  220. #endif
  221. struct rt_rq rt;
  222. /*
  223. * This is part of a global counter where only the total sum
  224. * over all CPUs matters. A task can increase this counter on
  225. * one CPU and if it got migrated afterwards it may decrease
  226. * it on another CPU. Always updated under the runqueue lock:
  227. */
  228. unsigned long nr_uninterruptible;
  229. struct task_struct *curr, *idle;
  230. unsigned long next_balance;
  231. struct mm_struct *prev_mm;
  232. u64 clock, prev_clock_raw;
  233. s64 clock_max_delta;
  234. unsigned int clock_warps, clock_overflows;
  235. unsigned int clock_unstable_events;
  236. struct sched_class *load_balance_class;
  237. atomic_t nr_iowait;
  238. #ifdef CONFIG_SMP
  239. struct sched_domain *sd;
  240. /* For active balancing */
  241. int active_balance;
  242. int push_cpu;
  243. int cpu; /* cpu of this runqueue */
  244. struct task_struct *migration_thread;
  245. struct list_head migration_queue;
  246. #endif
  247. #ifdef CONFIG_SCHEDSTATS
  248. /* latency stats */
  249. struct sched_info rq_sched_info;
  250. /* sys_sched_yield() stats */
  251. unsigned long yld_exp_empty;
  252. unsigned long yld_act_empty;
  253. unsigned long yld_both_empty;
  254. unsigned long yld_cnt;
  255. /* schedule() stats */
  256. unsigned long sched_switch;
  257. unsigned long sched_cnt;
  258. unsigned long sched_goidle;
  259. /* try_to_wake_up() stats */
  260. unsigned long ttwu_cnt;
  261. unsigned long ttwu_local;
  262. #endif
  263. struct lock_class_key rq_lock_key;
  264. };
  265. static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
  266. static DEFINE_MUTEX(sched_hotcpu_mutex);
  267. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  268. {
  269. rq->curr->sched_class->check_preempt_curr(rq, p);
  270. }
  271. static inline int cpu_of(struct rq *rq)
  272. {
  273. #ifdef CONFIG_SMP
  274. return rq->cpu;
  275. #else
  276. return 0;
  277. #endif
  278. }
  279. /*
  280. * Per-runqueue clock, as finegrained as the platform can give us:
  281. */
  282. static unsigned long long __rq_clock(struct rq *rq)
  283. {
  284. u64 prev_raw = rq->prev_clock_raw;
  285. u64 now = sched_clock();
  286. s64 delta = now - prev_raw;
  287. u64 clock = rq->clock;
  288. /*
  289. * Protect against sched_clock() occasionally going backwards:
  290. */
  291. if (unlikely(delta < 0)) {
  292. clock++;
  293. rq->clock_warps++;
  294. } else {
  295. /*
  296. * Catch too large forward jumps too:
  297. */
  298. if (unlikely(delta > 2*TICK_NSEC)) {
  299. clock++;
  300. rq->clock_overflows++;
  301. } else {
  302. if (unlikely(delta > rq->clock_max_delta))
  303. rq->clock_max_delta = delta;
  304. clock += delta;
  305. }
  306. }
  307. rq->prev_clock_raw = now;
  308. rq->clock = clock;
  309. return clock;
  310. }
  311. static inline unsigned long long rq_clock(struct rq *rq)
  312. {
  313. int this_cpu = smp_processor_id();
  314. if (this_cpu == cpu_of(rq))
  315. return __rq_clock(rq);
  316. return rq->clock;
  317. }
  318. /*
  319. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  320. * See detach_destroy_domains: synchronize_sched for details.
  321. *
  322. * The domain tree of any CPU may only be accessed from within
  323. * preempt-disabled sections.
  324. */
  325. #define for_each_domain(cpu, __sd) \
  326. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  327. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  328. #define this_rq() (&__get_cpu_var(runqueues))
  329. #define task_rq(p) cpu_rq(task_cpu(p))
  330. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  331. #ifdef CONFIG_FAIR_GROUP_SCHED
  332. /* Change a task's ->cfs_rq if it moves across CPUs */
  333. static inline void set_task_cfs_rq(struct task_struct *p)
  334. {
  335. p->se.cfs_rq = &task_rq(p)->cfs;
  336. }
  337. #else
  338. static inline void set_task_cfs_rq(struct task_struct *p)
  339. {
  340. }
  341. #endif
  342. #ifndef prepare_arch_switch
  343. # define prepare_arch_switch(next) do { } while (0)
  344. #endif
  345. #ifndef finish_arch_switch
  346. # define finish_arch_switch(prev) do { } while (0)
  347. #endif
  348. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  349. static inline int task_running(struct rq *rq, struct task_struct *p)
  350. {
  351. return rq->curr == p;
  352. }
  353. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  354. {
  355. }
  356. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  357. {
  358. #ifdef CONFIG_DEBUG_SPINLOCK
  359. /* this is a valid case when another task releases the spinlock */
  360. rq->lock.owner = current;
  361. #endif
  362. /*
  363. * If we are tracking spinlock dependencies then we have to
  364. * fix up the runqueue lock - which gets 'carried over' from
  365. * prev into current:
  366. */
  367. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  368. spin_unlock_irq(&rq->lock);
  369. }
  370. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  371. static inline int task_running(struct rq *rq, struct task_struct *p)
  372. {
  373. #ifdef CONFIG_SMP
  374. return p->oncpu;
  375. #else
  376. return rq->curr == p;
  377. #endif
  378. }
  379. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  380. {
  381. #ifdef CONFIG_SMP
  382. /*
  383. * We can optimise this out completely for !SMP, because the
  384. * SMP rebalancing from interrupt is the only thing that cares
  385. * here.
  386. */
  387. next->oncpu = 1;
  388. #endif
  389. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  390. spin_unlock_irq(&rq->lock);
  391. #else
  392. spin_unlock(&rq->lock);
  393. #endif
  394. }
  395. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  396. {
  397. #ifdef CONFIG_SMP
  398. /*
  399. * After ->oncpu is cleared, the task can be moved to a different CPU.
  400. * We must ensure this doesn't happen until the switch is completely
  401. * finished.
  402. */
  403. smp_wmb();
  404. prev->oncpu = 0;
  405. #endif
  406. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  407. local_irq_enable();
  408. #endif
  409. }
  410. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  411. /*
  412. * __task_rq_lock - lock the runqueue a given task resides on.
  413. * Must be called interrupts disabled.
  414. */
  415. static inline struct rq *__task_rq_lock(struct task_struct *p)
  416. __acquires(rq->lock)
  417. {
  418. struct rq *rq;
  419. repeat_lock_task:
  420. rq = task_rq(p);
  421. spin_lock(&rq->lock);
  422. if (unlikely(rq != task_rq(p))) {
  423. spin_unlock(&rq->lock);
  424. goto repeat_lock_task;
  425. }
  426. return rq;
  427. }
  428. /*
  429. * task_rq_lock - lock the runqueue a given task resides on and disable
  430. * interrupts. Note the ordering: we can safely lookup the task_rq without
  431. * explicitly disabling preemption.
  432. */
  433. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  434. __acquires(rq->lock)
  435. {
  436. struct rq *rq;
  437. repeat_lock_task:
  438. local_irq_save(*flags);
  439. rq = task_rq(p);
  440. spin_lock(&rq->lock);
  441. if (unlikely(rq != task_rq(p))) {
  442. spin_unlock_irqrestore(&rq->lock, *flags);
  443. goto repeat_lock_task;
  444. }
  445. return rq;
  446. }
  447. static inline void __task_rq_unlock(struct rq *rq)
  448. __releases(rq->lock)
  449. {
  450. spin_unlock(&rq->lock);
  451. }
  452. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  453. __releases(rq->lock)
  454. {
  455. spin_unlock_irqrestore(&rq->lock, *flags);
  456. }
  457. /*
  458. * this_rq_lock - lock this runqueue and disable interrupts.
  459. */
  460. static inline struct rq *this_rq_lock(void)
  461. __acquires(rq->lock)
  462. {
  463. struct rq *rq;
  464. local_irq_disable();
  465. rq = this_rq();
  466. spin_lock(&rq->lock);
  467. return rq;
  468. }
  469. /*
  470. * CPU frequency is/was unstable - start new by setting prev_clock_raw:
  471. */
  472. void sched_clock_unstable_event(void)
  473. {
  474. unsigned long flags;
  475. struct rq *rq;
  476. rq = task_rq_lock(current, &flags);
  477. rq->prev_clock_raw = sched_clock();
  478. rq->clock_unstable_events++;
  479. task_rq_unlock(rq, &flags);
  480. }
  481. /*
  482. * resched_task - mark a task 'to be rescheduled now'.
  483. *
  484. * On UP this means the setting of the need_resched flag, on SMP it
  485. * might also involve a cross-CPU call to trigger the scheduler on
  486. * the target CPU.
  487. */
  488. #ifdef CONFIG_SMP
  489. #ifndef tsk_is_polling
  490. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  491. #endif
  492. static void resched_task(struct task_struct *p)
  493. {
  494. int cpu;
  495. assert_spin_locked(&task_rq(p)->lock);
  496. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  497. return;
  498. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  499. cpu = task_cpu(p);
  500. if (cpu == smp_processor_id())
  501. return;
  502. /* NEED_RESCHED must be visible before we test polling */
  503. smp_mb();
  504. if (!tsk_is_polling(p))
  505. smp_send_reschedule(cpu);
  506. }
  507. static void resched_cpu(int cpu)
  508. {
  509. struct rq *rq = cpu_rq(cpu);
  510. unsigned long flags;
  511. if (!spin_trylock_irqsave(&rq->lock, flags))
  512. return;
  513. resched_task(cpu_curr(cpu));
  514. spin_unlock_irqrestore(&rq->lock, flags);
  515. }
  516. #else
  517. static inline void resched_task(struct task_struct *p)
  518. {
  519. assert_spin_locked(&task_rq(p)->lock);
  520. set_tsk_need_resched(p);
  521. }
  522. #endif
  523. static u64 div64_likely32(u64 divident, unsigned long divisor)
  524. {
  525. #if BITS_PER_LONG == 32
  526. if (likely(divident <= 0xffffffffULL))
  527. return (u32)divident / divisor;
  528. do_div(divident, divisor);
  529. return divident;
  530. #else
  531. return divident / divisor;
  532. #endif
  533. }
  534. #if BITS_PER_LONG == 32
  535. # define WMULT_CONST (~0UL)
  536. #else
  537. # define WMULT_CONST (1UL << 32)
  538. #endif
  539. #define WMULT_SHIFT 32
  540. static inline unsigned long
  541. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  542. struct load_weight *lw)
  543. {
  544. u64 tmp;
  545. if (unlikely(!lw->inv_weight))
  546. lw->inv_weight = WMULT_CONST / lw->weight;
  547. tmp = (u64)delta_exec * weight;
  548. /*
  549. * Check whether we'd overflow the 64-bit multiplication:
  550. */
  551. if (unlikely(tmp > WMULT_CONST)) {
  552. tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
  553. >> (WMULT_SHIFT/2);
  554. } else {
  555. tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
  556. }
  557. return (unsigned long)min(tmp, (u64)sysctl_sched_runtime_limit);
  558. }
  559. static inline unsigned long
  560. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  561. {
  562. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  563. }
  564. static void update_load_add(struct load_weight *lw, unsigned long inc)
  565. {
  566. lw->weight += inc;
  567. lw->inv_weight = 0;
  568. }
  569. static void update_load_sub(struct load_weight *lw, unsigned long dec)
  570. {
  571. lw->weight -= dec;
  572. lw->inv_weight = 0;
  573. }
  574. static void __update_curr_load(struct rq *rq, struct load_stat *ls)
  575. {
  576. if (rq->curr != rq->idle && ls->load.weight) {
  577. ls->delta_exec += ls->delta_stat;
  578. ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
  579. ls->delta_stat = 0;
  580. }
  581. }
  582. /*
  583. * Update delta_exec, delta_fair fields for rq.
  584. *
  585. * delta_fair clock advances at a rate inversely proportional to
  586. * total load (rq->ls.load.weight) on the runqueue, while
  587. * delta_exec advances at the same rate as wall-clock (provided
  588. * cpu is not idle).
  589. *
  590. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  591. * runqueue over any given interval. This (smoothened) load is used
  592. * during load balance.
  593. *
  594. * This function is called /before/ updating rq->ls.load
  595. * and when switching tasks.
  596. */
  597. static void update_curr_load(struct rq *rq, u64 now)
  598. {
  599. struct load_stat *ls = &rq->ls;
  600. u64 start;
  601. start = ls->load_update_start;
  602. ls->load_update_start = now;
  603. ls->delta_stat += now - start;
  604. /*
  605. * Stagger updates to ls->delta_fair. Very frequent updates
  606. * can be expensive.
  607. */
  608. if (ls->delta_stat >= sysctl_sched_stat_granularity)
  609. __update_curr_load(rq, ls);
  610. }
  611. /*
  612. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  613. * of tasks with abnormal "nice" values across CPUs the contribution that
  614. * each task makes to its run queue's load is weighted according to its
  615. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  616. * scaled version of the new time slice allocation that they receive on time
  617. * slice expiry etc.
  618. */
  619. /*
  620. * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
  621. * If static_prio_timeslice() is ever changed to break this assumption then
  622. * this code will need modification
  623. */
  624. #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
  625. #define load_weight(lp) \
  626. (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
  627. #define PRIO_TO_LOAD_WEIGHT(prio) \
  628. load_weight(static_prio_timeslice(prio))
  629. #define RTPRIO_TO_LOAD_WEIGHT(rp) \
  630. (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + load_weight(rp))
  631. #define WEIGHT_IDLEPRIO 2
  632. #define WMULT_IDLEPRIO (1 << 31)
  633. /*
  634. * Nice levels are multiplicative, with a gentle 10% change for every
  635. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  636. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  637. * that remained on nice 0.
  638. *
  639. * The "10% effect" is relative and cumulative: from _any_ nice level,
  640. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  641. * it's +10% CPU usage.
  642. */
  643. static const int prio_to_weight[40] = {
  644. /* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
  645. /* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
  646. /* 0 */ NICE_0_LOAD /* 1024 */,
  647. /* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
  648. /* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
  649. };
  650. static const u32 prio_to_wmult[40] = {
  651. 48356, 60446, 75558, 94446, 118058, 147573,
  652. 184467, 230589, 288233, 360285, 450347,
  653. 562979, 703746, 879575, 1099582, 1374389,
  654. 717986, 2147483, 2684354, 3355443, 4194304,
  655. 244160, 6557201, 8196502, 10250518, 12782640,
  656. 16025997, 19976592, 24970740, 31350126, 39045157,
  657. 49367440, 61356675, 76695844, 95443717, 119304647,
  658. 148102320, 186737708, 238609294, 286331153,
  659. };
  660. static inline void
  661. inc_load(struct rq *rq, const struct task_struct *p, u64 now)
  662. {
  663. update_curr_load(rq, now);
  664. update_load_add(&rq->ls.load, p->se.load.weight);
  665. }
  666. static inline void
  667. dec_load(struct rq *rq, const struct task_struct *p, u64 now)
  668. {
  669. update_curr_load(rq, now);
  670. update_load_sub(&rq->ls.load, p->se.load.weight);
  671. }
  672. static inline void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
  673. {
  674. rq->nr_running++;
  675. inc_load(rq, p, now);
  676. }
  677. static inline void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
  678. {
  679. rq->nr_running--;
  680. dec_load(rq, p, now);
  681. }
  682. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  683. /*
  684. * runqueue iterator, to support SMP load-balancing between different
  685. * scheduling classes, without having to expose their internal data
  686. * structures to the load-balancing proper:
  687. */
  688. struct rq_iterator {
  689. void *arg;
  690. struct task_struct *(*start)(void *);
  691. struct task_struct *(*next)(void *);
  692. };
  693. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  694. unsigned long max_nr_move, unsigned long max_load_move,
  695. struct sched_domain *sd, enum cpu_idle_type idle,
  696. int *all_pinned, unsigned long *load_moved,
  697. int this_best_prio, int best_prio, int best_prio_seen,
  698. struct rq_iterator *iterator);
  699. #include "sched_stats.h"
  700. #include "sched_rt.c"
  701. #include "sched_fair.c"
  702. #include "sched_idletask.c"
  703. #ifdef CONFIG_SCHED_DEBUG
  704. # include "sched_debug.c"
  705. #endif
  706. #define sched_class_highest (&rt_sched_class)
  707. static void set_load_weight(struct task_struct *p)
  708. {
  709. task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
  710. p->se.wait_runtime = 0;
  711. if (task_has_rt_policy(p)) {
  712. p->se.load.weight = prio_to_weight[0] * 2;
  713. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  714. return;
  715. }
  716. /*
  717. * SCHED_IDLE tasks get minimal weight:
  718. */
  719. if (p->policy == SCHED_IDLE) {
  720. p->se.load.weight = WEIGHT_IDLEPRIO;
  721. p->se.load.inv_weight = WMULT_IDLEPRIO;
  722. return;
  723. }
  724. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  725. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  726. }
  727. static void
  728. enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
  729. {
  730. sched_info_queued(p);
  731. p->sched_class->enqueue_task(rq, p, wakeup, now);
  732. p->se.on_rq = 1;
  733. }
  734. static void
  735. dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
  736. {
  737. p->sched_class->dequeue_task(rq, p, sleep, now);
  738. p->se.on_rq = 0;
  739. }
  740. /*
  741. * __normal_prio - return the priority that is based on the static prio
  742. */
  743. static inline int __normal_prio(struct task_struct *p)
  744. {
  745. return p->static_prio;
  746. }
  747. /*
  748. * Calculate the expected normal priority: i.e. priority
  749. * without taking RT-inheritance into account. Might be
  750. * boosted by interactivity modifiers. Changes upon fork,
  751. * setprio syscalls, and whenever the interactivity
  752. * estimator recalculates.
  753. */
  754. static inline int normal_prio(struct task_struct *p)
  755. {
  756. int prio;
  757. if (task_has_rt_policy(p))
  758. prio = MAX_RT_PRIO-1 - p->rt_priority;
  759. else
  760. prio = __normal_prio(p);
  761. return prio;
  762. }
  763. /*
  764. * Calculate the current priority, i.e. the priority
  765. * taken into account by the scheduler. This value might
  766. * be boosted by RT tasks, or might be boosted by
  767. * interactivity modifiers. Will be RT if the task got
  768. * RT-boosted. If not then it returns p->normal_prio.
  769. */
  770. static int effective_prio(struct task_struct *p)
  771. {
  772. p->normal_prio = normal_prio(p);
  773. /*
  774. * If we are RT tasks or we were boosted to RT priority,
  775. * keep the priority unchanged. Otherwise, update priority
  776. * to the normal priority:
  777. */
  778. if (!rt_prio(p->prio))
  779. return p->normal_prio;
  780. return p->prio;
  781. }
  782. /*
  783. * activate_task - move a task to the runqueue.
  784. */
  785. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  786. {
  787. u64 now = rq_clock(rq);
  788. if (p->state == TASK_UNINTERRUPTIBLE)
  789. rq->nr_uninterruptible--;
  790. enqueue_task(rq, p, wakeup, now);
  791. inc_nr_running(p, rq, now);
  792. }
  793. /*
  794. * activate_idle_task - move idle task to the _front_ of runqueue.
  795. */
  796. static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
  797. {
  798. u64 now = rq_clock(rq);
  799. if (p->state == TASK_UNINTERRUPTIBLE)
  800. rq->nr_uninterruptible--;
  801. enqueue_task(rq, p, 0, now);
  802. inc_nr_running(p, rq, now);
  803. }
  804. /*
  805. * deactivate_task - remove a task from the runqueue.
  806. */
  807. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  808. {
  809. u64 now = rq_clock(rq);
  810. if (p->state == TASK_UNINTERRUPTIBLE)
  811. rq->nr_uninterruptible++;
  812. dequeue_task(rq, p, sleep, now);
  813. dec_nr_running(p, rq, now);
  814. }
  815. /**
  816. * task_curr - is this task currently executing on a CPU?
  817. * @p: the task in question.
  818. */
  819. inline int task_curr(const struct task_struct *p)
  820. {
  821. return cpu_curr(task_cpu(p)) == p;
  822. }
  823. /* Used instead of source_load when we know the type == 0 */
  824. unsigned long weighted_cpuload(const int cpu)
  825. {
  826. return cpu_rq(cpu)->ls.load.weight;
  827. }
  828. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  829. {
  830. #ifdef CONFIG_SMP
  831. task_thread_info(p)->cpu = cpu;
  832. set_task_cfs_rq(p);
  833. #endif
  834. }
  835. #ifdef CONFIG_SMP
  836. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  837. {
  838. int old_cpu = task_cpu(p);
  839. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  840. u64 clock_offset, fair_clock_offset;
  841. clock_offset = old_rq->clock - new_rq->clock;
  842. fair_clock_offset = old_rq->cfs.fair_clock -
  843. new_rq->cfs.fair_clock;
  844. if (p->se.wait_start)
  845. p->se.wait_start -= clock_offset;
  846. if (p->se.wait_start_fair)
  847. p->se.wait_start_fair -= fair_clock_offset;
  848. if (p->se.sleep_start)
  849. p->se.sleep_start -= clock_offset;
  850. if (p->se.block_start)
  851. p->se.block_start -= clock_offset;
  852. if (p->se.sleep_start_fair)
  853. p->se.sleep_start_fair -= fair_clock_offset;
  854. __set_task_cpu(p, new_cpu);
  855. }
  856. struct migration_req {
  857. struct list_head list;
  858. struct task_struct *task;
  859. int dest_cpu;
  860. struct completion done;
  861. };
  862. /*
  863. * The task's runqueue lock must be held.
  864. * Returns true if you have to wait for migration thread.
  865. */
  866. static int
  867. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  868. {
  869. struct rq *rq = task_rq(p);
  870. /*
  871. * If the task is not on a runqueue (and not running), then
  872. * it is sufficient to simply update the task's cpu field.
  873. */
  874. if (!p->se.on_rq && !task_running(rq, p)) {
  875. set_task_cpu(p, dest_cpu);
  876. return 0;
  877. }
  878. init_completion(&req->done);
  879. req->task = p;
  880. req->dest_cpu = dest_cpu;
  881. list_add(&req->list, &rq->migration_queue);
  882. return 1;
  883. }
  884. /*
  885. * wait_task_inactive - wait for a thread to unschedule.
  886. *
  887. * The caller must ensure that the task *will* unschedule sometime soon,
  888. * else this function might spin for a *long* time. This function can't
  889. * be called with interrupts off, or it may introduce deadlock with
  890. * smp_call_function() if an IPI is sent by the same process we are
  891. * waiting to become inactive.
  892. */
  893. void wait_task_inactive(struct task_struct *p)
  894. {
  895. unsigned long flags;
  896. int running, on_rq;
  897. struct rq *rq;
  898. repeat:
  899. /*
  900. * We do the initial early heuristics without holding
  901. * any task-queue locks at all. We'll only try to get
  902. * the runqueue lock when things look like they will
  903. * work out!
  904. */
  905. rq = task_rq(p);
  906. /*
  907. * If the task is actively running on another CPU
  908. * still, just relax and busy-wait without holding
  909. * any locks.
  910. *
  911. * NOTE! Since we don't hold any locks, it's not
  912. * even sure that "rq" stays as the right runqueue!
  913. * But we don't care, since "task_running()" will
  914. * return false if the runqueue has changed and p
  915. * is actually now running somewhere else!
  916. */
  917. while (task_running(rq, p))
  918. cpu_relax();
  919. /*
  920. * Ok, time to look more closely! We need the rq
  921. * lock now, to be *sure*. If we're wrong, we'll
  922. * just go back and repeat.
  923. */
  924. rq = task_rq_lock(p, &flags);
  925. running = task_running(rq, p);
  926. on_rq = p->se.on_rq;
  927. task_rq_unlock(rq, &flags);
  928. /*
  929. * Was it really running after all now that we
  930. * checked with the proper locks actually held?
  931. *
  932. * Oops. Go back and try again..
  933. */
  934. if (unlikely(running)) {
  935. cpu_relax();
  936. goto repeat;
  937. }
  938. /*
  939. * It's not enough that it's not actively running,
  940. * it must be off the runqueue _entirely_, and not
  941. * preempted!
  942. *
  943. * So if it wa still runnable (but just not actively
  944. * running right now), it's preempted, and we should
  945. * yield - it could be a while.
  946. */
  947. if (unlikely(on_rq)) {
  948. yield();
  949. goto repeat;
  950. }
  951. /*
  952. * Ahh, all good. It wasn't running, and it wasn't
  953. * runnable, which means that it will never become
  954. * running in the future either. We're all done!
  955. */
  956. }
  957. /***
  958. * kick_process - kick a running thread to enter/exit the kernel
  959. * @p: the to-be-kicked thread
  960. *
  961. * Cause a process which is running on another CPU to enter
  962. * kernel-mode, without any delay. (to get signals handled.)
  963. *
  964. * NOTE: this function doesnt have to take the runqueue lock,
  965. * because all it wants to ensure is that the remote task enters
  966. * the kernel. If the IPI races and the task has been migrated
  967. * to another CPU then no harm is done and the purpose has been
  968. * achieved as well.
  969. */
  970. void kick_process(struct task_struct *p)
  971. {
  972. int cpu;
  973. preempt_disable();
  974. cpu = task_cpu(p);
  975. if ((cpu != smp_processor_id()) && task_curr(p))
  976. smp_send_reschedule(cpu);
  977. preempt_enable();
  978. }
  979. /*
  980. * Return a low guess at the load of a migration-source cpu weighted
  981. * according to the scheduling class and "nice" value.
  982. *
  983. * We want to under-estimate the load of migration sources, to
  984. * balance conservatively.
  985. */
  986. static inline unsigned long source_load(int cpu, int type)
  987. {
  988. struct rq *rq = cpu_rq(cpu);
  989. unsigned long total = weighted_cpuload(cpu);
  990. if (type == 0)
  991. return total;
  992. return min(rq->cpu_load[type-1], total);
  993. }
  994. /*
  995. * Return a high guess at the load of a migration-target cpu weighted
  996. * according to the scheduling class and "nice" value.
  997. */
  998. static inline unsigned long target_load(int cpu, int type)
  999. {
  1000. struct rq *rq = cpu_rq(cpu);
  1001. unsigned long total = weighted_cpuload(cpu);
  1002. if (type == 0)
  1003. return total;
  1004. return max(rq->cpu_load[type-1], total);
  1005. }
  1006. /*
  1007. * Return the average load per task on the cpu's run queue
  1008. */
  1009. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1010. {
  1011. struct rq *rq = cpu_rq(cpu);
  1012. unsigned long total = weighted_cpuload(cpu);
  1013. unsigned long n = rq->nr_running;
  1014. return n ? total / n : SCHED_LOAD_SCALE;
  1015. }
  1016. /*
  1017. * find_idlest_group finds and returns the least busy CPU group within the
  1018. * domain.
  1019. */
  1020. static struct sched_group *
  1021. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1022. {
  1023. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1024. unsigned long min_load = ULONG_MAX, this_load = 0;
  1025. int load_idx = sd->forkexec_idx;
  1026. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1027. do {
  1028. unsigned long load, avg_load;
  1029. int local_group;
  1030. int i;
  1031. /* Skip over this group if it has no CPUs allowed */
  1032. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1033. goto nextgroup;
  1034. local_group = cpu_isset(this_cpu, group->cpumask);
  1035. /* Tally up the load of all CPUs in the group */
  1036. avg_load = 0;
  1037. for_each_cpu_mask(i, group->cpumask) {
  1038. /* Bias balancing toward cpus of our domain */
  1039. if (local_group)
  1040. load = source_load(i, load_idx);
  1041. else
  1042. load = target_load(i, load_idx);
  1043. avg_load += load;
  1044. }
  1045. /* Adjust by relative CPU power of the group */
  1046. avg_load = sg_div_cpu_power(group,
  1047. avg_load * SCHED_LOAD_SCALE);
  1048. if (local_group) {
  1049. this_load = avg_load;
  1050. this = group;
  1051. } else if (avg_load < min_load) {
  1052. min_load = avg_load;
  1053. idlest = group;
  1054. }
  1055. nextgroup:
  1056. group = group->next;
  1057. } while (group != sd->groups);
  1058. if (!idlest || 100*this_load < imbalance*min_load)
  1059. return NULL;
  1060. return idlest;
  1061. }
  1062. /*
  1063. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1064. */
  1065. static int
  1066. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1067. {
  1068. cpumask_t tmp;
  1069. unsigned long load, min_load = ULONG_MAX;
  1070. int idlest = -1;
  1071. int i;
  1072. /* Traverse only the allowed CPUs */
  1073. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1074. for_each_cpu_mask(i, tmp) {
  1075. load = weighted_cpuload(i);
  1076. if (load < min_load || (load == min_load && i == this_cpu)) {
  1077. min_load = load;
  1078. idlest = i;
  1079. }
  1080. }
  1081. return idlest;
  1082. }
  1083. /*
  1084. * sched_balance_self: balance the current task (running on cpu) in domains
  1085. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1086. * SD_BALANCE_EXEC.
  1087. *
  1088. * Balance, ie. select the least loaded group.
  1089. *
  1090. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1091. *
  1092. * preempt must be disabled.
  1093. */
  1094. static int sched_balance_self(int cpu, int flag)
  1095. {
  1096. struct task_struct *t = current;
  1097. struct sched_domain *tmp, *sd = NULL;
  1098. for_each_domain(cpu, tmp) {
  1099. /*
  1100. * If power savings logic is enabled for a domain, stop there.
  1101. */
  1102. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1103. break;
  1104. if (tmp->flags & flag)
  1105. sd = tmp;
  1106. }
  1107. while (sd) {
  1108. cpumask_t span;
  1109. struct sched_group *group;
  1110. int new_cpu, weight;
  1111. if (!(sd->flags & flag)) {
  1112. sd = sd->child;
  1113. continue;
  1114. }
  1115. span = sd->span;
  1116. group = find_idlest_group(sd, t, cpu);
  1117. if (!group) {
  1118. sd = sd->child;
  1119. continue;
  1120. }
  1121. new_cpu = find_idlest_cpu(group, t, cpu);
  1122. if (new_cpu == -1 || new_cpu == cpu) {
  1123. /* Now try balancing at a lower domain level of cpu */
  1124. sd = sd->child;
  1125. continue;
  1126. }
  1127. /* Now try balancing at a lower domain level of new_cpu */
  1128. cpu = new_cpu;
  1129. sd = NULL;
  1130. weight = cpus_weight(span);
  1131. for_each_domain(cpu, tmp) {
  1132. if (weight <= cpus_weight(tmp->span))
  1133. break;
  1134. if (tmp->flags & flag)
  1135. sd = tmp;
  1136. }
  1137. /* while loop will break here if sd == NULL */
  1138. }
  1139. return cpu;
  1140. }
  1141. #endif /* CONFIG_SMP */
  1142. /*
  1143. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1144. * not idle and an idle cpu is available. The span of cpus to
  1145. * search starts with cpus closest then further out as needed,
  1146. * so we always favor a closer, idle cpu.
  1147. *
  1148. * Returns the CPU we should wake onto.
  1149. */
  1150. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1151. static int wake_idle(int cpu, struct task_struct *p)
  1152. {
  1153. cpumask_t tmp;
  1154. struct sched_domain *sd;
  1155. int i;
  1156. /*
  1157. * If it is idle, then it is the best cpu to run this task.
  1158. *
  1159. * This cpu is also the best, if it has more than one task already.
  1160. * Siblings must be also busy(in most cases) as they didn't already
  1161. * pickup the extra load from this cpu and hence we need not check
  1162. * sibling runqueue info. This will avoid the checks and cache miss
  1163. * penalities associated with that.
  1164. */
  1165. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1166. return cpu;
  1167. for_each_domain(cpu, sd) {
  1168. if (sd->flags & SD_WAKE_IDLE) {
  1169. cpus_and(tmp, sd->span, p->cpus_allowed);
  1170. for_each_cpu_mask(i, tmp) {
  1171. if (idle_cpu(i))
  1172. return i;
  1173. }
  1174. } else {
  1175. break;
  1176. }
  1177. }
  1178. return cpu;
  1179. }
  1180. #else
  1181. static inline int wake_idle(int cpu, struct task_struct *p)
  1182. {
  1183. return cpu;
  1184. }
  1185. #endif
  1186. /***
  1187. * try_to_wake_up - wake up a thread
  1188. * @p: the to-be-woken-up thread
  1189. * @state: the mask of task states that can be woken
  1190. * @sync: do a synchronous wakeup?
  1191. *
  1192. * Put it on the run-queue if it's not already there. The "current"
  1193. * thread is always on the run-queue (except when the actual
  1194. * re-schedule is in progress), and as such you're allowed to do
  1195. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1196. * runnable without the overhead of this.
  1197. *
  1198. * returns failure only if the task is already active.
  1199. */
  1200. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1201. {
  1202. int cpu, this_cpu, success = 0;
  1203. unsigned long flags;
  1204. long old_state;
  1205. struct rq *rq;
  1206. #ifdef CONFIG_SMP
  1207. struct sched_domain *sd, *this_sd = NULL;
  1208. unsigned long load, this_load;
  1209. int new_cpu;
  1210. #endif
  1211. rq = task_rq_lock(p, &flags);
  1212. old_state = p->state;
  1213. if (!(old_state & state))
  1214. goto out;
  1215. if (p->se.on_rq)
  1216. goto out_running;
  1217. cpu = task_cpu(p);
  1218. this_cpu = smp_processor_id();
  1219. #ifdef CONFIG_SMP
  1220. if (unlikely(task_running(rq, p)))
  1221. goto out_activate;
  1222. new_cpu = cpu;
  1223. schedstat_inc(rq, ttwu_cnt);
  1224. if (cpu == this_cpu) {
  1225. schedstat_inc(rq, ttwu_local);
  1226. goto out_set_cpu;
  1227. }
  1228. for_each_domain(this_cpu, sd) {
  1229. if (cpu_isset(cpu, sd->span)) {
  1230. schedstat_inc(sd, ttwu_wake_remote);
  1231. this_sd = sd;
  1232. break;
  1233. }
  1234. }
  1235. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1236. goto out_set_cpu;
  1237. /*
  1238. * Check for affine wakeup and passive balancing possibilities.
  1239. */
  1240. if (this_sd) {
  1241. int idx = this_sd->wake_idx;
  1242. unsigned int imbalance;
  1243. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1244. load = source_load(cpu, idx);
  1245. this_load = target_load(this_cpu, idx);
  1246. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1247. if (this_sd->flags & SD_WAKE_AFFINE) {
  1248. unsigned long tl = this_load;
  1249. unsigned long tl_per_task;
  1250. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1251. /*
  1252. * If sync wakeup then subtract the (maximum possible)
  1253. * effect of the currently running task from the load
  1254. * of the current CPU:
  1255. */
  1256. if (sync)
  1257. tl -= current->se.load.weight;
  1258. if ((tl <= load &&
  1259. tl + target_load(cpu, idx) <= tl_per_task) ||
  1260. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1261. /*
  1262. * This domain has SD_WAKE_AFFINE and
  1263. * p is cache cold in this domain, and
  1264. * there is no bad imbalance.
  1265. */
  1266. schedstat_inc(this_sd, ttwu_move_affine);
  1267. goto out_set_cpu;
  1268. }
  1269. }
  1270. /*
  1271. * Start passive balancing when half the imbalance_pct
  1272. * limit is reached.
  1273. */
  1274. if (this_sd->flags & SD_WAKE_BALANCE) {
  1275. if (imbalance*this_load <= 100*load) {
  1276. schedstat_inc(this_sd, ttwu_move_balance);
  1277. goto out_set_cpu;
  1278. }
  1279. }
  1280. }
  1281. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1282. out_set_cpu:
  1283. new_cpu = wake_idle(new_cpu, p);
  1284. if (new_cpu != cpu) {
  1285. set_task_cpu(p, new_cpu);
  1286. task_rq_unlock(rq, &flags);
  1287. /* might preempt at this point */
  1288. rq = task_rq_lock(p, &flags);
  1289. old_state = p->state;
  1290. if (!(old_state & state))
  1291. goto out;
  1292. if (p->se.on_rq)
  1293. goto out_running;
  1294. this_cpu = smp_processor_id();
  1295. cpu = task_cpu(p);
  1296. }
  1297. out_activate:
  1298. #endif /* CONFIG_SMP */
  1299. activate_task(rq, p, 1);
  1300. /*
  1301. * Sync wakeups (i.e. those types of wakeups where the waker
  1302. * has indicated that it will leave the CPU in short order)
  1303. * don't trigger a preemption, if the woken up task will run on
  1304. * this cpu. (in this case the 'I will reschedule' promise of
  1305. * the waker guarantees that the freshly woken up task is going
  1306. * to be considered on this CPU.)
  1307. */
  1308. if (!sync || cpu != this_cpu)
  1309. check_preempt_curr(rq, p);
  1310. success = 1;
  1311. out_running:
  1312. p->state = TASK_RUNNING;
  1313. out:
  1314. task_rq_unlock(rq, &flags);
  1315. return success;
  1316. }
  1317. int fastcall wake_up_process(struct task_struct *p)
  1318. {
  1319. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1320. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1321. }
  1322. EXPORT_SYMBOL(wake_up_process);
  1323. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1324. {
  1325. return try_to_wake_up(p, state, 0);
  1326. }
  1327. /*
  1328. * Perform scheduler related setup for a newly forked process p.
  1329. * p is forked by current.
  1330. *
  1331. * __sched_fork() is basic setup used by init_idle() too:
  1332. */
  1333. static void __sched_fork(struct task_struct *p)
  1334. {
  1335. p->se.wait_start_fair = 0;
  1336. p->se.wait_start = 0;
  1337. p->se.exec_start = 0;
  1338. p->se.sum_exec_runtime = 0;
  1339. p->se.delta_exec = 0;
  1340. p->se.delta_fair_run = 0;
  1341. p->se.delta_fair_sleep = 0;
  1342. p->se.wait_runtime = 0;
  1343. p->se.sum_wait_runtime = 0;
  1344. p->se.sum_sleep_runtime = 0;
  1345. p->se.sleep_start = 0;
  1346. p->se.sleep_start_fair = 0;
  1347. p->se.block_start = 0;
  1348. p->se.sleep_max = 0;
  1349. p->se.block_max = 0;
  1350. p->se.exec_max = 0;
  1351. p->se.wait_max = 0;
  1352. p->se.wait_runtime_overruns = 0;
  1353. p->se.wait_runtime_underruns = 0;
  1354. INIT_LIST_HEAD(&p->run_list);
  1355. p->se.on_rq = 0;
  1356. /*
  1357. * We mark the process as running here, but have not actually
  1358. * inserted it onto the runqueue yet. This guarantees that
  1359. * nobody will actually run it, and a signal or other external
  1360. * event cannot wake it up and insert it on the runqueue either.
  1361. */
  1362. p->state = TASK_RUNNING;
  1363. }
  1364. /*
  1365. * fork()/clone()-time setup:
  1366. */
  1367. void sched_fork(struct task_struct *p, int clone_flags)
  1368. {
  1369. int cpu = get_cpu();
  1370. __sched_fork(p);
  1371. #ifdef CONFIG_SMP
  1372. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1373. #endif
  1374. __set_task_cpu(p, cpu);
  1375. /*
  1376. * Make sure we do not leak PI boosting priority to the child:
  1377. */
  1378. p->prio = current->normal_prio;
  1379. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1380. if (likely(sched_info_on()))
  1381. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1382. #endif
  1383. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1384. p->oncpu = 0;
  1385. #endif
  1386. #ifdef CONFIG_PREEMPT
  1387. /* Want to start with kernel preemption disabled. */
  1388. task_thread_info(p)->preempt_count = 1;
  1389. #endif
  1390. put_cpu();
  1391. }
  1392. /*
  1393. * After fork, child runs first. (default) If set to 0 then
  1394. * parent will (try to) run first.
  1395. */
  1396. unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
  1397. /*
  1398. * wake_up_new_task - wake up a newly created task for the first time.
  1399. *
  1400. * This function will do some initial scheduler statistics housekeeping
  1401. * that must be done for every newly created context, then puts the task
  1402. * on the runqueue and wakes it.
  1403. */
  1404. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1405. {
  1406. unsigned long flags;
  1407. struct rq *rq;
  1408. int this_cpu;
  1409. rq = task_rq_lock(p, &flags);
  1410. BUG_ON(p->state != TASK_RUNNING);
  1411. this_cpu = smp_processor_id(); /* parent's CPU */
  1412. p->prio = effective_prio(p);
  1413. if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) ||
  1414. task_cpu(p) != this_cpu || !current->se.on_rq) {
  1415. activate_task(rq, p, 0);
  1416. } else {
  1417. /*
  1418. * Let the scheduling class do new task startup
  1419. * management (if any):
  1420. */
  1421. p->sched_class->task_new(rq, p);
  1422. }
  1423. check_preempt_curr(rq, p);
  1424. task_rq_unlock(rq, &flags);
  1425. }
  1426. /**
  1427. * prepare_task_switch - prepare to switch tasks
  1428. * @rq: the runqueue preparing to switch
  1429. * @next: the task we are going to switch to.
  1430. *
  1431. * This is called with the rq lock held and interrupts off. It must
  1432. * be paired with a subsequent finish_task_switch after the context
  1433. * switch.
  1434. *
  1435. * prepare_task_switch sets up locking and calls architecture specific
  1436. * hooks.
  1437. */
  1438. static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
  1439. {
  1440. prepare_lock_switch(rq, next);
  1441. prepare_arch_switch(next);
  1442. }
  1443. /**
  1444. * finish_task_switch - clean up after a task-switch
  1445. * @rq: runqueue associated with task-switch
  1446. * @prev: the thread we just switched away from.
  1447. *
  1448. * finish_task_switch must be called after the context switch, paired
  1449. * with a prepare_task_switch call before the context switch.
  1450. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1451. * and do any other architecture-specific cleanup actions.
  1452. *
  1453. * Note that we may have delayed dropping an mm in context_switch(). If
  1454. * so, we finish that here outside of the runqueue lock. (Doing it
  1455. * with the lock held can cause deadlocks; see schedule() for
  1456. * details.)
  1457. */
  1458. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1459. __releases(rq->lock)
  1460. {
  1461. struct mm_struct *mm = rq->prev_mm;
  1462. long prev_state;
  1463. rq->prev_mm = NULL;
  1464. /*
  1465. * A task struct has one reference for the use as "current".
  1466. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1467. * schedule one last time. The schedule call will never return, and
  1468. * the scheduled task must drop that reference.
  1469. * The test for TASK_DEAD must occur while the runqueue locks are
  1470. * still held, otherwise prev could be scheduled on another cpu, die
  1471. * there before we look at prev->state, and then the reference would
  1472. * be dropped twice.
  1473. * Manfred Spraul <manfred@colorfullife.com>
  1474. */
  1475. prev_state = prev->state;
  1476. finish_arch_switch(prev);
  1477. finish_lock_switch(rq, prev);
  1478. if (mm)
  1479. mmdrop(mm);
  1480. if (unlikely(prev_state == TASK_DEAD)) {
  1481. /*
  1482. * Remove function-return probe instances associated with this
  1483. * task and put them back on the free list.
  1484. */
  1485. kprobe_flush_task(prev);
  1486. put_task_struct(prev);
  1487. }
  1488. }
  1489. /**
  1490. * schedule_tail - first thing a freshly forked thread must call.
  1491. * @prev: the thread we just switched away from.
  1492. */
  1493. asmlinkage void schedule_tail(struct task_struct *prev)
  1494. __releases(rq->lock)
  1495. {
  1496. struct rq *rq = this_rq();
  1497. finish_task_switch(rq, prev);
  1498. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1499. /* In this case, finish_task_switch does not reenable preemption */
  1500. preempt_enable();
  1501. #endif
  1502. if (current->set_child_tid)
  1503. put_user(current->pid, current->set_child_tid);
  1504. }
  1505. /*
  1506. * context_switch - switch to the new MM and the new
  1507. * thread's register state.
  1508. */
  1509. static inline void
  1510. context_switch(struct rq *rq, struct task_struct *prev,
  1511. struct task_struct *next)
  1512. {
  1513. struct mm_struct *mm, *oldmm;
  1514. prepare_task_switch(rq, next);
  1515. mm = next->mm;
  1516. oldmm = prev->active_mm;
  1517. /*
  1518. * For paravirt, this is coupled with an exit in switch_to to
  1519. * combine the page table reload and the switch backend into
  1520. * one hypercall.
  1521. */
  1522. arch_enter_lazy_cpu_mode();
  1523. if (unlikely(!mm)) {
  1524. next->active_mm = oldmm;
  1525. atomic_inc(&oldmm->mm_count);
  1526. enter_lazy_tlb(oldmm, next);
  1527. } else
  1528. switch_mm(oldmm, mm, next);
  1529. if (unlikely(!prev->mm)) {
  1530. prev->active_mm = NULL;
  1531. rq->prev_mm = oldmm;
  1532. }
  1533. /*
  1534. * Since the runqueue lock will be released by the next
  1535. * task (which is an invalid locking op but in the case
  1536. * of the scheduler it's an obvious special-case), so we
  1537. * do an early lockdep release here:
  1538. */
  1539. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1540. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1541. #endif
  1542. /* Here we just switch the register state and the stack. */
  1543. switch_to(prev, next, prev);
  1544. barrier();
  1545. /*
  1546. * this_rq must be evaluated again because prev may have moved
  1547. * CPUs since it called schedule(), thus the 'rq' on its stack
  1548. * frame will be invalid.
  1549. */
  1550. finish_task_switch(this_rq(), prev);
  1551. }
  1552. /*
  1553. * nr_running, nr_uninterruptible and nr_context_switches:
  1554. *
  1555. * externally visible scheduler statistics: current number of runnable
  1556. * threads, current number of uninterruptible-sleeping threads, total
  1557. * number of context switches performed since bootup.
  1558. */
  1559. unsigned long nr_running(void)
  1560. {
  1561. unsigned long i, sum = 0;
  1562. for_each_online_cpu(i)
  1563. sum += cpu_rq(i)->nr_running;
  1564. return sum;
  1565. }
  1566. unsigned long nr_uninterruptible(void)
  1567. {
  1568. unsigned long i, sum = 0;
  1569. for_each_possible_cpu(i)
  1570. sum += cpu_rq(i)->nr_uninterruptible;
  1571. /*
  1572. * Since we read the counters lockless, it might be slightly
  1573. * inaccurate. Do not allow it to go below zero though:
  1574. */
  1575. if (unlikely((long)sum < 0))
  1576. sum = 0;
  1577. return sum;
  1578. }
  1579. unsigned long long nr_context_switches(void)
  1580. {
  1581. int i;
  1582. unsigned long long sum = 0;
  1583. for_each_possible_cpu(i)
  1584. sum += cpu_rq(i)->nr_switches;
  1585. return sum;
  1586. }
  1587. unsigned long nr_iowait(void)
  1588. {
  1589. unsigned long i, sum = 0;
  1590. for_each_possible_cpu(i)
  1591. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1592. return sum;
  1593. }
  1594. unsigned long nr_active(void)
  1595. {
  1596. unsigned long i, running = 0, uninterruptible = 0;
  1597. for_each_online_cpu(i) {
  1598. running += cpu_rq(i)->nr_running;
  1599. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1600. }
  1601. if (unlikely((long)uninterruptible < 0))
  1602. uninterruptible = 0;
  1603. return running + uninterruptible;
  1604. }
  1605. /*
  1606. * Update rq->cpu_load[] statistics. This function is usually called every
  1607. * scheduler tick (TICK_NSEC).
  1608. */
  1609. static void update_cpu_load(struct rq *this_rq)
  1610. {
  1611. u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
  1612. unsigned long total_load = this_rq->ls.load.weight;
  1613. unsigned long this_load = total_load;
  1614. struct load_stat *ls = &this_rq->ls;
  1615. u64 now = __rq_clock(this_rq);
  1616. int i, scale;
  1617. this_rq->nr_load_updates++;
  1618. if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
  1619. goto do_avg;
  1620. /* Update delta_fair/delta_exec fields first */
  1621. update_curr_load(this_rq, now);
  1622. fair_delta64 = ls->delta_fair + 1;
  1623. ls->delta_fair = 0;
  1624. exec_delta64 = ls->delta_exec + 1;
  1625. ls->delta_exec = 0;
  1626. sample_interval64 = now - ls->load_update_last;
  1627. ls->load_update_last = now;
  1628. if ((s64)sample_interval64 < (s64)TICK_NSEC)
  1629. sample_interval64 = TICK_NSEC;
  1630. if (exec_delta64 > sample_interval64)
  1631. exec_delta64 = sample_interval64;
  1632. idle_delta64 = sample_interval64 - exec_delta64;
  1633. tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
  1634. tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
  1635. this_load = (unsigned long)tmp64;
  1636. do_avg:
  1637. /* Update our load: */
  1638. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1639. unsigned long old_load, new_load;
  1640. /* scale is effectively 1 << i now, and >> i divides by scale */
  1641. old_load = this_rq->cpu_load[i];
  1642. new_load = this_load;
  1643. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1644. }
  1645. }
  1646. #ifdef CONFIG_SMP
  1647. /*
  1648. * double_rq_lock - safely lock two runqueues
  1649. *
  1650. * Note this does not disable interrupts like task_rq_lock,
  1651. * you need to do so manually before calling.
  1652. */
  1653. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1654. __acquires(rq1->lock)
  1655. __acquires(rq2->lock)
  1656. {
  1657. BUG_ON(!irqs_disabled());
  1658. if (rq1 == rq2) {
  1659. spin_lock(&rq1->lock);
  1660. __acquire(rq2->lock); /* Fake it out ;) */
  1661. } else {
  1662. if (rq1 < rq2) {
  1663. spin_lock(&rq1->lock);
  1664. spin_lock(&rq2->lock);
  1665. } else {
  1666. spin_lock(&rq2->lock);
  1667. spin_lock(&rq1->lock);
  1668. }
  1669. }
  1670. }
  1671. /*
  1672. * double_rq_unlock - safely unlock two runqueues
  1673. *
  1674. * Note this does not restore interrupts like task_rq_unlock,
  1675. * you need to do so manually after calling.
  1676. */
  1677. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1678. __releases(rq1->lock)
  1679. __releases(rq2->lock)
  1680. {
  1681. spin_unlock(&rq1->lock);
  1682. if (rq1 != rq2)
  1683. spin_unlock(&rq2->lock);
  1684. else
  1685. __release(rq2->lock);
  1686. }
  1687. /*
  1688. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1689. */
  1690. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1691. __releases(this_rq->lock)
  1692. __acquires(busiest->lock)
  1693. __acquires(this_rq->lock)
  1694. {
  1695. if (unlikely(!irqs_disabled())) {
  1696. /* printk() doesn't work good under rq->lock */
  1697. spin_unlock(&this_rq->lock);
  1698. BUG_ON(1);
  1699. }
  1700. if (unlikely(!spin_trylock(&busiest->lock))) {
  1701. if (busiest < this_rq) {
  1702. spin_unlock(&this_rq->lock);
  1703. spin_lock(&busiest->lock);
  1704. spin_lock(&this_rq->lock);
  1705. } else
  1706. spin_lock(&busiest->lock);
  1707. }
  1708. }
  1709. /*
  1710. * If dest_cpu is allowed for this process, migrate the task to it.
  1711. * This is accomplished by forcing the cpu_allowed mask to only
  1712. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1713. * the cpu_allowed mask is restored.
  1714. */
  1715. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1716. {
  1717. struct migration_req req;
  1718. unsigned long flags;
  1719. struct rq *rq;
  1720. rq = task_rq_lock(p, &flags);
  1721. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1722. || unlikely(cpu_is_offline(dest_cpu)))
  1723. goto out;
  1724. /* force the process onto the specified CPU */
  1725. if (migrate_task(p, dest_cpu, &req)) {
  1726. /* Need to wait for migration thread (might exit: take ref). */
  1727. struct task_struct *mt = rq->migration_thread;
  1728. get_task_struct(mt);
  1729. task_rq_unlock(rq, &flags);
  1730. wake_up_process(mt);
  1731. put_task_struct(mt);
  1732. wait_for_completion(&req.done);
  1733. return;
  1734. }
  1735. out:
  1736. task_rq_unlock(rq, &flags);
  1737. }
  1738. /*
  1739. * sched_exec - execve() is a valuable balancing opportunity, because at
  1740. * this point the task has the smallest effective memory and cache footprint.
  1741. */
  1742. void sched_exec(void)
  1743. {
  1744. int new_cpu, this_cpu = get_cpu();
  1745. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1746. put_cpu();
  1747. if (new_cpu != this_cpu)
  1748. sched_migrate_task(current, new_cpu);
  1749. }
  1750. /*
  1751. * pull_task - move a task from a remote runqueue to the local runqueue.
  1752. * Both runqueues must be locked.
  1753. */
  1754. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1755. struct rq *this_rq, int this_cpu)
  1756. {
  1757. deactivate_task(src_rq, p, 0);
  1758. set_task_cpu(p, this_cpu);
  1759. activate_task(this_rq, p, 0);
  1760. /*
  1761. * Note that idle threads have a prio of MAX_PRIO, for this test
  1762. * to be always true for them.
  1763. */
  1764. check_preempt_curr(this_rq, p);
  1765. }
  1766. /*
  1767. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1768. */
  1769. static
  1770. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1771. struct sched_domain *sd, enum cpu_idle_type idle,
  1772. int *all_pinned)
  1773. {
  1774. /*
  1775. * We do not migrate tasks that are:
  1776. * 1) running (obviously), or
  1777. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1778. * 3) are cache-hot on their current CPU.
  1779. */
  1780. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1781. return 0;
  1782. *all_pinned = 0;
  1783. if (task_running(rq, p))
  1784. return 0;
  1785. /*
  1786. * Aggressive migration if too many balance attempts have failed:
  1787. */
  1788. if (sd->nr_balance_failed > sd->cache_nice_tries)
  1789. return 1;
  1790. return 1;
  1791. }
  1792. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1793. unsigned long max_nr_move, unsigned long max_load_move,
  1794. struct sched_domain *sd, enum cpu_idle_type idle,
  1795. int *all_pinned, unsigned long *load_moved,
  1796. int this_best_prio, int best_prio, int best_prio_seen,
  1797. struct rq_iterator *iterator)
  1798. {
  1799. int pulled = 0, pinned = 0, skip_for_load;
  1800. struct task_struct *p;
  1801. long rem_load_move = max_load_move;
  1802. if (max_nr_move == 0 || max_load_move == 0)
  1803. goto out;
  1804. pinned = 1;
  1805. /*
  1806. * Start the load-balancing iterator:
  1807. */
  1808. p = iterator->start(iterator->arg);
  1809. next:
  1810. if (!p)
  1811. goto out;
  1812. /*
  1813. * To help distribute high priority tasks accross CPUs we don't
  1814. * skip a task if it will be the highest priority task (i.e. smallest
  1815. * prio value) on its new queue regardless of its load weight
  1816. */
  1817. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1818. SCHED_LOAD_SCALE_FUZZ;
  1819. if (skip_for_load && p->prio < this_best_prio)
  1820. skip_for_load = !best_prio_seen && p->prio == best_prio;
  1821. if (skip_for_load ||
  1822. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1823. best_prio_seen |= p->prio == best_prio;
  1824. p = iterator->next(iterator->arg);
  1825. goto next;
  1826. }
  1827. pull_task(busiest, p, this_rq, this_cpu);
  1828. pulled++;
  1829. rem_load_move -= p->se.load.weight;
  1830. /*
  1831. * We only want to steal up to the prescribed number of tasks
  1832. * and the prescribed amount of weighted load.
  1833. */
  1834. if (pulled < max_nr_move && rem_load_move > 0) {
  1835. if (p->prio < this_best_prio)
  1836. this_best_prio = p->prio;
  1837. p = iterator->next(iterator->arg);
  1838. goto next;
  1839. }
  1840. out:
  1841. /*
  1842. * Right now, this is the only place pull_task() is called,
  1843. * so we can safely collect pull_task() stats here rather than
  1844. * inside pull_task().
  1845. */
  1846. schedstat_add(sd, lb_gained[idle], pulled);
  1847. if (all_pinned)
  1848. *all_pinned = pinned;
  1849. *load_moved = max_load_move - rem_load_move;
  1850. return pulled;
  1851. }
  1852. /*
  1853. * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
  1854. * load from busiest to this_rq, as part of a balancing operation within
  1855. * "domain". Returns the number of tasks moved.
  1856. *
  1857. * Called with both runqueues locked.
  1858. */
  1859. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1860. unsigned long max_nr_move, unsigned long max_load_move,
  1861. struct sched_domain *sd, enum cpu_idle_type idle,
  1862. int *all_pinned)
  1863. {
  1864. struct sched_class *class = sched_class_highest;
  1865. unsigned long load_moved, total_nr_moved = 0, nr_moved;
  1866. long rem_load_move = max_load_move;
  1867. do {
  1868. nr_moved = class->load_balance(this_rq, this_cpu, busiest,
  1869. max_nr_move, (unsigned long)rem_load_move,
  1870. sd, idle, all_pinned, &load_moved);
  1871. total_nr_moved += nr_moved;
  1872. max_nr_move -= nr_moved;
  1873. rem_load_move -= load_moved;
  1874. class = class->next;
  1875. } while (class && max_nr_move && rem_load_move > 0);
  1876. return total_nr_moved;
  1877. }
  1878. /*
  1879. * find_busiest_group finds and returns the busiest CPU group within the
  1880. * domain. It calculates and returns the amount of weighted load which
  1881. * should be moved to restore balance via the imbalance parameter.
  1882. */
  1883. static struct sched_group *
  1884. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1885. unsigned long *imbalance, enum cpu_idle_type idle,
  1886. int *sd_idle, cpumask_t *cpus, int *balance)
  1887. {
  1888. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1889. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1890. unsigned long max_pull;
  1891. unsigned long busiest_load_per_task, busiest_nr_running;
  1892. unsigned long this_load_per_task, this_nr_running;
  1893. int load_idx;
  1894. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1895. int power_savings_balance = 1;
  1896. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  1897. unsigned long min_nr_running = ULONG_MAX;
  1898. struct sched_group *group_min = NULL, *group_leader = NULL;
  1899. #endif
  1900. max_load = this_load = total_load = total_pwr = 0;
  1901. busiest_load_per_task = busiest_nr_running = 0;
  1902. this_load_per_task = this_nr_running = 0;
  1903. if (idle == CPU_NOT_IDLE)
  1904. load_idx = sd->busy_idx;
  1905. else if (idle == CPU_NEWLY_IDLE)
  1906. load_idx = sd->newidle_idx;
  1907. else
  1908. load_idx = sd->idle_idx;
  1909. do {
  1910. unsigned long load, group_capacity;
  1911. int local_group;
  1912. int i;
  1913. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  1914. unsigned long sum_nr_running, sum_weighted_load;
  1915. local_group = cpu_isset(this_cpu, group->cpumask);
  1916. if (local_group)
  1917. balance_cpu = first_cpu(group->cpumask);
  1918. /* Tally up the load of all CPUs in the group */
  1919. sum_weighted_load = sum_nr_running = avg_load = 0;
  1920. for_each_cpu_mask(i, group->cpumask) {
  1921. struct rq *rq;
  1922. if (!cpu_isset(i, *cpus))
  1923. continue;
  1924. rq = cpu_rq(i);
  1925. if (*sd_idle && !idle_cpu(i))
  1926. *sd_idle = 0;
  1927. /* Bias balancing toward cpus of our domain */
  1928. if (local_group) {
  1929. if (idle_cpu(i) && !first_idle_cpu) {
  1930. first_idle_cpu = 1;
  1931. balance_cpu = i;
  1932. }
  1933. load = target_load(i, load_idx);
  1934. } else
  1935. load = source_load(i, load_idx);
  1936. avg_load += load;
  1937. sum_nr_running += rq->nr_running;
  1938. sum_weighted_load += weighted_cpuload(i);
  1939. }
  1940. /*
  1941. * First idle cpu or the first cpu(busiest) in this sched group
  1942. * is eligible for doing load balancing at this and above
  1943. * domains.
  1944. */
  1945. if (local_group && balance_cpu != this_cpu && balance) {
  1946. *balance = 0;
  1947. goto ret;
  1948. }
  1949. total_load += avg_load;
  1950. total_pwr += group->__cpu_power;
  1951. /* Adjust by relative CPU power of the group */
  1952. avg_load = sg_div_cpu_power(group,
  1953. avg_load * SCHED_LOAD_SCALE);
  1954. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  1955. if (local_group) {
  1956. this_load = avg_load;
  1957. this = group;
  1958. this_nr_running = sum_nr_running;
  1959. this_load_per_task = sum_weighted_load;
  1960. } else if (avg_load > max_load &&
  1961. sum_nr_running > group_capacity) {
  1962. max_load = avg_load;
  1963. busiest = group;
  1964. busiest_nr_running = sum_nr_running;
  1965. busiest_load_per_task = sum_weighted_load;
  1966. }
  1967. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1968. /*
  1969. * Busy processors will not participate in power savings
  1970. * balance.
  1971. */
  1972. if (idle == CPU_NOT_IDLE ||
  1973. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  1974. goto group_next;
  1975. /*
  1976. * If the local group is idle or completely loaded
  1977. * no need to do power savings balance at this domain
  1978. */
  1979. if (local_group && (this_nr_running >= group_capacity ||
  1980. !this_nr_running))
  1981. power_savings_balance = 0;
  1982. /*
  1983. * If a group is already running at full capacity or idle,
  1984. * don't include that group in power savings calculations
  1985. */
  1986. if (!power_savings_balance || sum_nr_running >= group_capacity
  1987. || !sum_nr_running)
  1988. goto group_next;
  1989. /*
  1990. * Calculate the group which has the least non-idle load.
  1991. * This is the group from where we need to pick up the load
  1992. * for saving power
  1993. */
  1994. if ((sum_nr_running < min_nr_running) ||
  1995. (sum_nr_running == min_nr_running &&
  1996. first_cpu(group->cpumask) <
  1997. first_cpu(group_min->cpumask))) {
  1998. group_min = group;
  1999. min_nr_running = sum_nr_running;
  2000. min_load_per_task = sum_weighted_load /
  2001. sum_nr_running;
  2002. }
  2003. /*
  2004. * Calculate the group which is almost near its
  2005. * capacity but still has some space to pick up some load
  2006. * from other group and save more power
  2007. */
  2008. if (sum_nr_running <= group_capacity - 1) {
  2009. if (sum_nr_running > leader_nr_running ||
  2010. (sum_nr_running == leader_nr_running &&
  2011. first_cpu(group->cpumask) >
  2012. first_cpu(group_leader->cpumask))) {
  2013. group_leader = group;
  2014. leader_nr_running = sum_nr_running;
  2015. }
  2016. }
  2017. group_next:
  2018. #endif
  2019. group = group->next;
  2020. } while (group != sd->groups);
  2021. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2022. goto out_balanced;
  2023. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2024. if (this_load >= avg_load ||
  2025. 100*max_load <= sd->imbalance_pct*this_load)
  2026. goto out_balanced;
  2027. busiest_load_per_task /= busiest_nr_running;
  2028. /*
  2029. * We're trying to get all the cpus to the average_load, so we don't
  2030. * want to push ourselves above the average load, nor do we wish to
  2031. * reduce the max loaded cpu below the average load, as either of these
  2032. * actions would just result in more rebalancing later, and ping-pong
  2033. * tasks around. Thus we look for the minimum possible imbalance.
  2034. * Negative imbalances (*we* are more loaded than anyone else) will
  2035. * be counted as no imbalance for these purposes -- we can't fix that
  2036. * by pulling tasks to us. Be careful of negative numbers as they'll
  2037. * appear as very large values with unsigned longs.
  2038. */
  2039. if (max_load <= busiest_load_per_task)
  2040. goto out_balanced;
  2041. /*
  2042. * In the presence of smp nice balancing, certain scenarios can have
  2043. * max load less than avg load(as we skip the groups at or below
  2044. * its cpu_power, while calculating max_load..)
  2045. */
  2046. if (max_load < avg_load) {
  2047. *imbalance = 0;
  2048. goto small_imbalance;
  2049. }
  2050. /* Don't want to pull so many tasks that a group would go idle */
  2051. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2052. /* How much load to actually move to equalise the imbalance */
  2053. *imbalance = min(max_pull * busiest->__cpu_power,
  2054. (avg_load - this_load) * this->__cpu_power)
  2055. / SCHED_LOAD_SCALE;
  2056. /*
  2057. * if *imbalance is less than the average load per runnable task
  2058. * there is no gaurantee that any tasks will be moved so we'll have
  2059. * a think about bumping its value to force at least one task to be
  2060. * moved
  2061. */
  2062. if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
  2063. unsigned long tmp, pwr_now, pwr_move;
  2064. unsigned int imbn;
  2065. small_imbalance:
  2066. pwr_move = pwr_now = 0;
  2067. imbn = 2;
  2068. if (this_nr_running) {
  2069. this_load_per_task /= this_nr_running;
  2070. if (busiest_load_per_task > this_load_per_task)
  2071. imbn = 1;
  2072. } else
  2073. this_load_per_task = SCHED_LOAD_SCALE;
  2074. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2075. busiest_load_per_task * imbn) {
  2076. *imbalance = busiest_load_per_task;
  2077. return busiest;
  2078. }
  2079. /*
  2080. * OK, we don't have enough imbalance to justify moving tasks,
  2081. * however we may be able to increase total CPU power used by
  2082. * moving them.
  2083. */
  2084. pwr_now += busiest->__cpu_power *
  2085. min(busiest_load_per_task, max_load);
  2086. pwr_now += this->__cpu_power *
  2087. min(this_load_per_task, this_load);
  2088. pwr_now /= SCHED_LOAD_SCALE;
  2089. /* Amount of load we'd subtract */
  2090. tmp = sg_div_cpu_power(busiest,
  2091. busiest_load_per_task * SCHED_LOAD_SCALE);
  2092. if (max_load > tmp)
  2093. pwr_move += busiest->__cpu_power *
  2094. min(busiest_load_per_task, max_load - tmp);
  2095. /* Amount of load we'd add */
  2096. if (max_load * busiest->__cpu_power <
  2097. busiest_load_per_task * SCHED_LOAD_SCALE)
  2098. tmp = sg_div_cpu_power(this,
  2099. max_load * busiest->__cpu_power);
  2100. else
  2101. tmp = sg_div_cpu_power(this,
  2102. busiest_load_per_task * SCHED_LOAD_SCALE);
  2103. pwr_move += this->__cpu_power *
  2104. min(this_load_per_task, this_load + tmp);
  2105. pwr_move /= SCHED_LOAD_SCALE;
  2106. /* Move if we gain throughput */
  2107. if (pwr_move <= pwr_now)
  2108. goto out_balanced;
  2109. *imbalance = busiest_load_per_task;
  2110. }
  2111. return busiest;
  2112. out_balanced:
  2113. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2114. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2115. goto ret;
  2116. if (this == group_leader && group_leader != group_min) {
  2117. *imbalance = min_load_per_task;
  2118. return group_min;
  2119. }
  2120. #endif
  2121. ret:
  2122. *imbalance = 0;
  2123. return NULL;
  2124. }
  2125. /*
  2126. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2127. */
  2128. static struct rq *
  2129. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2130. unsigned long imbalance, cpumask_t *cpus)
  2131. {
  2132. struct rq *busiest = NULL, *rq;
  2133. unsigned long max_load = 0;
  2134. int i;
  2135. for_each_cpu_mask(i, group->cpumask) {
  2136. unsigned long wl;
  2137. if (!cpu_isset(i, *cpus))
  2138. continue;
  2139. rq = cpu_rq(i);
  2140. wl = weighted_cpuload(i);
  2141. if (rq->nr_running == 1 && wl > imbalance)
  2142. continue;
  2143. if (wl > max_load) {
  2144. max_load = wl;
  2145. busiest = rq;
  2146. }
  2147. }
  2148. return busiest;
  2149. }
  2150. /*
  2151. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2152. * so long as it is large enough.
  2153. */
  2154. #define MAX_PINNED_INTERVAL 512
  2155. static inline unsigned long minus_1_or_zero(unsigned long n)
  2156. {
  2157. return n > 0 ? n - 1 : 0;
  2158. }
  2159. /*
  2160. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2161. * tasks if there is an imbalance.
  2162. */
  2163. static int load_balance(int this_cpu, struct rq *this_rq,
  2164. struct sched_domain *sd, enum cpu_idle_type idle,
  2165. int *balance)
  2166. {
  2167. int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2168. struct sched_group *group;
  2169. unsigned long imbalance;
  2170. struct rq *busiest;
  2171. cpumask_t cpus = CPU_MASK_ALL;
  2172. unsigned long flags;
  2173. /*
  2174. * When power savings policy is enabled for the parent domain, idle
  2175. * sibling can pick up load irrespective of busy siblings. In this case,
  2176. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2177. * portraying it as CPU_NOT_IDLE.
  2178. */
  2179. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2180. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2181. sd_idle = 1;
  2182. schedstat_inc(sd, lb_cnt[idle]);
  2183. redo:
  2184. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2185. &cpus, balance);
  2186. if (*balance == 0)
  2187. goto out_balanced;
  2188. if (!group) {
  2189. schedstat_inc(sd, lb_nobusyg[idle]);
  2190. goto out_balanced;
  2191. }
  2192. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2193. if (!busiest) {
  2194. schedstat_inc(sd, lb_nobusyq[idle]);
  2195. goto out_balanced;
  2196. }
  2197. BUG_ON(busiest == this_rq);
  2198. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2199. nr_moved = 0;
  2200. if (busiest->nr_running > 1) {
  2201. /*
  2202. * Attempt to move tasks. If find_busiest_group has found
  2203. * an imbalance but busiest->nr_running <= 1, the group is
  2204. * still unbalanced. nr_moved simply stays zero, so it is
  2205. * correctly treated as an imbalance.
  2206. */
  2207. local_irq_save(flags);
  2208. double_rq_lock(this_rq, busiest);
  2209. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2210. minus_1_or_zero(busiest->nr_running),
  2211. imbalance, sd, idle, &all_pinned);
  2212. double_rq_unlock(this_rq, busiest);
  2213. local_irq_restore(flags);
  2214. /*
  2215. * some other cpu did the load balance for us.
  2216. */
  2217. if (nr_moved && this_cpu != smp_processor_id())
  2218. resched_cpu(this_cpu);
  2219. /* All tasks on this runqueue were pinned by CPU affinity */
  2220. if (unlikely(all_pinned)) {
  2221. cpu_clear(cpu_of(busiest), cpus);
  2222. if (!cpus_empty(cpus))
  2223. goto redo;
  2224. goto out_balanced;
  2225. }
  2226. }
  2227. if (!nr_moved) {
  2228. schedstat_inc(sd, lb_failed[idle]);
  2229. sd->nr_balance_failed++;
  2230. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2231. spin_lock_irqsave(&busiest->lock, flags);
  2232. /* don't kick the migration_thread, if the curr
  2233. * task on busiest cpu can't be moved to this_cpu
  2234. */
  2235. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2236. spin_unlock_irqrestore(&busiest->lock, flags);
  2237. all_pinned = 1;
  2238. goto out_one_pinned;
  2239. }
  2240. if (!busiest->active_balance) {
  2241. busiest->active_balance = 1;
  2242. busiest->push_cpu = this_cpu;
  2243. active_balance = 1;
  2244. }
  2245. spin_unlock_irqrestore(&busiest->lock, flags);
  2246. if (active_balance)
  2247. wake_up_process(busiest->migration_thread);
  2248. /*
  2249. * We've kicked active balancing, reset the failure
  2250. * counter.
  2251. */
  2252. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2253. }
  2254. } else
  2255. sd->nr_balance_failed = 0;
  2256. if (likely(!active_balance)) {
  2257. /* We were unbalanced, so reset the balancing interval */
  2258. sd->balance_interval = sd->min_interval;
  2259. } else {
  2260. /*
  2261. * If we've begun active balancing, start to back off. This
  2262. * case may not be covered by the all_pinned logic if there
  2263. * is only 1 task on the busy runqueue (because we don't call
  2264. * move_tasks).
  2265. */
  2266. if (sd->balance_interval < sd->max_interval)
  2267. sd->balance_interval *= 2;
  2268. }
  2269. if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2270. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2271. return -1;
  2272. return nr_moved;
  2273. out_balanced:
  2274. schedstat_inc(sd, lb_balanced[idle]);
  2275. sd->nr_balance_failed = 0;
  2276. out_one_pinned:
  2277. /* tune up the balancing interval */
  2278. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2279. (sd->balance_interval < sd->max_interval))
  2280. sd->balance_interval *= 2;
  2281. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2282. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2283. return -1;
  2284. return 0;
  2285. }
  2286. /*
  2287. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2288. * tasks if there is an imbalance.
  2289. *
  2290. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2291. * this_rq is locked.
  2292. */
  2293. static int
  2294. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2295. {
  2296. struct sched_group *group;
  2297. struct rq *busiest = NULL;
  2298. unsigned long imbalance;
  2299. int nr_moved = 0;
  2300. int sd_idle = 0;
  2301. cpumask_t cpus = CPU_MASK_ALL;
  2302. /*
  2303. * When power savings policy is enabled for the parent domain, idle
  2304. * sibling can pick up load irrespective of busy siblings. In this case,
  2305. * let the state of idle sibling percolate up as IDLE, instead of
  2306. * portraying it as CPU_NOT_IDLE.
  2307. */
  2308. if (sd->flags & SD_SHARE_CPUPOWER &&
  2309. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2310. sd_idle = 1;
  2311. schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
  2312. redo:
  2313. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2314. &sd_idle, &cpus, NULL);
  2315. if (!group) {
  2316. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2317. goto out_balanced;
  2318. }
  2319. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2320. &cpus);
  2321. if (!busiest) {
  2322. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2323. goto out_balanced;
  2324. }
  2325. BUG_ON(busiest == this_rq);
  2326. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2327. nr_moved = 0;
  2328. if (busiest->nr_running > 1) {
  2329. /* Attempt to move tasks */
  2330. double_lock_balance(this_rq, busiest);
  2331. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2332. minus_1_or_zero(busiest->nr_running),
  2333. imbalance, sd, CPU_NEWLY_IDLE, NULL);
  2334. spin_unlock(&busiest->lock);
  2335. if (!nr_moved) {
  2336. cpu_clear(cpu_of(busiest), cpus);
  2337. if (!cpus_empty(cpus))
  2338. goto redo;
  2339. }
  2340. }
  2341. if (!nr_moved) {
  2342. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2343. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2344. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2345. return -1;
  2346. } else
  2347. sd->nr_balance_failed = 0;
  2348. return nr_moved;
  2349. out_balanced:
  2350. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2351. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2352. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2353. return -1;
  2354. sd->nr_balance_failed = 0;
  2355. return 0;
  2356. }
  2357. /*
  2358. * idle_balance is called by schedule() if this_cpu is about to become
  2359. * idle. Attempts to pull tasks from other CPUs.
  2360. */
  2361. static void idle_balance(int this_cpu, struct rq *this_rq)
  2362. {
  2363. struct sched_domain *sd;
  2364. int pulled_task = -1;
  2365. unsigned long next_balance = jiffies + HZ;
  2366. for_each_domain(this_cpu, sd) {
  2367. unsigned long interval;
  2368. if (!(sd->flags & SD_LOAD_BALANCE))
  2369. continue;
  2370. if (sd->flags & SD_BALANCE_NEWIDLE)
  2371. /* If we've pulled tasks over stop searching: */
  2372. pulled_task = load_balance_newidle(this_cpu,
  2373. this_rq, sd);
  2374. interval = msecs_to_jiffies(sd->balance_interval);
  2375. if (time_after(next_balance, sd->last_balance + interval))
  2376. next_balance = sd->last_balance + interval;
  2377. if (pulled_task)
  2378. break;
  2379. }
  2380. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2381. /*
  2382. * We are going idle. next_balance may be set based on
  2383. * a busy processor. So reset next_balance.
  2384. */
  2385. this_rq->next_balance = next_balance;
  2386. }
  2387. }
  2388. /*
  2389. * active_load_balance is run by migration threads. It pushes running tasks
  2390. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2391. * running on each physical CPU where possible, and avoids physical /
  2392. * logical imbalances.
  2393. *
  2394. * Called with busiest_rq locked.
  2395. */
  2396. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2397. {
  2398. int target_cpu = busiest_rq->push_cpu;
  2399. struct sched_domain *sd;
  2400. struct rq *target_rq;
  2401. /* Is there any task to move? */
  2402. if (busiest_rq->nr_running <= 1)
  2403. return;
  2404. target_rq = cpu_rq(target_cpu);
  2405. /*
  2406. * This condition is "impossible", if it occurs
  2407. * we need to fix it. Originally reported by
  2408. * Bjorn Helgaas on a 128-cpu setup.
  2409. */
  2410. BUG_ON(busiest_rq == target_rq);
  2411. /* move a task from busiest_rq to target_rq */
  2412. double_lock_balance(busiest_rq, target_rq);
  2413. /* Search for an sd spanning us and the target CPU. */
  2414. for_each_domain(target_cpu, sd) {
  2415. if ((sd->flags & SD_LOAD_BALANCE) &&
  2416. cpu_isset(busiest_cpu, sd->span))
  2417. break;
  2418. }
  2419. if (likely(sd)) {
  2420. schedstat_inc(sd, alb_cnt);
  2421. if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
  2422. RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
  2423. NULL))
  2424. schedstat_inc(sd, alb_pushed);
  2425. else
  2426. schedstat_inc(sd, alb_failed);
  2427. }
  2428. spin_unlock(&target_rq->lock);
  2429. }
  2430. #ifdef CONFIG_NO_HZ
  2431. static struct {
  2432. atomic_t load_balancer;
  2433. cpumask_t cpu_mask;
  2434. } nohz ____cacheline_aligned = {
  2435. .load_balancer = ATOMIC_INIT(-1),
  2436. .cpu_mask = CPU_MASK_NONE,
  2437. };
  2438. /*
  2439. * This routine will try to nominate the ilb (idle load balancing)
  2440. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2441. * load balancing on behalf of all those cpus. If all the cpus in the system
  2442. * go into this tickless mode, then there will be no ilb owner (as there is
  2443. * no need for one) and all the cpus will sleep till the next wakeup event
  2444. * arrives...
  2445. *
  2446. * For the ilb owner, tick is not stopped. And this tick will be used
  2447. * for idle load balancing. ilb owner will still be part of
  2448. * nohz.cpu_mask..
  2449. *
  2450. * While stopping the tick, this cpu will become the ilb owner if there
  2451. * is no other owner. And will be the owner till that cpu becomes busy
  2452. * or if all cpus in the system stop their ticks at which point
  2453. * there is no need for ilb owner.
  2454. *
  2455. * When the ilb owner becomes busy, it nominates another owner, during the
  2456. * next busy scheduler_tick()
  2457. */
  2458. int select_nohz_load_balancer(int stop_tick)
  2459. {
  2460. int cpu = smp_processor_id();
  2461. if (stop_tick) {
  2462. cpu_set(cpu, nohz.cpu_mask);
  2463. cpu_rq(cpu)->in_nohz_recently = 1;
  2464. /*
  2465. * If we are going offline and still the leader, give up!
  2466. */
  2467. if (cpu_is_offline(cpu) &&
  2468. atomic_read(&nohz.load_balancer) == cpu) {
  2469. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2470. BUG();
  2471. return 0;
  2472. }
  2473. /* time for ilb owner also to sleep */
  2474. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2475. if (atomic_read(&nohz.load_balancer) == cpu)
  2476. atomic_set(&nohz.load_balancer, -1);
  2477. return 0;
  2478. }
  2479. if (atomic_read(&nohz.load_balancer) == -1) {
  2480. /* make me the ilb owner */
  2481. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2482. return 1;
  2483. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2484. return 1;
  2485. } else {
  2486. if (!cpu_isset(cpu, nohz.cpu_mask))
  2487. return 0;
  2488. cpu_clear(cpu, nohz.cpu_mask);
  2489. if (atomic_read(&nohz.load_balancer) == cpu)
  2490. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2491. BUG();
  2492. }
  2493. return 0;
  2494. }
  2495. #endif
  2496. static DEFINE_SPINLOCK(balancing);
  2497. /*
  2498. * It checks each scheduling domain to see if it is due to be balanced,
  2499. * and initiates a balancing operation if so.
  2500. *
  2501. * Balancing parameters are set up in arch_init_sched_domains.
  2502. */
  2503. static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2504. {
  2505. int balance = 1;
  2506. struct rq *rq = cpu_rq(cpu);
  2507. unsigned long interval;
  2508. struct sched_domain *sd;
  2509. /* Earliest time when we have to do rebalance again */
  2510. unsigned long next_balance = jiffies + 60*HZ;
  2511. for_each_domain(cpu, sd) {
  2512. if (!(sd->flags & SD_LOAD_BALANCE))
  2513. continue;
  2514. interval = sd->balance_interval;
  2515. if (idle != CPU_IDLE)
  2516. interval *= sd->busy_factor;
  2517. /* scale ms to jiffies */
  2518. interval = msecs_to_jiffies(interval);
  2519. if (unlikely(!interval))
  2520. interval = 1;
  2521. if (interval > HZ*NR_CPUS/10)
  2522. interval = HZ*NR_CPUS/10;
  2523. if (sd->flags & SD_SERIALIZE) {
  2524. if (!spin_trylock(&balancing))
  2525. goto out;
  2526. }
  2527. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2528. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2529. /*
  2530. * We've pulled tasks over so either we're no
  2531. * longer idle, or one of our SMT siblings is
  2532. * not idle.
  2533. */
  2534. idle = CPU_NOT_IDLE;
  2535. }
  2536. sd->last_balance = jiffies;
  2537. }
  2538. if (sd->flags & SD_SERIALIZE)
  2539. spin_unlock(&balancing);
  2540. out:
  2541. if (time_after(next_balance, sd->last_balance + interval))
  2542. next_balance = sd->last_balance + interval;
  2543. /*
  2544. * Stop the load balance at this level. There is another
  2545. * CPU in our sched group which is doing load balancing more
  2546. * actively.
  2547. */
  2548. if (!balance)
  2549. break;
  2550. }
  2551. rq->next_balance = next_balance;
  2552. }
  2553. /*
  2554. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2555. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2556. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2557. */
  2558. static void run_rebalance_domains(struct softirq_action *h)
  2559. {
  2560. int this_cpu = smp_processor_id();
  2561. struct rq *this_rq = cpu_rq(this_cpu);
  2562. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2563. CPU_IDLE : CPU_NOT_IDLE;
  2564. rebalance_domains(this_cpu, idle);
  2565. #ifdef CONFIG_NO_HZ
  2566. /*
  2567. * If this cpu is the owner for idle load balancing, then do the
  2568. * balancing on behalf of the other idle cpus whose ticks are
  2569. * stopped.
  2570. */
  2571. if (this_rq->idle_at_tick &&
  2572. atomic_read(&nohz.load_balancer) == this_cpu) {
  2573. cpumask_t cpus = nohz.cpu_mask;
  2574. struct rq *rq;
  2575. int balance_cpu;
  2576. cpu_clear(this_cpu, cpus);
  2577. for_each_cpu_mask(balance_cpu, cpus) {
  2578. /*
  2579. * If this cpu gets work to do, stop the load balancing
  2580. * work being done for other cpus. Next load
  2581. * balancing owner will pick it up.
  2582. */
  2583. if (need_resched())
  2584. break;
  2585. rebalance_domains(balance_cpu, SCHED_IDLE);
  2586. rq = cpu_rq(balance_cpu);
  2587. if (time_after(this_rq->next_balance, rq->next_balance))
  2588. this_rq->next_balance = rq->next_balance;
  2589. }
  2590. }
  2591. #endif
  2592. }
  2593. /*
  2594. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2595. *
  2596. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2597. * idle load balancing owner or decide to stop the periodic load balancing,
  2598. * if the whole system is idle.
  2599. */
  2600. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2601. {
  2602. #ifdef CONFIG_NO_HZ
  2603. /*
  2604. * If we were in the nohz mode recently and busy at the current
  2605. * scheduler tick, then check if we need to nominate new idle
  2606. * load balancer.
  2607. */
  2608. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2609. rq->in_nohz_recently = 0;
  2610. if (atomic_read(&nohz.load_balancer) == cpu) {
  2611. cpu_clear(cpu, nohz.cpu_mask);
  2612. atomic_set(&nohz.load_balancer, -1);
  2613. }
  2614. if (atomic_read(&nohz.load_balancer) == -1) {
  2615. /*
  2616. * simple selection for now: Nominate the
  2617. * first cpu in the nohz list to be the next
  2618. * ilb owner.
  2619. *
  2620. * TBD: Traverse the sched domains and nominate
  2621. * the nearest cpu in the nohz.cpu_mask.
  2622. */
  2623. int ilb = first_cpu(nohz.cpu_mask);
  2624. if (ilb != NR_CPUS)
  2625. resched_cpu(ilb);
  2626. }
  2627. }
  2628. /*
  2629. * If this cpu is idle and doing idle load balancing for all the
  2630. * cpus with ticks stopped, is it time for that to stop?
  2631. */
  2632. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2633. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2634. resched_cpu(cpu);
  2635. return;
  2636. }
  2637. /*
  2638. * If this cpu is idle and the idle load balancing is done by
  2639. * someone else, then no need raise the SCHED_SOFTIRQ
  2640. */
  2641. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2642. cpu_isset(cpu, nohz.cpu_mask))
  2643. return;
  2644. #endif
  2645. if (time_after_eq(jiffies, rq->next_balance))
  2646. raise_softirq(SCHED_SOFTIRQ);
  2647. }
  2648. #else /* CONFIG_SMP */
  2649. /*
  2650. * on UP we do not need to balance between CPUs:
  2651. */
  2652. static inline void idle_balance(int cpu, struct rq *rq)
  2653. {
  2654. }
  2655. /* Avoid "used but not defined" warning on UP */
  2656. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2657. unsigned long max_nr_move, unsigned long max_load_move,
  2658. struct sched_domain *sd, enum cpu_idle_type idle,
  2659. int *all_pinned, unsigned long *load_moved,
  2660. int this_best_prio, int best_prio, int best_prio_seen,
  2661. struct rq_iterator *iterator)
  2662. {
  2663. *load_moved = 0;
  2664. return 0;
  2665. }
  2666. #endif
  2667. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2668. EXPORT_PER_CPU_SYMBOL(kstat);
  2669. /*
  2670. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2671. * that have not yet been banked in case the task is currently running.
  2672. */
  2673. unsigned long long task_sched_runtime(struct task_struct *p)
  2674. {
  2675. unsigned long flags;
  2676. u64 ns, delta_exec;
  2677. struct rq *rq;
  2678. rq = task_rq_lock(p, &flags);
  2679. ns = p->se.sum_exec_runtime;
  2680. if (rq->curr == p) {
  2681. delta_exec = rq_clock(rq) - p->se.exec_start;
  2682. if ((s64)delta_exec > 0)
  2683. ns += delta_exec;
  2684. }
  2685. task_rq_unlock(rq, &flags);
  2686. return ns;
  2687. }
  2688. /*
  2689. * Account user cpu time to a process.
  2690. * @p: the process that the cpu time gets accounted to
  2691. * @hardirq_offset: the offset to subtract from hardirq_count()
  2692. * @cputime: the cpu time spent in user space since the last update
  2693. */
  2694. void account_user_time(struct task_struct *p, cputime_t cputime)
  2695. {
  2696. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2697. cputime64_t tmp;
  2698. p->utime = cputime_add(p->utime, cputime);
  2699. /* Add user time to cpustat. */
  2700. tmp = cputime_to_cputime64(cputime);
  2701. if (TASK_NICE(p) > 0)
  2702. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2703. else
  2704. cpustat->user = cputime64_add(cpustat->user, tmp);
  2705. }
  2706. /*
  2707. * Account system cpu time to a process.
  2708. * @p: the process that the cpu time gets accounted to
  2709. * @hardirq_offset: the offset to subtract from hardirq_count()
  2710. * @cputime: the cpu time spent in kernel space since the last update
  2711. */
  2712. void account_system_time(struct task_struct *p, int hardirq_offset,
  2713. cputime_t cputime)
  2714. {
  2715. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2716. struct rq *rq = this_rq();
  2717. cputime64_t tmp;
  2718. p->stime = cputime_add(p->stime, cputime);
  2719. /* Add system time to cpustat. */
  2720. tmp = cputime_to_cputime64(cputime);
  2721. if (hardirq_count() - hardirq_offset)
  2722. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2723. else if (softirq_count())
  2724. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2725. else if (p != rq->idle)
  2726. cpustat->system = cputime64_add(cpustat->system, tmp);
  2727. else if (atomic_read(&rq->nr_iowait) > 0)
  2728. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2729. else
  2730. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2731. /* Account for system time used */
  2732. acct_update_integrals(p);
  2733. }
  2734. /*
  2735. * Account for involuntary wait time.
  2736. * @p: the process from which the cpu time has been stolen
  2737. * @steal: the cpu time spent in involuntary wait
  2738. */
  2739. void account_steal_time(struct task_struct *p, cputime_t steal)
  2740. {
  2741. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2742. cputime64_t tmp = cputime_to_cputime64(steal);
  2743. struct rq *rq = this_rq();
  2744. if (p == rq->idle) {
  2745. p->stime = cputime_add(p->stime, steal);
  2746. if (atomic_read(&rq->nr_iowait) > 0)
  2747. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2748. else
  2749. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2750. } else
  2751. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2752. }
  2753. /*
  2754. * This function gets called by the timer code, with HZ frequency.
  2755. * We call it with interrupts disabled.
  2756. *
  2757. * It also gets called by the fork code, when changing the parent's
  2758. * timeslices.
  2759. */
  2760. void scheduler_tick(void)
  2761. {
  2762. int cpu = smp_processor_id();
  2763. struct rq *rq = cpu_rq(cpu);
  2764. struct task_struct *curr = rq->curr;
  2765. spin_lock(&rq->lock);
  2766. if (curr != rq->idle) /* FIXME: needed? */
  2767. curr->sched_class->task_tick(rq, curr);
  2768. update_cpu_load(rq);
  2769. spin_unlock(&rq->lock);
  2770. #ifdef CONFIG_SMP
  2771. rq->idle_at_tick = idle_cpu(cpu);
  2772. trigger_load_balance(rq, cpu);
  2773. #endif
  2774. }
  2775. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2776. void fastcall add_preempt_count(int val)
  2777. {
  2778. /*
  2779. * Underflow?
  2780. */
  2781. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2782. return;
  2783. preempt_count() += val;
  2784. /*
  2785. * Spinlock count overflowing soon?
  2786. */
  2787. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2788. PREEMPT_MASK - 10);
  2789. }
  2790. EXPORT_SYMBOL(add_preempt_count);
  2791. void fastcall sub_preempt_count(int val)
  2792. {
  2793. /*
  2794. * Underflow?
  2795. */
  2796. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2797. return;
  2798. /*
  2799. * Is the spinlock portion underflowing?
  2800. */
  2801. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2802. !(preempt_count() & PREEMPT_MASK)))
  2803. return;
  2804. preempt_count() -= val;
  2805. }
  2806. EXPORT_SYMBOL(sub_preempt_count);
  2807. #endif
  2808. /*
  2809. * Print scheduling while atomic bug:
  2810. */
  2811. static noinline void __schedule_bug(struct task_struct *prev)
  2812. {
  2813. printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
  2814. prev->comm, preempt_count(), prev->pid);
  2815. debug_show_held_locks(prev);
  2816. if (irqs_disabled())
  2817. print_irqtrace_events(prev);
  2818. dump_stack();
  2819. }
  2820. /*
  2821. * Various schedule()-time debugging checks and statistics:
  2822. */
  2823. static inline void schedule_debug(struct task_struct *prev)
  2824. {
  2825. /*
  2826. * Test if we are atomic. Since do_exit() needs to call into
  2827. * schedule() atomically, we ignore that path for now.
  2828. * Otherwise, whine if we are scheduling when we should not be.
  2829. */
  2830. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  2831. __schedule_bug(prev);
  2832. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2833. schedstat_inc(this_rq(), sched_cnt);
  2834. }
  2835. /*
  2836. * Pick up the highest-prio task:
  2837. */
  2838. static inline struct task_struct *
  2839. pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
  2840. {
  2841. struct sched_class *class;
  2842. struct task_struct *p;
  2843. /*
  2844. * Optimization: we know that if all tasks are in
  2845. * the fair class we can call that function directly:
  2846. */
  2847. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  2848. p = fair_sched_class.pick_next_task(rq, now);
  2849. if (likely(p))
  2850. return p;
  2851. }
  2852. class = sched_class_highest;
  2853. for ( ; ; ) {
  2854. p = class->pick_next_task(rq, now);
  2855. if (p)
  2856. return p;
  2857. /*
  2858. * Will never be NULL as the idle class always
  2859. * returns a non-NULL p:
  2860. */
  2861. class = class->next;
  2862. }
  2863. }
  2864. /*
  2865. * schedule() is the main scheduler function.
  2866. */
  2867. asmlinkage void __sched schedule(void)
  2868. {
  2869. struct task_struct *prev, *next;
  2870. long *switch_count;
  2871. struct rq *rq;
  2872. u64 now;
  2873. int cpu;
  2874. need_resched:
  2875. preempt_disable();
  2876. cpu = smp_processor_id();
  2877. rq = cpu_rq(cpu);
  2878. rcu_qsctr_inc(cpu);
  2879. prev = rq->curr;
  2880. switch_count = &prev->nivcsw;
  2881. release_kernel_lock(prev);
  2882. need_resched_nonpreemptible:
  2883. schedule_debug(prev);
  2884. spin_lock_irq(&rq->lock);
  2885. clear_tsk_need_resched(prev);
  2886. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2887. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  2888. unlikely(signal_pending(prev)))) {
  2889. prev->state = TASK_RUNNING;
  2890. } else {
  2891. deactivate_task(rq, prev, 1);
  2892. }
  2893. switch_count = &prev->nvcsw;
  2894. }
  2895. if (unlikely(!rq->nr_running))
  2896. idle_balance(cpu, rq);
  2897. now = __rq_clock(rq);
  2898. prev->sched_class->put_prev_task(rq, prev, now);
  2899. next = pick_next_task(rq, prev, now);
  2900. sched_info_switch(prev, next);
  2901. if (likely(prev != next)) {
  2902. rq->nr_switches++;
  2903. rq->curr = next;
  2904. ++*switch_count;
  2905. context_switch(rq, prev, next); /* unlocks the rq */
  2906. } else
  2907. spin_unlock_irq(&rq->lock);
  2908. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  2909. cpu = smp_processor_id();
  2910. rq = cpu_rq(cpu);
  2911. goto need_resched_nonpreemptible;
  2912. }
  2913. preempt_enable_no_resched();
  2914. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  2915. goto need_resched;
  2916. }
  2917. EXPORT_SYMBOL(schedule);
  2918. #ifdef CONFIG_PREEMPT
  2919. /*
  2920. * this is the entry point to schedule() from in-kernel preemption
  2921. * off of preempt_enable. Kernel preemptions off return from interrupt
  2922. * occur there and call schedule directly.
  2923. */
  2924. asmlinkage void __sched preempt_schedule(void)
  2925. {
  2926. struct thread_info *ti = current_thread_info();
  2927. #ifdef CONFIG_PREEMPT_BKL
  2928. struct task_struct *task = current;
  2929. int saved_lock_depth;
  2930. #endif
  2931. /*
  2932. * If there is a non-zero preempt_count or interrupts are disabled,
  2933. * we do not want to preempt the current task. Just return..
  2934. */
  2935. if (likely(ti->preempt_count || irqs_disabled()))
  2936. return;
  2937. need_resched:
  2938. add_preempt_count(PREEMPT_ACTIVE);
  2939. /*
  2940. * We keep the big kernel semaphore locked, but we
  2941. * clear ->lock_depth so that schedule() doesnt
  2942. * auto-release the semaphore:
  2943. */
  2944. #ifdef CONFIG_PREEMPT_BKL
  2945. saved_lock_depth = task->lock_depth;
  2946. task->lock_depth = -1;
  2947. #endif
  2948. schedule();
  2949. #ifdef CONFIG_PREEMPT_BKL
  2950. task->lock_depth = saved_lock_depth;
  2951. #endif
  2952. sub_preempt_count(PREEMPT_ACTIVE);
  2953. /* we could miss a preemption opportunity between schedule and now */
  2954. barrier();
  2955. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  2956. goto need_resched;
  2957. }
  2958. EXPORT_SYMBOL(preempt_schedule);
  2959. /*
  2960. * this is the entry point to schedule() from kernel preemption
  2961. * off of irq context.
  2962. * Note, that this is called and return with irqs disabled. This will
  2963. * protect us against recursive calling from irq.
  2964. */
  2965. asmlinkage void __sched preempt_schedule_irq(void)
  2966. {
  2967. struct thread_info *ti = current_thread_info();
  2968. #ifdef CONFIG_PREEMPT_BKL
  2969. struct task_struct *task = current;
  2970. int saved_lock_depth;
  2971. #endif
  2972. /* Catch callers which need to be fixed */
  2973. BUG_ON(ti->preempt_count || !irqs_disabled());
  2974. need_resched:
  2975. add_preempt_count(PREEMPT_ACTIVE);
  2976. /*
  2977. * We keep the big kernel semaphore locked, but we
  2978. * clear ->lock_depth so that schedule() doesnt
  2979. * auto-release the semaphore:
  2980. */
  2981. #ifdef CONFIG_PREEMPT_BKL
  2982. saved_lock_depth = task->lock_depth;
  2983. task->lock_depth = -1;
  2984. #endif
  2985. local_irq_enable();
  2986. schedule();
  2987. local_irq_disable();
  2988. #ifdef CONFIG_PREEMPT_BKL
  2989. task->lock_depth = saved_lock_depth;
  2990. #endif
  2991. sub_preempt_count(PREEMPT_ACTIVE);
  2992. /* we could miss a preemption opportunity between schedule and now */
  2993. barrier();
  2994. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  2995. goto need_resched;
  2996. }
  2997. #endif /* CONFIG_PREEMPT */
  2998. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  2999. void *key)
  3000. {
  3001. return try_to_wake_up(curr->private, mode, sync);
  3002. }
  3003. EXPORT_SYMBOL(default_wake_function);
  3004. /*
  3005. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3006. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3007. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3008. *
  3009. * There are circumstances in which we can try to wake a task which has already
  3010. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3011. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3012. */
  3013. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3014. int nr_exclusive, int sync, void *key)
  3015. {
  3016. struct list_head *tmp, *next;
  3017. list_for_each_safe(tmp, next, &q->task_list) {
  3018. wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
  3019. unsigned flags = curr->flags;
  3020. if (curr->func(curr, mode, sync, key) &&
  3021. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3022. break;
  3023. }
  3024. }
  3025. /**
  3026. * __wake_up - wake up threads blocked on a waitqueue.
  3027. * @q: the waitqueue
  3028. * @mode: which threads
  3029. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3030. * @key: is directly passed to the wakeup function
  3031. */
  3032. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3033. int nr_exclusive, void *key)
  3034. {
  3035. unsigned long flags;
  3036. spin_lock_irqsave(&q->lock, flags);
  3037. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3038. spin_unlock_irqrestore(&q->lock, flags);
  3039. }
  3040. EXPORT_SYMBOL(__wake_up);
  3041. /*
  3042. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3043. */
  3044. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3045. {
  3046. __wake_up_common(q, mode, 1, 0, NULL);
  3047. }
  3048. /**
  3049. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3050. * @q: the waitqueue
  3051. * @mode: which threads
  3052. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3053. *
  3054. * The sync wakeup differs that the waker knows that it will schedule
  3055. * away soon, so while the target thread will be woken up, it will not
  3056. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3057. * with each other. This can prevent needless bouncing between CPUs.
  3058. *
  3059. * On UP it can prevent extra preemption.
  3060. */
  3061. void fastcall
  3062. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3063. {
  3064. unsigned long flags;
  3065. int sync = 1;
  3066. if (unlikely(!q))
  3067. return;
  3068. if (unlikely(!nr_exclusive))
  3069. sync = 0;
  3070. spin_lock_irqsave(&q->lock, flags);
  3071. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3072. spin_unlock_irqrestore(&q->lock, flags);
  3073. }
  3074. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3075. void fastcall complete(struct completion *x)
  3076. {
  3077. unsigned long flags;
  3078. spin_lock_irqsave(&x->wait.lock, flags);
  3079. x->done++;
  3080. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3081. 1, 0, NULL);
  3082. spin_unlock_irqrestore(&x->wait.lock, flags);
  3083. }
  3084. EXPORT_SYMBOL(complete);
  3085. void fastcall complete_all(struct completion *x)
  3086. {
  3087. unsigned long flags;
  3088. spin_lock_irqsave(&x->wait.lock, flags);
  3089. x->done += UINT_MAX/2;
  3090. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3091. 0, 0, NULL);
  3092. spin_unlock_irqrestore(&x->wait.lock, flags);
  3093. }
  3094. EXPORT_SYMBOL(complete_all);
  3095. void fastcall __sched wait_for_completion(struct completion *x)
  3096. {
  3097. might_sleep();
  3098. spin_lock_irq(&x->wait.lock);
  3099. if (!x->done) {
  3100. DECLARE_WAITQUEUE(wait, current);
  3101. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3102. __add_wait_queue_tail(&x->wait, &wait);
  3103. do {
  3104. __set_current_state(TASK_UNINTERRUPTIBLE);
  3105. spin_unlock_irq(&x->wait.lock);
  3106. schedule();
  3107. spin_lock_irq(&x->wait.lock);
  3108. } while (!x->done);
  3109. __remove_wait_queue(&x->wait, &wait);
  3110. }
  3111. x->done--;
  3112. spin_unlock_irq(&x->wait.lock);
  3113. }
  3114. EXPORT_SYMBOL(wait_for_completion);
  3115. unsigned long fastcall __sched
  3116. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3117. {
  3118. might_sleep();
  3119. spin_lock_irq(&x->wait.lock);
  3120. if (!x->done) {
  3121. DECLARE_WAITQUEUE(wait, current);
  3122. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3123. __add_wait_queue_tail(&x->wait, &wait);
  3124. do {
  3125. __set_current_state(TASK_UNINTERRUPTIBLE);
  3126. spin_unlock_irq(&x->wait.lock);
  3127. timeout = schedule_timeout(timeout);
  3128. spin_lock_irq(&x->wait.lock);
  3129. if (!timeout) {
  3130. __remove_wait_queue(&x->wait, &wait);
  3131. goto out;
  3132. }
  3133. } while (!x->done);
  3134. __remove_wait_queue(&x->wait, &wait);
  3135. }
  3136. x->done--;
  3137. out:
  3138. spin_unlock_irq(&x->wait.lock);
  3139. return timeout;
  3140. }
  3141. EXPORT_SYMBOL(wait_for_completion_timeout);
  3142. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3143. {
  3144. int ret = 0;
  3145. might_sleep();
  3146. spin_lock_irq(&x->wait.lock);
  3147. if (!x->done) {
  3148. DECLARE_WAITQUEUE(wait, current);
  3149. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3150. __add_wait_queue_tail(&x->wait, &wait);
  3151. do {
  3152. if (signal_pending(current)) {
  3153. ret = -ERESTARTSYS;
  3154. __remove_wait_queue(&x->wait, &wait);
  3155. goto out;
  3156. }
  3157. __set_current_state(TASK_INTERRUPTIBLE);
  3158. spin_unlock_irq(&x->wait.lock);
  3159. schedule();
  3160. spin_lock_irq(&x->wait.lock);
  3161. } while (!x->done);
  3162. __remove_wait_queue(&x->wait, &wait);
  3163. }
  3164. x->done--;
  3165. out:
  3166. spin_unlock_irq(&x->wait.lock);
  3167. return ret;
  3168. }
  3169. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3170. unsigned long fastcall __sched
  3171. wait_for_completion_interruptible_timeout(struct completion *x,
  3172. unsigned long timeout)
  3173. {
  3174. might_sleep();
  3175. spin_lock_irq(&x->wait.lock);
  3176. if (!x->done) {
  3177. DECLARE_WAITQUEUE(wait, current);
  3178. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3179. __add_wait_queue_tail(&x->wait, &wait);
  3180. do {
  3181. if (signal_pending(current)) {
  3182. timeout = -ERESTARTSYS;
  3183. __remove_wait_queue(&x->wait, &wait);
  3184. goto out;
  3185. }
  3186. __set_current_state(TASK_INTERRUPTIBLE);
  3187. spin_unlock_irq(&x->wait.lock);
  3188. timeout = schedule_timeout(timeout);
  3189. spin_lock_irq(&x->wait.lock);
  3190. if (!timeout) {
  3191. __remove_wait_queue(&x->wait, &wait);
  3192. goto out;
  3193. }
  3194. } while (!x->done);
  3195. __remove_wait_queue(&x->wait, &wait);
  3196. }
  3197. x->done--;
  3198. out:
  3199. spin_unlock_irq(&x->wait.lock);
  3200. return timeout;
  3201. }
  3202. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3203. static inline void
  3204. sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3205. {
  3206. spin_lock_irqsave(&q->lock, *flags);
  3207. __add_wait_queue(q, wait);
  3208. spin_unlock(&q->lock);
  3209. }
  3210. static inline void
  3211. sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
  3212. {
  3213. spin_lock_irq(&q->lock);
  3214. __remove_wait_queue(q, wait);
  3215. spin_unlock_irqrestore(&q->lock, *flags);
  3216. }
  3217. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3218. {
  3219. unsigned long flags;
  3220. wait_queue_t wait;
  3221. init_waitqueue_entry(&wait, current);
  3222. current->state = TASK_INTERRUPTIBLE;
  3223. sleep_on_head(q, &wait, &flags);
  3224. schedule();
  3225. sleep_on_tail(q, &wait, &flags);
  3226. }
  3227. EXPORT_SYMBOL(interruptible_sleep_on);
  3228. long __sched
  3229. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3230. {
  3231. unsigned long flags;
  3232. wait_queue_t wait;
  3233. init_waitqueue_entry(&wait, current);
  3234. current->state = TASK_INTERRUPTIBLE;
  3235. sleep_on_head(q, &wait, &flags);
  3236. timeout = schedule_timeout(timeout);
  3237. sleep_on_tail(q, &wait, &flags);
  3238. return timeout;
  3239. }
  3240. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3241. void __sched sleep_on(wait_queue_head_t *q)
  3242. {
  3243. unsigned long flags;
  3244. wait_queue_t wait;
  3245. init_waitqueue_entry(&wait, current);
  3246. current->state = TASK_UNINTERRUPTIBLE;
  3247. sleep_on_head(q, &wait, &flags);
  3248. schedule();
  3249. sleep_on_tail(q, &wait, &flags);
  3250. }
  3251. EXPORT_SYMBOL(sleep_on);
  3252. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3253. {
  3254. unsigned long flags;
  3255. wait_queue_t wait;
  3256. init_waitqueue_entry(&wait, current);
  3257. current->state = TASK_UNINTERRUPTIBLE;
  3258. sleep_on_head(q, &wait, &flags);
  3259. timeout = schedule_timeout(timeout);
  3260. sleep_on_tail(q, &wait, &flags);
  3261. return timeout;
  3262. }
  3263. EXPORT_SYMBOL(sleep_on_timeout);
  3264. #ifdef CONFIG_RT_MUTEXES
  3265. /*
  3266. * rt_mutex_setprio - set the current priority of a task
  3267. * @p: task
  3268. * @prio: prio value (kernel-internal form)
  3269. *
  3270. * This function changes the 'effective' priority of a task. It does
  3271. * not touch ->normal_prio like __setscheduler().
  3272. *
  3273. * Used by the rt_mutex code to implement priority inheritance logic.
  3274. */
  3275. void rt_mutex_setprio(struct task_struct *p, int prio)
  3276. {
  3277. unsigned long flags;
  3278. int oldprio, on_rq;
  3279. struct rq *rq;
  3280. u64 now;
  3281. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3282. rq = task_rq_lock(p, &flags);
  3283. now = rq_clock(rq);
  3284. oldprio = p->prio;
  3285. on_rq = p->se.on_rq;
  3286. if (on_rq)
  3287. dequeue_task(rq, p, 0, now);
  3288. if (rt_prio(prio))
  3289. p->sched_class = &rt_sched_class;
  3290. else
  3291. p->sched_class = &fair_sched_class;
  3292. p->prio = prio;
  3293. if (on_rq) {
  3294. enqueue_task(rq, p, 0, now);
  3295. /*
  3296. * Reschedule if we are currently running on this runqueue and
  3297. * our priority decreased, or if we are not currently running on
  3298. * this runqueue and our priority is higher than the current's
  3299. */
  3300. if (task_running(rq, p)) {
  3301. if (p->prio > oldprio)
  3302. resched_task(rq->curr);
  3303. } else {
  3304. check_preempt_curr(rq, p);
  3305. }
  3306. }
  3307. task_rq_unlock(rq, &flags);
  3308. }
  3309. #endif
  3310. void set_user_nice(struct task_struct *p, long nice)
  3311. {
  3312. int old_prio, delta, on_rq;
  3313. unsigned long flags;
  3314. struct rq *rq;
  3315. u64 now;
  3316. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3317. return;
  3318. /*
  3319. * We have to be careful, if called from sys_setpriority(),
  3320. * the task might be in the middle of scheduling on another CPU.
  3321. */
  3322. rq = task_rq_lock(p, &flags);
  3323. now = rq_clock(rq);
  3324. /*
  3325. * The RT priorities are set via sched_setscheduler(), but we still
  3326. * allow the 'normal' nice value to be set - but as expected
  3327. * it wont have any effect on scheduling until the task is
  3328. * SCHED_FIFO/SCHED_RR:
  3329. */
  3330. if (task_has_rt_policy(p)) {
  3331. p->static_prio = NICE_TO_PRIO(nice);
  3332. goto out_unlock;
  3333. }
  3334. on_rq = p->se.on_rq;
  3335. if (on_rq) {
  3336. dequeue_task(rq, p, 0, now);
  3337. dec_load(rq, p, now);
  3338. }
  3339. p->static_prio = NICE_TO_PRIO(nice);
  3340. set_load_weight(p);
  3341. old_prio = p->prio;
  3342. p->prio = effective_prio(p);
  3343. delta = p->prio - old_prio;
  3344. if (on_rq) {
  3345. enqueue_task(rq, p, 0, now);
  3346. inc_load(rq, p, now);
  3347. /*
  3348. * If the task increased its priority or is running and
  3349. * lowered its priority, then reschedule its CPU:
  3350. */
  3351. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3352. resched_task(rq->curr);
  3353. }
  3354. out_unlock:
  3355. task_rq_unlock(rq, &flags);
  3356. }
  3357. EXPORT_SYMBOL(set_user_nice);
  3358. /*
  3359. * can_nice - check if a task can reduce its nice value
  3360. * @p: task
  3361. * @nice: nice value
  3362. */
  3363. int can_nice(const struct task_struct *p, const int nice)
  3364. {
  3365. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3366. int nice_rlim = 20 - nice;
  3367. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3368. capable(CAP_SYS_NICE));
  3369. }
  3370. #ifdef __ARCH_WANT_SYS_NICE
  3371. /*
  3372. * sys_nice - change the priority of the current process.
  3373. * @increment: priority increment
  3374. *
  3375. * sys_setpriority is a more generic, but much slower function that
  3376. * does similar things.
  3377. */
  3378. asmlinkage long sys_nice(int increment)
  3379. {
  3380. long nice, retval;
  3381. /*
  3382. * Setpriority might change our priority at the same moment.
  3383. * We don't have to worry. Conceptually one call occurs first
  3384. * and we have a single winner.
  3385. */
  3386. if (increment < -40)
  3387. increment = -40;
  3388. if (increment > 40)
  3389. increment = 40;
  3390. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3391. if (nice < -20)
  3392. nice = -20;
  3393. if (nice > 19)
  3394. nice = 19;
  3395. if (increment < 0 && !can_nice(current, nice))
  3396. return -EPERM;
  3397. retval = security_task_setnice(current, nice);
  3398. if (retval)
  3399. return retval;
  3400. set_user_nice(current, nice);
  3401. return 0;
  3402. }
  3403. #endif
  3404. /**
  3405. * task_prio - return the priority value of a given task.
  3406. * @p: the task in question.
  3407. *
  3408. * This is the priority value as seen by users in /proc.
  3409. * RT tasks are offset by -200. Normal tasks are centered
  3410. * around 0, value goes from -16 to +15.
  3411. */
  3412. int task_prio(const struct task_struct *p)
  3413. {
  3414. return p->prio - MAX_RT_PRIO;
  3415. }
  3416. /**
  3417. * task_nice - return the nice value of a given task.
  3418. * @p: the task in question.
  3419. */
  3420. int task_nice(const struct task_struct *p)
  3421. {
  3422. return TASK_NICE(p);
  3423. }
  3424. EXPORT_SYMBOL_GPL(task_nice);
  3425. /**
  3426. * idle_cpu - is a given cpu idle currently?
  3427. * @cpu: the processor in question.
  3428. */
  3429. int idle_cpu(int cpu)
  3430. {
  3431. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3432. }
  3433. /**
  3434. * idle_task - return the idle task for a given cpu.
  3435. * @cpu: the processor in question.
  3436. */
  3437. struct task_struct *idle_task(int cpu)
  3438. {
  3439. return cpu_rq(cpu)->idle;
  3440. }
  3441. /**
  3442. * find_process_by_pid - find a process with a matching PID value.
  3443. * @pid: the pid in question.
  3444. */
  3445. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3446. {
  3447. return pid ? find_task_by_pid(pid) : current;
  3448. }
  3449. /* Actually do priority change: must hold rq lock. */
  3450. static void
  3451. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3452. {
  3453. BUG_ON(p->se.on_rq);
  3454. p->policy = policy;
  3455. switch (p->policy) {
  3456. case SCHED_NORMAL:
  3457. case SCHED_BATCH:
  3458. case SCHED_IDLE:
  3459. p->sched_class = &fair_sched_class;
  3460. break;
  3461. case SCHED_FIFO:
  3462. case SCHED_RR:
  3463. p->sched_class = &rt_sched_class;
  3464. break;
  3465. }
  3466. p->rt_priority = prio;
  3467. p->normal_prio = normal_prio(p);
  3468. /* we are holding p->pi_lock already */
  3469. p->prio = rt_mutex_getprio(p);
  3470. set_load_weight(p);
  3471. }
  3472. /**
  3473. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3474. * @p: the task in question.
  3475. * @policy: new policy.
  3476. * @param: structure containing the new RT priority.
  3477. *
  3478. * NOTE that the task may be already dead.
  3479. */
  3480. int sched_setscheduler(struct task_struct *p, int policy,
  3481. struct sched_param *param)
  3482. {
  3483. int retval, oldprio, oldpolicy = -1, on_rq;
  3484. unsigned long flags;
  3485. struct rq *rq;
  3486. /* may grab non-irq protected spin_locks */
  3487. BUG_ON(in_interrupt());
  3488. recheck:
  3489. /* double check policy once rq lock held */
  3490. if (policy < 0)
  3491. policy = oldpolicy = p->policy;
  3492. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3493. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3494. policy != SCHED_IDLE)
  3495. return -EINVAL;
  3496. /*
  3497. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3498. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3499. * SCHED_BATCH and SCHED_IDLE is 0.
  3500. */
  3501. if (param->sched_priority < 0 ||
  3502. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3503. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3504. return -EINVAL;
  3505. if (rt_policy(policy) != (param->sched_priority != 0))
  3506. return -EINVAL;
  3507. /*
  3508. * Allow unprivileged RT tasks to decrease priority:
  3509. */
  3510. if (!capable(CAP_SYS_NICE)) {
  3511. if (rt_policy(policy)) {
  3512. unsigned long rlim_rtprio;
  3513. if (!lock_task_sighand(p, &flags))
  3514. return -ESRCH;
  3515. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3516. unlock_task_sighand(p, &flags);
  3517. /* can't set/change the rt policy */
  3518. if (policy != p->policy && !rlim_rtprio)
  3519. return -EPERM;
  3520. /* can't increase priority */
  3521. if (param->sched_priority > p->rt_priority &&
  3522. param->sched_priority > rlim_rtprio)
  3523. return -EPERM;
  3524. }
  3525. /*
  3526. * Like positive nice levels, dont allow tasks to
  3527. * move out of SCHED_IDLE either:
  3528. */
  3529. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3530. return -EPERM;
  3531. /* can't change other user's priorities */
  3532. if ((current->euid != p->euid) &&
  3533. (current->euid != p->uid))
  3534. return -EPERM;
  3535. }
  3536. retval = security_task_setscheduler(p, policy, param);
  3537. if (retval)
  3538. return retval;
  3539. /*
  3540. * make sure no PI-waiters arrive (or leave) while we are
  3541. * changing the priority of the task:
  3542. */
  3543. spin_lock_irqsave(&p->pi_lock, flags);
  3544. /*
  3545. * To be able to change p->policy safely, the apropriate
  3546. * runqueue lock must be held.
  3547. */
  3548. rq = __task_rq_lock(p);
  3549. /* recheck policy now with rq lock held */
  3550. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3551. policy = oldpolicy = -1;
  3552. __task_rq_unlock(rq);
  3553. spin_unlock_irqrestore(&p->pi_lock, flags);
  3554. goto recheck;
  3555. }
  3556. on_rq = p->se.on_rq;
  3557. if (on_rq)
  3558. deactivate_task(rq, p, 0);
  3559. oldprio = p->prio;
  3560. __setscheduler(rq, p, policy, param->sched_priority);
  3561. if (on_rq) {
  3562. activate_task(rq, p, 0);
  3563. /*
  3564. * Reschedule if we are currently running on this runqueue and
  3565. * our priority decreased, or if we are not currently running on
  3566. * this runqueue and our priority is higher than the current's
  3567. */
  3568. if (task_running(rq, p)) {
  3569. if (p->prio > oldprio)
  3570. resched_task(rq->curr);
  3571. } else {
  3572. check_preempt_curr(rq, p);
  3573. }
  3574. }
  3575. __task_rq_unlock(rq);
  3576. spin_unlock_irqrestore(&p->pi_lock, flags);
  3577. rt_mutex_adjust_pi(p);
  3578. return 0;
  3579. }
  3580. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3581. static int
  3582. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3583. {
  3584. struct sched_param lparam;
  3585. struct task_struct *p;
  3586. int retval;
  3587. if (!param || pid < 0)
  3588. return -EINVAL;
  3589. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3590. return -EFAULT;
  3591. rcu_read_lock();
  3592. retval = -ESRCH;
  3593. p = find_process_by_pid(pid);
  3594. if (p != NULL)
  3595. retval = sched_setscheduler(p, policy, &lparam);
  3596. rcu_read_unlock();
  3597. return retval;
  3598. }
  3599. /**
  3600. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3601. * @pid: the pid in question.
  3602. * @policy: new policy.
  3603. * @param: structure containing the new RT priority.
  3604. */
  3605. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3606. struct sched_param __user *param)
  3607. {
  3608. /* negative values for policy are not valid */
  3609. if (policy < 0)
  3610. return -EINVAL;
  3611. return do_sched_setscheduler(pid, policy, param);
  3612. }
  3613. /**
  3614. * sys_sched_setparam - set/change the RT priority of a thread
  3615. * @pid: the pid in question.
  3616. * @param: structure containing the new RT priority.
  3617. */
  3618. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3619. {
  3620. return do_sched_setscheduler(pid, -1, param);
  3621. }
  3622. /**
  3623. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3624. * @pid: the pid in question.
  3625. */
  3626. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3627. {
  3628. struct task_struct *p;
  3629. int retval = -EINVAL;
  3630. if (pid < 0)
  3631. goto out_nounlock;
  3632. retval = -ESRCH;
  3633. read_lock(&tasklist_lock);
  3634. p = find_process_by_pid(pid);
  3635. if (p) {
  3636. retval = security_task_getscheduler(p);
  3637. if (!retval)
  3638. retval = p->policy;
  3639. }
  3640. read_unlock(&tasklist_lock);
  3641. out_nounlock:
  3642. return retval;
  3643. }
  3644. /**
  3645. * sys_sched_getscheduler - get the RT priority of a thread
  3646. * @pid: the pid in question.
  3647. * @param: structure containing the RT priority.
  3648. */
  3649. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3650. {
  3651. struct sched_param lp;
  3652. struct task_struct *p;
  3653. int retval = -EINVAL;
  3654. if (!param || pid < 0)
  3655. goto out_nounlock;
  3656. read_lock(&tasklist_lock);
  3657. p = find_process_by_pid(pid);
  3658. retval = -ESRCH;
  3659. if (!p)
  3660. goto out_unlock;
  3661. retval = security_task_getscheduler(p);
  3662. if (retval)
  3663. goto out_unlock;
  3664. lp.sched_priority = p->rt_priority;
  3665. read_unlock(&tasklist_lock);
  3666. /*
  3667. * This one might sleep, we cannot do it with a spinlock held ...
  3668. */
  3669. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3670. out_nounlock:
  3671. return retval;
  3672. out_unlock:
  3673. read_unlock(&tasklist_lock);
  3674. return retval;
  3675. }
  3676. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3677. {
  3678. cpumask_t cpus_allowed;
  3679. struct task_struct *p;
  3680. int retval;
  3681. mutex_lock(&sched_hotcpu_mutex);
  3682. read_lock(&tasklist_lock);
  3683. p = find_process_by_pid(pid);
  3684. if (!p) {
  3685. read_unlock(&tasklist_lock);
  3686. mutex_unlock(&sched_hotcpu_mutex);
  3687. return -ESRCH;
  3688. }
  3689. /*
  3690. * It is not safe to call set_cpus_allowed with the
  3691. * tasklist_lock held. We will bump the task_struct's
  3692. * usage count and then drop tasklist_lock.
  3693. */
  3694. get_task_struct(p);
  3695. read_unlock(&tasklist_lock);
  3696. retval = -EPERM;
  3697. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3698. !capable(CAP_SYS_NICE))
  3699. goto out_unlock;
  3700. retval = security_task_setscheduler(p, 0, NULL);
  3701. if (retval)
  3702. goto out_unlock;
  3703. cpus_allowed = cpuset_cpus_allowed(p);
  3704. cpus_and(new_mask, new_mask, cpus_allowed);
  3705. retval = set_cpus_allowed(p, new_mask);
  3706. out_unlock:
  3707. put_task_struct(p);
  3708. mutex_unlock(&sched_hotcpu_mutex);
  3709. return retval;
  3710. }
  3711. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3712. cpumask_t *new_mask)
  3713. {
  3714. if (len < sizeof(cpumask_t)) {
  3715. memset(new_mask, 0, sizeof(cpumask_t));
  3716. } else if (len > sizeof(cpumask_t)) {
  3717. len = sizeof(cpumask_t);
  3718. }
  3719. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3720. }
  3721. /**
  3722. * sys_sched_setaffinity - set the cpu affinity of a process
  3723. * @pid: pid of the process
  3724. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3725. * @user_mask_ptr: user-space pointer to the new cpu mask
  3726. */
  3727. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3728. unsigned long __user *user_mask_ptr)
  3729. {
  3730. cpumask_t new_mask;
  3731. int retval;
  3732. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3733. if (retval)
  3734. return retval;
  3735. return sched_setaffinity(pid, new_mask);
  3736. }
  3737. /*
  3738. * Represents all cpu's present in the system
  3739. * In systems capable of hotplug, this map could dynamically grow
  3740. * as new cpu's are detected in the system via any platform specific
  3741. * method, such as ACPI for e.g.
  3742. */
  3743. cpumask_t cpu_present_map __read_mostly;
  3744. EXPORT_SYMBOL(cpu_present_map);
  3745. #ifndef CONFIG_SMP
  3746. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3747. EXPORT_SYMBOL(cpu_online_map);
  3748. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3749. EXPORT_SYMBOL(cpu_possible_map);
  3750. #endif
  3751. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3752. {
  3753. struct task_struct *p;
  3754. int retval;
  3755. mutex_lock(&sched_hotcpu_mutex);
  3756. read_lock(&tasklist_lock);
  3757. retval = -ESRCH;
  3758. p = find_process_by_pid(pid);
  3759. if (!p)
  3760. goto out_unlock;
  3761. retval = security_task_getscheduler(p);
  3762. if (retval)
  3763. goto out_unlock;
  3764. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3765. out_unlock:
  3766. read_unlock(&tasklist_lock);
  3767. mutex_unlock(&sched_hotcpu_mutex);
  3768. if (retval)
  3769. return retval;
  3770. return 0;
  3771. }
  3772. /**
  3773. * sys_sched_getaffinity - get the cpu affinity of a process
  3774. * @pid: pid of the process
  3775. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3776. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3777. */
  3778. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3779. unsigned long __user *user_mask_ptr)
  3780. {
  3781. int ret;
  3782. cpumask_t mask;
  3783. if (len < sizeof(cpumask_t))
  3784. return -EINVAL;
  3785. ret = sched_getaffinity(pid, &mask);
  3786. if (ret < 0)
  3787. return ret;
  3788. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3789. return -EFAULT;
  3790. return sizeof(cpumask_t);
  3791. }
  3792. /**
  3793. * sys_sched_yield - yield the current processor to other threads.
  3794. *
  3795. * This function yields the current CPU to other tasks. If there are no
  3796. * other threads running on this CPU then this function will return.
  3797. */
  3798. asmlinkage long sys_sched_yield(void)
  3799. {
  3800. struct rq *rq = this_rq_lock();
  3801. schedstat_inc(rq, yld_cnt);
  3802. if (unlikely(rq->nr_running == 1))
  3803. schedstat_inc(rq, yld_act_empty);
  3804. else
  3805. current->sched_class->yield_task(rq, current);
  3806. /*
  3807. * Since we are going to call schedule() anyway, there's
  3808. * no need to preempt or enable interrupts:
  3809. */
  3810. __release(rq->lock);
  3811. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3812. _raw_spin_unlock(&rq->lock);
  3813. preempt_enable_no_resched();
  3814. schedule();
  3815. return 0;
  3816. }
  3817. static void __cond_resched(void)
  3818. {
  3819. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3820. __might_sleep(__FILE__, __LINE__);
  3821. #endif
  3822. /*
  3823. * The BKS might be reacquired before we have dropped
  3824. * PREEMPT_ACTIVE, which could trigger a second
  3825. * cond_resched() call.
  3826. */
  3827. do {
  3828. add_preempt_count(PREEMPT_ACTIVE);
  3829. schedule();
  3830. sub_preempt_count(PREEMPT_ACTIVE);
  3831. } while (need_resched());
  3832. }
  3833. int __sched cond_resched(void)
  3834. {
  3835. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  3836. system_state == SYSTEM_RUNNING) {
  3837. __cond_resched();
  3838. return 1;
  3839. }
  3840. return 0;
  3841. }
  3842. EXPORT_SYMBOL(cond_resched);
  3843. /*
  3844. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3845. * call schedule, and on return reacquire the lock.
  3846. *
  3847. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3848. * operations here to prevent schedule() from being called twice (once via
  3849. * spin_unlock(), once by hand).
  3850. */
  3851. int cond_resched_lock(spinlock_t *lock)
  3852. {
  3853. int ret = 0;
  3854. if (need_lockbreak(lock)) {
  3855. spin_unlock(lock);
  3856. cpu_relax();
  3857. ret = 1;
  3858. spin_lock(lock);
  3859. }
  3860. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3861. spin_release(&lock->dep_map, 1, _THIS_IP_);
  3862. _raw_spin_unlock(lock);
  3863. preempt_enable_no_resched();
  3864. __cond_resched();
  3865. ret = 1;
  3866. spin_lock(lock);
  3867. }
  3868. return ret;
  3869. }
  3870. EXPORT_SYMBOL(cond_resched_lock);
  3871. int __sched cond_resched_softirq(void)
  3872. {
  3873. BUG_ON(!in_softirq());
  3874. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3875. local_bh_enable();
  3876. __cond_resched();
  3877. local_bh_disable();
  3878. return 1;
  3879. }
  3880. return 0;
  3881. }
  3882. EXPORT_SYMBOL(cond_resched_softirq);
  3883. /**
  3884. * yield - yield the current processor to other threads.
  3885. *
  3886. * This is a shortcut for kernel-space yielding - it marks the
  3887. * thread runnable and calls sys_sched_yield().
  3888. */
  3889. void __sched yield(void)
  3890. {
  3891. set_current_state(TASK_RUNNING);
  3892. sys_sched_yield();
  3893. }
  3894. EXPORT_SYMBOL(yield);
  3895. /*
  3896. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3897. * that process accounting knows that this is a task in IO wait state.
  3898. *
  3899. * But don't do that if it is a deliberate, throttling IO wait (this task
  3900. * has set its backing_dev_info: the queue against which it should throttle)
  3901. */
  3902. void __sched io_schedule(void)
  3903. {
  3904. struct rq *rq = &__raw_get_cpu_var(runqueues);
  3905. delayacct_blkio_start();
  3906. atomic_inc(&rq->nr_iowait);
  3907. schedule();
  3908. atomic_dec(&rq->nr_iowait);
  3909. delayacct_blkio_end();
  3910. }
  3911. EXPORT_SYMBOL(io_schedule);
  3912. long __sched io_schedule_timeout(long timeout)
  3913. {
  3914. struct rq *rq = &__raw_get_cpu_var(runqueues);
  3915. long ret;
  3916. delayacct_blkio_start();
  3917. atomic_inc(&rq->nr_iowait);
  3918. ret = schedule_timeout(timeout);
  3919. atomic_dec(&rq->nr_iowait);
  3920. delayacct_blkio_end();
  3921. return ret;
  3922. }
  3923. /**
  3924. * sys_sched_get_priority_max - return maximum RT priority.
  3925. * @policy: scheduling class.
  3926. *
  3927. * this syscall returns the maximum rt_priority that can be used
  3928. * by a given scheduling class.
  3929. */
  3930. asmlinkage long sys_sched_get_priority_max(int policy)
  3931. {
  3932. int ret = -EINVAL;
  3933. switch (policy) {
  3934. case SCHED_FIFO:
  3935. case SCHED_RR:
  3936. ret = MAX_USER_RT_PRIO-1;
  3937. break;
  3938. case SCHED_NORMAL:
  3939. case SCHED_BATCH:
  3940. case SCHED_IDLE:
  3941. ret = 0;
  3942. break;
  3943. }
  3944. return ret;
  3945. }
  3946. /**
  3947. * sys_sched_get_priority_min - return minimum RT priority.
  3948. * @policy: scheduling class.
  3949. *
  3950. * this syscall returns the minimum rt_priority that can be used
  3951. * by a given scheduling class.
  3952. */
  3953. asmlinkage long sys_sched_get_priority_min(int policy)
  3954. {
  3955. int ret = -EINVAL;
  3956. switch (policy) {
  3957. case SCHED_FIFO:
  3958. case SCHED_RR:
  3959. ret = 1;
  3960. break;
  3961. case SCHED_NORMAL:
  3962. case SCHED_BATCH:
  3963. case SCHED_IDLE:
  3964. ret = 0;
  3965. }
  3966. return ret;
  3967. }
  3968. /**
  3969. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3970. * @pid: pid of the process.
  3971. * @interval: userspace pointer to the timeslice value.
  3972. *
  3973. * this syscall writes the default timeslice value of a given process
  3974. * into the user-space timespec buffer. A value of '0' means infinity.
  3975. */
  3976. asmlinkage
  3977. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  3978. {
  3979. struct task_struct *p;
  3980. int retval = -EINVAL;
  3981. struct timespec t;
  3982. if (pid < 0)
  3983. goto out_nounlock;
  3984. retval = -ESRCH;
  3985. read_lock(&tasklist_lock);
  3986. p = find_process_by_pid(pid);
  3987. if (!p)
  3988. goto out_unlock;
  3989. retval = security_task_getscheduler(p);
  3990. if (retval)
  3991. goto out_unlock;
  3992. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  3993. 0 : static_prio_timeslice(p->static_prio), &t);
  3994. read_unlock(&tasklist_lock);
  3995. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3996. out_nounlock:
  3997. return retval;
  3998. out_unlock:
  3999. read_unlock(&tasklist_lock);
  4000. return retval;
  4001. }
  4002. static const char stat_nam[] = "RSDTtZX";
  4003. static void show_task(struct task_struct *p)
  4004. {
  4005. unsigned long free = 0;
  4006. unsigned state;
  4007. state = p->state ? __ffs(p->state) + 1 : 0;
  4008. printk("%-13.13s %c", p->comm,
  4009. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4010. #if (BITS_PER_LONG == 32)
  4011. if (state == TASK_RUNNING)
  4012. printk(" running ");
  4013. else
  4014. printk(" %08lX ", thread_saved_pc(p));
  4015. #else
  4016. if (state == TASK_RUNNING)
  4017. printk(" running task ");
  4018. else
  4019. printk(" %016lx ", thread_saved_pc(p));
  4020. #endif
  4021. #ifdef CONFIG_DEBUG_STACK_USAGE
  4022. {
  4023. unsigned long *n = end_of_stack(p);
  4024. while (!*n)
  4025. n++;
  4026. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4027. }
  4028. #endif
  4029. printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
  4030. if (!p->mm)
  4031. printk(" (L-TLB)\n");
  4032. else
  4033. printk(" (NOTLB)\n");
  4034. if (state != TASK_RUNNING)
  4035. show_stack(p, NULL);
  4036. }
  4037. void show_state_filter(unsigned long state_filter)
  4038. {
  4039. struct task_struct *g, *p;
  4040. #if (BITS_PER_LONG == 32)
  4041. printk("\n"
  4042. " free sibling\n");
  4043. printk(" task PC stack pid father child younger older\n");
  4044. #else
  4045. printk("\n"
  4046. " free sibling\n");
  4047. printk(" task PC stack pid father child younger older\n");
  4048. #endif
  4049. read_lock(&tasklist_lock);
  4050. do_each_thread(g, p) {
  4051. /*
  4052. * reset the NMI-timeout, listing all files on a slow
  4053. * console might take alot of time:
  4054. */
  4055. touch_nmi_watchdog();
  4056. if (!state_filter || (p->state & state_filter))
  4057. show_task(p);
  4058. } while_each_thread(g, p);
  4059. touch_all_softlockup_watchdogs();
  4060. #ifdef CONFIG_SCHED_DEBUG
  4061. sysrq_sched_debug_show();
  4062. #endif
  4063. read_unlock(&tasklist_lock);
  4064. /*
  4065. * Only show locks if all tasks are dumped:
  4066. */
  4067. if (state_filter == -1)
  4068. debug_show_all_locks();
  4069. }
  4070. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4071. {
  4072. idle->sched_class = &idle_sched_class;
  4073. }
  4074. /**
  4075. * init_idle - set up an idle thread for a given CPU
  4076. * @idle: task in question
  4077. * @cpu: cpu the idle task belongs to
  4078. *
  4079. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4080. * flag, to make booting more robust.
  4081. */
  4082. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4083. {
  4084. struct rq *rq = cpu_rq(cpu);
  4085. unsigned long flags;
  4086. __sched_fork(idle);
  4087. idle->se.exec_start = sched_clock();
  4088. idle->prio = idle->normal_prio = MAX_PRIO;
  4089. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4090. __set_task_cpu(idle, cpu);
  4091. spin_lock_irqsave(&rq->lock, flags);
  4092. rq->curr = rq->idle = idle;
  4093. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4094. idle->oncpu = 1;
  4095. #endif
  4096. spin_unlock_irqrestore(&rq->lock, flags);
  4097. /* Set the preempt count _outside_ the spinlocks! */
  4098. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4099. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4100. #else
  4101. task_thread_info(idle)->preempt_count = 0;
  4102. #endif
  4103. /*
  4104. * The idle tasks have their own, simple scheduling class:
  4105. */
  4106. idle->sched_class = &idle_sched_class;
  4107. }
  4108. /*
  4109. * In a system that switches off the HZ timer nohz_cpu_mask
  4110. * indicates which cpus entered this state. This is used
  4111. * in the rcu update to wait only for active cpus. For system
  4112. * which do not switch off the HZ timer nohz_cpu_mask should
  4113. * always be CPU_MASK_NONE.
  4114. */
  4115. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4116. /*
  4117. * Increase the granularity value when there are more CPUs,
  4118. * because with more CPUs the 'effective latency' as visible
  4119. * to users decreases. But the relationship is not linear,
  4120. * so pick a second-best guess by going with the log2 of the
  4121. * number of CPUs.
  4122. *
  4123. * This idea comes from the SD scheduler of Con Kolivas:
  4124. */
  4125. static inline void sched_init_granularity(void)
  4126. {
  4127. unsigned int factor = 1 + ilog2(num_online_cpus());
  4128. const unsigned long gran_limit = 10000000;
  4129. sysctl_sched_granularity *= factor;
  4130. if (sysctl_sched_granularity > gran_limit)
  4131. sysctl_sched_granularity = gran_limit;
  4132. sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
  4133. sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
  4134. }
  4135. #ifdef CONFIG_SMP
  4136. /*
  4137. * This is how migration works:
  4138. *
  4139. * 1) we queue a struct migration_req structure in the source CPU's
  4140. * runqueue and wake up that CPU's migration thread.
  4141. * 2) we down() the locked semaphore => thread blocks.
  4142. * 3) migration thread wakes up (implicitly it forces the migrated
  4143. * thread off the CPU)
  4144. * 4) it gets the migration request and checks whether the migrated
  4145. * task is still in the wrong runqueue.
  4146. * 5) if it's in the wrong runqueue then the migration thread removes
  4147. * it and puts it into the right queue.
  4148. * 6) migration thread up()s the semaphore.
  4149. * 7) we wake up and the migration is done.
  4150. */
  4151. /*
  4152. * Change a given task's CPU affinity. Migrate the thread to a
  4153. * proper CPU and schedule it away if the CPU it's executing on
  4154. * is removed from the allowed bitmask.
  4155. *
  4156. * NOTE: the caller must have a valid reference to the task, the
  4157. * task must not exit() & deallocate itself prematurely. The
  4158. * call is not atomic; no spinlocks may be held.
  4159. */
  4160. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4161. {
  4162. struct migration_req req;
  4163. unsigned long flags;
  4164. struct rq *rq;
  4165. int ret = 0;
  4166. rq = task_rq_lock(p, &flags);
  4167. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4168. ret = -EINVAL;
  4169. goto out;
  4170. }
  4171. p->cpus_allowed = new_mask;
  4172. /* Can the task run on the task's current CPU? If so, we're done */
  4173. if (cpu_isset(task_cpu(p), new_mask))
  4174. goto out;
  4175. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4176. /* Need help from migration thread: drop lock and wait. */
  4177. task_rq_unlock(rq, &flags);
  4178. wake_up_process(rq->migration_thread);
  4179. wait_for_completion(&req.done);
  4180. tlb_migrate_finish(p->mm);
  4181. return 0;
  4182. }
  4183. out:
  4184. task_rq_unlock(rq, &flags);
  4185. return ret;
  4186. }
  4187. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4188. /*
  4189. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4190. * this because either it can't run here any more (set_cpus_allowed()
  4191. * away from this CPU, or CPU going down), or because we're
  4192. * attempting to rebalance this task on exec (sched_exec).
  4193. *
  4194. * So we race with normal scheduler movements, but that's OK, as long
  4195. * as the task is no longer on this CPU.
  4196. *
  4197. * Returns non-zero if task was successfully migrated.
  4198. */
  4199. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4200. {
  4201. struct rq *rq_dest, *rq_src;
  4202. int ret = 0, on_rq;
  4203. if (unlikely(cpu_is_offline(dest_cpu)))
  4204. return ret;
  4205. rq_src = cpu_rq(src_cpu);
  4206. rq_dest = cpu_rq(dest_cpu);
  4207. double_rq_lock(rq_src, rq_dest);
  4208. /* Already moved. */
  4209. if (task_cpu(p) != src_cpu)
  4210. goto out;
  4211. /* Affinity changed (again). */
  4212. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4213. goto out;
  4214. on_rq = p->se.on_rq;
  4215. if (on_rq)
  4216. deactivate_task(rq_src, p, 0);
  4217. set_task_cpu(p, dest_cpu);
  4218. if (on_rq) {
  4219. activate_task(rq_dest, p, 0);
  4220. check_preempt_curr(rq_dest, p);
  4221. }
  4222. ret = 1;
  4223. out:
  4224. double_rq_unlock(rq_src, rq_dest);
  4225. return ret;
  4226. }
  4227. /*
  4228. * migration_thread - this is a highprio system thread that performs
  4229. * thread migration by bumping thread off CPU then 'pushing' onto
  4230. * another runqueue.
  4231. */
  4232. static int migration_thread(void *data)
  4233. {
  4234. int cpu = (long)data;
  4235. struct rq *rq;
  4236. rq = cpu_rq(cpu);
  4237. BUG_ON(rq->migration_thread != current);
  4238. set_current_state(TASK_INTERRUPTIBLE);
  4239. while (!kthread_should_stop()) {
  4240. struct migration_req *req;
  4241. struct list_head *head;
  4242. try_to_freeze();
  4243. spin_lock_irq(&rq->lock);
  4244. if (cpu_is_offline(cpu)) {
  4245. spin_unlock_irq(&rq->lock);
  4246. goto wait_to_die;
  4247. }
  4248. if (rq->active_balance) {
  4249. active_load_balance(rq, cpu);
  4250. rq->active_balance = 0;
  4251. }
  4252. head = &rq->migration_queue;
  4253. if (list_empty(head)) {
  4254. spin_unlock_irq(&rq->lock);
  4255. schedule();
  4256. set_current_state(TASK_INTERRUPTIBLE);
  4257. continue;
  4258. }
  4259. req = list_entry(head->next, struct migration_req, list);
  4260. list_del_init(head->next);
  4261. spin_unlock(&rq->lock);
  4262. __migrate_task(req->task, cpu, req->dest_cpu);
  4263. local_irq_enable();
  4264. complete(&req->done);
  4265. }
  4266. __set_current_state(TASK_RUNNING);
  4267. return 0;
  4268. wait_to_die:
  4269. /* Wait for kthread_stop */
  4270. set_current_state(TASK_INTERRUPTIBLE);
  4271. while (!kthread_should_stop()) {
  4272. schedule();
  4273. set_current_state(TASK_INTERRUPTIBLE);
  4274. }
  4275. __set_current_state(TASK_RUNNING);
  4276. return 0;
  4277. }
  4278. #ifdef CONFIG_HOTPLUG_CPU
  4279. /*
  4280. * Figure out where task on dead CPU should go, use force if neccessary.
  4281. * NOTE: interrupts should be disabled by the caller
  4282. */
  4283. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4284. {
  4285. unsigned long flags;
  4286. cpumask_t mask;
  4287. struct rq *rq;
  4288. int dest_cpu;
  4289. restart:
  4290. /* On same node? */
  4291. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4292. cpus_and(mask, mask, p->cpus_allowed);
  4293. dest_cpu = any_online_cpu(mask);
  4294. /* On any allowed CPU? */
  4295. if (dest_cpu == NR_CPUS)
  4296. dest_cpu = any_online_cpu(p->cpus_allowed);
  4297. /* No more Mr. Nice Guy. */
  4298. if (dest_cpu == NR_CPUS) {
  4299. rq = task_rq_lock(p, &flags);
  4300. cpus_setall(p->cpus_allowed);
  4301. dest_cpu = any_online_cpu(p->cpus_allowed);
  4302. task_rq_unlock(rq, &flags);
  4303. /*
  4304. * Don't tell them about moving exiting tasks or
  4305. * kernel threads (both mm NULL), since they never
  4306. * leave kernel.
  4307. */
  4308. if (p->mm && printk_ratelimit())
  4309. printk(KERN_INFO "process %d (%s) no "
  4310. "longer affine to cpu%d\n",
  4311. p->pid, p->comm, dead_cpu);
  4312. }
  4313. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4314. goto restart;
  4315. }
  4316. /*
  4317. * While a dead CPU has no uninterruptible tasks queued at this point,
  4318. * it might still have a nonzero ->nr_uninterruptible counter, because
  4319. * for performance reasons the counter is not stricly tracking tasks to
  4320. * their home CPUs. So we just add the counter to another CPU's counter,
  4321. * to keep the global sum constant after CPU-down:
  4322. */
  4323. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4324. {
  4325. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4326. unsigned long flags;
  4327. local_irq_save(flags);
  4328. double_rq_lock(rq_src, rq_dest);
  4329. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4330. rq_src->nr_uninterruptible = 0;
  4331. double_rq_unlock(rq_src, rq_dest);
  4332. local_irq_restore(flags);
  4333. }
  4334. /* Run through task list and migrate tasks from the dead cpu. */
  4335. static void migrate_live_tasks(int src_cpu)
  4336. {
  4337. struct task_struct *p, *t;
  4338. write_lock_irq(&tasklist_lock);
  4339. do_each_thread(t, p) {
  4340. if (p == current)
  4341. continue;
  4342. if (task_cpu(p) == src_cpu)
  4343. move_task_off_dead_cpu(src_cpu, p);
  4344. } while_each_thread(t, p);
  4345. write_unlock_irq(&tasklist_lock);
  4346. }
  4347. /*
  4348. * Schedules idle task to be the next runnable task on current CPU.
  4349. * It does so by boosting its priority to highest possible and adding it to
  4350. * the _front_ of the runqueue. Used by CPU offline code.
  4351. */
  4352. void sched_idle_next(void)
  4353. {
  4354. int this_cpu = smp_processor_id();
  4355. struct rq *rq = cpu_rq(this_cpu);
  4356. struct task_struct *p = rq->idle;
  4357. unsigned long flags;
  4358. /* cpu has to be offline */
  4359. BUG_ON(cpu_online(this_cpu));
  4360. /*
  4361. * Strictly not necessary since rest of the CPUs are stopped by now
  4362. * and interrupts disabled on the current cpu.
  4363. */
  4364. spin_lock_irqsave(&rq->lock, flags);
  4365. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4366. /* Add idle task to the _front_ of its priority queue: */
  4367. activate_idle_task(p, rq);
  4368. spin_unlock_irqrestore(&rq->lock, flags);
  4369. }
  4370. /*
  4371. * Ensures that the idle task is using init_mm right before its cpu goes
  4372. * offline.
  4373. */
  4374. void idle_task_exit(void)
  4375. {
  4376. struct mm_struct *mm = current->active_mm;
  4377. BUG_ON(cpu_online(smp_processor_id()));
  4378. if (mm != &init_mm)
  4379. switch_mm(mm, &init_mm, current);
  4380. mmdrop(mm);
  4381. }
  4382. /* called under rq->lock with disabled interrupts */
  4383. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4384. {
  4385. struct rq *rq = cpu_rq(dead_cpu);
  4386. /* Must be exiting, otherwise would be on tasklist. */
  4387. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4388. /* Cannot have done final schedule yet: would have vanished. */
  4389. BUG_ON(p->state == TASK_DEAD);
  4390. get_task_struct(p);
  4391. /*
  4392. * Drop lock around migration; if someone else moves it,
  4393. * that's OK. No task can be added to this CPU, so iteration is
  4394. * fine.
  4395. * NOTE: interrupts should be left disabled --dev@
  4396. */
  4397. spin_unlock(&rq->lock);
  4398. move_task_off_dead_cpu(dead_cpu, p);
  4399. spin_lock(&rq->lock);
  4400. put_task_struct(p);
  4401. }
  4402. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4403. static void migrate_dead_tasks(unsigned int dead_cpu)
  4404. {
  4405. struct rq *rq = cpu_rq(dead_cpu);
  4406. struct task_struct *next;
  4407. for ( ; ; ) {
  4408. if (!rq->nr_running)
  4409. break;
  4410. next = pick_next_task(rq, rq->curr, rq_clock(rq));
  4411. if (!next)
  4412. break;
  4413. migrate_dead(dead_cpu, next);
  4414. }
  4415. }
  4416. #endif /* CONFIG_HOTPLUG_CPU */
  4417. /*
  4418. * migration_call - callback that gets triggered when a CPU is added.
  4419. * Here we can start up the necessary migration thread for the new CPU.
  4420. */
  4421. static int __cpuinit
  4422. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4423. {
  4424. struct task_struct *p;
  4425. int cpu = (long)hcpu;
  4426. unsigned long flags;
  4427. struct rq *rq;
  4428. switch (action) {
  4429. case CPU_LOCK_ACQUIRE:
  4430. mutex_lock(&sched_hotcpu_mutex);
  4431. break;
  4432. case CPU_UP_PREPARE:
  4433. case CPU_UP_PREPARE_FROZEN:
  4434. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4435. if (IS_ERR(p))
  4436. return NOTIFY_BAD;
  4437. p->flags |= PF_NOFREEZE;
  4438. kthread_bind(p, cpu);
  4439. /* Must be high prio: stop_machine expects to yield to it. */
  4440. rq = task_rq_lock(p, &flags);
  4441. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4442. task_rq_unlock(rq, &flags);
  4443. cpu_rq(cpu)->migration_thread = p;
  4444. break;
  4445. case CPU_ONLINE:
  4446. case CPU_ONLINE_FROZEN:
  4447. /* Strictly unneccessary, as first user will wake it. */
  4448. wake_up_process(cpu_rq(cpu)->migration_thread);
  4449. break;
  4450. #ifdef CONFIG_HOTPLUG_CPU
  4451. case CPU_UP_CANCELED:
  4452. case CPU_UP_CANCELED_FROZEN:
  4453. if (!cpu_rq(cpu)->migration_thread)
  4454. break;
  4455. /* Unbind it from offline cpu so it can run. Fall thru. */
  4456. kthread_bind(cpu_rq(cpu)->migration_thread,
  4457. any_online_cpu(cpu_online_map));
  4458. kthread_stop(cpu_rq(cpu)->migration_thread);
  4459. cpu_rq(cpu)->migration_thread = NULL;
  4460. break;
  4461. case CPU_DEAD:
  4462. case CPU_DEAD_FROZEN:
  4463. migrate_live_tasks(cpu);
  4464. rq = cpu_rq(cpu);
  4465. kthread_stop(rq->migration_thread);
  4466. rq->migration_thread = NULL;
  4467. /* Idle task back to normal (off runqueue, low prio) */
  4468. rq = task_rq_lock(rq->idle, &flags);
  4469. deactivate_task(rq, rq->idle, 0);
  4470. rq->idle->static_prio = MAX_PRIO;
  4471. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4472. rq->idle->sched_class = &idle_sched_class;
  4473. migrate_dead_tasks(cpu);
  4474. task_rq_unlock(rq, &flags);
  4475. migrate_nr_uninterruptible(rq);
  4476. BUG_ON(rq->nr_running != 0);
  4477. /* No need to migrate the tasks: it was best-effort if
  4478. * they didn't take sched_hotcpu_mutex. Just wake up
  4479. * the requestors. */
  4480. spin_lock_irq(&rq->lock);
  4481. while (!list_empty(&rq->migration_queue)) {
  4482. struct migration_req *req;
  4483. req = list_entry(rq->migration_queue.next,
  4484. struct migration_req, list);
  4485. list_del_init(&req->list);
  4486. complete(&req->done);
  4487. }
  4488. spin_unlock_irq(&rq->lock);
  4489. break;
  4490. #endif
  4491. case CPU_LOCK_RELEASE:
  4492. mutex_unlock(&sched_hotcpu_mutex);
  4493. break;
  4494. }
  4495. return NOTIFY_OK;
  4496. }
  4497. /* Register at highest priority so that task migration (migrate_all_tasks)
  4498. * happens before everything else.
  4499. */
  4500. static struct notifier_block __cpuinitdata migration_notifier = {
  4501. .notifier_call = migration_call,
  4502. .priority = 10
  4503. };
  4504. int __init migration_init(void)
  4505. {
  4506. void *cpu = (void *)(long)smp_processor_id();
  4507. int err;
  4508. /* Start one for the boot CPU: */
  4509. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4510. BUG_ON(err == NOTIFY_BAD);
  4511. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4512. register_cpu_notifier(&migration_notifier);
  4513. return 0;
  4514. }
  4515. #endif
  4516. #ifdef CONFIG_SMP
  4517. /* Number of possible processor ids */
  4518. int nr_cpu_ids __read_mostly = NR_CPUS;
  4519. EXPORT_SYMBOL(nr_cpu_ids);
  4520. #undef SCHED_DOMAIN_DEBUG
  4521. #ifdef SCHED_DOMAIN_DEBUG
  4522. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4523. {
  4524. int level = 0;
  4525. if (!sd) {
  4526. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4527. return;
  4528. }
  4529. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4530. do {
  4531. int i;
  4532. char str[NR_CPUS];
  4533. struct sched_group *group = sd->groups;
  4534. cpumask_t groupmask;
  4535. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4536. cpus_clear(groupmask);
  4537. printk(KERN_DEBUG);
  4538. for (i = 0; i < level + 1; i++)
  4539. printk(" ");
  4540. printk("domain %d: ", level);
  4541. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4542. printk("does not load-balance\n");
  4543. if (sd->parent)
  4544. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4545. " has parent");
  4546. break;
  4547. }
  4548. printk("span %s\n", str);
  4549. if (!cpu_isset(cpu, sd->span))
  4550. printk(KERN_ERR "ERROR: domain->span does not contain "
  4551. "CPU%d\n", cpu);
  4552. if (!cpu_isset(cpu, group->cpumask))
  4553. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4554. " CPU%d\n", cpu);
  4555. printk(KERN_DEBUG);
  4556. for (i = 0; i < level + 2; i++)
  4557. printk(" ");
  4558. printk("groups:");
  4559. do {
  4560. if (!group) {
  4561. printk("\n");
  4562. printk(KERN_ERR "ERROR: group is NULL\n");
  4563. break;
  4564. }
  4565. if (!group->__cpu_power) {
  4566. printk("\n");
  4567. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4568. "set\n");
  4569. }
  4570. if (!cpus_weight(group->cpumask)) {
  4571. printk("\n");
  4572. printk(KERN_ERR "ERROR: empty group\n");
  4573. }
  4574. if (cpus_intersects(groupmask, group->cpumask)) {
  4575. printk("\n");
  4576. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4577. }
  4578. cpus_or(groupmask, groupmask, group->cpumask);
  4579. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4580. printk(" %s", str);
  4581. group = group->next;
  4582. } while (group != sd->groups);
  4583. printk("\n");
  4584. if (!cpus_equal(sd->span, groupmask))
  4585. printk(KERN_ERR "ERROR: groups don't span "
  4586. "domain->span\n");
  4587. level++;
  4588. sd = sd->parent;
  4589. if (!sd)
  4590. continue;
  4591. if (!cpus_subset(groupmask, sd->span))
  4592. printk(KERN_ERR "ERROR: parent span is not a superset "
  4593. "of domain->span\n");
  4594. } while (sd);
  4595. }
  4596. #else
  4597. # define sched_domain_debug(sd, cpu) do { } while (0)
  4598. #endif
  4599. static int sd_degenerate(struct sched_domain *sd)
  4600. {
  4601. if (cpus_weight(sd->span) == 1)
  4602. return 1;
  4603. /* Following flags need at least 2 groups */
  4604. if (sd->flags & (SD_LOAD_BALANCE |
  4605. SD_BALANCE_NEWIDLE |
  4606. SD_BALANCE_FORK |
  4607. SD_BALANCE_EXEC |
  4608. SD_SHARE_CPUPOWER |
  4609. SD_SHARE_PKG_RESOURCES)) {
  4610. if (sd->groups != sd->groups->next)
  4611. return 0;
  4612. }
  4613. /* Following flags don't use groups */
  4614. if (sd->flags & (SD_WAKE_IDLE |
  4615. SD_WAKE_AFFINE |
  4616. SD_WAKE_BALANCE))
  4617. return 0;
  4618. return 1;
  4619. }
  4620. static int
  4621. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4622. {
  4623. unsigned long cflags = sd->flags, pflags = parent->flags;
  4624. if (sd_degenerate(parent))
  4625. return 1;
  4626. if (!cpus_equal(sd->span, parent->span))
  4627. return 0;
  4628. /* Does parent contain flags not in child? */
  4629. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4630. if (cflags & SD_WAKE_AFFINE)
  4631. pflags &= ~SD_WAKE_BALANCE;
  4632. /* Flags needing groups don't count if only 1 group in parent */
  4633. if (parent->groups == parent->groups->next) {
  4634. pflags &= ~(SD_LOAD_BALANCE |
  4635. SD_BALANCE_NEWIDLE |
  4636. SD_BALANCE_FORK |
  4637. SD_BALANCE_EXEC |
  4638. SD_SHARE_CPUPOWER |
  4639. SD_SHARE_PKG_RESOURCES);
  4640. }
  4641. if (~cflags & pflags)
  4642. return 0;
  4643. return 1;
  4644. }
  4645. /*
  4646. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4647. * hold the hotplug lock.
  4648. */
  4649. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4650. {
  4651. struct rq *rq = cpu_rq(cpu);
  4652. struct sched_domain *tmp;
  4653. /* Remove the sched domains which do not contribute to scheduling. */
  4654. for (tmp = sd; tmp; tmp = tmp->parent) {
  4655. struct sched_domain *parent = tmp->parent;
  4656. if (!parent)
  4657. break;
  4658. if (sd_parent_degenerate(tmp, parent)) {
  4659. tmp->parent = parent->parent;
  4660. if (parent->parent)
  4661. parent->parent->child = tmp;
  4662. }
  4663. }
  4664. if (sd && sd_degenerate(sd)) {
  4665. sd = sd->parent;
  4666. if (sd)
  4667. sd->child = NULL;
  4668. }
  4669. sched_domain_debug(sd, cpu);
  4670. rcu_assign_pointer(rq->sd, sd);
  4671. }
  4672. /* cpus with isolated domains */
  4673. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  4674. /* Setup the mask of cpus configured for isolated domains */
  4675. static int __init isolated_cpu_setup(char *str)
  4676. {
  4677. int ints[NR_CPUS], i;
  4678. str = get_options(str, ARRAY_SIZE(ints), ints);
  4679. cpus_clear(cpu_isolated_map);
  4680. for (i = 1; i <= ints[0]; i++)
  4681. if (ints[i] < NR_CPUS)
  4682. cpu_set(ints[i], cpu_isolated_map);
  4683. return 1;
  4684. }
  4685. __setup ("isolcpus=", isolated_cpu_setup);
  4686. /*
  4687. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4688. * to a function which identifies what group(along with sched group) a CPU
  4689. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4690. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4691. *
  4692. * init_sched_build_groups will build a circular linked list of the groups
  4693. * covered by the given span, and will set each group's ->cpumask correctly,
  4694. * and ->cpu_power to 0.
  4695. */
  4696. static void
  4697. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4698. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4699. struct sched_group **sg))
  4700. {
  4701. struct sched_group *first = NULL, *last = NULL;
  4702. cpumask_t covered = CPU_MASK_NONE;
  4703. int i;
  4704. for_each_cpu_mask(i, span) {
  4705. struct sched_group *sg;
  4706. int group = group_fn(i, cpu_map, &sg);
  4707. int j;
  4708. if (cpu_isset(i, covered))
  4709. continue;
  4710. sg->cpumask = CPU_MASK_NONE;
  4711. sg->__cpu_power = 0;
  4712. for_each_cpu_mask(j, span) {
  4713. if (group_fn(j, cpu_map, NULL) != group)
  4714. continue;
  4715. cpu_set(j, covered);
  4716. cpu_set(j, sg->cpumask);
  4717. }
  4718. if (!first)
  4719. first = sg;
  4720. if (last)
  4721. last->next = sg;
  4722. last = sg;
  4723. }
  4724. last->next = first;
  4725. }
  4726. #define SD_NODES_PER_DOMAIN 16
  4727. #ifdef CONFIG_NUMA
  4728. /**
  4729. * find_next_best_node - find the next node to include in a sched_domain
  4730. * @node: node whose sched_domain we're building
  4731. * @used_nodes: nodes already in the sched_domain
  4732. *
  4733. * Find the next node to include in a given scheduling domain. Simply
  4734. * finds the closest node not already in the @used_nodes map.
  4735. *
  4736. * Should use nodemask_t.
  4737. */
  4738. static int find_next_best_node(int node, unsigned long *used_nodes)
  4739. {
  4740. int i, n, val, min_val, best_node = 0;
  4741. min_val = INT_MAX;
  4742. for (i = 0; i < MAX_NUMNODES; i++) {
  4743. /* Start at @node */
  4744. n = (node + i) % MAX_NUMNODES;
  4745. if (!nr_cpus_node(n))
  4746. continue;
  4747. /* Skip already used nodes */
  4748. if (test_bit(n, used_nodes))
  4749. continue;
  4750. /* Simple min distance search */
  4751. val = node_distance(node, n);
  4752. if (val < min_val) {
  4753. min_val = val;
  4754. best_node = n;
  4755. }
  4756. }
  4757. set_bit(best_node, used_nodes);
  4758. return best_node;
  4759. }
  4760. /**
  4761. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4762. * @node: node whose cpumask we're constructing
  4763. * @size: number of nodes to include in this span
  4764. *
  4765. * Given a node, construct a good cpumask for its sched_domain to span. It
  4766. * should be one that prevents unnecessary balancing, but also spreads tasks
  4767. * out optimally.
  4768. */
  4769. static cpumask_t sched_domain_node_span(int node)
  4770. {
  4771. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  4772. cpumask_t span, nodemask;
  4773. int i;
  4774. cpus_clear(span);
  4775. bitmap_zero(used_nodes, MAX_NUMNODES);
  4776. nodemask = node_to_cpumask(node);
  4777. cpus_or(span, span, nodemask);
  4778. set_bit(node, used_nodes);
  4779. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  4780. int next_node = find_next_best_node(node, used_nodes);
  4781. nodemask = node_to_cpumask(next_node);
  4782. cpus_or(span, span, nodemask);
  4783. }
  4784. return span;
  4785. }
  4786. #endif
  4787. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  4788. /*
  4789. * SMT sched-domains:
  4790. */
  4791. #ifdef CONFIG_SCHED_SMT
  4792. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  4793. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  4794. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  4795. struct sched_group **sg)
  4796. {
  4797. if (sg)
  4798. *sg = &per_cpu(sched_group_cpus, cpu);
  4799. return cpu;
  4800. }
  4801. #endif
  4802. /*
  4803. * multi-core sched-domains:
  4804. */
  4805. #ifdef CONFIG_SCHED_MC
  4806. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  4807. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  4808. #endif
  4809. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  4810. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  4811. struct sched_group **sg)
  4812. {
  4813. int group;
  4814. cpumask_t mask = cpu_sibling_map[cpu];
  4815. cpus_and(mask, mask, *cpu_map);
  4816. group = first_cpu(mask);
  4817. if (sg)
  4818. *sg = &per_cpu(sched_group_core, group);
  4819. return group;
  4820. }
  4821. #elif defined(CONFIG_SCHED_MC)
  4822. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  4823. struct sched_group **sg)
  4824. {
  4825. if (sg)
  4826. *sg = &per_cpu(sched_group_core, cpu);
  4827. return cpu;
  4828. }
  4829. #endif
  4830. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  4831. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  4832. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  4833. struct sched_group **sg)
  4834. {
  4835. int group;
  4836. #ifdef CONFIG_SCHED_MC
  4837. cpumask_t mask = cpu_coregroup_map(cpu);
  4838. cpus_and(mask, mask, *cpu_map);
  4839. group = first_cpu(mask);
  4840. #elif defined(CONFIG_SCHED_SMT)
  4841. cpumask_t mask = cpu_sibling_map[cpu];
  4842. cpus_and(mask, mask, *cpu_map);
  4843. group = first_cpu(mask);
  4844. #else
  4845. group = cpu;
  4846. #endif
  4847. if (sg)
  4848. *sg = &per_cpu(sched_group_phys, group);
  4849. return group;
  4850. }
  4851. #ifdef CONFIG_NUMA
  4852. /*
  4853. * The init_sched_build_groups can't handle what we want to do with node
  4854. * groups, so roll our own. Now each node has its own list of groups which
  4855. * gets dynamically allocated.
  4856. */
  4857. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  4858. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  4859. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  4860. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  4861. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  4862. struct sched_group **sg)
  4863. {
  4864. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  4865. int group;
  4866. cpus_and(nodemask, nodemask, *cpu_map);
  4867. group = first_cpu(nodemask);
  4868. if (sg)
  4869. *sg = &per_cpu(sched_group_allnodes, group);
  4870. return group;
  4871. }
  4872. static void init_numa_sched_groups_power(struct sched_group *group_head)
  4873. {
  4874. struct sched_group *sg = group_head;
  4875. int j;
  4876. if (!sg)
  4877. return;
  4878. next_sg:
  4879. for_each_cpu_mask(j, sg->cpumask) {
  4880. struct sched_domain *sd;
  4881. sd = &per_cpu(phys_domains, j);
  4882. if (j != first_cpu(sd->groups->cpumask)) {
  4883. /*
  4884. * Only add "power" once for each
  4885. * physical package.
  4886. */
  4887. continue;
  4888. }
  4889. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  4890. }
  4891. sg = sg->next;
  4892. if (sg != group_head)
  4893. goto next_sg;
  4894. }
  4895. #endif
  4896. #ifdef CONFIG_NUMA
  4897. /* Free memory allocated for various sched_group structures */
  4898. static void free_sched_groups(const cpumask_t *cpu_map)
  4899. {
  4900. int cpu, i;
  4901. for_each_cpu_mask(cpu, *cpu_map) {
  4902. struct sched_group **sched_group_nodes
  4903. = sched_group_nodes_bycpu[cpu];
  4904. if (!sched_group_nodes)
  4905. continue;
  4906. for (i = 0; i < MAX_NUMNODES; i++) {
  4907. cpumask_t nodemask = node_to_cpumask(i);
  4908. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  4909. cpus_and(nodemask, nodemask, *cpu_map);
  4910. if (cpus_empty(nodemask))
  4911. continue;
  4912. if (sg == NULL)
  4913. continue;
  4914. sg = sg->next;
  4915. next_sg:
  4916. oldsg = sg;
  4917. sg = sg->next;
  4918. kfree(oldsg);
  4919. if (oldsg != sched_group_nodes[i])
  4920. goto next_sg;
  4921. }
  4922. kfree(sched_group_nodes);
  4923. sched_group_nodes_bycpu[cpu] = NULL;
  4924. }
  4925. }
  4926. #else
  4927. static void free_sched_groups(const cpumask_t *cpu_map)
  4928. {
  4929. }
  4930. #endif
  4931. /*
  4932. * Initialize sched groups cpu_power.
  4933. *
  4934. * cpu_power indicates the capacity of sched group, which is used while
  4935. * distributing the load between different sched groups in a sched domain.
  4936. * Typically cpu_power for all the groups in a sched domain will be same unless
  4937. * there are asymmetries in the topology. If there are asymmetries, group
  4938. * having more cpu_power will pickup more load compared to the group having
  4939. * less cpu_power.
  4940. *
  4941. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  4942. * the maximum number of tasks a group can handle in the presence of other idle
  4943. * or lightly loaded groups in the same sched domain.
  4944. */
  4945. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  4946. {
  4947. struct sched_domain *child;
  4948. struct sched_group *group;
  4949. WARN_ON(!sd || !sd->groups);
  4950. if (cpu != first_cpu(sd->groups->cpumask))
  4951. return;
  4952. child = sd->child;
  4953. sd->groups->__cpu_power = 0;
  4954. /*
  4955. * For perf policy, if the groups in child domain share resources
  4956. * (for example cores sharing some portions of the cache hierarchy
  4957. * or SMT), then set this domain groups cpu_power such that each group
  4958. * can handle only one task, when there are other idle groups in the
  4959. * same sched domain.
  4960. */
  4961. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  4962. (child->flags &
  4963. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  4964. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  4965. return;
  4966. }
  4967. /*
  4968. * add cpu_power of each child group to this groups cpu_power
  4969. */
  4970. group = child->groups;
  4971. do {
  4972. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  4973. group = group->next;
  4974. } while (group != child->groups);
  4975. }
  4976. /*
  4977. * Build sched domains for a given set of cpus and attach the sched domains
  4978. * to the individual cpus
  4979. */
  4980. static int build_sched_domains(const cpumask_t *cpu_map)
  4981. {
  4982. int i;
  4983. #ifdef CONFIG_NUMA
  4984. struct sched_group **sched_group_nodes = NULL;
  4985. int sd_allnodes = 0;
  4986. /*
  4987. * Allocate the per-node list of sched groups
  4988. */
  4989. sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
  4990. GFP_KERNEL);
  4991. if (!sched_group_nodes) {
  4992. printk(KERN_WARNING "Can not alloc sched group node list\n");
  4993. return -ENOMEM;
  4994. }
  4995. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  4996. #endif
  4997. /*
  4998. * Set up domains for cpus specified by the cpu_map.
  4999. */
  5000. for_each_cpu_mask(i, *cpu_map) {
  5001. struct sched_domain *sd = NULL, *p;
  5002. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5003. cpus_and(nodemask, nodemask, *cpu_map);
  5004. #ifdef CONFIG_NUMA
  5005. if (cpus_weight(*cpu_map) >
  5006. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5007. sd = &per_cpu(allnodes_domains, i);
  5008. *sd = SD_ALLNODES_INIT;
  5009. sd->span = *cpu_map;
  5010. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5011. p = sd;
  5012. sd_allnodes = 1;
  5013. } else
  5014. p = NULL;
  5015. sd = &per_cpu(node_domains, i);
  5016. *sd = SD_NODE_INIT;
  5017. sd->span = sched_domain_node_span(cpu_to_node(i));
  5018. sd->parent = p;
  5019. if (p)
  5020. p->child = sd;
  5021. cpus_and(sd->span, sd->span, *cpu_map);
  5022. #endif
  5023. p = sd;
  5024. sd = &per_cpu(phys_domains, i);
  5025. *sd = SD_CPU_INIT;
  5026. sd->span = nodemask;
  5027. sd->parent = p;
  5028. if (p)
  5029. p->child = sd;
  5030. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5031. #ifdef CONFIG_SCHED_MC
  5032. p = sd;
  5033. sd = &per_cpu(core_domains, i);
  5034. *sd = SD_MC_INIT;
  5035. sd->span = cpu_coregroup_map(i);
  5036. cpus_and(sd->span, sd->span, *cpu_map);
  5037. sd->parent = p;
  5038. p->child = sd;
  5039. cpu_to_core_group(i, cpu_map, &sd->groups);
  5040. #endif
  5041. #ifdef CONFIG_SCHED_SMT
  5042. p = sd;
  5043. sd = &per_cpu(cpu_domains, i);
  5044. *sd = SD_SIBLING_INIT;
  5045. sd->span = cpu_sibling_map[i];
  5046. cpus_and(sd->span, sd->span, *cpu_map);
  5047. sd->parent = p;
  5048. p->child = sd;
  5049. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5050. #endif
  5051. }
  5052. #ifdef CONFIG_SCHED_SMT
  5053. /* Set up CPU (sibling) groups */
  5054. for_each_cpu_mask(i, *cpu_map) {
  5055. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5056. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5057. if (i != first_cpu(this_sibling_map))
  5058. continue;
  5059. init_sched_build_groups(this_sibling_map, cpu_map,
  5060. &cpu_to_cpu_group);
  5061. }
  5062. #endif
  5063. #ifdef CONFIG_SCHED_MC
  5064. /* Set up multi-core groups */
  5065. for_each_cpu_mask(i, *cpu_map) {
  5066. cpumask_t this_core_map = cpu_coregroup_map(i);
  5067. cpus_and(this_core_map, this_core_map, *cpu_map);
  5068. if (i != first_cpu(this_core_map))
  5069. continue;
  5070. init_sched_build_groups(this_core_map, cpu_map,
  5071. &cpu_to_core_group);
  5072. }
  5073. #endif
  5074. /* Set up physical groups */
  5075. for (i = 0; i < MAX_NUMNODES; i++) {
  5076. cpumask_t nodemask = node_to_cpumask(i);
  5077. cpus_and(nodemask, nodemask, *cpu_map);
  5078. if (cpus_empty(nodemask))
  5079. continue;
  5080. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5081. }
  5082. #ifdef CONFIG_NUMA
  5083. /* Set up node groups */
  5084. if (sd_allnodes)
  5085. init_sched_build_groups(*cpu_map, cpu_map,
  5086. &cpu_to_allnodes_group);
  5087. for (i = 0; i < MAX_NUMNODES; i++) {
  5088. /* Set up node groups */
  5089. struct sched_group *sg, *prev;
  5090. cpumask_t nodemask = node_to_cpumask(i);
  5091. cpumask_t domainspan;
  5092. cpumask_t covered = CPU_MASK_NONE;
  5093. int j;
  5094. cpus_and(nodemask, nodemask, *cpu_map);
  5095. if (cpus_empty(nodemask)) {
  5096. sched_group_nodes[i] = NULL;
  5097. continue;
  5098. }
  5099. domainspan = sched_domain_node_span(i);
  5100. cpus_and(domainspan, domainspan, *cpu_map);
  5101. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5102. if (!sg) {
  5103. printk(KERN_WARNING "Can not alloc domain group for "
  5104. "node %d\n", i);
  5105. goto error;
  5106. }
  5107. sched_group_nodes[i] = sg;
  5108. for_each_cpu_mask(j, nodemask) {
  5109. struct sched_domain *sd;
  5110. sd = &per_cpu(node_domains, j);
  5111. sd->groups = sg;
  5112. }
  5113. sg->__cpu_power = 0;
  5114. sg->cpumask = nodemask;
  5115. sg->next = sg;
  5116. cpus_or(covered, covered, nodemask);
  5117. prev = sg;
  5118. for (j = 0; j < MAX_NUMNODES; j++) {
  5119. cpumask_t tmp, notcovered;
  5120. int n = (i + j) % MAX_NUMNODES;
  5121. cpus_complement(notcovered, covered);
  5122. cpus_and(tmp, notcovered, *cpu_map);
  5123. cpus_and(tmp, tmp, domainspan);
  5124. if (cpus_empty(tmp))
  5125. break;
  5126. nodemask = node_to_cpumask(n);
  5127. cpus_and(tmp, tmp, nodemask);
  5128. if (cpus_empty(tmp))
  5129. continue;
  5130. sg = kmalloc_node(sizeof(struct sched_group),
  5131. GFP_KERNEL, i);
  5132. if (!sg) {
  5133. printk(KERN_WARNING
  5134. "Can not alloc domain group for node %d\n", j);
  5135. goto error;
  5136. }
  5137. sg->__cpu_power = 0;
  5138. sg->cpumask = tmp;
  5139. sg->next = prev->next;
  5140. cpus_or(covered, covered, tmp);
  5141. prev->next = sg;
  5142. prev = sg;
  5143. }
  5144. }
  5145. #endif
  5146. /* Calculate CPU power for physical packages and nodes */
  5147. #ifdef CONFIG_SCHED_SMT
  5148. for_each_cpu_mask(i, *cpu_map) {
  5149. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5150. init_sched_groups_power(i, sd);
  5151. }
  5152. #endif
  5153. #ifdef CONFIG_SCHED_MC
  5154. for_each_cpu_mask(i, *cpu_map) {
  5155. struct sched_domain *sd = &per_cpu(core_domains, i);
  5156. init_sched_groups_power(i, sd);
  5157. }
  5158. #endif
  5159. for_each_cpu_mask(i, *cpu_map) {
  5160. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5161. init_sched_groups_power(i, sd);
  5162. }
  5163. #ifdef CONFIG_NUMA
  5164. for (i = 0; i < MAX_NUMNODES; i++)
  5165. init_numa_sched_groups_power(sched_group_nodes[i]);
  5166. if (sd_allnodes) {
  5167. struct sched_group *sg;
  5168. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5169. init_numa_sched_groups_power(sg);
  5170. }
  5171. #endif
  5172. /* Attach the domains */
  5173. for_each_cpu_mask(i, *cpu_map) {
  5174. struct sched_domain *sd;
  5175. #ifdef CONFIG_SCHED_SMT
  5176. sd = &per_cpu(cpu_domains, i);
  5177. #elif defined(CONFIG_SCHED_MC)
  5178. sd = &per_cpu(core_domains, i);
  5179. #else
  5180. sd = &per_cpu(phys_domains, i);
  5181. #endif
  5182. cpu_attach_domain(sd, i);
  5183. }
  5184. return 0;
  5185. #ifdef CONFIG_NUMA
  5186. error:
  5187. free_sched_groups(cpu_map);
  5188. return -ENOMEM;
  5189. #endif
  5190. }
  5191. /*
  5192. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5193. */
  5194. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5195. {
  5196. cpumask_t cpu_default_map;
  5197. int err;
  5198. /*
  5199. * Setup mask for cpus without special case scheduling requirements.
  5200. * For now this just excludes isolated cpus, but could be used to
  5201. * exclude other special cases in the future.
  5202. */
  5203. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5204. err = build_sched_domains(&cpu_default_map);
  5205. return err;
  5206. }
  5207. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5208. {
  5209. free_sched_groups(cpu_map);
  5210. }
  5211. /*
  5212. * Detach sched domains from a group of cpus specified in cpu_map
  5213. * These cpus will now be attached to the NULL domain
  5214. */
  5215. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5216. {
  5217. int i;
  5218. for_each_cpu_mask(i, *cpu_map)
  5219. cpu_attach_domain(NULL, i);
  5220. synchronize_sched();
  5221. arch_destroy_sched_domains(cpu_map);
  5222. }
  5223. /*
  5224. * Partition sched domains as specified by the cpumasks below.
  5225. * This attaches all cpus from the cpumasks to the NULL domain,
  5226. * waits for a RCU quiescent period, recalculates sched
  5227. * domain information and then attaches them back to the
  5228. * correct sched domains
  5229. * Call with hotplug lock held
  5230. */
  5231. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5232. {
  5233. cpumask_t change_map;
  5234. int err = 0;
  5235. cpus_and(*partition1, *partition1, cpu_online_map);
  5236. cpus_and(*partition2, *partition2, cpu_online_map);
  5237. cpus_or(change_map, *partition1, *partition2);
  5238. /* Detach sched domains from all of the affected cpus */
  5239. detach_destroy_domains(&change_map);
  5240. if (!cpus_empty(*partition1))
  5241. err = build_sched_domains(partition1);
  5242. if (!err && !cpus_empty(*partition2))
  5243. err = build_sched_domains(partition2);
  5244. return err;
  5245. }
  5246. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5247. int arch_reinit_sched_domains(void)
  5248. {
  5249. int err;
  5250. mutex_lock(&sched_hotcpu_mutex);
  5251. detach_destroy_domains(&cpu_online_map);
  5252. err = arch_init_sched_domains(&cpu_online_map);
  5253. mutex_unlock(&sched_hotcpu_mutex);
  5254. return err;
  5255. }
  5256. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5257. {
  5258. int ret;
  5259. if (buf[0] != '0' && buf[0] != '1')
  5260. return -EINVAL;
  5261. if (smt)
  5262. sched_smt_power_savings = (buf[0] == '1');
  5263. else
  5264. sched_mc_power_savings = (buf[0] == '1');
  5265. ret = arch_reinit_sched_domains();
  5266. return ret ? ret : count;
  5267. }
  5268. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5269. {
  5270. int err = 0;
  5271. #ifdef CONFIG_SCHED_SMT
  5272. if (smt_capable())
  5273. err = sysfs_create_file(&cls->kset.kobj,
  5274. &attr_sched_smt_power_savings.attr);
  5275. #endif
  5276. #ifdef CONFIG_SCHED_MC
  5277. if (!err && mc_capable())
  5278. err = sysfs_create_file(&cls->kset.kobj,
  5279. &attr_sched_mc_power_savings.attr);
  5280. #endif
  5281. return err;
  5282. }
  5283. #endif
  5284. #ifdef CONFIG_SCHED_MC
  5285. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5286. {
  5287. return sprintf(page, "%u\n", sched_mc_power_savings);
  5288. }
  5289. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5290. const char *buf, size_t count)
  5291. {
  5292. return sched_power_savings_store(buf, count, 0);
  5293. }
  5294. SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5295. sched_mc_power_savings_store);
  5296. #endif
  5297. #ifdef CONFIG_SCHED_SMT
  5298. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5299. {
  5300. return sprintf(page, "%u\n", sched_smt_power_savings);
  5301. }
  5302. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5303. const char *buf, size_t count)
  5304. {
  5305. return sched_power_savings_store(buf, count, 1);
  5306. }
  5307. SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5308. sched_smt_power_savings_store);
  5309. #endif
  5310. /*
  5311. * Force a reinitialization of the sched domains hierarchy. The domains
  5312. * and groups cannot be updated in place without racing with the balancing
  5313. * code, so we temporarily attach all running cpus to the NULL domain
  5314. * which will prevent rebalancing while the sched domains are recalculated.
  5315. */
  5316. static int update_sched_domains(struct notifier_block *nfb,
  5317. unsigned long action, void *hcpu)
  5318. {
  5319. switch (action) {
  5320. case CPU_UP_PREPARE:
  5321. case CPU_UP_PREPARE_FROZEN:
  5322. case CPU_DOWN_PREPARE:
  5323. case CPU_DOWN_PREPARE_FROZEN:
  5324. detach_destroy_domains(&cpu_online_map);
  5325. return NOTIFY_OK;
  5326. case CPU_UP_CANCELED:
  5327. case CPU_UP_CANCELED_FROZEN:
  5328. case CPU_DOWN_FAILED:
  5329. case CPU_DOWN_FAILED_FROZEN:
  5330. case CPU_ONLINE:
  5331. case CPU_ONLINE_FROZEN:
  5332. case CPU_DEAD:
  5333. case CPU_DEAD_FROZEN:
  5334. /*
  5335. * Fall through and re-initialise the domains.
  5336. */
  5337. break;
  5338. default:
  5339. return NOTIFY_DONE;
  5340. }
  5341. /* The hotplug lock is already held by cpu_up/cpu_down */
  5342. arch_init_sched_domains(&cpu_online_map);
  5343. return NOTIFY_OK;
  5344. }
  5345. void __init sched_init_smp(void)
  5346. {
  5347. cpumask_t non_isolated_cpus;
  5348. mutex_lock(&sched_hotcpu_mutex);
  5349. arch_init_sched_domains(&cpu_online_map);
  5350. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5351. if (cpus_empty(non_isolated_cpus))
  5352. cpu_set(smp_processor_id(), non_isolated_cpus);
  5353. mutex_unlock(&sched_hotcpu_mutex);
  5354. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5355. hotcpu_notifier(update_sched_domains, 0);
  5356. /* Move init over to a non-isolated CPU */
  5357. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5358. BUG();
  5359. sched_init_granularity();
  5360. }
  5361. #else
  5362. void __init sched_init_smp(void)
  5363. {
  5364. sched_init_granularity();
  5365. }
  5366. #endif /* CONFIG_SMP */
  5367. int in_sched_functions(unsigned long addr)
  5368. {
  5369. /* Linker adds these: start and end of __sched functions */
  5370. extern char __sched_text_start[], __sched_text_end[];
  5371. return in_lock_functions(addr) ||
  5372. (addr >= (unsigned long)__sched_text_start
  5373. && addr < (unsigned long)__sched_text_end);
  5374. }
  5375. static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5376. {
  5377. cfs_rq->tasks_timeline = RB_ROOT;
  5378. cfs_rq->fair_clock = 1;
  5379. #ifdef CONFIG_FAIR_GROUP_SCHED
  5380. cfs_rq->rq = rq;
  5381. #endif
  5382. }
  5383. void __init sched_init(void)
  5384. {
  5385. u64 now = sched_clock();
  5386. int highest_cpu = 0;
  5387. int i, j;
  5388. /*
  5389. * Link up the scheduling class hierarchy:
  5390. */
  5391. rt_sched_class.next = &fair_sched_class;
  5392. fair_sched_class.next = &idle_sched_class;
  5393. idle_sched_class.next = NULL;
  5394. for_each_possible_cpu(i) {
  5395. struct rt_prio_array *array;
  5396. struct rq *rq;
  5397. rq = cpu_rq(i);
  5398. spin_lock_init(&rq->lock);
  5399. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5400. rq->nr_running = 0;
  5401. rq->clock = 1;
  5402. init_cfs_rq(&rq->cfs, rq);
  5403. #ifdef CONFIG_FAIR_GROUP_SCHED
  5404. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5405. list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  5406. #endif
  5407. rq->ls.load_update_last = now;
  5408. rq->ls.load_update_start = now;
  5409. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5410. rq->cpu_load[j] = 0;
  5411. #ifdef CONFIG_SMP
  5412. rq->sd = NULL;
  5413. rq->active_balance = 0;
  5414. rq->next_balance = jiffies;
  5415. rq->push_cpu = 0;
  5416. rq->cpu = i;
  5417. rq->migration_thread = NULL;
  5418. INIT_LIST_HEAD(&rq->migration_queue);
  5419. #endif
  5420. atomic_set(&rq->nr_iowait, 0);
  5421. array = &rq->rt.active;
  5422. for (j = 0; j < MAX_RT_PRIO; j++) {
  5423. INIT_LIST_HEAD(array->queue + j);
  5424. __clear_bit(j, array->bitmap);
  5425. }
  5426. highest_cpu = i;
  5427. /* delimiter for bitsearch: */
  5428. __set_bit(MAX_RT_PRIO, array->bitmap);
  5429. }
  5430. set_load_weight(&init_task);
  5431. #ifdef CONFIG_SMP
  5432. nr_cpu_ids = highest_cpu + 1;
  5433. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5434. #endif
  5435. #ifdef CONFIG_RT_MUTEXES
  5436. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5437. #endif
  5438. /*
  5439. * The boot idle thread does lazy MMU switching as well:
  5440. */
  5441. atomic_inc(&init_mm.mm_count);
  5442. enter_lazy_tlb(&init_mm, current);
  5443. /*
  5444. * Make us the idle thread. Technically, schedule() should not be
  5445. * called from this thread, however somewhere below it might be,
  5446. * but because we are the idle thread, we just pick up running again
  5447. * when this runqueue becomes "idle".
  5448. */
  5449. init_idle(current, smp_processor_id());
  5450. /*
  5451. * During early bootup we pretend to be a normal task:
  5452. */
  5453. current->sched_class = &fair_sched_class;
  5454. }
  5455. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5456. void __might_sleep(char *file, int line)
  5457. {
  5458. #ifdef in_atomic
  5459. static unsigned long prev_jiffy; /* ratelimiting */
  5460. if ((in_atomic() || irqs_disabled()) &&
  5461. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5462. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5463. return;
  5464. prev_jiffy = jiffies;
  5465. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5466. " context at %s:%d\n", file, line);
  5467. printk("in_atomic():%d, irqs_disabled():%d\n",
  5468. in_atomic(), irqs_disabled());
  5469. debug_show_held_locks(current);
  5470. if (irqs_disabled())
  5471. print_irqtrace_events(current);
  5472. dump_stack();
  5473. }
  5474. #endif
  5475. }
  5476. EXPORT_SYMBOL(__might_sleep);
  5477. #endif
  5478. #ifdef CONFIG_MAGIC_SYSRQ
  5479. void normalize_rt_tasks(void)
  5480. {
  5481. struct task_struct *g, *p;
  5482. unsigned long flags;
  5483. struct rq *rq;
  5484. int on_rq;
  5485. read_lock_irq(&tasklist_lock);
  5486. do_each_thread(g, p) {
  5487. p->se.fair_key = 0;
  5488. p->se.wait_runtime = 0;
  5489. p->se.wait_start_fair = 0;
  5490. p->se.wait_start = 0;
  5491. p->se.exec_start = 0;
  5492. p->se.sleep_start = 0;
  5493. p->se.sleep_start_fair = 0;
  5494. p->se.block_start = 0;
  5495. task_rq(p)->cfs.fair_clock = 0;
  5496. task_rq(p)->clock = 0;
  5497. if (!rt_task(p)) {
  5498. /*
  5499. * Renice negative nice level userspace
  5500. * tasks back to 0:
  5501. */
  5502. if (TASK_NICE(p) < 0 && p->mm)
  5503. set_user_nice(p, 0);
  5504. continue;
  5505. }
  5506. spin_lock_irqsave(&p->pi_lock, flags);
  5507. rq = __task_rq_lock(p);
  5508. #ifdef CONFIG_SMP
  5509. /*
  5510. * Do not touch the migration thread:
  5511. */
  5512. if (p == rq->migration_thread)
  5513. goto out_unlock;
  5514. #endif
  5515. on_rq = p->se.on_rq;
  5516. if (on_rq)
  5517. deactivate_task(task_rq(p), p, 0);
  5518. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5519. if (on_rq) {
  5520. activate_task(task_rq(p), p, 0);
  5521. resched_task(rq->curr);
  5522. }
  5523. #ifdef CONFIG_SMP
  5524. out_unlock:
  5525. #endif
  5526. __task_rq_unlock(rq);
  5527. spin_unlock_irqrestore(&p->pi_lock, flags);
  5528. } while_each_thread(g, p);
  5529. read_unlock_irq(&tasklist_lock);
  5530. }
  5531. #endif /* CONFIG_MAGIC_SYSRQ */
  5532. #ifdef CONFIG_IA64
  5533. /*
  5534. * These functions are only useful for the IA64 MCA handling.
  5535. *
  5536. * They can only be called when the whole system has been
  5537. * stopped - every CPU needs to be quiescent, and no scheduling
  5538. * activity can take place. Using them for anything else would
  5539. * be a serious bug, and as a result, they aren't even visible
  5540. * under any other configuration.
  5541. */
  5542. /**
  5543. * curr_task - return the current task for a given cpu.
  5544. * @cpu: the processor in question.
  5545. *
  5546. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5547. */
  5548. struct task_struct *curr_task(int cpu)
  5549. {
  5550. return cpu_curr(cpu);
  5551. }
  5552. /**
  5553. * set_curr_task - set the current task for a given cpu.
  5554. * @cpu: the processor in question.
  5555. * @p: the task pointer to set.
  5556. *
  5557. * Description: This function must only be used when non-maskable interrupts
  5558. * are serviced on a separate stack. It allows the architecture to switch the
  5559. * notion of the current task on a cpu in a non-blocking manner. This function
  5560. * must be called with all CPU's synchronized, and interrupts disabled, the
  5561. * and caller must save the original value of the current task (see
  5562. * curr_task() above) and restore that value before reenabling interrupts and
  5563. * re-starting the system.
  5564. *
  5565. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5566. */
  5567. void set_curr_task(int cpu, struct task_struct *p)
  5568. {
  5569. cpu_curr(cpu) = p;
  5570. }
  5571. #endif