txrx.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853
  1. /*
  2. * Copyright (c) 2012 Qualcomm Atheros, Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/etherdevice.h>
  17. #include <net/ieee80211_radiotap.h>
  18. #include <linux/if_arp.h>
  19. #include <linux/moduleparam.h>
  20. #include "wil6210.h"
  21. #include "wmi.h"
  22. #include "txrx.h"
  23. #include "trace.h"
  24. static bool rtap_include_phy_info;
  25. module_param(rtap_include_phy_info, bool, S_IRUGO);
  26. MODULE_PARM_DESC(rtap_include_phy_info,
  27. " Include PHY info in the radiotap header, default - no");
  28. static inline int wil_vring_is_empty(struct vring *vring)
  29. {
  30. return vring->swhead == vring->swtail;
  31. }
  32. static inline u32 wil_vring_next_tail(struct vring *vring)
  33. {
  34. return (vring->swtail + 1) % vring->size;
  35. }
  36. static inline void wil_vring_advance_head(struct vring *vring, int n)
  37. {
  38. vring->swhead = (vring->swhead + n) % vring->size;
  39. }
  40. static inline int wil_vring_is_full(struct vring *vring)
  41. {
  42. return wil_vring_next_tail(vring) == vring->swhead;
  43. }
  44. /*
  45. * Available space in Tx Vring
  46. */
  47. static inline int wil_vring_avail_tx(struct vring *vring)
  48. {
  49. u32 swhead = vring->swhead;
  50. u32 swtail = vring->swtail;
  51. int used = (vring->size + swhead - swtail) % vring->size;
  52. return vring->size - used - 1;
  53. }
  54. static int wil_vring_alloc(struct wil6210_priv *wil, struct vring *vring)
  55. {
  56. struct device *dev = wil_to_dev(wil);
  57. size_t sz = vring->size * sizeof(vring->va[0]);
  58. uint i;
  59. BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
  60. vring->swhead = 0;
  61. vring->swtail = 0;
  62. vring->ctx = kzalloc(vring->size * sizeof(vring->ctx[0]), GFP_KERNEL);
  63. if (!vring->ctx) {
  64. vring->va = NULL;
  65. return -ENOMEM;
  66. }
  67. /*
  68. * vring->va should be aligned on its size rounded up to power of 2
  69. * This is granted by the dma_alloc_coherent
  70. */
  71. vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
  72. if (!vring->va) {
  73. kfree(vring->ctx);
  74. vring->ctx = NULL;
  75. return -ENOMEM;
  76. }
  77. /* initially, all descriptors are SW owned
  78. * For Tx and Rx, ownership bit is at the same location, thus
  79. * we can use any
  80. */
  81. for (i = 0; i < vring->size; i++) {
  82. volatile struct vring_tx_desc *d = &(vring->va[i].tx);
  83. d->dma.status = TX_DMA_STATUS_DU;
  84. }
  85. wil_dbg_misc(wil, "vring[%d] 0x%p:0x%016llx 0x%p\n", vring->size,
  86. vring->va, (unsigned long long)vring->pa, vring->ctx);
  87. return 0;
  88. }
  89. static void wil_vring_free(struct wil6210_priv *wil, struct vring *vring,
  90. int tx)
  91. {
  92. struct device *dev = wil_to_dev(wil);
  93. size_t sz = vring->size * sizeof(vring->va[0]);
  94. while (!wil_vring_is_empty(vring)) {
  95. u16 dmalen;
  96. if (tx) {
  97. volatile struct vring_tx_desc *d =
  98. &vring->va[vring->swtail].tx;
  99. dma_addr_t pa = d->dma.addr_low |
  100. ((u64)d->dma.addr_high << 32);
  101. struct sk_buff *skb = vring->ctx[vring->swtail];
  102. dmalen = le16_to_cpu(d->dma.length);
  103. if (skb) {
  104. dma_unmap_single(dev, pa, dmalen,
  105. DMA_TO_DEVICE);
  106. dev_kfree_skb_any(skb);
  107. vring->ctx[vring->swtail] = NULL;
  108. } else {
  109. dma_unmap_page(dev, pa, dmalen,
  110. DMA_TO_DEVICE);
  111. }
  112. vring->swtail = wil_vring_next_tail(vring);
  113. } else { /* rx */
  114. volatile struct vring_rx_desc *d =
  115. &vring->va[vring->swtail].rx;
  116. dma_addr_t pa = d->dma.addr_low |
  117. ((u64)d->dma.addr_high << 32);
  118. struct sk_buff *skb = vring->ctx[vring->swhead];
  119. dmalen = le16_to_cpu(d->dma.length);
  120. dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE);
  121. kfree_skb(skb);
  122. wil_vring_advance_head(vring, 1);
  123. }
  124. }
  125. dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
  126. kfree(vring->ctx);
  127. vring->pa = 0;
  128. vring->va = NULL;
  129. vring->ctx = NULL;
  130. }
  131. /**
  132. * Allocate one skb for Rx VRING
  133. *
  134. * Safe to call from IRQ
  135. */
  136. static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct vring *vring,
  137. u32 i, int headroom)
  138. {
  139. struct device *dev = wil_to_dev(wil);
  140. unsigned int sz = RX_BUF_LEN;
  141. volatile struct vring_rx_desc *d = &(vring->va[i].rx);
  142. dma_addr_t pa;
  143. /* TODO align */
  144. struct sk_buff *skb = dev_alloc_skb(sz + headroom);
  145. if (unlikely(!skb))
  146. return -ENOMEM;
  147. skb_reserve(skb, headroom);
  148. skb_put(skb, sz);
  149. pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
  150. if (unlikely(dma_mapping_error(dev, pa))) {
  151. kfree_skb(skb);
  152. return -ENOMEM;
  153. }
  154. d->dma.d0 = BIT(9) | RX_DMA_D0_CMD_DMA_IT;
  155. d->dma.addr_low = lower_32_bits(pa);
  156. d->dma.addr_high = (u16)upper_32_bits(pa);
  157. /* ip_length don't care */
  158. /* b11 don't care */
  159. /* error don't care */
  160. d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
  161. d->dma.length = cpu_to_le16(sz);
  162. vring->ctx[i] = skb;
  163. return 0;
  164. }
  165. /**
  166. * Adds radiotap header
  167. *
  168. * Any error indicated as "Bad FCS"
  169. *
  170. * Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
  171. * - Rx descriptor: 32 bytes
  172. * - Phy info
  173. */
  174. static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
  175. struct sk_buff *skb)
  176. {
  177. struct wireless_dev *wdev = wil->wdev;
  178. struct wil6210_rtap {
  179. struct ieee80211_radiotap_header rthdr;
  180. /* fields should be in the order of bits in rthdr.it_present */
  181. /* flags */
  182. u8 flags;
  183. /* channel */
  184. __le16 chnl_freq __aligned(2);
  185. __le16 chnl_flags;
  186. /* MCS */
  187. u8 mcs_present;
  188. u8 mcs_flags;
  189. u8 mcs_index;
  190. } __packed;
  191. struct wil6210_rtap_vendor {
  192. struct wil6210_rtap rtap;
  193. /* vendor */
  194. u8 vendor_oui[3] __aligned(2);
  195. u8 vendor_ns;
  196. __le16 vendor_skip;
  197. u8 vendor_data[0];
  198. } __packed;
  199. struct vring_rx_desc *d = wil_skb_rxdesc(skb);
  200. struct wil6210_rtap_vendor *rtap_vendor;
  201. int rtap_len = sizeof(struct wil6210_rtap);
  202. int phy_length = 0; /* phy info header size, bytes */
  203. static char phy_data[128];
  204. struct ieee80211_channel *ch = wdev->preset_chandef.chan;
  205. if (rtap_include_phy_info) {
  206. rtap_len = sizeof(*rtap_vendor) + sizeof(*d);
  207. /* calculate additional length */
  208. if (d->dma.status & RX_DMA_STATUS_PHY_INFO) {
  209. /**
  210. * PHY info starts from 8-byte boundary
  211. * there are 8-byte lines, last line may be partially
  212. * written (HW bug), thus FW configures for last line
  213. * to be excessive. Driver skips this last line.
  214. */
  215. int len = min_t(int, 8 + sizeof(phy_data),
  216. wil_rxdesc_phy_length(d));
  217. if (len > 8) {
  218. void *p = skb_tail_pointer(skb);
  219. void *pa = PTR_ALIGN(p, 8);
  220. if (skb_tailroom(skb) >= len + (pa - p)) {
  221. phy_length = len - 8;
  222. memcpy(phy_data, pa, phy_length);
  223. }
  224. }
  225. }
  226. rtap_len += phy_length;
  227. }
  228. if (skb_headroom(skb) < rtap_len &&
  229. pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
  230. wil_err(wil, "Unable to expand headrom to %d\n", rtap_len);
  231. return;
  232. }
  233. rtap_vendor = (void *)skb_push(skb, rtap_len);
  234. memset(rtap_vendor, 0, rtap_len);
  235. rtap_vendor->rtap.rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
  236. rtap_vendor->rtap.rthdr.it_len = cpu_to_le16(rtap_len);
  237. rtap_vendor->rtap.rthdr.it_present = cpu_to_le32(
  238. (1 << IEEE80211_RADIOTAP_FLAGS) |
  239. (1 << IEEE80211_RADIOTAP_CHANNEL) |
  240. (1 << IEEE80211_RADIOTAP_MCS));
  241. if (d->dma.status & RX_DMA_STATUS_ERROR)
  242. rtap_vendor->rtap.flags |= IEEE80211_RADIOTAP_F_BADFCS;
  243. rtap_vendor->rtap.chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
  244. rtap_vendor->rtap.chnl_flags = cpu_to_le16(0);
  245. rtap_vendor->rtap.mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
  246. rtap_vendor->rtap.mcs_flags = 0;
  247. rtap_vendor->rtap.mcs_index = wil_rxdesc_mcs(d);
  248. if (rtap_include_phy_info) {
  249. rtap_vendor->rtap.rthdr.it_present |= cpu_to_le32(1 <<
  250. IEEE80211_RADIOTAP_VENDOR_NAMESPACE);
  251. /* OUI for Wilocity 04:ce:14 */
  252. rtap_vendor->vendor_oui[0] = 0x04;
  253. rtap_vendor->vendor_oui[1] = 0xce;
  254. rtap_vendor->vendor_oui[2] = 0x14;
  255. rtap_vendor->vendor_ns = 1;
  256. /* Rx descriptor + PHY data */
  257. rtap_vendor->vendor_skip = cpu_to_le16(sizeof(*d) +
  258. phy_length);
  259. memcpy(rtap_vendor->vendor_data, (void *)d, sizeof(*d));
  260. memcpy(rtap_vendor->vendor_data + sizeof(*d), phy_data,
  261. phy_length);
  262. }
  263. }
  264. /*
  265. * Fast swap in place between 2 registers
  266. */
  267. static void wil_swap_u16(u16 *a, u16 *b)
  268. {
  269. *a ^= *b;
  270. *b ^= *a;
  271. *a ^= *b;
  272. }
  273. static void wil_swap_ethaddr(void *data)
  274. {
  275. struct ethhdr *eth = data;
  276. u16 *s = (u16 *)eth->h_source;
  277. u16 *d = (u16 *)eth->h_dest;
  278. wil_swap_u16(s++, d++);
  279. wil_swap_u16(s++, d++);
  280. wil_swap_u16(s, d);
  281. }
  282. /**
  283. * reap 1 frame from @swhead
  284. *
  285. * Rx descriptor copied to skb->cb
  286. *
  287. * Safe to call from IRQ
  288. */
  289. static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
  290. struct vring *vring)
  291. {
  292. struct device *dev = wil_to_dev(wil);
  293. struct net_device *ndev = wil_to_ndev(wil);
  294. volatile struct vring_rx_desc *d;
  295. struct vring_rx_desc *d1;
  296. struct sk_buff *skb;
  297. dma_addr_t pa;
  298. unsigned int sz = RX_BUF_LEN;
  299. u16 dmalen;
  300. u8 ftype;
  301. u8 ds_bits;
  302. BUILD_BUG_ON(sizeof(struct vring_rx_desc) > sizeof(skb->cb));
  303. if (wil_vring_is_empty(vring))
  304. return NULL;
  305. d = &(vring->va[vring->swhead].rx);
  306. if (!(d->dma.status & RX_DMA_STATUS_DU)) {
  307. /* it is not error, we just reached end of Rx done area */
  308. return NULL;
  309. }
  310. pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32);
  311. skb = vring->ctx[vring->swhead];
  312. dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
  313. d1 = wil_skb_rxdesc(skb);
  314. *d1 = *d;
  315. wil_vring_advance_head(vring, 1);
  316. dmalen = le16_to_cpu(d1->dma.length);
  317. if (dmalen > sz) {
  318. wil_err(wil, "Rx size too large: %d bytes!\n", dmalen);
  319. kfree(skb);
  320. return NULL;
  321. }
  322. skb_trim(skb, dmalen);
  323. wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
  324. skb->data, skb_headlen(skb), false);
  325. wil->stats.last_mcs_rx = wil_rxdesc_mcs(d1);
  326. /* use radiotap header only if required */
  327. if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
  328. wil_rx_add_radiotap_header(wil, skb);
  329. trace_wil6210_rx(vring->swhead, d1);
  330. wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", vring->swhead,
  331. d1->dma.length);
  332. wil_hex_dump_txrx("Rx ", DUMP_PREFIX_NONE, 32, 4,
  333. (const void *)d1, sizeof(*d1), false);
  334. /* no extra checks if in sniffer mode */
  335. if (ndev->type != ARPHRD_ETHER)
  336. return skb;
  337. /*
  338. * Non-data frames may be delivered through Rx DMA channel (ex: BAR)
  339. * Driver should recognize it by frame type, that is found
  340. * in Rx descriptor. If type is not data, it is 802.11 frame as is
  341. */
  342. ftype = wil_rxdesc_ftype(d1) << 2;
  343. if (ftype != IEEE80211_FTYPE_DATA) {
  344. wil_dbg_txrx(wil, "Non-data frame ftype 0x%08x\n", ftype);
  345. /* TODO: process it */
  346. kfree_skb(skb);
  347. return NULL;
  348. }
  349. if (skb->len < ETH_HLEN) {
  350. wil_err(wil, "Short frame, len = %d\n", skb->len);
  351. /* TODO: process it (i.e. BAR) */
  352. kfree_skb(skb);
  353. return NULL;
  354. }
  355. ds_bits = wil_rxdesc_ds_bits(d1);
  356. if (ds_bits == 1) {
  357. /*
  358. * HW bug - in ToDS mode, i.e. Rx on AP side,
  359. * addresses get swapped
  360. */
  361. wil_swap_ethaddr(skb->data);
  362. }
  363. return skb;
  364. }
  365. /**
  366. * allocate and fill up to @count buffers in rx ring
  367. * buffers posted at @swtail
  368. */
  369. static int wil_rx_refill(struct wil6210_priv *wil, int count)
  370. {
  371. struct net_device *ndev = wil_to_ndev(wil);
  372. struct vring *v = &wil->vring_rx;
  373. u32 next_tail;
  374. int rc = 0;
  375. int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
  376. WIL6210_RTAP_SIZE : 0;
  377. for (; next_tail = wil_vring_next_tail(v),
  378. (next_tail != v->swhead) && (count-- > 0);
  379. v->swtail = next_tail) {
  380. rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
  381. if (rc) {
  382. wil_err(wil, "Error %d in wil_rx_refill[%d]\n",
  383. rc, v->swtail);
  384. break;
  385. }
  386. }
  387. iowrite32(v->swtail, wil->csr + HOSTADDR(v->hwtail));
  388. return rc;
  389. }
  390. /*
  391. * Pass Rx packet to the netif. Update statistics.
  392. */
  393. static void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
  394. {
  395. int rc;
  396. unsigned int len = skb->len;
  397. skb_orphan(skb);
  398. if (in_interrupt())
  399. rc = netif_rx(skb);
  400. else
  401. rc = netif_rx_ni(skb);
  402. if (likely(rc == NET_RX_SUCCESS)) {
  403. ndev->stats.rx_packets++;
  404. ndev->stats.rx_bytes += len;
  405. } else {
  406. ndev->stats.rx_dropped++;
  407. }
  408. }
  409. /**
  410. * Proceed all completed skb's from Rx VRING
  411. *
  412. * Safe to call from IRQ
  413. */
  414. void wil_rx_handle(struct wil6210_priv *wil)
  415. {
  416. struct net_device *ndev = wil_to_ndev(wil);
  417. struct vring *v = &wil->vring_rx;
  418. struct sk_buff *skb;
  419. if (!v->va) {
  420. wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
  421. return;
  422. }
  423. wil_dbg_txrx(wil, "%s()\n", __func__);
  424. while (NULL != (skb = wil_vring_reap_rx(wil, v))) {
  425. if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) {
  426. skb->dev = ndev;
  427. skb_reset_mac_header(skb);
  428. skb->ip_summed = CHECKSUM_UNNECESSARY;
  429. skb->pkt_type = PACKET_OTHERHOST;
  430. skb->protocol = htons(ETH_P_802_2);
  431. } else {
  432. skb->protocol = eth_type_trans(skb, ndev);
  433. }
  434. wil_netif_rx_any(skb, ndev);
  435. }
  436. wil_rx_refill(wil, v->size);
  437. }
  438. int wil_rx_init(struct wil6210_priv *wil)
  439. {
  440. struct vring *vring = &wil->vring_rx;
  441. int rc;
  442. vring->size = WIL6210_RX_RING_SIZE;
  443. rc = wil_vring_alloc(wil, vring);
  444. if (rc)
  445. return rc;
  446. rc = wmi_rx_chain_add(wil, vring);
  447. if (rc)
  448. goto err_free;
  449. rc = wil_rx_refill(wil, vring->size);
  450. if (rc)
  451. goto err_free;
  452. return 0;
  453. err_free:
  454. wil_vring_free(wil, vring, 0);
  455. return rc;
  456. }
  457. void wil_rx_fini(struct wil6210_priv *wil)
  458. {
  459. struct vring *vring = &wil->vring_rx;
  460. if (vring->va)
  461. wil_vring_free(wil, vring, 0);
  462. }
  463. int wil_vring_init_tx(struct wil6210_priv *wil, int id, int size,
  464. int cid, int tid)
  465. {
  466. int rc;
  467. struct wmi_vring_cfg_cmd cmd = {
  468. .action = cpu_to_le32(WMI_VRING_CMD_ADD),
  469. .vring_cfg = {
  470. .tx_sw_ring = {
  471. .max_mpdu_size = cpu_to_le16(TX_BUF_LEN),
  472. .ring_size = cpu_to_le16(size),
  473. },
  474. .ringid = id,
  475. .cidxtid = (cid & 0xf) | ((tid & 0xf) << 4),
  476. .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
  477. .mac_ctrl = 0,
  478. .to_resolution = 0,
  479. .agg_max_wsize = 16,
  480. .schd_params = {
  481. .priority = cpu_to_le16(0),
  482. .timeslot_us = cpu_to_le16(0xfff),
  483. },
  484. },
  485. };
  486. struct {
  487. struct wil6210_mbox_hdr_wmi wmi;
  488. struct wmi_vring_cfg_done_event cmd;
  489. } __packed reply;
  490. struct vring *vring = &wil->vring_tx[id];
  491. if (vring->va) {
  492. wil_err(wil, "Tx ring [%d] already allocated\n", id);
  493. rc = -EINVAL;
  494. goto out;
  495. }
  496. vring->size = size;
  497. rc = wil_vring_alloc(wil, vring);
  498. if (rc)
  499. goto out;
  500. cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
  501. rc = wmi_call(wil, WMI_VRING_CFG_CMDID, &cmd, sizeof(cmd),
  502. WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
  503. if (rc)
  504. goto out_free;
  505. if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
  506. wil_err(wil, "Tx config failed, status 0x%02x\n",
  507. reply.cmd.status);
  508. rc = -EINVAL;
  509. goto out_free;
  510. }
  511. vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
  512. return 0;
  513. out_free:
  514. wil_vring_free(wil, vring, 1);
  515. out:
  516. return rc;
  517. }
  518. void wil_vring_fini_tx(struct wil6210_priv *wil, int id)
  519. {
  520. struct vring *vring = &wil->vring_tx[id];
  521. if (!vring->va)
  522. return;
  523. wil_vring_free(wil, vring, 1);
  524. }
  525. static struct vring *wil_find_tx_vring(struct wil6210_priv *wil,
  526. struct sk_buff *skb)
  527. {
  528. struct vring *v = &wil->vring_tx[0];
  529. if (v->va)
  530. return v;
  531. return NULL;
  532. }
  533. static int wil_tx_desc_map(volatile struct vring_tx_desc *d,
  534. dma_addr_t pa, u32 len)
  535. {
  536. d->dma.addr_low = lower_32_bits(pa);
  537. d->dma.addr_high = (u16)upper_32_bits(pa);
  538. d->dma.ip_length = 0;
  539. /* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
  540. d->dma.b11 = 0/*14 | BIT(7)*/;
  541. d->dma.error = 0;
  542. d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
  543. d->dma.length = cpu_to_le16((u16)len);
  544. d->dma.d0 = 0;
  545. d->mac.d[0] = 0;
  546. d->mac.d[1] = 0;
  547. d->mac.d[2] = 0;
  548. d->mac.ucode_cmd = 0;
  549. /* use dst index 0 */
  550. d->mac.d[1] |= BIT(MAC_CFG_DESC_TX_1_DST_INDEX_EN_POS) |
  551. (0 << MAC_CFG_DESC_TX_1_DST_INDEX_POS);
  552. /* translation type: 0 - bypass; 1 - 802.3; 2 - native wifi */
  553. d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
  554. (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
  555. return 0;
  556. }
  557. static int wil_tx_vring(struct wil6210_priv *wil, struct vring *vring,
  558. struct sk_buff *skb)
  559. {
  560. struct device *dev = wil_to_dev(wil);
  561. volatile struct vring_tx_desc *d;
  562. u32 swhead = vring->swhead;
  563. int avail = wil_vring_avail_tx(vring);
  564. int nr_frags = skb_shinfo(skb)->nr_frags;
  565. uint f;
  566. int vring_index = vring - wil->vring_tx;
  567. uint i = swhead;
  568. dma_addr_t pa;
  569. wil_dbg_txrx(wil, "%s()\n", __func__);
  570. if (avail < vring->size/8)
  571. netif_tx_stop_all_queues(wil_to_ndev(wil));
  572. if (avail < 1 + nr_frags) {
  573. wil_err(wil, "Tx ring full. No space for %d fragments\n",
  574. 1 + nr_frags);
  575. return -ENOMEM;
  576. }
  577. d = &(vring->va[i].tx);
  578. /* FIXME FW can accept only unicast frames for the peer */
  579. memcpy(skb->data, wil->dst_addr[vring_index], ETH_ALEN);
  580. pa = dma_map_single(dev, skb->data,
  581. skb_headlen(skb), DMA_TO_DEVICE);
  582. wil_dbg_txrx(wil, "Tx skb %d bytes %p -> %#08llx\n", skb_headlen(skb),
  583. skb->data, (unsigned long long)pa);
  584. wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
  585. skb->data, skb_headlen(skb), false);
  586. if (unlikely(dma_mapping_error(dev, pa)))
  587. return -EINVAL;
  588. /* 1-st segment */
  589. wil_tx_desc_map(d, pa, skb_headlen(skb));
  590. d->mac.d[2] |= ((nr_frags + 1) <<
  591. MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
  592. /* middle segments */
  593. for (f = 0; f < nr_frags; f++) {
  594. const struct skb_frag_struct *frag =
  595. &skb_shinfo(skb)->frags[f];
  596. int len = skb_frag_size(frag);
  597. i = (swhead + f + 1) % vring->size;
  598. d = &(vring->va[i].tx);
  599. pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
  600. DMA_TO_DEVICE);
  601. if (unlikely(dma_mapping_error(dev, pa)))
  602. goto dma_error;
  603. wil_tx_desc_map(d, pa, len);
  604. vring->ctx[i] = NULL;
  605. }
  606. /* for the last seg only */
  607. d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
  608. d->dma.d0 |= BIT(9); /* BUG: undocumented bit */
  609. d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
  610. d->dma.d0 |= (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
  611. wil_hex_dump_txrx("Tx ", DUMP_PREFIX_NONE, 32, 4,
  612. (const void *)d, sizeof(*d), false);
  613. /* advance swhead */
  614. wil_vring_advance_head(vring, nr_frags + 1);
  615. wil_dbg_txrx(wil, "Tx swhead %d -> %d\n", swhead, vring->swhead);
  616. trace_wil6210_tx(vring_index, swhead, skb->len, nr_frags);
  617. iowrite32(vring->swhead, wil->csr + HOSTADDR(vring->hwtail));
  618. /* hold reference to skb
  619. * to prevent skb release before accounting
  620. * in case of immediate "tx done"
  621. */
  622. vring->ctx[i] = skb_get(skb);
  623. return 0;
  624. dma_error:
  625. /* unmap what we have mapped */
  626. /* Note: increment @f to operate with positive index */
  627. for (f++; f > 0; f--) {
  628. u16 dmalen;
  629. i = (swhead + f) % vring->size;
  630. d = &(vring->va[i].tx);
  631. d->dma.status = TX_DMA_STATUS_DU;
  632. pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32);
  633. dmalen = le16_to_cpu(d->dma.length);
  634. if (vring->ctx[i])
  635. dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE);
  636. else
  637. dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE);
  638. }
  639. return -EINVAL;
  640. }
  641. netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  642. {
  643. struct wil6210_priv *wil = ndev_to_wil(ndev);
  644. struct vring *vring;
  645. int rc;
  646. wil_dbg_txrx(wil, "%s()\n", __func__);
  647. if (!test_bit(wil_status_fwready, &wil->status)) {
  648. wil_err(wil, "FW not ready\n");
  649. goto drop;
  650. }
  651. if (!test_bit(wil_status_fwconnected, &wil->status)) {
  652. wil_err(wil, "FW not connected\n");
  653. goto drop;
  654. }
  655. if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) {
  656. wil_err(wil, "Xmit in monitor mode not supported\n");
  657. goto drop;
  658. }
  659. if (skb->protocol == cpu_to_be16(ETH_P_PAE)) {
  660. rc = wmi_tx_eapol(wil, skb);
  661. } else {
  662. /* find vring */
  663. vring = wil_find_tx_vring(wil, skb);
  664. if (!vring) {
  665. wil_err(wil, "No Tx VRING available\n");
  666. goto drop;
  667. }
  668. /* set up vring entry */
  669. rc = wil_tx_vring(wil, vring, skb);
  670. }
  671. switch (rc) {
  672. case 0:
  673. /* statistics will be updated on the tx_complete */
  674. dev_kfree_skb_any(skb);
  675. return NETDEV_TX_OK;
  676. case -ENOMEM:
  677. return NETDEV_TX_BUSY;
  678. default:
  679. break; /* goto drop; */
  680. }
  681. drop:
  682. netif_tx_stop_all_queues(ndev);
  683. ndev->stats.tx_dropped++;
  684. dev_kfree_skb_any(skb);
  685. return NET_XMIT_DROP;
  686. }
  687. /**
  688. * Clean up transmitted skb's from the Tx VRING
  689. *
  690. * Safe to call from IRQ
  691. */
  692. void wil_tx_complete(struct wil6210_priv *wil, int ringid)
  693. {
  694. struct net_device *ndev = wil_to_ndev(wil);
  695. struct device *dev = wil_to_dev(wil);
  696. struct vring *vring = &wil->vring_tx[ringid];
  697. if (!vring->va) {
  698. wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
  699. return;
  700. }
  701. wil_dbg_txrx(wil, "%s(%d)\n", __func__, ringid);
  702. while (!wil_vring_is_empty(vring)) {
  703. volatile struct vring_tx_desc *d1 =
  704. &vring->va[vring->swtail].tx;
  705. struct vring_tx_desc dd, *d = &dd;
  706. dma_addr_t pa;
  707. struct sk_buff *skb;
  708. u16 dmalen;
  709. dd = *d1;
  710. if (!(d->dma.status & TX_DMA_STATUS_DU))
  711. break;
  712. dmalen = le16_to_cpu(d->dma.length);
  713. trace_wil6210_tx_done(ringid, vring->swtail, dmalen,
  714. d->dma.error);
  715. wil_dbg_txrx(wil,
  716. "Tx[%3d] : %d bytes, status 0x%02x err 0x%02x\n",
  717. vring->swtail, dmalen, d->dma.status,
  718. d->dma.error);
  719. wil_hex_dump_txrx("TxC ", DUMP_PREFIX_NONE, 32, 4,
  720. (const void *)d, sizeof(*d), false);
  721. pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32);
  722. skb = vring->ctx[vring->swtail];
  723. if (skb) {
  724. if (d->dma.error == 0) {
  725. ndev->stats.tx_packets++;
  726. ndev->stats.tx_bytes += skb->len;
  727. } else {
  728. ndev->stats.tx_errors++;
  729. }
  730. dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE);
  731. dev_kfree_skb_any(skb);
  732. vring->ctx[vring->swtail] = NULL;
  733. } else {
  734. dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE);
  735. }
  736. d->dma.addr_low = 0;
  737. d->dma.addr_high = 0;
  738. d->dma.length = 0;
  739. d->dma.status = TX_DMA_STATUS_DU;
  740. vring->swtail = wil_vring_next_tail(vring);
  741. }
  742. if (wil_vring_avail_tx(vring) > vring->size/4)
  743. netif_tx_wake_all_queues(wil_to_ndev(wil));
  744. }