page_alloc.c 130 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/suspend.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/slab.h>
  30. #include <linux/oom.h>
  31. #include <linux/notifier.h>
  32. #include <linux/topology.h>
  33. #include <linux/sysctl.h>
  34. #include <linux/cpu.h>
  35. #include <linux/cpuset.h>
  36. #include <linux/memory_hotplug.h>
  37. #include <linux/nodemask.h>
  38. #include <linux/vmalloc.h>
  39. #include <linux/mempolicy.h>
  40. #include <linux/stop_machine.h>
  41. #include <linux/sort.h>
  42. #include <linux/pfn.h>
  43. #include <linux/backing-dev.h>
  44. #include <linux/fault-inject.h>
  45. #include <linux/page-isolation.h>
  46. #include <linux/memcontrol.h>
  47. #include <linux/debugobjects.h>
  48. #include <asm/tlbflush.h>
  49. #include <asm/div64.h>
  50. #include "internal.h"
  51. /*
  52. * Array of node states.
  53. */
  54. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  55. [N_POSSIBLE] = NODE_MASK_ALL,
  56. [N_ONLINE] = { { [0] = 1UL } },
  57. #ifndef CONFIG_NUMA
  58. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  59. #ifdef CONFIG_HIGHMEM
  60. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  61. #endif
  62. [N_CPU] = { { [0] = 1UL } },
  63. #endif /* NUMA */
  64. };
  65. EXPORT_SYMBOL(node_states);
  66. unsigned long totalram_pages __read_mostly;
  67. unsigned long totalreserve_pages __read_mostly;
  68. long nr_swap_pages;
  69. int percpu_pagelist_fraction;
  70. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  71. int pageblock_order __read_mostly;
  72. #endif
  73. static void __free_pages_ok(struct page *page, unsigned int order);
  74. /*
  75. * results with 256, 32 in the lowmem_reserve sysctl:
  76. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  77. * 1G machine -> (16M dma, 784M normal, 224M high)
  78. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  79. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  80. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  81. *
  82. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  83. * don't need any ZONE_NORMAL reservation
  84. */
  85. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  86. #ifdef CONFIG_ZONE_DMA
  87. 256,
  88. #endif
  89. #ifdef CONFIG_ZONE_DMA32
  90. 256,
  91. #endif
  92. #ifdef CONFIG_HIGHMEM
  93. 32,
  94. #endif
  95. 32,
  96. };
  97. EXPORT_SYMBOL(totalram_pages);
  98. static char * const zone_names[MAX_NR_ZONES] = {
  99. #ifdef CONFIG_ZONE_DMA
  100. "DMA",
  101. #endif
  102. #ifdef CONFIG_ZONE_DMA32
  103. "DMA32",
  104. #endif
  105. "Normal",
  106. #ifdef CONFIG_HIGHMEM
  107. "HighMem",
  108. #endif
  109. "Movable",
  110. };
  111. int min_free_kbytes = 1024;
  112. unsigned long __meminitdata nr_kernel_pages;
  113. unsigned long __meminitdata nr_all_pages;
  114. static unsigned long __meminitdata dma_reserve;
  115. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  116. /*
  117. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  118. * ranges of memory (RAM) that may be registered with add_active_range().
  119. * Ranges passed to add_active_range() will be merged if possible
  120. * so the number of times add_active_range() can be called is
  121. * related to the number of nodes and the number of holes
  122. */
  123. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  124. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  125. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  126. #else
  127. #if MAX_NUMNODES >= 32
  128. /* If there can be many nodes, allow up to 50 holes per node */
  129. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  130. #else
  131. /* By default, allow up to 256 distinct regions */
  132. #define MAX_ACTIVE_REGIONS 256
  133. #endif
  134. #endif
  135. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  136. static int __meminitdata nr_nodemap_entries;
  137. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  138. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  139. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  140. static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
  141. static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
  142. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  143. static unsigned long __initdata required_kernelcore;
  144. static unsigned long __initdata required_movablecore;
  145. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  146. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  147. int movable_zone;
  148. EXPORT_SYMBOL(movable_zone);
  149. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  150. #if MAX_NUMNODES > 1
  151. int nr_node_ids __read_mostly = MAX_NUMNODES;
  152. EXPORT_SYMBOL(nr_node_ids);
  153. #endif
  154. int page_group_by_mobility_disabled __read_mostly;
  155. static void set_pageblock_migratetype(struct page *page, int migratetype)
  156. {
  157. set_pageblock_flags_group(page, (unsigned long)migratetype,
  158. PB_migrate, PB_migrate_end);
  159. }
  160. #ifdef CONFIG_DEBUG_VM
  161. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  162. {
  163. int ret = 0;
  164. unsigned seq;
  165. unsigned long pfn = page_to_pfn(page);
  166. do {
  167. seq = zone_span_seqbegin(zone);
  168. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  169. ret = 1;
  170. else if (pfn < zone->zone_start_pfn)
  171. ret = 1;
  172. } while (zone_span_seqretry(zone, seq));
  173. return ret;
  174. }
  175. static int page_is_consistent(struct zone *zone, struct page *page)
  176. {
  177. if (!pfn_valid_within(page_to_pfn(page)))
  178. return 0;
  179. if (zone != page_zone(page))
  180. return 0;
  181. return 1;
  182. }
  183. /*
  184. * Temporary debugging check for pages not lying within a given zone.
  185. */
  186. static int bad_range(struct zone *zone, struct page *page)
  187. {
  188. if (page_outside_zone_boundaries(zone, page))
  189. return 1;
  190. if (!page_is_consistent(zone, page))
  191. return 1;
  192. return 0;
  193. }
  194. #else
  195. static inline int bad_range(struct zone *zone, struct page *page)
  196. {
  197. return 0;
  198. }
  199. #endif
  200. static void bad_page(struct page *page)
  201. {
  202. void *pc = page_get_page_cgroup(page);
  203. printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
  204. "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
  205. current->comm, page, (int)(2*sizeof(unsigned long)),
  206. (unsigned long)page->flags, page->mapping,
  207. page_mapcount(page), page_count(page));
  208. if (pc) {
  209. printk(KERN_EMERG "cgroup:%p\n", pc);
  210. page_reset_bad_cgroup(page);
  211. }
  212. printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
  213. KERN_EMERG "Backtrace:\n");
  214. dump_stack();
  215. page->flags &= ~PAGE_FLAGS_CLEAR_WHEN_BAD;
  216. set_page_count(page, 0);
  217. reset_page_mapcount(page);
  218. page->mapping = NULL;
  219. add_taint(TAINT_BAD_PAGE);
  220. }
  221. /*
  222. * Higher-order pages are called "compound pages". They are structured thusly:
  223. *
  224. * The first PAGE_SIZE page is called the "head page".
  225. *
  226. * The remaining PAGE_SIZE pages are called "tail pages".
  227. *
  228. * All pages have PG_compound set. All pages have their ->private pointing at
  229. * the head page (even the head page has this).
  230. *
  231. * The first tail page's ->lru.next holds the address of the compound page's
  232. * put_page() function. Its ->lru.prev holds the order of allocation.
  233. * This usage means that zero-order pages may not be compound.
  234. */
  235. static void free_compound_page(struct page *page)
  236. {
  237. __free_pages_ok(page, compound_order(page));
  238. }
  239. void prep_compound_page(struct page *page, unsigned long order)
  240. {
  241. int i;
  242. int nr_pages = 1 << order;
  243. struct page *p = page + 1;
  244. set_compound_page_dtor(page, free_compound_page);
  245. set_compound_order(page, order);
  246. __SetPageHead(page);
  247. for (i = 1; i < nr_pages; i++, p++) {
  248. if (unlikely((i & (MAX_ORDER_NR_PAGES - 1)) == 0))
  249. p = pfn_to_page(page_to_pfn(page) + i);
  250. __SetPageTail(p);
  251. p->first_page = page;
  252. }
  253. }
  254. static void destroy_compound_page(struct page *page, unsigned long order)
  255. {
  256. int i;
  257. int nr_pages = 1 << order;
  258. struct page *p = page + 1;
  259. if (unlikely(compound_order(page) != order))
  260. bad_page(page);
  261. if (unlikely(!PageHead(page)))
  262. bad_page(page);
  263. __ClearPageHead(page);
  264. for (i = 1; i < nr_pages; i++, p++) {
  265. if (unlikely((i & (MAX_ORDER_NR_PAGES - 1)) == 0))
  266. p = pfn_to_page(page_to_pfn(page) + i);
  267. if (unlikely(!PageTail(p) |
  268. (p->first_page != page)))
  269. bad_page(page);
  270. __ClearPageTail(p);
  271. }
  272. }
  273. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  274. {
  275. int i;
  276. /*
  277. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  278. * and __GFP_HIGHMEM from hard or soft interrupt context.
  279. */
  280. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  281. for (i = 0; i < (1 << order); i++)
  282. clear_highpage(page + i);
  283. }
  284. static inline void set_page_order(struct page *page, int order)
  285. {
  286. set_page_private(page, order);
  287. __SetPageBuddy(page);
  288. }
  289. static inline void rmv_page_order(struct page *page)
  290. {
  291. __ClearPageBuddy(page);
  292. set_page_private(page, 0);
  293. }
  294. /*
  295. * Locate the struct page for both the matching buddy in our
  296. * pair (buddy1) and the combined O(n+1) page they form (page).
  297. *
  298. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  299. * the following equation:
  300. * B2 = B1 ^ (1 << O)
  301. * For example, if the starting buddy (buddy2) is #8 its order
  302. * 1 buddy is #10:
  303. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  304. *
  305. * 2) Any buddy B will have an order O+1 parent P which
  306. * satisfies the following equation:
  307. * P = B & ~(1 << O)
  308. *
  309. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  310. */
  311. static inline struct page *
  312. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  313. {
  314. unsigned long buddy_idx = page_idx ^ (1 << order);
  315. return page + (buddy_idx - page_idx);
  316. }
  317. static inline unsigned long
  318. __find_combined_index(unsigned long page_idx, unsigned int order)
  319. {
  320. return (page_idx & ~(1 << order));
  321. }
  322. /*
  323. * This function checks whether a page is free && is the buddy
  324. * we can do coalesce a page and its buddy if
  325. * (a) the buddy is not in a hole &&
  326. * (b) the buddy is in the buddy system &&
  327. * (c) a page and its buddy have the same order &&
  328. * (d) a page and its buddy are in the same zone.
  329. *
  330. * For recording whether a page is in the buddy system, we use PG_buddy.
  331. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  332. *
  333. * For recording page's order, we use page_private(page).
  334. */
  335. static inline int page_is_buddy(struct page *page, struct page *buddy,
  336. int order)
  337. {
  338. if (!pfn_valid_within(page_to_pfn(buddy)))
  339. return 0;
  340. if (page_zone_id(page) != page_zone_id(buddy))
  341. return 0;
  342. if (PageBuddy(buddy) && page_order(buddy) == order) {
  343. BUG_ON(page_count(buddy) != 0);
  344. return 1;
  345. }
  346. return 0;
  347. }
  348. /*
  349. * Freeing function for a buddy system allocator.
  350. *
  351. * The concept of a buddy system is to maintain direct-mapped table
  352. * (containing bit values) for memory blocks of various "orders".
  353. * The bottom level table contains the map for the smallest allocatable
  354. * units of memory (here, pages), and each level above it describes
  355. * pairs of units from the levels below, hence, "buddies".
  356. * At a high level, all that happens here is marking the table entry
  357. * at the bottom level available, and propagating the changes upward
  358. * as necessary, plus some accounting needed to play nicely with other
  359. * parts of the VM system.
  360. * At each level, we keep a list of pages, which are heads of continuous
  361. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  362. * order is recorded in page_private(page) field.
  363. * So when we are allocating or freeing one, we can derive the state of the
  364. * other. That is, if we allocate a small block, and both were
  365. * free, the remainder of the region must be split into blocks.
  366. * If a block is freed, and its buddy is also free, then this
  367. * triggers coalescing into a block of larger size.
  368. *
  369. * -- wli
  370. */
  371. static inline void __free_one_page(struct page *page,
  372. struct zone *zone, unsigned int order)
  373. {
  374. unsigned long page_idx;
  375. int order_size = 1 << order;
  376. int migratetype = get_pageblock_migratetype(page);
  377. if (unlikely(PageCompound(page)))
  378. destroy_compound_page(page, order);
  379. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  380. VM_BUG_ON(page_idx & (order_size - 1));
  381. VM_BUG_ON(bad_range(zone, page));
  382. __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
  383. while (order < MAX_ORDER-1) {
  384. unsigned long combined_idx;
  385. struct page *buddy;
  386. buddy = __page_find_buddy(page, page_idx, order);
  387. if (!page_is_buddy(page, buddy, order))
  388. break;
  389. /* Our buddy is free, merge with it and move up one order. */
  390. list_del(&buddy->lru);
  391. zone->free_area[order].nr_free--;
  392. rmv_page_order(buddy);
  393. combined_idx = __find_combined_index(page_idx, order);
  394. page = page + (combined_idx - page_idx);
  395. page_idx = combined_idx;
  396. order++;
  397. }
  398. set_page_order(page, order);
  399. list_add(&page->lru,
  400. &zone->free_area[order].free_list[migratetype]);
  401. zone->free_area[order].nr_free++;
  402. }
  403. static inline int free_pages_check(struct page *page)
  404. {
  405. free_page_mlock(page);
  406. if (unlikely(page_mapcount(page) |
  407. (page->mapping != NULL) |
  408. (page_get_page_cgroup(page) != NULL) |
  409. (page_count(page) != 0) |
  410. (page->flags & PAGE_FLAGS_CHECK_AT_FREE)))
  411. bad_page(page);
  412. if (PageDirty(page))
  413. __ClearPageDirty(page);
  414. if (PageSwapBacked(page))
  415. __ClearPageSwapBacked(page);
  416. /*
  417. * For now, we report if PG_reserved was found set, but do not
  418. * clear it, and do not free the page. But we shall soon need
  419. * to do more, for when the ZERO_PAGE count wraps negative.
  420. */
  421. return PageReserved(page);
  422. }
  423. /*
  424. * Frees a list of pages.
  425. * Assumes all pages on list are in same zone, and of same order.
  426. * count is the number of pages to free.
  427. *
  428. * If the zone was previously in an "all pages pinned" state then look to
  429. * see if this freeing clears that state.
  430. *
  431. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  432. * pinned" detection logic.
  433. */
  434. static void free_pages_bulk(struct zone *zone, int count,
  435. struct list_head *list, int order)
  436. {
  437. spin_lock(&zone->lock);
  438. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  439. zone->pages_scanned = 0;
  440. while (count--) {
  441. struct page *page;
  442. VM_BUG_ON(list_empty(list));
  443. page = list_entry(list->prev, struct page, lru);
  444. /* have to delete it as __free_one_page list manipulates */
  445. list_del(&page->lru);
  446. __free_one_page(page, zone, order);
  447. }
  448. spin_unlock(&zone->lock);
  449. }
  450. static void free_one_page(struct zone *zone, struct page *page, int order)
  451. {
  452. spin_lock(&zone->lock);
  453. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  454. zone->pages_scanned = 0;
  455. __free_one_page(page, zone, order);
  456. spin_unlock(&zone->lock);
  457. }
  458. static void __free_pages_ok(struct page *page, unsigned int order)
  459. {
  460. unsigned long flags;
  461. int i;
  462. int reserved = 0;
  463. for (i = 0 ; i < (1 << order) ; ++i)
  464. reserved += free_pages_check(page + i);
  465. if (reserved)
  466. return;
  467. if (!PageHighMem(page)) {
  468. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  469. debug_check_no_obj_freed(page_address(page),
  470. PAGE_SIZE << order);
  471. }
  472. arch_free_page(page, order);
  473. kernel_map_pages(page, 1 << order, 0);
  474. local_irq_save(flags);
  475. __count_vm_events(PGFREE, 1 << order);
  476. free_one_page(page_zone(page), page, order);
  477. local_irq_restore(flags);
  478. }
  479. /*
  480. * permit the bootmem allocator to evade page validation on high-order frees
  481. */
  482. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  483. {
  484. if (order == 0) {
  485. __ClearPageReserved(page);
  486. set_page_count(page, 0);
  487. set_page_refcounted(page);
  488. __free_page(page);
  489. } else {
  490. int loop;
  491. prefetchw(page);
  492. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  493. struct page *p = &page[loop];
  494. if (loop + 1 < BITS_PER_LONG)
  495. prefetchw(p + 1);
  496. __ClearPageReserved(p);
  497. set_page_count(p, 0);
  498. }
  499. set_page_refcounted(page);
  500. __free_pages(page, order);
  501. }
  502. }
  503. /*
  504. * The order of subdivision here is critical for the IO subsystem.
  505. * Please do not alter this order without good reasons and regression
  506. * testing. Specifically, as large blocks of memory are subdivided,
  507. * the order in which smaller blocks are delivered depends on the order
  508. * they're subdivided in this function. This is the primary factor
  509. * influencing the order in which pages are delivered to the IO
  510. * subsystem according to empirical testing, and this is also justified
  511. * by considering the behavior of a buddy system containing a single
  512. * large block of memory acted on by a series of small allocations.
  513. * This behavior is a critical factor in sglist merging's success.
  514. *
  515. * -- wli
  516. */
  517. static inline void expand(struct zone *zone, struct page *page,
  518. int low, int high, struct free_area *area,
  519. int migratetype)
  520. {
  521. unsigned long size = 1 << high;
  522. while (high > low) {
  523. area--;
  524. high--;
  525. size >>= 1;
  526. VM_BUG_ON(bad_range(zone, &page[size]));
  527. list_add(&page[size].lru, &area->free_list[migratetype]);
  528. area->nr_free++;
  529. set_page_order(&page[size], high);
  530. }
  531. }
  532. /*
  533. * This page is about to be returned from the page allocator
  534. */
  535. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  536. {
  537. if (unlikely(page_mapcount(page) |
  538. (page->mapping != NULL) |
  539. (page_get_page_cgroup(page) != NULL) |
  540. (page_count(page) != 0) |
  541. (page->flags & PAGE_FLAGS_CHECK_AT_PREP)))
  542. bad_page(page);
  543. /*
  544. * For now, we report if PG_reserved was found set, but do not
  545. * clear it, and do not allocate the page: as a safety net.
  546. */
  547. if (PageReserved(page))
  548. return 1;
  549. page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
  550. 1 << PG_referenced | 1 << PG_arch_1 |
  551. 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk
  552. #ifdef CONFIG_UNEVICTABLE_LRU
  553. | 1 << PG_mlocked
  554. #endif
  555. );
  556. set_page_private(page, 0);
  557. set_page_refcounted(page);
  558. arch_alloc_page(page, order);
  559. kernel_map_pages(page, 1 << order, 1);
  560. if (gfp_flags & __GFP_ZERO)
  561. prep_zero_page(page, order, gfp_flags);
  562. if (order && (gfp_flags & __GFP_COMP))
  563. prep_compound_page(page, order);
  564. return 0;
  565. }
  566. /*
  567. * Go through the free lists for the given migratetype and remove
  568. * the smallest available page from the freelists
  569. */
  570. static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  571. int migratetype)
  572. {
  573. unsigned int current_order;
  574. struct free_area * area;
  575. struct page *page;
  576. /* Find a page of the appropriate size in the preferred list */
  577. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  578. area = &(zone->free_area[current_order]);
  579. if (list_empty(&area->free_list[migratetype]))
  580. continue;
  581. page = list_entry(area->free_list[migratetype].next,
  582. struct page, lru);
  583. list_del(&page->lru);
  584. rmv_page_order(page);
  585. area->nr_free--;
  586. __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
  587. expand(zone, page, order, current_order, area, migratetype);
  588. return page;
  589. }
  590. return NULL;
  591. }
  592. /*
  593. * This array describes the order lists are fallen back to when
  594. * the free lists for the desirable migrate type are depleted
  595. */
  596. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  597. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  598. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  599. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  600. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  601. };
  602. /*
  603. * Move the free pages in a range to the free lists of the requested type.
  604. * Note that start_page and end_pages are not aligned on a pageblock
  605. * boundary. If alignment is required, use move_freepages_block()
  606. */
  607. static int move_freepages(struct zone *zone,
  608. struct page *start_page, struct page *end_page,
  609. int migratetype)
  610. {
  611. struct page *page;
  612. unsigned long order;
  613. int pages_moved = 0;
  614. #ifndef CONFIG_HOLES_IN_ZONE
  615. /*
  616. * page_zone is not safe to call in this context when
  617. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  618. * anyway as we check zone boundaries in move_freepages_block().
  619. * Remove at a later date when no bug reports exist related to
  620. * grouping pages by mobility
  621. */
  622. BUG_ON(page_zone(start_page) != page_zone(end_page));
  623. #endif
  624. for (page = start_page; page <= end_page;) {
  625. /* Make sure we are not inadvertently changing nodes */
  626. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  627. if (!pfn_valid_within(page_to_pfn(page))) {
  628. page++;
  629. continue;
  630. }
  631. if (!PageBuddy(page)) {
  632. page++;
  633. continue;
  634. }
  635. order = page_order(page);
  636. list_del(&page->lru);
  637. list_add(&page->lru,
  638. &zone->free_area[order].free_list[migratetype]);
  639. page += 1 << order;
  640. pages_moved += 1 << order;
  641. }
  642. return pages_moved;
  643. }
  644. static int move_freepages_block(struct zone *zone, struct page *page,
  645. int migratetype)
  646. {
  647. unsigned long start_pfn, end_pfn;
  648. struct page *start_page, *end_page;
  649. start_pfn = page_to_pfn(page);
  650. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  651. start_page = pfn_to_page(start_pfn);
  652. end_page = start_page + pageblock_nr_pages - 1;
  653. end_pfn = start_pfn + pageblock_nr_pages - 1;
  654. /* Do not cross zone boundaries */
  655. if (start_pfn < zone->zone_start_pfn)
  656. start_page = page;
  657. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  658. return 0;
  659. return move_freepages(zone, start_page, end_page, migratetype);
  660. }
  661. /* Remove an element from the buddy allocator from the fallback list */
  662. static struct page *__rmqueue_fallback(struct zone *zone, int order,
  663. int start_migratetype)
  664. {
  665. struct free_area * area;
  666. int current_order;
  667. struct page *page;
  668. int migratetype, i;
  669. /* Find the largest possible block of pages in the other list */
  670. for (current_order = MAX_ORDER-1; current_order >= order;
  671. --current_order) {
  672. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  673. migratetype = fallbacks[start_migratetype][i];
  674. /* MIGRATE_RESERVE handled later if necessary */
  675. if (migratetype == MIGRATE_RESERVE)
  676. continue;
  677. area = &(zone->free_area[current_order]);
  678. if (list_empty(&area->free_list[migratetype]))
  679. continue;
  680. page = list_entry(area->free_list[migratetype].next,
  681. struct page, lru);
  682. area->nr_free--;
  683. /*
  684. * If breaking a large block of pages, move all free
  685. * pages to the preferred allocation list. If falling
  686. * back for a reclaimable kernel allocation, be more
  687. * agressive about taking ownership of free pages
  688. */
  689. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  690. start_migratetype == MIGRATE_RECLAIMABLE) {
  691. unsigned long pages;
  692. pages = move_freepages_block(zone, page,
  693. start_migratetype);
  694. /* Claim the whole block if over half of it is free */
  695. if (pages >= (1 << (pageblock_order-1)))
  696. set_pageblock_migratetype(page,
  697. start_migratetype);
  698. migratetype = start_migratetype;
  699. }
  700. /* Remove the page from the freelists */
  701. list_del(&page->lru);
  702. rmv_page_order(page);
  703. __mod_zone_page_state(zone, NR_FREE_PAGES,
  704. -(1UL << order));
  705. if (current_order == pageblock_order)
  706. set_pageblock_migratetype(page,
  707. start_migratetype);
  708. expand(zone, page, order, current_order, area, migratetype);
  709. return page;
  710. }
  711. }
  712. /* Use MIGRATE_RESERVE rather than fail an allocation */
  713. return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
  714. }
  715. /*
  716. * Do the hard work of removing an element from the buddy allocator.
  717. * Call me with the zone->lock already held.
  718. */
  719. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  720. int migratetype)
  721. {
  722. struct page *page;
  723. page = __rmqueue_smallest(zone, order, migratetype);
  724. if (unlikely(!page))
  725. page = __rmqueue_fallback(zone, order, migratetype);
  726. return page;
  727. }
  728. /*
  729. * Obtain a specified number of elements from the buddy allocator, all under
  730. * a single hold of the lock, for efficiency. Add them to the supplied list.
  731. * Returns the number of new pages which were placed at *list.
  732. */
  733. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  734. unsigned long count, struct list_head *list,
  735. int migratetype)
  736. {
  737. int i;
  738. spin_lock(&zone->lock);
  739. for (i = 0; i < count; ++i) {
  740. struct page *page = __rmqueue(zone, order, migratetype);
  741. if (unlikely(page == NULL))
  742. break;
  743. /*
  744. * Split buddy pages returned by expand() are received here
  745. * in physical page order. The page is added to the callers and
  746. * list and the list head then moves forward. From the callers
  747. * perspective, the linked list is ordered by page number in
  748. * some conditions. This is useful for IO devices that can
  749. * merge IO requests if the physical pages are ordered
  750. * properly.
  751. */
  752. list_add(&page->lru, list);
  753. set_page_private(page, migratetype);
  754. list = &page->lru;
  755. }
  756. spin_unlock(&zone->lock);
  757. return i;
  758. }
  759. #ifdef CONFIG_NUMA
  760. /*
  761. * Called from the vmstat counter updater to drain pagesets of this
  762. * currently executing processor on remote nodes after they have
  763. * expired.
  764. *
  765. * Note that this function must be called with the thread pinned to
  766. * a single processor.
  767. */
  768. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  769. {
  770. unsigned long flags;
  771. int to_drain;
  772. local_irq_save(flags);
  773. if (pcp->count >= pcp->batch)
  774. to_drain = pcp->batch;
  775. else
  776. to_drain = pcp->count;
  777. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  778. pcp->count -= to_drain;
  779. local_irq_restore(flags);
  780. }
  781. #endif
  782. /*
  783. * Drain pages of the indicated processor.
  784. *
  785. * The processor must either be the current processor and the
  786. * thread pinned to the current processor or a processor that
  787. * is not online.
  788. */
  789. static void drain_pages(unsigned int cpu)
  790. {
  791. unsigned long flags;
  792. struct zone *zone;
  793. for_each_zone(zone) {
  794. struct per_cpu_pageset *pset;
  795. struct per_cpu_pages *pcp;
  796. if (!populated_zone(zone))
  797. continue;
  798. pset = zone_pcp(zone, cpu);
  799. pcp = &pset->pcp;
  800. local_irq_save(flags);
  801. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  802. pcp->count = 0;
  803. local_irq_restore(flags);
  804. }
  805. }
  806. /*
  807. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  808. */
  809. void drain_local_pages(void *arg)
  810. {
  811. drain_pages(smp_processor_id());
  812. }
  813. /*
  814. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  815. */
  816. void drain_all_pages(void)
  817. {
  818. on_each_cpu(drain_local_pages, NULL, 1);
  819. }
  820. #ifdef CONFIG_HIBERNATION
  821. void mark_free_pages(struct zone *zone)
  822. {
  823. unsigned long pfn, max_zone_pfn;
  824. unsigned long flags;
  825. int order, t;
  826. struct list_head *curr;
  827. if (!zone->spanned_pages)
  828. return;
  829. spin_lock_irqsave(&zone->lock, flags);
  830. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  831. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  832. if (pfn_valid(pfn)) {
  833. struct page *page = pfn_to_page(pfn);
  834. if (!swsusp_page_is_forbidden(page))
  835. swsusp_unset_page_free(page);
  836. }
  837. for_each_migratetype_order(order, t) {
  838. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  839. unsigned long i;
  840. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  841. for (i = 0; i < (1UL << order); i++)
  842. swsusp_set_page_free(pfn_to_page(pfn + i));
  843. }
  844. }
  845. spin_unlock_irqrestore(&zone->lock, flags);
  846. }
  847. #endif /* CONFIG_PM */
  848. /*
  849. * Free a 0-order page
  850. */
  851. static void free_hot_cold_page(struct page *page, int cold)
  852. {
  853. struct zone *zone = page_zone(page);
  854. struct per_cpu_pages *pcp;
  855. unsigned long flags;
  856. if (PageAnon(page))
  857. page->mapping = NULL;
  858. if (free_pages_check(page))
  859. return;
  860. if (!PageHighMem(page)) {
  861. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  862. debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
  863. }
  864. arch_free_page(page, 0);
  865. kernel_map_pages(page, 1, 0);
  866. pcp = &zone_pcp(zone, get_cpu())->pcp;
  867. local_irq_save(flags);
  868. __count_vm_event(PGFREE);
  869. if (cold)
  870. list_add_tail(&page->lru, &pcp->list);
  871. else
  872. list_add(&page->lru, &pcp->list);
  873. set_page_private(page, get_pageblock_migratetype(page));
  874. pcp->count++;
  875. if (pcp->count >= pcp->high) {
  876. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  877. pcp->count -= pcp->batch;
  878. }
  879. local_irq_restore(flags);
  880. put_cpu();
  881. }
  882. void free_hot_page(struct page *page)
  883. {
  884. free_hot_cold_page(page, 0);
  885. }
  886. void free_cold_page(struct page *page)
  887. {
  888. free_hot_cold_page(page, 1);
  889. }
  890. /*
  891. * split_page takes a non-compound higher-order page, and splits it into
  892. * n (1<<order) sub-pages: page[0..n]
  893. * Each sub-page must be freed individually.
  894. *
  895. * Note: this is probably too low level an operation for use in drivers.
  896. * Please consult with lkml before using this in your driver.
  897. */
  898. void split_page(struct page *page, unsigned int order)
  899. {
  900. int i;
  901. VM_BUG_ON(PageCompound(page));
  902. VM_BUG_ON(!page_count(page));
  903. for (i = 1; i < (1 << order); i++)
  904. set_page_refcounted(page + i);
  905. }
  906. /*
  907. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  908. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  909. * or two.
  910. */
  911. static struct page *buffered_rmqueue(struct zone *preferred_zone,
  912. struct zone *zone, int order, gfp_t gfp_flags)
  913. {
  914. unsigned long flags;
  915. struct page *page;
  916. int cold = !!(gfp_flags & __GFP_COLD);
  917. int cpu;
  918. int migratetype = allocflags_to_migratetype(gfp_flags);
  919. again:
  920. cpu = get_cpu();
  921. if (likely(order == 0)) {
  922. struct per_cpu_pages *pcp;
  923. pcp = &zone_pcp(zone, cpu)->pcp;
  924. local_irq_save(flags);
  925. if (!pcp->count) {
  926. pcp->count = rmqueue_bulk(zone, 0,
  927. pcp->batch, &pcp->list, migratetype);
  928. if (unlikely(!pcp->count))
  929. goto failed;
  930. }
  931. /* Find a page of the appropriate migrate type */
  932. if (cold) {
  933. list_for_each_entry_reverse(page, &pcp->list, lru)
  934. if (page_private(page) == migratetype)
  935. break;
  936. } else {
  937. list_for_each_entry(page, &pcp->list, lru)
  938. if (page_private(page) == migratetype)
  939. break;
  940. }
  941. /* Allocate more to the pcp list if necessary */
  942. if (unlikely(&page->lru == &pcp->list)) {
  943. pcp->count += rmqueue_bulk(zone, 0,
  944. pcp->batch, &pcp->list, migratetype);
  945. page = list_entry(pcp->list.next, struct page, lru);
  946. }
  947. list_del(&page->lru);
  948. pcp->count--;
  949. } else {
  950. spin_lock_irqsave(&zone->lock, flags);
  951. page = __rmqueue(zone, order, migratetype);
  952. spin_unlock(&zone->lock);
  953. if (!page)
  954. goto failed;
  955. }
  956. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  957. zone_statistics(preferred_zone, zone);
  958. local_irq_restore(flags);
  959. put_cpu();
  960. VM_BUG_ON(bad_range(zone, page));
  961. if (prep_new_page(page, order, gfp_flags))
  962. goto again;
  963. return page;
  964. failed:
  965. local_irq_restore(flags);
  966. put_cpu();
  967. return NULL;
  968. }
  969. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  970. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  971. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  972. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  973. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  974. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  975. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  976. #ifdef CONFIG_FAIL_PAGE_ALLOC
  977. static struct fail_page_alloc_attr {
  978. struct fault_attr attr;
  979. u32 ignore_gfp_highmem;
  980. u32 ignore_gfp_wait;
  981. u32 min_order;
  982. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  983. struct dentry *ignore_gfp_highmem_file;
  984. struct dentry *ignore_gfp_wait_file;
  985. struct dentry *min_order_file;
  986. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  987. } fail_page_alloc = {
  988. .attr = FAULT_ATTR_INITIALIZER,
  989. .ignore_gfp_wait = 1,
  990. .ignore_gfp_highmem = 1,
  991. .min_order = 1,
  992. };
  993. static int __init setup_fail_page_alloc(char *str)
  994. {
  995. return setup_fault_attr(&fail_page_alloc.attr, str);
  996. }
  997. __setup("fail_page_alloc=", setup_fail_page_alloc);
  998. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  999. {
  1000. if (order < fail_page_alloc.min_order)
  1001. return 0;
  1002. if (gfp_mask & __GFP_NOFAIL)
  1003. return 0;
  1004. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1005. return 0;
  1006. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1007. return 0;
  1008. return should_fail(&fail_page_alloc.attr, 1 << order);
  1009. }
  1010. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1011. static int __init fail_page_alloc_debugfs(void)
  1012. {
  1013. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1014. struct dentry *dir;
  1015. int err;
  1016. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1017. "fail_page_alloc");
  1018. if (err)
  1019. return err;
  1020. dir = fail_page_alloc.attr.dentries.dir;
  1021. fail_page_alloc.ignore_gfp_wait_file =
  1022. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1023. &fail_page_alloc.ignore_gfp_wait);
  1024. fail_page_alloc.ignore_gfp_highmem_file =
  1025. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1026. &fail_page_alloc.ignore_gfp_highmem);
  1027. fail_page_alloc.min_order_file =
  1028. debugfs_create_u32("min-order", mode, dir,
  1029. &fail_page_alloc.min_order);
  1030. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1031. !fail_page_alloc.ignore_gfp_highmem_file ||
  1032. !fail_page_alloc.min_order_file) {
  1033. err = -ENOMEM;
  1034. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1035. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1036. debugfs_remove(fail_page_alloc.min_order_file);
  1037. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1038. }
  1039. return err;
  1040. }
  1041. late_initcall(fail_page_alloc_debugfs);
  1042. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1043. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1044. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1045. {
  1046. return 0;
  1047. }
  1048. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1049. /*
  1050. * Return 1 if free pages are above 'mark'. This takes into account the order
  1051. * of the allocation.
  1052. */
  1053. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1054. int classzone_idx, int alloc_flags)
  1055. {
  1056. /* free_pages my go negative - that's OK */
  1057. long min = mark;
  1058. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1059. int o;
  1060. if (alloc_flags & ALLOC_HIGH)
  1061. min -= min / 2;
  1062. if (alloc_flags & ALLOC_HARDER)
  1063. min -= min / 4;
  1064. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1065. return 0;
  1066. for (o = 0; o < order; o++) {
  1067. /* At the next order, this order's pages become unavailable */
  1068. free_pages -= z->free_area[o].nr_free << o;
  1069. /* Require fewer higher order pages to be free */
  1070. min >>= 1;
  1071. if (free_pages <= min)
  1072. return 0;
  1073. }
  1074. return 1;
  1075. }
  1076. #ifdef CONFIG_NUMA
  1077. /*
  1078. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1079. * skip over zones that are not allowed by the cpuset, or that have
  1080. * been recently (in last second) found to be nearly full. See further
  1081. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1082. * that have to skip over a lot of full or unallowed zones.
  1083. *
  1084. * If the zonelist cache is present in the passed in zonelist, then
  1085. * returns a pointer to the allowed node mask (either the current
  1086. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1087. *
  1088. * If the zonelist cache is not available for this zonelist, does
  1089. * nothing and returns NULL.
  1090. *
  1091. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1092. * a second since last zap'd) then we zap it out (clear its bits.)
  1093. *
  1094. * We hold off even calling zlc_setup, until after we've checked the
  1095. * first zone in the zonelist, on the theory that most allocations will
  1096. * be satisfied from that first zone, so best to examine that zone as
  1097. * quickly as we can.
  1098. */
  1099. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1100. {
  1101. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1102. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1103. zlc = zonelist->zlcache_ptr;
  1104. if (!zlc)
  1105. return NULL;
  1106. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1107. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1108. zlc->last_full_zap = jiffies;
  1109. }
  1110. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1111. &cpuset_current_mems_allowed :
  1112. &node_states[N_HIGH_MEMORY];
  1113. return allowednodes;
  1114. }
  1115. /*
  1116. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1117. * if it is worth looking at further for free memory:
  1118. * 1) Check that the zone isn't thought to be full (doesn't have its
  1119. * bit set in the zonelist_cache fullzones BITMAP).
  1120. * 2) Check that the zones node (obtained from the zonelist_cache
  1121. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1122. * Return true (non-zero) if zone is worth looking at further, or
  1123. * else return false (zero) if it is not.
  1124. *
  1125. * This check -ignores- the distinction between various watermarks,
  1126. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1127. * found to be full for any variation of these watermarks, it will
  1128. * be considered full for up to one second by all requests, unless
  1129. * we are so low on memory on all allowed nodes that we are forced
  1130. * into the second scan of the zonelist.
  1131. *
  1132. * In the second scan we ignore this zonelist cache and exactly
  1133. * apply the watermarks to all zones, even it is slower to do so.
  1134. * We are low on memory in the second scan, and should leave no stone
  1135. * unturned looking for a free page.
  1136. */
  1137. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1138. nodemask_t *allowednodes)
  1139. {
  1140. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1141. int i; /* index of *z in zonelist zones */
  1142. int n; /* node that zone *z is on */
  1143. zlc = zonelist->zlcache_ptr;
  1144. if (!zlc)
  1145. return 1;
  1146. i = z - zonelist->_zonerefs;
  1147. n = zlc->z_to_n[i];
  1148. /* This zone is worth trying if it is allowed but not full */
  1149. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1150. }
  1151. /*
  1152. * Given 'z' scanning a zonelist, set the corresponding bit in
  1153. * zlc->fullzones, so that subsequent attempts to allocate a page
  1154. * from that zone don't waste time re-examining it.
  1155. */
  1156. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1157. {
  1158. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1159. int i; /* index of *z in zonelist zones */
  1160. zlc = zonelist->zlcache_ptr;
  1161. if (!zlc)
  1162. return;
  1163. i = z - zonelist->_zonerefs;
  1164. set_bit(i, zlc->fullzones);
  1165. }
  1166. #else /* CONFIG_NUMA */
  1167. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1168. {
  1169. return NULL;
  1170. }
  1171. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1172. nodemask_t *allowednodes)
  1173. {
  1174. return 1;
  1175. }
  1176. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1177. {
  1178. }
  1179. #endif /* CONFIG_NUMA */
  1180. /*
  1181. * get_page_from_freelist goes through the zonelist trying to allocate
  1182. * a page.
  1183. */
  1184. static struct page *
  1185. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1186. struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
  1187. {
  1188. struct zoneref *z;
  1189. struct page *page = NULL;
  1190. int classzone_idx;
  1191. struct zone *zone, *preferred_zone;
  1192. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1193. int zlc_active = 0; /* set if using zonelist_cache */
  1194. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1195. (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
  1196. &preferred_zone);
  1197. if (!preferred_zone)
  1198. return NULL;
  1199. classzone_idx = zone_idx(preferred_zone);
  1200. zonelist_scan:
  1201. /*
  1202. * Scan zonelist, looking for a zone with enough free.
  1203. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1204. */
  1205. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1206. high_zoneidx, nodemask) {
  1207. if (NUMA_BUILD && zlc_active &&
  1208. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1209. continue;
  1210. if ((alloc_flags & ALLOC_CPUSET) &&
  1211. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1212. goto try_next_zone;
  1213. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1214. unsigned long mark;
  1215. if (alloc_flags & ALLOC_WMARK_MIN)
  1216. mark = zone->pages_min;
  1217. else if (alloc_flags & ALLOC_WMARK_LOW)
  1218. mark = zone->pages_low;
  1219. else
  1220. mark = zone->pages_high;
  1221. if (!zone_watermark_ok(zone, order, mark,
  1222. classzone_idx, alloc_flags)) {
  1223. if (!zone_reclaim_mode ||
  1224. !zone_reclaim(zone, gfp_mask, order))
  1225. goto this_zone_full;
  1226. }
  1227. }
  1228. page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
  1229. if (page)
  1230. break;
  1231. this_zone_full:
  1232. if (NUMA_BUILD)
  1233. zlc_mark_zone_full(zonelist, z);
  1234. try_next_zone:
  1235. if (NUMA_BUILD && !did_zlc_setup) {
  1236. /* we do zlc_setup after the first zone is tried */
  1237. allowednodes = zlc_setup(zonelist, alloc_flags);
  1238. zlc_active = 1;
  1239. did_zlc_setup = 1;
  1240. }
  1241. }
  1242. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1243. /* Disable zlc cache for second zonelist scan */
  1244. zlc_active = 0;
  1245. goto zonelist_scan;
  1246. }
  1247. return page;
  1248. }
  1249. /*
  1250. * This is the 'heart' of the zoned buddy allocator.
  1251. */
  1252. struct page *
  1253. __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
  1254. struct zonelist *zonelist, nodemask_t *nodemask)
  1255. {
  1256. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1257. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1258. struct zoneref *z;
  1259. struct zone *zone;
  1260. struct page *page;
  1261. struct reclaim_state reclaim_state;
  1262. struct task_struct *p = current;
  1263. int do_retry;
  1264. int alloc_flags;
  1265. unsigned long did_some_progress;
  1266. unsigned long pages_reclaimed = 0;
  1267. might_sleep_if(wait);
  1268. if (should_fail_alloc_page(gfp_mask, order))
  1269. return NULL;
  1270. restart:
  1271. z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
  1272. if (unlikely(!z->zone)) {
  1273. /*
  1274. * Happens if we have an empty zonelist as a result of
  1275. * GFP_THISNODE being used on a memoryless node
  1276. */
  1277. return NULL;
  1278. }
  1279. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1280. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  1281. if (page)
  1282. goto got_pg;
  1283. /*
  1284. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1285. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1286. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1287. * using a larger set of nodes after it has established that the
  1288. * allowed per node queues are empty and that nodes are
  1289. * over allocated.
  1290. */
  1291. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1292. goto nopage;
  1293. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1294. wakeup_kswapd(zone, order);
  1295. /*
  1296. * OK, we're below the kswapd watermark and have kicked background
  1297. * reclaim. Now things get more complex, so set up alloc_flags according
  1298. * to how we want to proceed.
  1299. *
  1300. * The caller may dip into page reserves a bit more if the caller
  1301. * cannot run direct reclaim, or if the caller has realtime scheduling
  1302. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1303. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1304. */
  1305. alloc_flags = ALLOC_WMARK_MIN;
  1306. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  1307. alloc_flags |= ALLOC_HARDER;
  1308. if (gfp_mask & __GFP_HIGH)
  1309. alloc_flags |= ALLOC_HIGH;
  1310. if (wait)
  1311. alloc_flags |= ALLOC_CPUSET;
  1312. /*
  1313. * Go through the zonelist again. Let __GFP_HIGH and allocations
  1314. * coming from realtime tasks go deeper into reserves.
  1315. *
  1316. * This is the last chance, in general, before the goto nopage.
  1317. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1318. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1319. */
  1320. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1321. high_zoneidx, alloc_flags);
  1322. if (page)
  1323. goto got_pg;
  1324. /* This allocation should allow future memory freeing. */
  1325. rebalance:
  1326. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  1327. && !in_interrupt()) {
  1328. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  1329. nofail_alloc:
  1330. /* go through the zonelist yet again, ignoring mins */
  1331. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1332. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
  1333. if (page)
  1334. goto got_pg;
  1335. if (gfp_mask & __GFP_NOFAIL) {
  1336. congestion_wait(WRITE, HZ/50);
  1337. goto nofail_alloc;
  1338. }
  1339. }
  1340. goto nopage;
  1341. }
  1342. /* Atomic allocations - we can't balance anything */
  1343. if (!wait)
  1344. goto nopage;
  1345. cond_resched();
  1346. /* We now go into synchronous reclaim */
  1347. cpuset_memory_pressure_bump();
  1348. p->flags |= PF_MEMALLOC;
  1349. reclaim_state.reclaimed_slab = 0;
  1350. p->reclaim_state = &reclaim_state;
  1351. did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
  1352. p->reclaim_state = NULL;
  1353. p->flags &= ~PF_MEMALLOC;
  1354. cond_resched();
  1355. if (order != 0)
  1356. drain_all_pages();
  1357. if (likely(did_some_progress)) {
  1358. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1359. zonelist, high_zoneidx, alloc_flags);
  1360. if (page)
  1361. goto got_pg;
  1362. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1363. if (!try_set_zone_oom(zonelist, gfp_mask)) {
  1364. schedule_timeout_uninterruptible(1);
  1365. goto restart;
  1366. }
  1367. /*
  1368. * Go through the zonelist yet one more time, keep
  1369. * very high watermark here, this is only to catch
  1370. * a parallel oom killing, we must fail if we're still
  1371. * under heavy pressure.
  1372. */
  1373. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1374. order, zonelist, high_zoneidx,
  1375. ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  1376. if (page) {
  1377. clear_zonelist_oom(zonelist, gfp_mask);
  1378. goto got_pg;
  1379. }
  1380. /* The OOM killer will not help higher order allocs so fail */
  1381. if (order > PAGE_ALLOC_COSTLY_ORDER) {
  1382. clear_zonelist_oom(zonelist, gfp_mask);
  1383. goto nopage;
  1384. }
  1385. out_of_memory(zonelist, gfp_mask, order);
  1386. clear_zonelist_oom(zonelist, gfp_mask);
  1387. goto restart;
  1388. }
  1389. /*
  1390. * Don't let big-order allocations loop unless the caller explicitly
  1391. * requests that. Wait for some write requests to complete then retry.
  1392. *
  1393. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1394. * means __GFP_NOFAIL, but that may not be true in other
  1395. * implementations.
  1396. *
  1397. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1398. * specified, then we retry until we no longer reclaim any pages
  1399. * (above), or we've reclaimed an order of pages at least as
  1400. * large as the allocation's order. In both cases, if the
  1401. * allocation still fails, we stop retrying.
  1402. */
  1403. pages_reclaimed += did_some_progress;
  1404. do_retry = 0;
  1405. if (!(gfp_mask & __GFP_NORETRY)) {
  1406. if (order <= PAGE_ALLOC_COSTLY_ORDER) {
  1407. do_retry = 1;
  1408. } else {
  1409. if (gfp_mask & __GFP_REPEAT &&
  1410. pages_reclaimed < (1 << order))
  1411. do_retry = 1;
  1412. }
  1413. if (gfp_mask & __GFP_NOFAIL)
  1414. do_retry = 1;
  1415. }
  1416. if (do_retry) {
  1417. congestion_wait(WRITE, HZ/50);
  1418. goto rebalance;
  1419. }
  1420. nopage:
  1421. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1422. printk(KERN_WARNING "%s: page allocation failure."
  1423. " order:%d, mode:0x%x\n",
  1424. p->comm, order, gfp_mask);
  1425. dump_stack();
  1426. show_mem();
  1427. }
  1428. got_pg:
  1429. return page;
  1430. }
  1431. EXPORT_SYMBOL(__alloc_pages_internal);
  1432. /*
  1433. * Common helper functions.
  1434. */
  1435. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1436. {
  1437. struct page * page;
  1438. page = alloc_pages(gfp_mask, order);
  1439. if (!page)
  1440. return 0;
  1441. return (unsigned long) page_address(page);
  1442. }
  1443. EXPORT_SYMBOL(__get_free_pages);
  1444. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1445. {
  1446. struct page * page;
  1447. /*
  1448. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1449. * a highmem page
  1450. */
  1451. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1452. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1453. if (page)
  1454. return (unsigned long) page_address(page);
  1455. return 0;
  1456. }
  1457. EXPORT_SYMBOL(get_zeroed_page);
  1458. void __pagevec_free(struct pagevec *pvec)
  1459. {
  1460. int i = pagevec_count(pvec);
  1461. while (--i >= 0)
  1462. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1463. }
  1464. void __free_pages(struct page *page, unsigned int order)
  1465. {
  1466. if (put_page_testzero(page)) {
  1467. if (order == 0)
  1468. free_hot_page(page);
  1469. else
  1470. __free_pages_ok(page, order);
  1471. }
  1472. }
  1473. EXPORT_SYMBOL(__free_pages);
  1474. void free_pages(unsigned long addr, unsigned int order)
  1475. {
  1476. if (addr != 0) {
  1477. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1478. __free_pages(virt_to_page((void *)addr), order);
  1479. }
  1480. }
  1481. EXPORT_SYMBOL(free_pages);
  1482. /**
  1483. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  1484. * @size: the number of bytes to allocate
  1485. * @gfp_mask: GFP flags for the allocation
  1486. *
  1487. * This function is similar to alloc_pages(), except that it allocates the
  1488. * minimum number of pages to satisfy the request. alloc_pages() can only
  1489. * allocate memory in power-of-two pages.
  1490. *
  1491. * This function is also limited by MAX_ORDER.
  1492. *
  1493. * Memory allocated by this function must be released by free_pages_exact().
  1494. */
  1495. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  1496. {
  1497. unsigned int order = get_order(size);
  1498. unsigned long addr;
  1499. addr = __get_free_pages(gfp_mask, order);
  1500. if (addr) {
  1501. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  1502. unsigned long used = addr + PAGE_ALIGN(size);
  1503. split_page(virt_to_page(addr), order);
  1504. while (used < alloc_end) {
  1505. free_page(used);
  1506. used += PAGE_SIZE;
  1507. }
  1508. }
  1509. return (void *)addr;
  1510. }
  1511. EXPORT_SYMBOL(alloc_pages_exact);
  1512. /**
  1513. * free_pages_exact - release memory allocated via alloc_pages_exact()
  1514. * @virt: the value returned by alloc_pages_exact.
  1515. * @size: size of allocation, same value as passed to alloc_pages_exact().
  1516. *
  1517. * Release the memory allocated by a previous call to alloc_pages_exact.
  1518. */
  1519. void free_pages_exact(void *virt, size_t size)
  1520. {
  1521. unsigned long addr = (unsigned long)virt;
  1522. unsigned long end = addr + PAGE_ALIGN(size);
  1523. while (addr < end) {
  1524. free_page(addr);
  1525. addr += PAGE_SIZE;
  1526. }
  1527. }
  1528. EXPORT_SYMBOL(free_pages_exact);
  1529. static unsigned int nr_free_zone_pages(int offset)
  1530. {
  1531. struct zoneref *z;
  1532. struct zone *zone;
  1533. /* Just pick one node, since fallback list is circular */
  1534. unsigned int sum = 0;
  1535. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1536. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1537. unsigned long size = zone->present_pages;
  1538. unsigned long high = zone->pages_high;
  1539. if (size > high)
  1540. sum += size - high;
  1541. }
  1542. return sum;
  1543. }
  1544. /*
  1545. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1546. */
  1547. unsigned int nr_free_buffer_pages(void)
  1548. {
  1549. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1550. }
  1551. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1552. /*
  1553. * Amount of free RAM allocatable within all zones
  1554. */
  1555. unsigned int nr_free_pagecache_pages(void)
  1556. {
  1557. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1558. }
  1559. static inline void show_node(struct zone *zone)
  1560. {
  1561. if (NUMA_BUILD)
  1562. printk("Node %d ", zone_to_nid(zone));
  1563. }
  1564. void si_meminfo(struct sysinfo *val)
  1565. {
  1566. val->totalram = totalram_pages;
  1567. val->sharedram = 0;
  1568. val->freeram = global_page_state(NR_FREE_PAGES);
  1569. val->bufferram = nr_blockdev_pages();
  1570. val->totalhigh = totalhigh_pages;
  1571. val->freehigh = nr_free_highpages();
  1572. val->mem_unit = PAGE_SIZE;
  1573. }
  1574. EXPORT_SYMBOL(si_meminfo);
  1575. #ifdef CONFIG_NUMA
  1576. void si_meminfo_node(struct sysinfo *val, int nid)
  1577. {
  1578. pg_data_t *pgdat = NODE_DATA(nid);
  1579. val->totalram = pgdat->node_present_pages;
  1580. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1581. #ifdef CONFIG_HIGHMEM
  1582. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1583. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1584. NR_FREE_PAGES);
  1585. #else
  1586. val->totalhigh = 0;
  1587. val->freehigh = 0;
  1588. #endif
  1589. val->mem_unit = PAGE_SIZE;
  1590. }
  1591. #endif
  1592. #define K(x) ((x) << (PAGE_SHIFT-10))
  1593. /*
  1594. * Show free area list (used inside shift_scroll-lock stuff)
  1595. * We also calculate the percentage fragmentation. We do this by counting the
  1596. * memory on each free list with the exception of the first item on the list.
  1597. */
  1598. void show_free_areas(void)
  1599. {
  1600. int cpu;
  1601. struct zone *zone;
  1602. for_each_zone(zone) {
  1603. if (!populated_zone(zone))
  1604. continue;
  1605. show_node(zone);
  1606. printk("%s per-cpu:\n", zone->name);
  1607. for_each_online_cpu(cpu) {
  1608. struct per_cpu_pageset *pageset;
  1609. pageset = zone_pcp(zone, cpu);
  1610. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1611. cpu, pageset->pcp.high,
  1612. pageset->pcp.batch, pageset->pcp.count);
  1613. }
  1614. }
  1615. printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
  1616. " inactive_file:%lu"
  1617. //TODO: check/adjust line lengths
  1618. #ifdef CONFIG_UNEVICTABLE_LRU
  1619. " unevictable:%lu"
  1620. #endif
  1621. " dirty:%lu writeback:%lu unstable:%lu\n"
  1622. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1623. global_page_state(NR_ACTIVE_ANON),
  1624. global_page_state(NR_ACTIVE_FILE),
  1625. global_page_state(NR_INACTIVE_ANON),
  1626. global_page_state(NR_INACTIVE_FILE),
  1627. #ifdef CONFIG_UNEVICTABLE_LRU
  1628. global_page_state(NR_UNEVICTABLE),
  1629. #endif
  1630. global_page_state(NR_FILE_DIRTY),
  1631. global_page_state(NR_WRITEBACK),
  1632. global_page_state(NR_UNSTABLE_NFS),
  1633. global_page_state(NR_FREE_PAGES),
  1634. global_page_state(NR_SLAB_RECLAIMABLE) +
  1635. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1636. global_page_state(NR_FILE_MAPPED),
  1637. global_page_state(NR_PAGETABLE),
  1638. global_page_state(NR_BOUNCE));
  1639. for_each_zone(zone) {
  1640. int i;
  1641. if (!populated_zone(zone))
  1642. continue;
  1643. show_node(zone);
  1644. printk("%s"
  1645. " free:%lukB"
  1646. " min:%lukB"
  1647. " low:%lukB"
  1648. " high:%lukB"
  1649. " active_anon:%lukB"
  1650. " inactive_anon:%lukB"
  1651. " active_file:%lukB"
  1652. " inactive_file:%lukB"
  1653. #ifdef CONFIG_UNEVICTABLE_LRU
  1654. " unevictable:%lukB"
  1655. #endif
  1656. " present:%lukB"
  1657. " pages_scanned:%lu"
  1658. " all_unreclaimable? %s"
  1659. "\n",
  1660. zone->name,
  1661. K(zone_page_state(zone, NR_FREE_PAGES)),
  1662. K(zone->pages_min),
  1663. K(zone->pages_low),
  1664. K(zone->pages_high),
  1665. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  1666. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  1667. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  1668. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  1669. #ifdef CONFIG_UNEVICTABLE_LRU
  1670. K(zone_page_state(zone, NR_UNEVICTABLE)),
  1671. #endif
  1672. K(zone->present_pages),
  1673. zone->pages_scanned,
  1674. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1675. );
  1676. printk("lowmem_reserve[]:");
  1677. for (i = 0; i < MAX_NR_ZONES; i++)
  1678. printk(" %lu", zone->lowmem_reserve[i]);
  1679. printk("\n");
  1680. }
  1681. for_each_zone(zone) {
  1682. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1683. if (!populated_zone(zone))
  1684. continue;
  1685. show_node(zone);
  1686. printk("%s: ", zone->name);
  1687. spin_lock_irqsave(&zone->lock, flags);
  1688. for (order = 0; order < MAX_ORDER; order++) {
  1689. nr[order] = zone->free_area[order].nr_free;
  1690. total += nr[order] << order;
  1691. }
  1692. spin_unlock_irqrestore(&zone->lock, flags);
  1693. for (order = 0; order < MAX_ORDER; order++)
  1694. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1695. printk("= %lukB\n", K(total));
  1696. }
  1697. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1698. show_swap_cache_info();
  1699. }
  1700. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  1701. {
  1702. zoneref->zone = zone;
  1703. zoneref->zone_idx = zone_idx(zone);
  1704. }
  1705. /*
  1706. * Builds allocation fallback zone lists.
  1707. *
  1708. * Add all populated zones of a node to the zonelist.
  1709. */
  1710. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1711. int nr_zones, enum zone_type zone_type)
  1712. {
  1713. struct zone *zone;
  1714. BUG_ON(zone_type >= MAX_NR_ZONES);
  1715. zone_type++;
  1716. do {
  1717. zone_type--;
  1718. zone = pgdat->node_zones + zone_type;
  1719. if (populated_zone(zone)) {
  1720. zoneref_set_zone(zone,
  1721. &zonelist->_zonerefs[nr_zones++]);
  1722. check_highest_zone(zone_type);
  1723. }
  1724. } while (zone_type);
  1725. return nr_zones;
  1726. }
  1727. /*
  1728. * zonelist_order:
  1729. * 0 = automatic detection of better ordering.
  1730. * 1 = order by ([node] distance, -zonetype)
  1731. * 2 = order by (-zonetype, [node] distance)
  1732. *
  1733. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1734. * the same zonelist. So only NUMA can configure this param.
  1735. */
  1736. #define ZONELIST_ORDER_DEFAULT 0
  1737. #define ZONELIST_ORDER_NODE 1
  1738. #define ZONELIST_ORDER_ZONE 2
  1739. /* zonelist order in the kernel.
  1740. * set_zonelist_order() will set this to NODE or ZONE.
  1741. */
  1742. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1743. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1744. #ifdef CONFIG_NUMA
  1745. /* The value user specified ....changed by config */
  1746. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1747. /* string for sysctl */
  1748. #define NUMA_ZONELIST_ORDER_LEN 16
  1749. char numa_zonelist_order[16] = "default";
  1750. /*
  1751. * interface for configure zonelist ordering.
  1752. * command line option "numa_zonelist_order"
  1753. * = "[dD]efault - default, automatic configuration.
  1754. * = "[nN]ode - order by node locality, then by zone within node
  1755. * = "[zZ]one - order by zone, then by locality within zone
  1756. */
  1757. static int __parse_numa_zonelist_order(char *s)
  1758. {
  1759. if (*s == 'd' || *s == 'D') {
  1760. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1761. } else if (*s == 'n' || *s == 'N') {
  1762. user_zonelist_order = ZONELIST_ORDER_NODE;
  1763. } else if (*s == 'z' || *s == 'Z') {
  1764. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1765. } else {
  1766. printk(KERN_WARNING
  1767. "Ignoring invalid numa_zonelist_order value: "
  1768. "%s\n", s);
  1769. return -EINVAL;
  1770. }
  1771. return 0;
  1772. }
  1773. static __init int setup_numa_zonelist_order(char *s)
  1774. {
  1775. if (s)
  1776. return __parse_numa_zonelist_order(s);
  1777. return 0;
  1778. }
  1779. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1780. /*
  1781. * sysctl handler for numa_zonelist_order
  1782. */
  1783. int numa_zonelist_order_handler(ctl_table *table, int write,
  1784. struct file *file, void __user *buffer, size_t *length,
  1785. loff_t *ppos)
  1786. {
  1787. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1788. int ret;
  1789. if (write)
  1790. strncpy(saved_string, (char*)table->data,
  1791. NUMA_ZONELIST_ORDER_LEN);
  1792. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1793. if (ret)
  1794. return ret;
  1795. if (write) {
  1796. int oldval = user_zonelist_order;
  1797. if (__parse_numa_zonelist_order((char*)table->data)) {
  1798. /*
  1799. * bogus value. restore saved string
  1800. */
  1801. strncpy((char*)table->data, saved_string,
  1802. NUMA_ZONELIST_ORDER_LEN);
  1803. user_zonelist_order = oldval;
  1804. } else if (oldval != user_zonelist_order)
  1805. build_all_zonelists();
  1806. }
  1807. return 0;
  1808. }
  1809. #define MAX_NODE_LOAD (num_online_nodes())
  1810. static int node_load[MAX_NUMNODES];
  1811. /**
  1812. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1813. * @node: node whose fallback list we're appending
  1814. * @used_node_mask: nodemask_t of already used nodes
  1815. *
  1816. * We use a number of factors to determine which is the next node that should
  1817. * appear on a given node's fallback list. The node should not have appeared
  1818. * already in @node's fallback list, and it should be the next closest node
  1819. * according to the distance array (which contains arbitrary distance values
  1820. * from each node to each node in the system), and should also prefer nodes
  1821. * with no CPUs, since presumably they'll have very little allocation pressure
  1822. * on them otherwise.
  1823. * It returns -1 if no node is found.
  1824. */
  1825. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1826. {
  1827. int n, val;
  1828. int min_val = INT_MAX;
  1829. int best_node = -1;
  1830. node_to_cpumask_ptr(tmp, 0);
  1831. /* Use the local node if we haven't already */
  1832. if (!node_isset(node, *used_node_mask)) {
  1833. node_set(node, *used_node_mask);
  1834. return node;
  1835. }
  1836. for_each_node_state(n, N_HIGH_MEMORY) {
  1837. /* Don't want a node to appear more than once */
  1838. if (node_isset(n, *used_node_mask))
  1839. continue;
  1840. /* Use the distance array to find the distance */
  1841. val = node_distance(node, n);
  1842. /* Penalize nodes under us ("prefer the next node") */
  1843. val += (n < node);
  1844. /* Give preference to headless and unused nodes */
  1845. node_to_cpumask_ptr_next(tmp, n);
  1846. if (!cpus_empty(*tmp))
  1847. val += PENALTY_FOR_NODE_WITH_CPUS;
  1848. /* Slight preference for less loaded node */
  1849. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1850. val += node_load[n];
  1851. if (val < min_val) {
  1852. min_val = val;
  1853. best_node = n;
  1854. }
  1855. }
  1856. if (best_node >= 0)
  1857. node_set(best_node, *used_node_mask);
  1858. return best_node;
  1859. }
  1860. /*
  1861. * Build zonelists ordered by node and zones within node.
  1862. * This results in maximum locality--normal zone overflows into local
  1863. * DMA zone, if any--but risks exhausting DMA zone.
  1864. */
  1865. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  1866. {
  1867. int j;
  1868. struct zonelist *zonelist;
  1869. zonelist = &pgdat->node_zonelists[0];
  1870. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  1871. ;
  1872. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  1873. MAX_NR_ZONES - 1);
  1874. zonelist->_zonerefs[j].zone = NULL;
  1875. zonelist->_zonerefs[j].zone_idx = 0;
  1876. }
  1877. /*
  1878. * Build gfp_thisnode zonelists
  1879. */
  1880. static void build_thisnode_zonelists(pg_data_t *pgdat)
  1881. {
  1882. int j;
  1883. struct zonelist *zonelist;
  1884. zonelist = &pgdat->node_zonelists[1];
  1885. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  1886. zonelist->_zonerefs[j].zone = NULL;
  1887. zonelist->_zonerefs[j].zone_idx = 0;
  1888. }
  1889. /*
  1890. * Build zonelists ordered by zone and nodes within zones.
  1891. * This results in conserving DMA zone[s] until all Normal memory is
  1892. * exhausted, but results in overflowing to remote node while memory
  1893. * may still exist in local DMA zone.
  1894. */
  1895. static int node_order[MAX_NUMNODES];
  1896. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  1897. {
  1898. int pos, j, node;
  1899. int zone_type; /* needs to be signed */
  1900. struct zone *z;
  1901. struct zonelist *zonelist;
  1902. zonelist = &pgdat->node_zonelists[0];
  1903. pos = 0;
  1904. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  1905. for (j = 0; j < nr_nodes; j++) {
  1906. node = node_order[j];
  1907. z = &NODE_DATA(node)->node_zones[zone_type];
  1908. if (populated_zone(z)) {
  1909. zoneref_set_zone(z,
  1910. &zonelist->_zonerefs[pos++]);
  1911. check_highest_zone(zone_type);
  1912. }
  1913. }
  1914. }
  1915. zonelist->_zonerefs[pos].zone = NULL;
  1916. zonelist->_zonerefs[pos].zone_idx = 0;
  1917. }
  1918. static int default_zonelist_order(void)
  1919. {
  1920. int nid, zone_type;
  1921. unsigned long low_kmem_size,total_size;
  1922. struct zone *z;
  1923. int average_size;
  1924. /*
  1925. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  1926. * If they are really small and used heavily, the system can fall
  1927. * into OOM very easily.
  1928. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  1929. */
  1930. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  1931. low_kmem_size = 0;
  1932. total_size = 0;
  1933. for_each_online_node(nid) {
  1934. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1935. z = &NODE_DATA(nid)->node_zones[zone_type];
  1936. if (populated_zone(z)) {
  1937. if (zone_type < ZONE_NORMAL)
  1938. low_kmem_size += z->present_pages;
  1939. total_size += z->present_pages;
  1940. }
  1941. }
  1942. }
  1943. if (!low_kmem_size || /* there are no DMA area. */
  1944. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  1945. return ZONELIST_ORDER_NODE;
  1946. /*
  1947. * look into each node's config.
  1948. * If there is a node whose DMA/DMA32 memory is very big area on
  1949. * local memory, NODE_ORDER may be suitable.
  1950. */
  1951. average_size = total_size /
  1952. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  1953. for_each_online_node(nid) {
  1954. low_kmem_size = 0;
  1955. total_size = 0;
  1956. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1957. z = &NODE_DATA(nid)->node_zones[zone_type];
  1958. if (populated_zone(z)) {
  1959. if (zone_type < ZONE_NORMAL)
  1960. low_kmem_size += z->present_pages;
  1961. total_size += z->present_pages;
  1962. }
  1963. }
  1964. if (low_kmem_size &&
  1965. total_size > average_size && /* ignore small node */
  1966. low_kmem_size > total_size * 70/100)
  1967. return ZONELIST_ORDER_NODE;
  1968. }
  1969. return ZONELIST_ORDER_ZONE;
  1970. }
  1971. static void set_zonelist_order(void)
  1972. {
  1973. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  1974. current_zonelist_order = default_zonelist_order();
  1975. else
  1976. current_zonelist_order = user_zonelist_order;
  1977. }
  1978. static void build_zonelists(pg_data_t *pgdat)
  1979. {
  1980. int j, node, load;
  1981. enum zone_type i;
  1982. nodemask_t used_mask;
  1983. int local_node, prev_node;
  1984. struct zonelist *zonelist;
  1985. int order = current_zonelist_order;
  1986. /* initialize zonelists */
  1987. for (i = 0; i < MAX_ZONELISTS; i++) {
  1988. zonelist = pgdat->node_zonelists + i;
  1989. zonelist->_zonerefs[0].zone = NULL;
  1990. zonelist->_zonerefs[0].zone_idx = 0;
  1991. }
  1992. /* NUMA-aware ordering of nodes */
  1993. local_node = pgdat->node_id;
  1994. load = num_online_nodes();
  1995. prev_node = local_node;
  1996. nodes_clear(used_mask);
  1997. memset(node_load, 0, sizeof(node_load));
  1998. memset(node_order, 0, sizeof(node_order));
  1999. j = 0;
  2000. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2001. int distance = node_distance(local_node, node);
  2002. /*
  2003. * If another node is sufficiently far away then it is better
  2004. * to reclaim pages in a zone before going off node.
  2005. */
  2006. if (distance > RECLAIM_DISTANCE)
  2007. zone_reclaim_mode = 1;
  2008. /*
  2009. * We don't want to pressure a particular node.
  2010. * So adding penalty to the first node in same
  2011. * distance group to make it round-robin.
  2012. */
  2013. if (distance != node_distance(local_node, prev_node))
  2014. node_load[node] = load;
  2015. prev_node = node;
  2016. load--;
  2017. if (order == ZONELIST_ORDER_NODE)
  2018. build_zonelists_in_node_order(pgdat, node);
  2019. else
  2020. node_order[j++] = node; /* remember order */
  2021. }
  2022. if (order == ZONELIST_ORDER_ZONE) {
  2023. /* calculate node order -- i.e., DMA last! */
  2024. build_zonelists_in_zone_order(pgdat, j);
  2025. }
  2026. build_thisnode_zonelists(pgdat);
  2027. }
  2028. /* Construct the zonelist performance cache - see further mmzone.h */
  2029. static void build_zonelist_cache(pg_data_t *pgdat)
  2030. {
  2031. struct zonelist *zonelist;
  2032. struct zonelist_cache *zlc;
  2033. struct zoneref *z;
  2034. zonelist = &pgdat->node_zonelists[0];
  2035. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2036. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2037. for (z = zonelist->_zonerefs; z->zone; z++)
  2038. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2039. }
  2040. #else /* CONFIG_NUMA */
  2041. static void set_zonelist_order(void)
  2042. {
  2043. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2044. }
  2045. static void build_zonelists(pg_data_t *pgdat)
  2046. {
  2047. int node, local_node;
  2048. enum zone_type j;
  2049. struct zonelist *zonelist;
  2050. local_node = pgdat->node_id;
  2051. zonelist = &pgdat->node_zonelists[0];
  2052. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2053. /*
  2054. * Now we build the zonelist so that it contains the zones
  2055. * of all the other nodes.
  2056. * We don't want to pressure a particular node, so when
  2057. * building the zones for node N, we make sure that the
  2058. * zones coming right after the local ones are those from
  2059. * node N+1 (modulo N)
  2060. */
  2061. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2062. if (!node_online(node))
  2063. continue;
  2064. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2065. MAX_NR_ZONES - 1);
  2066. }
  2067. for (node = 0; node < local_node; node++) {
  2068. if (!node_online(node))
  2069. continue;
  2070. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2071. MAX_NR_ZONES - 1);
  2072. }
  2073. zonelist->_zonerefs[j].zone = NULL;
  2074. zonelist->_zonerefs[j].zone_idx = 0;
  2075. }
  2076. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2077. static void build_zonelist_cache(pg_data_t *pgdat)
  2078. {
  2079. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2080. }
  2081. #endif /* CONFIG_NUMA */
  2082. /* return values int ....just for stop_machine() */
  2083. static int __build_all_zonelists(void *dummy)
  2084. {
  2085. int nid;
  2086. for_each_online_node(nid) {
  2087. pg_data_t *pgdat = NODE_DATA(nid);
  2088. build_zonelists(pgdat);
  2089. build_zonelist_cache(pgdat);
  2090. }
  2091. return 0;
  2092. }
  2093. void build_all_zonelists(void)
  2094. {
  2095. set_zonelist_order();
  2096. if (system_state == SYSTEM_BOOTING) {
  2097. __build_all_zonelists(NULL);
  2098. mminit_verify_zonelist();
  2099. cpuset_init_current_mems_allowed();
  2100. } else {
  2101. /* we have to stop all cpus to guarantee there is no user
  2102. of zonelist */
  2103. stop_machine(__build_all_zonelists, NULL, NULL);
  2104. /* cpuset refresh routine should be here */
  2105. }
  2106. vm_total_pages = nr_free_pagecache_pages();
  2107. /*
  2108. * Disable grouping by mobility if the number of pages in the
  2109. * system is too low to allow the mechanism to work. It would be
  2110. * more accurate, but expensive to check per-zone. This check is
  2111. * made on memory-hotadd so a system can start with mobility
  2112. * disabled and enable it later
  2113. */
  2114. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2115. page_group_by_mobility_disabled = 1;
  2116. else
  2117. page_group_by_mobility_disabled = 0;
  2118. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2119. "Total pages: %ld\n",
  2120. num_online_nodes(),
  2121. zonelist_order_name[current_zonelist_order],
  2122. page_group_by_mobility_disabled ? "off" : "on",
  2123. vm_total_pages);
  2124. #ifdef CONFIG_NUMA
  2125. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2126. #endif
  2127. }
  2128. /*
  2129. * Helper functions to size the waitqueue hash table.
  2130. * Essentially these want to choose hash table sizes sufficiently
  2131. * large so that collisions trying to wait on pages are rare.
  2132. * But in fact, the number of active page waitqueues on typical
  2133. * systems is ridiculously low, less than 200. So this is even
  2134. * conservative, even though it seems large.
  2135. *
  2136. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2137. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2138. */
  2139. #define PAGES_PER_WAITQUEUE 256
  2140. #ifndef CONFIG_MEMORY_HOTPLUG
  2141. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2142. {
  2143. unsigned long size = 1;
  2144. pages /= PAGES_PER_WAITQUEUE;
  2145. while (size < pages)
  2146. size <<= 1;
  2147. /*
  2148. * Once we have dozens or even hundreds of threads sleeping
  2149. * on IO we've got bigger problems than wait queue collision.
  2150. * Limit the size of the wait table to a reasonable size.
  2151. */
  2152. size = min(size, 4096UL);
  2153. return max(size, 4UL);
  2154. }
  2155. #else
  2156. /*
  2157. * A zone's size might be changed by hot-add, so it is not possible to determine
  2158. * a suitable size for its wait_table. So we use the maximum size now.
  2159. *
  2160. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2161. *
  2162. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2163. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2164. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2165. *
  2166. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2167. * or more by the traditional way. (See above). It equals:
  2168. *
  2169. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2170. * ia64(16K page size) : = ( 8G + 4M)byte.
  2171. * powerpc (64K page size) : = (32G +16M)byte.
  2172. */
  2173. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2174. {
  2175. return 4096UL;
  2176. }
  2177. #endif
  2178. /*
  2179. * This is an integer logarithm so that shifts can be used later
  2180. * to extract the more random high bits from the multiplicative
  2181. * hash function before the remainder is taken.
  2182. */
  2183. static inline unsigned long wait_table_bits(unsigned long size)
  2184. {
  2185. return ffz(~size);
  2186. }
  2187. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2188. /*
  2189. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2190. * of blocks reserved is based on zone->pages_min. The memory within the
  2191. * reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2192. * higher will lead to a bigger reserve which will get freed as contiguous
  2193. * blocks as reclaim kicks in
  2194. */
  2195. static void setup_zone_migrate_reserve(struct zone *zone)
  2196. {
  2197. unsigned long start_pfn, pfn, end_pfn;
  2198. struct page *page;
  2199. unsigned long reserve, block_migratetype;
  2200. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2201. start_pfn = zone->zone_start_pfn;
  2202. end_pfn = start_pfn + zone->spanned_pages;
  2203. reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
  2204. pageblock_order;
  2205. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2206. if (!pfn_valid(pfn))
  2207. continue;
  2208. page = pfn_to_page(pfn);
  2209. /* Watch out for overlapping nodes */
  2210. if (page_to_nid(page) != zone_to_nid(zone))
  2211. continue;
  2212. /* Blocks with reserved pages will never free, skip them. */
  2213. if (PageReserved(page))
  2214. continue;
  2215. block_migratetype = get_pageblock_migratetype(page);
  2216. /* If this block is reserved, account for it */
  2217. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2218. reserve--;
  2219. continue;
  2220. }
  2221. /* Suitable for reserving if this block is movable */
  2222. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2223. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2224. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2225. reserve--;
  2226. continue;
  2227. }
  2228. /*
  2229. * If the reserve is met and this is a previous reserved block,
  2230. * take it back
  2231. */
  2232. if (block_migratetype == MIGRATE_RESERVE) {
  2233. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2234. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2235. }
  2236. }
  2237. }
  2238. /*
  2239. * Initially all pages are reserved - free ones are freed
  2240. * up by free_all_bootmem() once the early boot process is
  2241. * done. Non-atomic initialization, single-pass.
  2242. */
  2243. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2244. unsigned long start_pfn, enum memmap_context context)
  2245. {
  2246. struct page *page;
  2247. unsigned long end_pfn = start_pfn + size;
  2248. unsigned long pfn;
  2249. struct zone *z;
  2250. z = &NODE_DATA(nid)->node_zones[zone];
  2251. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2252. /*
  2253. * There can be holes in boot-time mem_map[]s
  2254. * handed to this function. They do not
  2255. * exist on hotplugged memory.
  2256. */
  2257. if (context == MEMMAP_EARLY) {
  2258. if (!early_pfn_valid(pfn))
  2259. continue;
  2260. if (!early_pfn_in_nid(pfn, nid))
  2261. continue;
  2262. }
  2263. page = pfn_to_page(pfn);
  2264. set_page_links(page, zone, nid, pfn);
  2265. mminit_verify_page_links(page, zone, nid, pfn);
  2266. init_page_count(page);
  2267. reset_page_mapcount(page);
  2268. SetPageReserved(page);
  2269. /*
  2270. * Mark the block movable so that blocks are reserved for
  2271. * movable at startup. This will force kernel allocations
  2272. * to reserve their blocks rather than leaking throughout
  2273. * the address space during boot when many long-lived
  2274. * kernel allocations are made. Later some blocks near
  2275. * the start are marked MIGRATE_RESERVE by
  2276. * setup_zone_migrate_reserve()
  2277. *
  2278. * bitmap is created for zone's valid pfn range. but memmap
  2279. * can be created for invalid pages (for alignment)
  2280. * check here not to call set_pageblock_migratetype() against
  2281. * pfn out of zone.
  2282. */
  2283. if ((z->zone_start_pfn <= pfn)
  2284. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2285. && !(pfn & (pageblock_nr_pages - 1)))
  2286. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2287. INIT_LIST_HEAD(&page->lru);
  2288. #ifdef WANT_PAGE_VIRTUAL
  2289. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2290. if (!is_highmem_idx(zone))
  2291. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2292. #endif
  2293. }
  2294. }
  2295. static void __meminit zone_init_free_lists(struct zone *zone)
  2296. {
  2297. int order, t;
  2298. for_each_migratetype_order(order, t) {
  2299. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2300. zone->free_area[order].nr_free = 0;
  2301. }
  2302. }
  2303. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2304. #define memmap_init(size, nid, zone, start_pfn) \
  2305. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2306. #endif
  2307. static int zone_batchsize(struct zone *zone)
  2308. {
  2309. int batch;
  2310. /*
  2311. * The per-cpu-pages pools are set to around 1000th of the
  2312. * size of the zone. But no more than 1/2 of a meg.
  2313. *
  2314. * OK, so we don't know how big the cache is. So guess.
  2315. */
  2316. batch = zone->present_pages / 1024;
  2317. if (batch * PAGE_SIZE > 512 * 1024)
  2318. batch = (512 * 1024) / PAGE_SIZE;
  2319. batch /= 4; /* We effectively *= 4 below */
  2320. if (batch < 1)
  2321. batch = 1;
  2322. /*
  2323. * Clamp the batch to a 2^n - 1 value. Having a power
  2324. * of 2 value was found to be more likely to have
  2325. * suboptimal cache aliasing properties in some cases.
  2326. *
  2327. * For example if 2 tasks are alternately allocating
  2328. * batches of pages, one task can end up with a lot
  2329. * of pages of one half of the possible page colors
  2330. * and the other with pages of the other colors.
  2331. */
  2332. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  2333. return batch;
  2334. }
  2335. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2336. {
  2337. struct per_cpu_pages *pcp;
  2338. memset(p, 0, sizeof(*p));
  2339. pcp = &p->pcp;
  2340. pcp->count = 0;
  2341. pcp->high = 6 * batch;
  2342. pcp->batch = max(1UL, 1 * batch);
  2343. INIT_LIST_HEAD(&pcp->list);
  2344. }
  2345. /*
  2346. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2347. * to the value high for the pageset p.
  2348. */
  2349. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2350. unsigned long high)
  2351. {
  2352. struct per_cpu_pages *pcp;
  2353. pcp = &p->pcp;
  2354. pcp->high = high;
  2355. pcp->batch = max(1UL, high/4);
  2356. if ((high/4) > (PAGE_SHIFT * 8))
  2357. pcp->batch = PAGE_SHIFT * 8;
  2358. }
  2359. #ifdef CONFIG_NUMA
  2360. /*
  2361. * Boot pageset table. One per cpu which is going to be used for all
  2362. * zones and all nodes. The parameters will be set in such a way
  2363. * that an item put on a list will immediately be handed over to
  2364. * the buddy list. This is safe since pageset manipulation is done
  2365. * with interrupts disabled.
  2366. *
  2367. * Some NUMA counter updates may also be caught by the boot pagesets.
  2368. *
  2369. * The boot_pagesets must be kept even after bootup is complete for
  2370. * unused processors and/or zones. They do play a role for bootstrapping
  2371. * hotplugged processors.
  2372. *
  2373. * zoneinfo_show() and maybe other functions do
  2374. * not check if the processor is online before following the pageset pointer.
  2375. * Other parts of the kernel may not check if the zone is available.
  2376. */
  2377. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2378. /*
  2379. * Dynamically allocate memory for the
  2380. * per cpu pageset array in struct zone.
  2381. */
  2382. static int __cpuinit process_zones(int cpu)
  2383. {
  2384. struct zone *zone, *dzone;
  2385. int node = cpu_to_node(cpu);
  2386. node_set_state(node, N_CPU); /* this node has a cpu */
  2387. for_each_zone(zone) {
  2388. if (!populated_zone(zone))
  2389. continue;
  2390. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2391. GFP_KERNEL, node);
  2392. if (!zone_pcp(zone, cpu))
  2393. goto bad;
  2394. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2395. if (percpu_pagelist_fraction)
  2396. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2397. (zone->present_pages / percpu_pagelist_fraction));
  2398. }
  2399. return 0;
  2400. bad:
  2401. for_each_zone(dzone) {
  2402. if (!populated_zone(dzone))
  2403. continue;
  2404. if (dzone == zone)
  2405. break;
  2406. kfree(zone_pcp(dzone, cpu));
  2407. zone_pcp(dzone, cpu) = NULL;
  2408. }
  2409. return -ENOMEM;
  2410. }
  2411. static inline void free_zone_pagesets(int cpu)
  2412. {
  2413. struct zone *zone;
  2414. for_each_zone(zone) {
  2415. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2416. /* Free per_cpu_pageset if it is slab allocated */
  2417. if (pset != &boot_pageset[cpu])
  2418. kfree(pset);
  2419. zone_pcp(zone, cpu) = NULL;
  2420. }
  2421. }
  2422. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2423. unsigned long action,
  2424. void *hcpu)
  2425. {
  2426. int cpu = (long)hcpu;
  2427. int ret = NOTIFY_OK;
  2428. switch (action) {
  2429. case CPU_UP_PREPARE:
  2430. case CPU_UP_PREPARE_FROZEN:
  2431. if (process_zones(cpu))
  2432. ret = NOTIFY_BAD;
  2433. break;
  2434. case CPU_UP_CANCELED:
  2435. case CPU_UP_CANCELED_FROZEN:
  2436. case CPU_DEAD:
  2437. case CPU_DEAD_FROZEN:
  2438. free_zone_pagesets(cpu);
  2439. break;
  2440. default:
  2441. break;
  2442. }
  2443. return ret;
  2444. }
  2445. static struct notifier_block __cpuinitdata pageset_notifier =
  2446. { &pageset_cpuup_callback, NULL, 0 };
  2447. void __init setup_per_cpu_pageset(void)
  2448. {
  2449. int err;
  2450. /* Initialize per_cpu_pageset for cpu 0.
  2451. * A cpuup callback will do this for every cpu
  2452. * as it comes online
  2453. */
  2454. err = process_zones(smp_processor_id());
  2455. BUG_ON(err);
  2456. register_cpu_notifier(&pageset_notifier);
  2457. }
  2458. #endif
  2459. static noinline __init_refok
  2460. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2461. {
  2462. int i;
  2463. struct pglist_data *pgdat = zone->zone_pgdat;
  2464. size_t alloc_size;
  2465. /*
  2466. * The per-page waitqueue mechanism uses hashed waitqueues
  2467. * per zone.
  2468. */
  2469. zone->wait_table_hash_nr_entries =
  2470. wait_table_hash_nr_entries(zone_size_pages);
  2471. zone->wait_table_bits =
  2472. wait_table_bits(zone->wait_table_hash_nr_entries);
  2473. alloc_size = zone->wait_table_hash_nr_entries
  2474. * sizeof(wait_queue_head_t);
  2475. if (!slab_is_available()) {
  2476. zone->wait_table = (wait_queue_head_t *)
  2477. alloc_bootmem_node(pgdat, alloc_size);
  2478. } else {
  2479. /*
  2480. * This case means that a zone whose size was 0 gets new memory
  2481. * via memory hot-add.
  2482. * But it may be the case that a new node was hot-added. In
  2483. * this case vmalloc() will not be able to use this new node's
  2484. * memory - this wait_table must be initialized to use this new
  2485. * node itself as well.
  2486. * To use this new node's memory, further consideration will be
  2487. * necessary.
  2488. */
  2489. zone->wait_table = vmalloc(alloc_size);
  2490. }
  2491. if (!zone->wait_table)
  2492. return -ENOMEM;
  2493. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2494. init_waitqueue_head(zone->wait_table + i);
  2495. return 0;
  2496. }
  2497. static __meminit void zone_pcp_init(struct zone *zone)
  2498. {
  2499. int cpu;
  2500. unsigned long batch = zone_batchsize(zone);
  2501. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2502. #ifdef CONFIG_NUMA
  2503. /* Early boot. Slab allocator not functional yet */
  2504. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2505. setup_pageset(&boot_pageset[cpu],0);
  2506. #else
  2507. setup_pageset(zone_pcp(zone,cpu), batch);
  2508. #endif
  2509. }
  2510. if (zone->present_pages)
  2511. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2512. zone->name, zone->present_pages, batch);
  2513. }
  2514. __meminit int init_currently_empty_zone(struct zone *zone,
  2515. unsigned long zone_start_pfn,
  2516. unsigned long size,
  2517. enum memmap_context context)
  2518. {
  2519. struct pglist_data *pgdat = zone->zone_pgdat;
  2520. int ret;
  2521. ret = zone_wait_table_init(zone, size);
  2522. if (ret)
  2523. return ret;
  2524. pgdat->nr_zones = zone_idx(zone) + 1;
  2525. zone->zone_start_pfn = zone_start_pfn;
  2526. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2527. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  2528. pgdat->node_id,
  2529. (unsigned long)zone_idx(zone),
  2530. zone_start_pfn, (zone_start_pfn + size));
  2531. zone_init_free_lists(zone);
  2532. return 0;
  2533. }
  2534. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2535. /*
  2536. * Basic iterator support. Return the first range of PFNs for a node
  2537. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2538. */
  2539. static int __meminit first_active_region_index_in_nid(int nid)
  2540. {
  2541. int i;
  2542. for (i = 0; i < nr_nodemap_entries; i++)
  2543. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2544. return i;
  2545. return -1;
  2546. }
  2547. /*
  2548. * Basic iterator support. Return the next active range of PFNs for a node
  2549. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2550. */
  2551. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2552. {
  2553. for (index = index + 1; index < nr_nodemap_entries; index++)
  2554. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2555. return index;
  2556. return -1;
  2557. }
  2558. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2559. /*
  2560. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2561. * Architectures may implement their own version but if add_active_range()
  2562. * was used and there are no special requirements, this is a convenient
  2563. * alternative
  2564. */
  2565. int __meminit early_pfn_to_nid(unsigned long pfn)
  2566. {
  2567. int i;
  2568. for (i = 0; i < nr_nodemap_entries; i++) {
  2569. unsigned long start_pfn = early_node_map[i].start_pfn;
  2570. unsigned long end_pfn = early_node_map[i].end_pfn;
  2571. if (start_pfn <= pfn && pfn < end_pfn)
  2572. return early_node_map[i].nid;
  2573. }
  2574. return 0;
  2575. }
  2576. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2577. /* Basic iterator support to walk early_node_map[] */
  2578. #define for_each_active_range_index_in_nid(i, nid) \
  2579. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2580. i = next_active_region_index_in_nid(i, nid))
  2581. /**
  2582. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2583. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2584. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2585. *
  2586. * If an architecture guarantees that all ranges registered with
  2587. * add_active_ranges() contain no holes and may be freed, this
  2588. * this function may be used instead of calling free_bootmem() manually.
  2589. */
  2590. void __init free_bootmem_with_active_regions(int nid,
  2591. unsigned long max_low_pfn)
  2592. {
  2593. int i;
  2594. for_each_active_range_index_in_nid(i, nid) {
  2595. unsigned long size_pages = 0;
  2596. unsigned long end_pfn = early_node_map[i].end_pfn;
  2597. if (early_node_map[i].start_pfn >= max_low_pfn)
  2598. continue;
  2599. if (end_pfn > max_low_pfn)
  2600. end_pfn = max_low_pfn;
  2601. size_pages = end_pfn - early_node_map[i].start_pfn;
  2602. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2603. PFN_PHYS(early_node_map[i].start_pfn),
  2604. size_pages << PAGE_SHIFT);
  2605. }
  2606. }
  2607. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  2608. {
  2609. int i;
  2610. int ret;
  2611. for_each_active_range_index_in_nid(i, nid) {
  2612. ret = work_fn(early_node_map[i].start_pfn,
  2613. early_node_map[i].end_pfn, data);
  2614. if (ret)
  2615. break;
  2616. }
  2617. }
  2618. /**
  2619. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2620. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2621. *
  2622. * If an architecture guarantees that all ranges registered with
  2623. * add_active_ranges() contain no holes and may be freed, this
  2624. * function may be used instead of calling memory_present() manually.
  2625. */
  2626. void __init sparse_memory_present_with_active_regions(int nid)
  2627. {
  2628. int i;
  2629. for_each_active_range_index_in_nid(i, nid)
  2630. memory_present(early_node_map[i].nid,
  2631. early_node_map[i].start_pfn,
  2632. early_node_map[i].end_pfn);
  2633. }
  2634. /**
  2635. * push_node_boundaries - Push node boundaries to at least the requested boundary
  2636. * @nid: The nid of the node to push the boundary for
  2637. * @start_pfn: The start pfn of the node
  2638. * @end_pfn: The end pfn of the node
  2639. *
  2640. * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
  2641. * time. Specifically, on x86_64, SRAT will report ranges that can potentially
  2642. * be hotplugged even though no physical memory exists. This function allows
  2643. * an arch to push out the node boundaries so mem_map is allocated that can
  2644. * be used later.
  2645. */
  2646. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2647. void __init push_node_boundaries(unsigned int nid,
  2648. unsigned long start_pfn, unsigned long end_pfn)
  2649. {
  2650. mminit_dprintk(MMINIT_TRACE, "zoneboundary",
  2651. "Entering push_node_boundaries(%u, %lu, %lu)\n",
  2652. nid, start_pfn, end_pfn);
  2653. /* Initialise the boundary for this node if necessary */
  2654. if (node_boundary_end_pfn[nid] == 0)
  2655. node_boundary_start_pfn[nid] = -1UL;
  2656. /* Update the boundaries */
  2657. if (node_boundary_start_pfn[nid] > start_pfn)
  2658. node_boundary_start_pfn[nid] = start_pfn;
  2659. if (node_boundary_end_pfn[nid] < end_pfn)
  2660. node_boundary_end_pfn[nid] = end_pfn;
  2661. }
  2662. /* If necessary, push the node boundary out for reserve hotadd */
  2663. static void __meminit account_node_boundary(unsigned int nid,
  2664. unsigned long *start_pfn, unsigned long *end_pfn)
  2665. {
  2666. mminit_dprintk(MMINIT_TRACE, "zoneboundary",
  2667. "Entering account_node_boundary(%u, %lu, %lu)\n",
  2668. nid, *start_pfn, *end_pfn);
  2669. /* Return if boundary information has not been provided */
  2670. if (node_boundary_end_pfn[nid] == 0)
  2671. return;
  2672. /* Check the boundaries and update if necessary */
  2673. if (node_boundary_start_pfn[nid] < *start_pfn)
  2674. *start_pfn = node_boundary_start_pfn[nid];
  2675. if (node_boundary_end_pfn[nid] > *end_pfn)
  2676. *end_pfn = node_boundary_end_pfn[nid];
  2677. }
  2678. #else
  2679. void __init push_node_boundaries(unsigned int nid,
  2680. unsigned long start_pfn, unsigned long end_pfn) {}
  2681. static void __meminit account_node_boundary(unsigned int nid,
  2682. unsigned long *start_pfn, unsigned long *end_pfn) {}
  2683. #endif
  2684. /**
  2685. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2686. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2687. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2688. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2689. *
  2690. * It returns the start and end page frame of a node based on information
  2691. * provided by an arch calling add_active_range(). If called for a node
  2692. * with no available memory, a warning is printed and the start and end
  2693. * PFNs will be 0.
  2694. */
  2695. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2696. unsigned long *start_pfn, unsigned long *end_pfn)
  2697. {
  2698. int i;
  2699. *start_pfn = -1UL;
  2700. *end_pfn = 0;
  2701. for_each_active_range_index_in_nid(i, nid) {
  2702. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2703. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2704. }
  2705. if (*start_pfn == -1UL)
  2706. *start_pfn = 0;
  2707. /* Push the node boundaries out if requested */
  2708. account_node_boundary(nid, start_pfn, end_pfn);
  2709. }
  2710. /*
  2711. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2712. * assumption is made that zones within a node are ordered in monotonic
  2713. * increasing memory addresses so that the "highest" populated zone is used
  2714. */
  2715. static void __init find_usable_zone_for_movable(void)
  2716. {
  2717. int zone_index;
  2718. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2719. if (zone_index == ZONE_MOVABLE)
  2720. continue;
  2721. if (arch_zone_highest_possible_pfn[zone_index] >
  2722. arch_zone_lowest_possible_pfn[zone_index])
  2723. break;
  2724. }
  2725. VM_BUG_ON(zone_index == -1);
  2726. movable_zone = zone_index;
  2727. }
  2728. /*
  2729. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2730. * because it is sized independant of architecture. Unlike the other zones,
  2731. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2732. * in each node depending on the size of each node and how evenly kernelcore
  2733. * is distributed. This helper function adjusts the zone ranges
  2734. * provided by the architecture for a given node by using the end of the
  2735. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2736. * zones within a node are in order of monotonic increases memory addresses
  2737. */
  2738. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  2739. unsigned long zone_type,
  2740. unsigned long node_start_pfn,
  2741. unsigned long node_end_pfn,
  2742. unsigned long *zone_start_pfn,
  2743. unsigned long *zone_end_pfn)
  2744. {
  2745. /* Only adjust if ZONE_MOVABLE is on this node */
  2746. if (zone_movable_pfn[nid]) {
  2747. /* Size ZONE_MOVABLE */
  2748. if (zone_type == ZONE_MOVABLE) {
  2749. *zone_start_pfn = zone_movable_pfn[nid];
  2750. *zone_end_pfn = min(node_end_pfn,
  2751. arch_zone_highest_possible_pfn[movable_zone]);
  2752. /* Adjust for ZONE_MOVABLE starting within this range */
  2753. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2754. *zone_end_pfn > zone_movable_pfn[nid]) {
  2755. *zone_end_pfn = zone_movable_pfn[nid];
  2756. /* Check if this whole range is within ZONE_MOVABLE */
  2757. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2758. *zone_start_pfn = *zone_end_pfn;
  2759. }
  2760. }
  2761. /*
  2762. * Return the number of pages a zone spans in a node, including holes
  2763. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2764. */
  2765. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2766. unsigned long zone_type,
  2767. unsigned long *ignored)
  2768. {
  2769. unsigned long node_start_pfn, node_end_pfn;
  2770. unsigned long zone_start_pfn, zone_end_pfn;
  2771. /* Get the start and end of the node and zone */
  2772. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2773. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2774. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2775. adjust_zone_range_for_zone_movable(nid, zone_type,
  2776. node_start_pfn, node_end_pfn,
  2777. &zone_start_pfn, &zone_end_pfn);
  2778. /* Check that this node has pages within the zone's required range */
  2779. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2780. return 0;
  2781. /* Move the zone boundaries inside the node if necessary */
  2782. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2783. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2784. /* Return the spanned pages */
  2785. return zone_end_pfn - zone_start_pfn;
  2786. }
  2787. /*
  2788. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2789. * then all holes in the requested range will be accounted for.
  2790. */
  2791. static unsigned long __meminit __absent_pages_in_range(int nid,
  2792. unsigned long range_start_pfn,
  2793. unsigned long range_end_pfn)
  2794. {
  2795. int i = 0;
  2796. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2797. unsigned long start_pfn;
  2798. /* Find the end_pfn of the first active range of pfns in the node */
  2799. i = first_active_region_index_in_nid(nid);
  2800. if (i == -1)
  2801. return 0;
  2802. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2803. /* Account for ranges before physical memory on this node */
  2804. if (early_node_map[i].start_pfn > range_start_pfn)
  2805. hole_pages = prev_end_pfn - range_start_pfn;
  2806. /* Find all holes for the zone within the node */
  2807. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2808. /* No need to continue if prev_end_pfn is outside the zone */
  2809. if (prev_end_pfn >= range_end_pfn)
  2810. break;
  2811. /* Make sure the end of the zone is not within the hole */
  2812. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2813. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2814. /* Update the hole size cound and move on */
  2815. if (start_pfn > range_start_pfn) {
  2816. BUG_ON(prev_end_pfn > start_pfn);
  2817. hole_pages += start_pfn - prev_end_pfn;
  2818. }
  2819. prev_end_pfn = early_node_map[i].end_pfn;
  2820. }
  2821. /* Account for ranges past physical memory on this node */
  2822. if (range_end_pfn > prev_end_pfn)
  2823. hole_pages += range_end_pfn -
  2824. max(range_start_pfn, prev_end_pfn);
  2825. return hole_pages;
  2826. }
  2827. /**
  2828. * absent_pages_in_range - Return number of page frames in holes within a range
  2829. * @start_pfn: The start PFN to start searching for holes
  2830. * @end_pfn: The end PFN to stop searching for holes
  2831. *
  2832. * It returns the number of pages frames in memory holes within a range.
  2833. */
  2834. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2835. unsigned long end_pfn)
  2836. {
  2837. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2838. }
  2839. /* Return the number of page frames in holes in a zone on a node */
  2840. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2841. unsigned long zone_type,
  2842. unsigned long *ignored)
  2843. {
  2844. unsigned long node_start_pfn, node_end_pfn;
  2845. unsigned long zone_start_pfn, zone_end_pfn;
  2846. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2847. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2848. node_start_pfn);
  2849. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2850. node_end_pfn);
  2851. adjust_zone_range_for_zone_movable(nid, zone_type,
  2852. node_start_pfn, node_end_pfn,
  2853. &zone_start_pfn, &zone_end_pfn);
  2854. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2855. }
  2856. #else
  2857. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2858. unsigned long zone_type,
  2859. unsigned long *zones_size)
  2860. {
  2861. return zones_size[zone_type];
  2862. }
  2863. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2864. unsigned long zone_type,
  2865. unsigned long *zholes_size)
  2866. {
  2867. if (!zholes_size)
  2868. return 0;
  2869. return zholes_size[zone_type];
  2870. }
  2871. #endif
  2872. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  2873. unsigned long *zones_size, unsigned long *zholes_size)
  2874. {
  2875. unsigned long realtotalpages, totalpages = 0;
  2876. enum zone_type i;
  2877. for (i = 0; i < MAX_NR_ZONES; i++)
  2878. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2879. zones_size);
  2880. pgdat->node_spanned_pages = totalpages;
  2881. realtotalpages = totalpages;
  2882. for (i = 0; i < MAX_NR_ZONES; i++)
  2883. realtotalpages -=
  2884. zone_absent_pages_in_node(pgdat->node_id, i,
  2885. zholes_size);
  2886. pgdat->node_present_pages = realtotalpages;
  2887. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  2888. realtotalpages);
  2889. }
  2890. #ifndef CONFIG_SPARSEMEM
  2891. /*
  2892. * Calculate the size of the zone->blockflags rounded to an unsigned long
  2893. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  2894. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  2895. * round what is now in bits to nearest long in bits, then return it in
  2896. * bytes.
  2897. */
  2898. static unsigned long __init usemap_size(unsigned long zonesize)
  2899. {
  2900. unsigned long usemapsize;
  2901. usemapsize = roundup(zonesize, pageblock_nr_pages);
  2902. usemapsize = usemapsize >> pageblock_order;
  2903. usemapsize *= NR_PAGEBLOCK_BITS;
  2904. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  2905. return usemapsize / 8;
  2906. }
  2907. static void __init setup_usemap(struct pglist_data *pgdat,
  2908. struct zone *zone, unsigned long zonesize)
  2909. {
  2910. unsigned long usemapsize = usemap_size(zonesize);
  2911. zone->pageblock_flags = NULL;
  2912. if (usemapsize) {
  2913. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  2914. memset(zone->pageblock_flags, 0, usemapsize);
  2915. }
  2916. }
  2917. #else
  2918. static void inline setup_usemap(struct pglist_data *pgdat,
  2919. struct zone *zone, unsigned long zonesize) {}
  2920. #endif /* CONFIG_SPARSEMEM */
  2921. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  2922. /* Return a sensible default order for the pageblock size. */
  2923. static inline int pageblock_default_order(void)
  2924. {
  2925. if (HPAGE_SHIFT > PAGE_SHIFT)
  2926. return HUGETLB_PAGE_ORDER;
  2927. return MAX_ORDER-1;
  2928. }
  2929. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  2930. static inline void __init set_pageblock_order(unsigned int order)
  2931. {
  2932. /* Check that pageblock_nr_pages has not already been setup */
  2933. if (pageblock_order)
  2934. return;
  2935. /*
  2936. * Assume the largest contiguous order of interest is a huge page.
  2937. * This value may be variable depending on boot parameters on IA64
  2938. */
  2939. pageblock_order = order;
  2940. }
  2941. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2942. /*
  2943. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  2944. * and pageblock_default_order() are unused as pageblock_order is set
  2945. * at compile-time. See include/linux/pageblock-flags.h for the values of
  2946. * pageblock_order based on the kernel config
  2947. */
  2948. static inline int pageblock_default_order(unsigned int order)
  2949. {
  2950. return MAX_ORDER-1;
  2951. }
  2952. #define set_pageblock_order(x) do {} while (0)
  2953. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2954. /*
  2955. * Set up the zone data structures:
  2956. * - mark all pages reserved
  2957. * - mark all memory queues empty
  2958. * - clear the memory bitmaps
  2959. */
  2960. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  2961. unsigned long *zones_size, unsigned long *zholes_size)
  2962. {
  2963. enum zone_type j;
  2964. int nid = pgdat->node_id;
  2965. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  2966. int ret;
  2967. pgdat_resize_init(pgdat);
  2968. pgdat->nr_zones = 0;
  2969. init_waitqueue_head(&pgdat->kswapd_wait);
  2970. pgdat->kswapd_max_order = 0;
  2971. for (j = 0; j < MAX_NR_ZONES; j++) {
  2972. struct zone *zone = pgdat->node_zones + j;
  2973. unsigned long size, realsize, memmap_pages;
  2974. enum lru_list l;
  2975. size = zone_spanned_pages_in_node(nid, j, zones_size);
  2976. realsize = size - zone_absent_pages_in_node(nid, j,
  2977. zholes_size);
  2978. /*
  2979. * Adjust realsize so that it accounts for how much memory
  2980. * is used by this zone for memmap. This affects the watermark
  2981. * and per-cpu initialisations
  2982. */
  2983. memmap_pages =
  2984. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  2985. if (realsize >= memmap_pages) {
  2986. realsize -= memmap_pages;
  2987. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2988. "%s zone: %lu pages used for memmap\n",
  2989. zone_names[j], memmap_pages);
  2990. } else
  2991. printk(KERN_WARNING
  2992. " %s zone: %lu pages exceeds realsize %lu\n",
  2993. zone_names[j], memmap_pages, realsize);
  2994. /* Account for reserved pages */
  2995. if (j == 0 && realsize > dma_reserve) {
  2996. realsize -= dma_reserve;
  2997. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2998. "%s zone: %lu pages reserved\n",
  2999. zone_names[0], dma_reserve);
  3000. }
  3001. if (!is_highmem_idx(j))
  3002. nr_kernel_pages += realsize;
  3003. nr_all_pages += realsize;
  3004. zone->spanned_pages = size;
  3005. zone->present_pages = realsize;
  3006. #ifdef CONFIG_NUMA
  3007. zone->node = nid;
  3008. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3009. / 100;
  3010. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3011. #endif
  3012. zone->name = zone_names[j];
  3013. spin_lock_init(&zone->lock);
  3014. spin_lock_init(&zone->lru_lock);
  3015. zone_seqlock_init(zone);
  3016. zone->zone_pgdat = pgdat;
  3017. zone->prev_priority = DEF_PRIORITY;
  3018. zone_pcp_init(zone);
  3019. for_each_lru(l) {
  3020. INIT_LIST_HEAD(&zone->lru[l].list);
  3021. zone->lru[l].nr_scan = 0;
  3022. }
  3023. zone->recent_rotated[0] = 0;
  3024. zone->recent_rotated[1] = 0;
  3025. zone->recent_scanned[0] = 0;
  3026. zone->recent_scanned[1] = 0;
  3027. zap_zone_vm_stats(zone);
  3028. zone->flags = 0;
  3029. if (!size)
  3030. continue;
  3031. set_pageblock_order(pageblock_default_order());
  3032. setup_usemap(pgdat, zone, size);
  3033. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3034. size, MEMMAP_EARLY);
  3035. BUG_ON(ret);
  3036. memmap_init(size, nid, j, zone_start_pfn);
  3037. zone_start_pfn += size;
  3038. }
  3039. }
  3040. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3041. {
  3042. /* Skip empty nodes */
  3043. if (!pgdat->node_spanned_pages)
  3044. return;
  3045. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3046. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3047. if (!pgdat->node_mem_map) {
  3048. unsigned long size, start, end;
  3049. struct page *map;
  3050. /*
  3051. * The zone's endpoints aren't required to be MAX_ORDER
  3052. * aligned but the node_mem_map endpoints must be in order
  3053. * for the buddy allocator to function correctly.
  3054. */
  3055. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3056. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3057. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3058. size = (end - start) * sizeof(struct page);
  3059. map = alloc_remap(pgdat->node_id, size);
  3060. if (!map)
  3061. map = alloc_bootmem_node(pgdat, size);
  3062. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3063. }
  3064. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3065. /*
  3066. * With no DISCONTIG, the global mem_map is just set as node 0's
  3067. */
  3068. if (pgdat == NODE_DATA(0)) {
  3069. mem_map = NODE_DATA(0)->node_mem_map;
  3070. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3071. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3072. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3073. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3074. }
  3075. #endif
  3076. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3077. }
  3078. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3079. unsigned long node_start_pfn, unsigned long *zholes_size)
  3080. {
  3081. pg_data_t *pgdat = NODE_DATA(nid);
  3082. pgdat->node_id = nid;
  3083. pgdat->node_start_pfn = node_start_pfn;
  3084. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3085. alloc_node_mem_map(pgdat);
  3086. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3087. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3088. nid, (unsigned long)pgdat,
  3089. (unsigned long)pgdat->node_mem_map);
  3090. #endif
  3091. free_area_init_core(pgdat, zones_size, zholes_size);
  3092. }
  3093. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3094. #if MAX_NUMNODES > 1
  3095. /*
  3096. * Figure out the number of possible node ids.
  3097. */
  3098. static void __init setup_nr_node_ids(void)
  3099. {
  3100. unsigned int node;
  3101. unsigned int highest = 0;
  3102. for_each_node_mask(node, node_possible_map)
  3103. highest = node;
  3104. nr_node_ids = highest + 1;
  3105. }
  3106. #else
  3107. static inline void setup_nr_node_ids(void)
  3108. {
  3109. }
  3110. #endif
  3111. /**
  3112. * add_active_range - Register a range of PFNs backed by physical memory
  3113. * @nid: The node ID the range resides on
  3114. * @start_pfn: The start PFN of the available physical memory
  3115. * @end_pfn: The end PFN of the available physical memory
  3116. *
  3117. * These ranges are stored in an early_node_map[] and later used by
  3118. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3119. * range spans a memory hole, it is up to the architecture to ensure
  3120. * the memory is not freed by the bootmem allocator. If possible
  3121. * the range being registered will be merged with existing ranges.
  3122. */
  3123. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3124. unsigned long end_pfn)
  3125. {
  3126. int i;
  3127. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3128. "Entering add_active_range(%d, %#lx, %#lx) "
  3129. "%d entries of %d used\n",
  3130. nid, start_pfn, end_pfn,
  3131. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3132. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3133. /* Merge with existing active regions if possible */
  3134. for (i = 0; i < nr_nodemap_entries; i++) {
  3135. if (early_node_map[i].nid != nid)
  3136. continue;
  3137. /* Skip if an existing region covers this new one */
  3138. if (start_pfn >= early_node_map[i].start_pfn &&
  3139. end_pfn <= early_node_map[i].end_pfn)
  3140. return;
  3141. /* Merge forward if suitable */
  3142. if (start_pfn <= early_node_map[i].end_pfn &&
  3143. end_pfn > early_node_map[i].end_pfn) {
  3144. early_node_map[i].end_pfn = end_pfn;
  3145. return;
  3146. }
  3147. /* Merge backward if suitable */
  3148. if (start_pfn < early_node_map[i].end_pfn &&
  3149. end_pfn >= early_node_map[i].start_pfn) {
  3150. early_node_map[i].start_pfn = start_pfn;
  3151. return;
  3152. }
  3153. }
  3154. /* Check that early_node_map is large enough */
  3155. if (i >= MAX_ACTIVE_REGIONS) {
  3156. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3157. MAX_ACTIVE_REGIONS);
  3158. return;
  3159. }
  3160. early_node_map[i].nid = nid;
  3161. early_node_map[i].start_pfn = start_pfn;
  3162. early_node_map[i].end_pfn = end_pfn;
  3163. nr_nodemap_entries = i + 1;
  3164. }
  3165. /**
  3166. * remove_active_range - Shrink an existing registered range of PFNs
  3167. * @nid: The node id the range is on that should be shrunk
  3168. * @start_pfn: The new PFN of the range
  3169. * @end_pfn: The new PFN of the range
  3170. *
  3171. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3172. * The map is kept near the end physical page range that has already been
  3173. * registered. This function allows an arch to shrink an existing registered
  3174. * range.
  3175. */
  3176. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3177. unsigned long end_pfn)
  3178. {
  3179. int i, j;
  3180. int removed = 0;
  3181. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3182. nid, start_pfn, end_pfn);
  3183. /* Find the old active region end and shrink */
  3184. for_each_active_range_index_in_nid(i, nid) {
  3185. if (early_node_map[i].start_pfn >= start_pfn &&
  3186. early_node_map[i].end_pfn <= end_pfn) {
  3187. /* clear it */
  3188. early_node_map[i].start_pfn = 0;
  3189. early_node_map[i].end_pfn = 0;
  3190. removed = 1;
  3191. continue;
  3192. }
  3193. if (early_node_map[i].start_pfn < start_pfn &&
  3194. early_node_map[i].end_pfn > start_pfn) {
  3195. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3196. early_node_map[i].end_pfn = start_pfn;
  3197. if (temp_end_pfn > end_pfn)
  3198. add_active_range(nid, end_pfn, temp_end_pfn);
  3199. continue;
  3200. }
  3201. if (early_node_map[i].start_pfn >= start_pfn &&
  3202. early_node_map[i].end_pfn > end_pfn &&
  3203. early_node_map[i].start_pfn < end_pfn) {
  3204. early_node_map[i].start_pfn = end_pfn;
  3205. continue;
  3206. }
  3207. }
  3208. if (!removed)
  3209. return;
  3210. /* remove the blank ones */
  3211. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3212. if (early_node_map[i].nid != nid)
  3213. continue;
  3214. if (early_node_map[i].end_pfn)
  3215. continue;
  3216. /* we found it, get rid of it */
  3217. for (j = i; j < nr_nodemap_entries - 1; j++)
  3218. memcpy(&early_node_map[j], &early_node_map[j+1],
  3219. sizeof(early_node_map[j]));
  3220. j = nr_nodemap_entries - 1;
  3221. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3222. nr_nodemap_entries--;
  3223. }
  3224. }
  3225. /**
  3226. * remove_all_active_ranges - Remove all currently registered regions
  3227. *
  3228. * During discovery, it may be found that a table like SRAT is invalid
  3229. * and an alternative discovery method must be used. This function removes
  3230. * all currently registered regions.
  3231. */
  3232. void __init remove_all_active_ranges(void)
  3233. {
  3234. memset(early_node_map, 0, sizeof(early_node_map));
  3235. nr_nodemap_entries = 0;
  3236. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  3237. memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
  3238. memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
  3239. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  3240. }
  3241. /* Compare two active node_active_regions */
  3242. static int __init cmp_node_active_region(const void *a, const void *b)
  3243. {
  3244. struct node_active_region *arange = (struct node_active_region *)a;
  3245. struct node_active_region *brange = (struct node_active_region *)b;
  3246. /* Done this way to avoid overflows */
  3247. if (arange->start_pfn > brange->start_pfn)
  3248. return 1;
  3249. if (arange->start_pfn < brange->start_pfn)
  3250. return -1;
  3251. return 0;
  3252. }
  3253. /* sort the node_map by start_pfn */
  3254. static void __init sort_node_map(void)
  3255. {
  3256. sort(early_node_map, (size_t)nr_nodemap_entries,
  3257. sizeof(struct node_active_region),
  3258. cmp_node_active_region, NULL);
  3259. }
  3260. /* Find the lowest pfn for a node */
  3261. static unsigned long __init find_min_pfn_for_node(int nid)
  3262. {
  3263. int i;
  3264. unsigned long min_pfn = ULONG_MAX;
  3265. /* Assuming a sorted map, the first range found has the starting pfn */
  3266. for_each_active_range_index_in_nid(i, nid)
  3267. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3268. if (min_pfn == ULONG_MAX) {
  3269. printk(KERN_WARNING
  3270. "Could not find start_pfn for node %d\n", nid);
  3271. return 0;
  3272. }
  3273. return min_pfn;
  3274. }
  3275. /**
  3276. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3277. *
  3278. * It returns the minimum PFN based on information provided via
  3279. * add_active_range().
  3280. */
  3281. unsigned long __init find_min_pfn_with_active_regions(void)
  3282. {
  3283. return find_min_pfn_for_node(MAX_NUMNODES);
  3284. }
  3285. /*
  3286. * early_calculate_totalpages()
  3287. * Sum pages in active regions for movable zone.
  3288. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3289. */
  3290. static unsigned long __init early_calculate_totalpages(void)
  3291. {
  3292. int i;
  3293. unsigned long totalpages = 0;
  3294. for (i = 0; i < nr_nodemap_entries; i++) {
  3295. unsigned long pages = early_node_map[i].end_pfn -
  3296. early_node_map[i].start_pfn;
  3297. totalpages += pages;
  3298. if (pages)
  3299. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3300. }
  3301. return totalpages;
  3302. }
  3303. /*
  3304. * Find the PFN the Movable zone begins in each node. Kernel memory
  3305. * is spread evenly between nodes as long as the nodes have enough
  3306. * memory. When they don't, some nodes will have more kernelcore than
  3307. * others
  3308. */
  3309. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3310. {
  3311. int i, nid;
  3312. unsigned long usable_startpfn;
  3313. unsigned long kernelcore_node, kernelcore_remaining;
  3314. unsigned long totalpages = early_calculate_totalpages();
  3315. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3316. /*
  3317. * If movablecore was specified, calculate what size of
  3318. * kernelcore that corresponds so that memory usable for
  3319. * any allocation type is evenly spread. If both kernelcore
  3320. * and movablecore are specified, then the value of kernelcore
  3321. * will be used for required_kernelcore if it's greater than
  3322. * what movablecore would have allowed.
  3323. */
  3324. if (required_movablecore) {
  3325. unsigned long corepages;
  3326. /*
  3327. * Round-up so that ZONE_MOVABLE is at least as large as what
  3328. * was requested by the user
  3329. */
  3330. required_movablecore =
  3331. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3332. corepages = totalpages - required_movablecore;
  3333. required_kernelcore = max(required_kernelcore, corepages);
  3334. }
  3335. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3336. if (!required_kernelcore)
  3337. return;
  3338. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3339. find_usable_zone_for_movable();
  3340. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3341. restart:
  3342. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3343. kernelcore_node = required_kernelcore / usable_nodes;
  3344. for_each_node_state(nid, N_HIGH_MEMORY) {
  3345. /*
  3346. * Recalculate kernelcore_node if the division per node
  3347. * now exceeds what is necessary to satisfy the requested
  3348. * amount of memory for the kernel
  3349. */
  3350. if (required_kernelcore < kernelcore_node)
  3351. kernelcore_node = required_kernelcore / usable_nodes;
  3352. /*
  3353. * As the map is walked, we track how much memory is usable
  3354. * by the kernel using kernelcore_remaining. When it is
  3355. * 0, the rest of the node is usable by ZONE_MOVABLE
  3356. */
  3357. kernelcore_remaining = kernelcore_node;
  3358. /* Go through each range of PFNs within this node */
  3359. for_each_active_range_index_in_nid(i, nid) {
  3360. unsigned long start_pfn, end_pfn;
  3361. unsigned long size_pages;
  3362. start_pfn = max(early_node_map[i].start_pfn,
  3363. zone_movable_pfn[nid]);
  3364. end_pfn = early_node_map[i].end_pfn;
  3365. if (start_pfn >= end_pfn)
  3366. continue;
  3367. /* Account for what is only usable for kernelcore */
  3368. if (start_pfn < usable_startpfn) {
  3369. unsigned long kernel_pages;
  3370. kernel_pages = min(end_pfn, usable_startpfn)
  3371. - start_pfn;
  3372. kernelcore_remaining -= min(kernel_pages,
  3373. kernelcore_remaining);
  3374. required_kernelcore -= min(kernel_pages,
  3375. required_kernelcore);
  3376. /* Continue if range is now fully accounted */
  3377. if (end_pfn <= usable_startpfn) {
  3378. /*
  3379. * Push zone_movable_pfn to the end so
  3380. * that if we have to rebalance
  3381. * kernelcore across nodes, we will
  3382. * not double account here
  3383. */
  3384. zone_movable_pfn[nid] = end_pfn;
  3385. continue;
  3386. }
  3387. start_pfn = usable_startpfn;
  3388. }
  3389. /*
  3390. * The usable PFN range for ZONE_MOVABLE is from
  3391. * start_pfn->end_pfn. Calculate size_pages as the
  3392. * number of pages used as kernelcore
  3393. */
  3394. size_pages = end_pfn - start_pfn;
  3395. if (size_pages > kernelcore_remaining)
  3396. size_pages = kernelcore_remaining;
  3397. zone_movable_pfn[nid] = start_pfn + size_pages;
  3398. /*
  3399. * Some kernelcore has been met, update counts and
  3400. * break if the kernelcore for this node has been
  3401. * satisified
  3402. */
  3403. required_kernelcore -= min(required_kernelcore,
  3404. size_pages);
  3405. kernelcore_remaining -= size_pages;
  3406. if (!kernelcore_remaining)
  3407. break;
  3408. }
  3409. }
  3410. /*
  3411. * If there is still required_kernelcore, we do another pass with one
  3412. * less node in the count. This will push zone_movable_pfn[nid] further
  3413. * along on the nodes that still have memory until kernelcore is
  3414. * satisified
  3415. */
  3416. usable_nodes--;
  3417. if (usable_nodes && required_kernelcore > usable_nodes)
  3418. goto restart;
  3419. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3420. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3421. zone_movable_pfn[nid] =
  3422. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3423. }
  3424. /* Any regular memory on that node ? */
  3425. static void check_for_regular_memory(pg_data_t *pgdat)
  3426. {
  3427. #ifdef CONFIG_HIGHMEM
  3428. enum zone_type zone_type;
  3429. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3430. struct zone *zone = &pgdat->node_zones[zone_type];
  3431. if (zone->present_pages)
  3432. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3433. }
  3434. #endif
  3435. }
  3436. /**
  3437. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3438. * @max_zone_pfn: an array of max PFNs for each zone
  3439. *
  3440. * This will call free_area_init_node() for each active node in the system.
  3441. * Using the page ranges provided by add_active_range(), the size of each
  3442. * zone in each node and their holes is calculated. If the maximum PFN
  3443. * between two adjacent zones match, it is assumed that the zone is empty.
  3444. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3445. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3446. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3447. * at arch_max_dma_pfn.
  3448. */
  3449. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3450. {
  3451. unsigned long nid;
  3452. int i;
  3453. /* Sort early_node_map as initialisation assumes it is sorted */
  3454. sort_node_map();
  3455. /* Record where the zone boundaries are */
  3456. memset(arch_zone_lowest_possible_pfn, 0,
  3457. sizeof(arch_zone_lowest_possible_pfn));
  3458. memset(arch_zone_highest_possible_pfn, 0,
  3459. sizeof(arch_zone_highest_possible_pfn));
  3460. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3461. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3462. for (i = 1; i < MAX_NR_ZONES; i++) {
  3463. if (i == ZONE_MOVABLE)
  3464. continue;
  3465. arch_zone_lowest_possible_pfn[i] =
  3466. arch_zone_highest_possible_pfn[i-1];
  3467. arch_zone_highest_possible_pfn[i] =
  3468. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3469. }
  3470. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3471. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3472. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3473. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3474. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3475. /* Print out the zone ranges */
  3476. printk("Zone PFN ranges:\n");
  3477. for (i = 0; i < MAX_NR_ZONES; i++) {
  3478. if (i == ZONE_MOVABLE)
  3479. continue;
  3480. printk(" %-8s %0#10lx -> %0#10lx\n",
  3481. zone_names[i],
  3482. arch_zone_lowest_possible_pfn[i],
  3483. arch_zone_highest_possible_pfn[i]);
  3484. }
  3485. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3486. printk("Movable zone start PFN for each node\n");
  3487. for (i = 0; i < MAX_NUMNODES; i++) {
  3488. if (zone_movable_pfn[i])
  3489. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3490. }
  3491. /* Print out the early_node_map[] */
  3492. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3493. for (i = 0; i < nr_nodemap_entries; i++)
  3494. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  3495. early_node_map[i].start_pfn,
  3496. early_node_map[i].end_pfn);
  3497. /* Initialise every node */
  3498. mminit_verify_pageflags_layout();
  3499. setup_nr_node_ids();
  3500. for_each_online_node(nid) {
  3501. pg_data_t *pgdat = NODE_DATA(nid);
  3502. free_area_init_node(nid, NULL,
  3503. find_min_pfn_for_node(nid), NULL);
  3504. /* Any memory on that node */
  3505. if (pgdat->node_present_pages)
  3506. node_set_state(nid, N_HIGH_MEMORY);
  3507. check_for_regular_memory(pgdat);
  3508. }
  3509. }
  3510. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3511. {
  3512. unsigned long long coremem;
  3513. if (!p)
  3514. return -EINVAL;
  3515. coremem = memparse(p, &p);
  3516. *core = coremem >> PAGE_SHIFT;
  3517. /* Paranoid check that UL is enough for the coremem value */
  3518. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3519. return 0;
  3520. }
  3521. /*
  3522. * kernelcore=size sets the amount of memory for use for allocations that
  3523. * cannot be reclaimed or migrated.
  3524. */
  3525. static int __init cmdline_parse_kernelcore(char *p)
  3526. {
  3527. return cmdline_parse_core(p, &required_kernelcore);
  3528. }
  3529. /*
  3530. * movablecore=size sets the amount of memory for use for allocations that
  3531. * can be reclaimed or migrated.
  3532. */
  3533. static int __init cmdline_parse_movablecore(char *p)
  3534. {
  3535. return cmdline_parse_core(p, &required_movablecore);
  3536. }
  3537. early_param("kernelcore", cmdline_parse_kernelcore);
  3538. early_param("movablecore", cmdline_parse_movablecore);
  3539. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3540. /**
  3541. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3542. * @new_dma_reserve: The number of pages to mark reserved
  3543. *
  3544. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3545. * In the DMA zone, a significant percentage may be consumed by kernel image
  3546. * and other unfreeable allocations which can skew the watermarks badly. This
  3547. * function may optionally be used to account for unfreeable pages in the
  3548. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3549. * smaller per-cpu batchsize.
  3550. */
  3551. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3552. {
  3553. dma_reserve = new_dma_reserve;
  3554. }
  3555. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3556. struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
  3557. EXPORT_SYMBOL(contig_page_data);
  3558. #endif
  3559. void __init free_area_init(unsigned long *zones_size)
  3560. {
  3561. free_area_init_node(0, zones_size,
  3562. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3563. }
  3564. static int page_alloc_cpu_notify(struct notifier_block *self,
  3565. unsigned long action, void *hcpu)
  3566. {
  3567. int cpu = (unsigned long)hcpu;
  3568. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3569. drain_pages(cpu);
  3570. /*
  3571. * Spill the event counters of the dead processor
  3572. * into the current processors event counters.
  3573. * This artificially elevates the count of the current
  3574. * processor.
  3575. */
  3576. vm_events_fold_cpu(cpu);
  3577. /*
  3578. * Zero the differential counters of the dead processor
  3579. * so that the vm statistics are consistent.
  3580. *
  3581. * This is only okay since the processor is dead and cannot
  3582. * race with what we are doing.
  3583. */
  3584. refresh_cpu_vm_stats(cpu);
  3585. }
  3586. return NOTIFY_OK;
  3587. }
  3588. void __init page_alloc_init(void)
  3589. {
  3590. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3591. }
  3592. /*
  3593. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3594. * or min_free_kbytes changes.
  3595. */
  3596. static void calculate_totalreserve_pages(void)
  3597. {
  3598. struct pglist_data *pgdat;
  3599. unsigned long reserve_pages = 0;
  3600. enum zone_type i, j;
  3601. for_each_online_pgdat(pgdat) {
  3602. for (i = 0; i < MAX_NR_ZONES; i++) {
  3603. struct zone *zone = pgdat->node_zones + i;
  3604. unsigned long max = 0;
  3605. /* Find valid and maximum lowmem_reserve in the zone */
  3606. for (j = i; j < MAX_NR_ZONES; j++) {
  3607. if (zone->lowmem_reserve[j] > max)
  3608. max = zone->lowmem_reserve[j];
  3609. }
  3610. /* we treat pages_high as reserved pages. */
  3611. max += zone->pages_high;
  3612. if (max > zone->present_pages)
  3613. max = zone->present_pages;
  3614. reserve_pages += max;
  3615. }
  3616. }
  3617. totalreserve_pages = reserve_pages;
  3618. }
  3619. /*
  3620. * setup_per_zone_lowmem_reserve - called whenever
  3621. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3622. * has a correct pages reserved value, so an adequate number of
  3623. * pages are left in the zone after a successful __alloc_pages().
  3624. */
  3625. static void setup_per_zone_lowmem_reserve(void)
  3626. {
  3627. struct pglist_data *pgdat;
  3628. enum zone_type j, idx;
  3629. for_each_online_pgdat(pgdat) {
  3630. for (j = 0; j < MAX_NR_ZONES; j++) {
  3631. struct zone *zone = pgdat->node_zones + j;
  3632. unsigned long present_pages = zone->present_pages;
  3633. zone->lowmem_reserve[j] = 0;
  3634. idx = j;
  3635. while (idx) {
  3636. struct zone *lower_zone;
  3637. idx--;
  3638. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3639. sysctl_lowmem_reserve_ratio[idx] = 1;
  3640. lower_zone = pgdat->node_zones + idx;
  3641. lower_zone->lowmem_reserve[j] = present_pages /
  3642. sysctl_lowmem_reserve_ratio[idx];
  3643. present_pages += lower_zone->present_pages;
  3644. }
  3645. }
  3646. }
  3647. /* update totalreserve_pages */
  3648. calculate_totalreserve_pages();
  3649. }
  3650. /**
  3651. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3652. *
  3653. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3654. * with respect to min_free_kbytes.
  3655. */
  3656. void setup_per_zone_pages_min(void)
  3657. {
  3658. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3659. unsigned long lowmem_pages = 0;
  3660. struct zone *zone;
  3661. unsigned long flags;
  3662. /* Calculate total number of !ZONE_HIGHMEM pages */
  3663. for_each_zone(zone) {
  3664. if (!is_highmem(zone))
  3665. lowmem_pages += zone->present_pages;
  3666. }
  3667. for_each_zone(zone) {
  3668. u64 tmp;
  3669. spin_lock_irqsave(&zone->lru_lock, flags);
  3670. tmp = (u64)pages_min * zone->present_pages;
  3671. do_div(tmp, lowmem_pages);
  3672. if (is_highmem(zone)) {
  3673. /*
  3674. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3675. * need highmem pages, so cap pages_min to a small
  3676. * value here.
  3677. *
  3678. * The (pages_high-pages_low) and (pages_low-pages_min)
  3679. * deltas controls asynch page reclaim, and so should
  3680. * not be capped for highmem.
  3681. */
  3682. int min_pages;
  3683. min_pages = zone->present_pages / 1024;
  3684. if (min_pages < SWAP_CLUSTER_MAX)
  3685. min_pages = SWAP_CLUSTER_MAX;
  3686. if (min_pages > 128)
  3687. min_pages = 128;
  3688. zone->pages_min = min_pages;
  3689. } else {
  3690. /*
  3691. * If it's a lowmem zone, reserve a number of pages
  3692. * proportionate to the zone's size.
  3693. */
  3694. zone->pages_min = tmp;
  3695. }
  3696. zone->pages_low = zone->pages_min + (tmp >> 2);
  3697. zone->pages_high = zone->pages_min + (tmp >> 1);
  3698. setup_zone_migrate_reserve(zone);
  3699. spin_unlock_irqrestore(&zone->lru_lock, flags);
  3700. }
  3701. /* update totalreserve_pages */
  3702. calculate_totalreserve_pages();
  3703. }
  3704. /**
  3705. * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
  3706. *
  3707. * The inactive anon list should be small enough that the VM never has to
  3708. * do too much work, but large enough that each inactive page has a chance
  3709. * to be referenced again before it is swapped out.
  3710. *
  3711. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  3712. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  3713. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  3714. * the anonymous pages are kept on the inactive list.
  3715. *
  3716. * total target max
  3717. * memory ratio inactive anon
  3718. * -------------------------------------
  3719. * 10MB 1 5MB
  3720. * 100MB 1 50MB
  3721. * 1GB 3 250MB
  3722. * 10GB 10 0.9GB
  3723. * 100GB 31 3GB
  3724. * 1TB 101 10GB
  3725. * 10TB 320 32GB
  3726. */
  3727. void setup_per_zone_inactive_ratio(void)
  3728. {
  3729. struct zone *zone;
  3730. for_each_zone(zone) {
  3731. unsigned int gb, ratio;
  3732. /* Zone size in gigabytes */
  3733. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  3734. ratio = int_sqrt(10 * gb);
  3735. if (!ratio)
  3736. ratio = 1;
  3737. zone->inactive_ratio = ratio;
  3738. }
  3739. }
  3740. /*
  3741. * Initialise min_free_kbytes.
  3742. *
  3743. * For small machines we want it small (128k min). For large machines
  3744. * we want it large (64MB max). But it is not linear, because network
  3745. * bandwidth does not increase linearly with machine size. We use
  3746. *
  3747. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3748. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3749. *
  3750. * which yields
  3751. *
  3752. * 16MB: 512k
  3753. * 32MB: 724k
  3754. * 64MB: 1024k
  3755. * 128MB: 1448k
  3756. * 256MB: 2048k
  3757. * 512MB: 2896k
  3758. * 1024MB: 4096k
  3759. * 2048MB: 5792k
  3760. * 4096MB: 8192k
  3761. * 8192MB: 11584k
  3762. * 16384MB: 16384k
  3763. */
  3764. static int __init init_per_zone_pages_min(void)
  3765. {
  3766. unsigned long lowmem_kbytes;
  3767. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3768. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3769. if (min_free_kbytes < 128)
  3770. min_free_kbytes = 128;
  3771. if (min_free_kbytes > 65536)
  3772. min_free_kbytes = 65536;
  3773. setup_per_zone_pages_min();
  3774. setup_per_zone_lowmem_reserve();
  3775. setup_per_zone_inactive_ratio();
  3776. return 0;
  3777. }
  3778. module_init(init_per_zone_pages_min)
  3779. /*
  3780. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3781. * that we can call two helper functions whenever min_free_kbytes
  3782. * changes.
  3783. */
  3784. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3785. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3786. {
  3787. proc_dointvec(table, write, file, buffer, length, ppos);
  3788. if (write)
  3789. setup_per_zone_pages_min();
  3790. return 0;
  3791. }
  3792. #ifdef CONFIG_NUMA
  3793. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3794. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3795. {
  3796. struct zone *zone;
  3797. int rc;
  3798. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3799. if (rc)
  3800. return rc;
  3801. for_each_zone(zone)
  3802. zone->min_unmapped_pages = (zone->present_pages *
  3803. sysctl_min_unmapped_ratio) / 100;
  3804. return 0;
  3805. }
  3806. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3807. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3808. {
  3809. struct zone *zone;
  3810. int rc;
  3811. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3812. if (rc)
  3813. return rc;
  3814. for_each_zone(zone)
  3815. zone->min_slab_pages = (zone->present_pages *
  3816. sysctl_min_slab_ratio) / 100;
  3817. return 0;
  3818. }
  3819. #endif
  3820. /*
  3821. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3822. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3823. * whenever sysctl_lowmem_reserve_ratio changes.
  3824. *
  3825. * The reserve ratio obviously has absolutely no relation with the
  3826. * pages_min watermarks. The lowmem reserve ratio can only make sense
  3827. * if in function of the boot time zone sizes.
  3828. */
  3829. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3830. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3831. {
  3832. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3833. setup_per_zone_lowmem_reserve();
  3834. return 0;
  3835. }
  3836. /*
  3837. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3838. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3839. * can have before it gets flushed back to buddy allocator.
  3840. */
  3841. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3842. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3843. {
  3844. struct zone *zone;
  3845. unsigned int cpu;
  3846. int ret;
  3847. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3848. if (!write || (ret == -EINVAL))
  3849. return ret;
  3850. for_each_zone(zone) {
  3851. for_each_online_cpu(cpu) {
  3852. unsigned long high;
  3853. high = zone->present_pages / percpu_pagelist_fraction;
  3854. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3855. }
  3856. }
  3857. return 0;
  3858. }
  3859. int hashdist = HASHDIST_DEFAULT;
  3860. #ifdef CONFIG_NUMA
  3861. static int __init set_hashdist(char *str)
  3862. {
  3863. if (!str)
  3864. return 0;
  3865. hashdist = simple_strtoul(str, &str, 0);
  3866. return 1;
  3867. }
  3868. __setup("hashdist=", set_hashdist);
  3869. #endif
  3870. /*
  3871. * allocate a large system hash table from bootmem
  3872. * - it is assumed that the hash table must contain an exact power-of-2
  3873. * quantity of entries
  3874. * - limit is the number of hash buckets, not the total allocation size
  3875. */
  3876. void *__init alloc_large_system_hash(const char *tablename,
  3877. unsigned long bucketsize,
  3878. unsigned long numentries,
  3879. int scale,
  3880. int flags,
  3881. unsigned int *_hash_shift,
  3882. unsigned int *_hash_mask,
  3883. unsigned long limit)
  3884. {
  3885. unsigned long long max = limit;
  3886. unsigned long log2qty, size;
  3887. void *table = NULL;
  3888. /* allow the kernel cmdline to have a say */
  3889. if (!numentries) {
  3890. /* round applicable memory size up to nearest megabyte */
  3891. numentries = nr_kernel_pages;
  3892. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  3893. numentries >>= 20 - PAGE_SHIFT;
  3894. numentries <<= 20 - PAGE_SHIFT;
  3895. /* limit to 1 bucket per 2^scale bytes of low memory */
  3896. if (scale > PAGE_SHIFT)
  3897. numentries >>= (scale - PAGE_SHIFT);
  3898. else
  3899. numentries <<= (PAGE_SHIFT - scale);
  3900. /* Make sure we've got at least a 0-order allocation.. */
  3901. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  3902. numentries = PAGE_SIZE / bucketsize;
  3903. }
  3904. numentries = roundup_pow_of_two(numentries);
  3905. /* limit allocation size to 1/16 total memory by default */
  3906. if (max == 0) {
  3907. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  3908. do_div(max, bucketsize);
  3909. }
  3910. if (numentries > max)
  3911. numentries = max;
  3912. log2qty = ilog2(numentries);
  3913. do {
  3914. size = bucketsize << log2qty;
  3915. if (flags & HASH_EARLY)
  3916. table = alloc_bootmem_nopanic(size);
  3917. else if (hashdist)
  3918. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  3919. else {
  3920. unsigned long order = get_order(size);
  3921. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  3922. /*
  3923. * If bucketsize is not a power-of-two, we may free
  3924. * some pages at the end of hash table.
  3925. */
  3926. if (table) {
  3927. unsigned long alloc_end = (unsigned long)table +
  3928. (PAGE_SIZE << order);
  3929. unsigned long used = (unsigned long)table +
  3930. PAGE_ALIGN(size);
  3931. split_page(virt_to_page(table), order);
  3932. while (used < alloc_end) {
  3933. free_page(used);
  3934. used += PAGE_SIZE;
  3935. }
  3936. }
  3937. }
  3938. } while (!table && size > PAGE_SIZE && --log2qty);
  3939. if (!table)
  3940. panic("Failed to allocate %s hash table\n", tablename);
  3941. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  3942. tablename,
  3943. (1U << log2qty),
  3944. ilog2(size) - PAGE_SHIFT,
  3945. size);
  3946. if (_hash_shift)
  3947. *_hash_shift = log2qty;
  3948. if (_hash_mask)
  3949. *_hash_mask = (1 << log2qty) - 1;
  3950. return table;
  3951. }
  3952. #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
  3953. struct page *pfn_to_page(unsigned long pfn)
  3954. {
  3955. return __pfn_to_page(pfn);
  3956. }
  3957. unsigned long page_to_pfn(struct page *page)
  3958. {
  3959. return __page_to_pfn(page);
  3960. }
  3961. EXPORT_SYMBOL(pfn_to_page);
  3962. EXPORT_SYMBOL(page_to_pfn);
  3963. #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
  3964. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  3965. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  3966. unsigned long pfn)
  3967. {
  3968. #ifdef CONFIG_SPARSEMEM
  3969. return __pfn_to_section(pfn)->pageblock_flags;
  3970. #else
  3971. return zone->pageblock_flags;
  3972. #endif /* CONFIG_SPARSEMEM */
  3973. }
  3974. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  3975. {
  3976. #ifdef CONFIG_SPARSEMEM
  3977. pfn &= (PAGES_PER_SECTION-1);
  3978. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3979. #else
  3980. pfn = pfn - zone->zone_start_pfn;
  3981. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3982. #endif /* CONFIG_SPARSEMEM */
  3983. }
  3984. /**
  3985. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  3986. * @page: The page within the block of interest
  3987. * @start_bitidx: The first bit of interest to retrieve
  3988. * @end_bitidx: The last bit of interest
  3989. * returns pageblock_bits flags
  3990. */
  3991. unsigned long get_pageblock_flags_group(struct page *page,
  3992. int start_bitidx, int end_bitidx)
  3993. {
  3994. struct zone *zone;
  3995. unsigned long *bitmap;
  3996. unsigned long pfn, bitidx;
  3997. unsigned long flags = 0;
  3998. unsigned long value = 1;
  3999. zone = page_zone(page);
  4000. pfn = page_to_pfn(page);
  4001. bitmap = get_pageblock_bitmap(zone, pfn);
  4002. bitidx = pfn_to_bitidx(zone, pfn);
  4003. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4004. if (test_bit(bitidx + start_bitidx, bitmap))
  4005. flags |= value;
  4006. return flags;
  4007. }
  4008. /**
  4009. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4010. * @page: The page within the block of interest
  4011. * @start_bitidx: The first bit of interest
  4012. * @end_bitidx: The last bit of interest
  4013. * @flags: The flags to set
  4014. */
  4015. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4016. int start_bitidx, int end_bitidx)
  4017. {
  4018. struct zone *zone;
  4019. unsigned long *bitmap;
  4020. unsigned long pfn, bitidx;
  4021. unsigned long value = 1;
  4022. zone = page_zone(page);
  4023. pfn = page_to_pfn(page);
  4024. bitmap = get_pageblock_bitmap(zone, pfn);
  4025. bitidx = pfn_to_bitidx(zone, pfn);
  4026. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4027. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4028. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4029. if (flags & value)
  4030. __set_bit(bitidx + start_bitidx, bitmap);
  4031. else
  4032. __clear_bit(bitidx + start_bitidx, bitmap);
  4033. }
  4034. /*
  4035. * This is designed as sub function...plz see page_isolation.c also.
  4036. * set/clear page block's type to be ISOLATE.
  4037. * page allocater never alloc memory from ISOLATE block.
  4038. */
  4039. int set_migratetype_isolate(struct page *page)
  4040. {
  4041. struct zone *zone;
  4042. unsigned long flags;
  4043. int ret = -EBUSY;
  4044. zone = page_zone(page);
  4045. spin_lock_irqsave(&zone->lock, flags);
  4046. /*
  4047. * In future, more migrate types will be able to be isolation target.
  4048. */
  4049. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
  4050. goto out;
  4051. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4052. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4053. ret = 0;
  4054. out:
  4055. spin_unlock_irqrestore(&zone->lock, flags);
  4056. if (!ret)
  4057. drain_all_pages();
  4058. return ret;
  4059. }
  4060. void unset_migratetype_isolate(struct page *page)
  4061. {
  4062. struct zone *zone;
  4063. unsigned long flags;
  4064. zone = page_zone(page);
  4065. spin_lock_irqsave(&zone->lock, flags);
  4066. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4067. goto out;
  4068. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4069. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4070. out:
  4071. spin_unlock_irqrestore(&zone->lock, flags);
  4072. }
  4073. #ifdef CONFIG_MEMORY_HOTREMOVE
  4074. /*
  4075. * All pages in the range must be isolated before calling this.
  4076. */
  4077. void
  4078. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4079. {
  4080. struct page *page;
  4081. struct zone *zone;
  4082. int order, i;
  4083. unsigned long pfn;
  4084. unsigned long flags;
  4085. /* find the first valid pfn */
  4086. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4087. if (pfn_valid(pfn))
  4088. break;
  4089. if (pfn == end_pfn)
  4090. return;
  4091. zone = page_zone(pfn_to_page(pfn));
  4092. spin_lock_irqsave(&zone->lock, flags);
  4093. pfn = start_pfn;
  4094. while (pfn < end_pfn) {
  4095. if (!pfn_valid(pfn)) {
  4096. pfn++;
  4097. continue;
  4098. }
  4099. page = pfn_to_page(pfn);
  4100. BUG_ON(page_count(page));
  4101. BUG_ON(!PageBuddy(page));
  4102. order = page_order(page);
  4103. #ifdef CONFIG_DEBUG_VM
  4104. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4105. pfn, 1 << order, end_pfn);
  4106. #endif
  4107. list_del(&page->lru);
  4108. rmv_page_order(page);
  4109. zone->free_area[order].nr_free--;
  4110. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4111. - (1UL << order));
  4112. for (i = 0; i < (1 << order); i++)
  4113. SetPageReserved((page+i));
  4114. pfn += (1 << order);
  4115. }
  4116. spin_unlock_irqrestore(&zone->lock, flags);
  4117. }
  4118. #endif