dma-mapping.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907
  1. /*
  2. * linux/arch/arm/mm/dma-mapping.c
  3. *
  4. * Copyright (C) 2000-2004 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * DMA uncached mapping support.
  11. */
  12. #include <linux/module.h>
  13. #include <linux/mm.h>
  14. #include <linux/gfp.h>
  15. #include <linux/errno.h>
  16. #include <linux/list.h>
  17. #include <linux/init.h>
  18. #include <linux/device.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/dma-contiguous.h>
  21. #include <linux/highmem.h>
  22. #include <linux/memblock.h>
  23. #include <linux/slab.h>
  24. #include <linux/iommu.h>
  25. #include <linux/io.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/sizes.h>
  28. #include <asm/memory.h>
  29. #include <asm/highmem.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/tlbflush.h>
  32. #include <asm/mach/arch.h>
  33. #include <asm/dma-iommu.h>
  34. #include <asm/mach/map.h>
  35. #include <asm/system_info.h>
  36. #include <asm/dma-contiguous.h>
  37. #include "mm.h"
  38. /*
  39. * The DMA API is built upon the notion of "buffer ownership". A buffer
  40. * is either exclusively owned by the CPU (and therefore may be accessed
  41. * by it) or exclusively owned by the DMA device. These helper functions
  42. * represent the transitions between these two ownership states.
  43. *
  44. * Note, however, that on later ARMs, this notion does not work due to
  45. * speculative prefetches. We model our approach on the assumption that
  46. * the CPU does do speculative prefetches, which means we clean caches
  47. * before transfers and delay cache invalidation until transfer completion.
  48. *
  49. */
  50. static void __dma_page_cpu_to_dev(struct page *, unsigned long,
  51. size_t, enum dma_data_direction);
  52. static void __dma_page_dev_to_cpu(struct page *, unsigned long,
  53. size_t, enum dma_data_direction);
  54. /**
  55. * arm_dma_map_page - map a portion of a page for streaming DMA
  56. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  57. * @page: page that buffer resides in
  58. * @offset: offset into page for start of buffer
  59. * @size: size of buffer to map
  60. * @dir: DMA transfer direction
  61. *
  62. * Ensure that any data held in the cache is appropriately discarded
  63. * or written back.
  64. *
  65. * The device owns this memory once this call has completed. The CPU
  66. * can regain ownership by calling dma_unmap_page().
  67. */
  68. static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
  69. unsigned long offset, size_t size, enum dma_data_direction dir,
  70. struct dma_attrs *attrs)
  71. {
  72. if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  73. __dma_page_cpu_to_dev(page, offset, size, dir);
  74. return pfn_to_dma(dev, page_to_pfn(page)) + offset;
  75. }
  76. static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
  77. unsigned long offset, size_t size, enum dma_data_direction dir,
  78. struct dma_attrs *attrs)
  79. {
  80. return pfn_to_dma(dev, page_to_pfn(page)) + offset;
  81. }
  82. /**
  83. * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
  84. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  85. * @handle: DMA address of buffer
  86. * @size: size of buffer (same as passed to dma_map_page)
  87. * @dir: DMA transfer direction (same as passed to dma_map_page)
  88. *
  89. * Unmap a page streaming mode DMA translation. The handle and size
  90. * must match what was provided in the previous dma_map_page() call.
  91. * All other usages are undefined.
  92. *
  93. * After this call, reads by the CPU to the buffer are guaranteed to see
  94. * whatever the device wrote there.
  95. */
  96. static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
  97. size_t size, enum dma_data_direction dir,
  98. struct dma_attrs *attrs)
  99. {
  100. if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  101. __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
  102. handle & ~PAGE_MASK, size, dir);
  103. }
  104. static void arm_dma_sync_single_for_cpu(struct device *dev,
  105. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  106. {
  107. unsigned int offset = handle & (PAGE_SIZE - 1);
  108. struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
  109. __dma_page_dev_to_cpu(page, offset, size, dir);
  110. }
  111. static void arm_dma_sync_single_for_device(struct device *dev,
  112. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  113. {
  114. unsigned int offset = handle & (PAGE_SIZE - 1);
  115. struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
  116. __dma_page_cpu_to_dev(page, offset, size, dir);
  117. }
  118. struct dma_map_ops arm_dma_ops = {
  119. .alloc = arm_dma_alloc,
  120. .free = arm_dma_free,
  121. .mmap = arm_dma_mmap,
  122. .get_sgtable = arm_dma_get_sgtable,
  123. .map_page = arm_dma_map_page,
  124. .unmap_page = arm_dma_unmap_page,
  125. .map_sg = arm_dma_map_sg,
  126. .unmap_sg = arm_dma_unmap_sg,
  127. .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
  128. .sync_single_for_device = arm_dma_sync_single_for_device,
  129. .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
  130. .sync_sg_for_device = arm_dma_sync_sg_for_device,
  131. .set_dma_mask = arm_dma_set_mask,
  132. };
  133. EXPORT_SYMBOL(arm_dma_ops);
  134. static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
  135. dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
  136. static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
  137. dma_addr_t handle, struct dma_attrs *attrs);
  138. struct dma_map_ops arm_coherent_dma_ops = {
  139. .alloc = arm_coherent_dma_alloc,
  140. .free = arm_coherent_dma_free,
  141. .mmap = arm_dma_mmap,
  142. .get_sgtable = arm_dma_get_sgtable,
  143. .map_page = arm_coherent_dma_map_page,
  144. .map_sg = arm_dma_map_sg,
  145. .set_dma_mask = arm_dma_set_mask,
  146. };
  147. EXPORT_SYMBOL(arm_coherent_dma_ops);
  148. static u64 get_coherent_dma_mask(struct device *dev)
  149. {
  150. u64 mask = (u64)arm_dma_limit;
  151. if (dev) {
  152. mask = dev->coherent_dma_mask;
  153. /*
  154. * Sanity check the DMA mask - it must be non-zero, and
  155. * must be able to be satisfied by a DMA allocation.
  156. */
  157. if (mask == 0) {
  158. dev_warn(dev, "coherent DMA mask is unset\n");
  159. return 0;
  160. }
  161. if ((~mask) & (u64)arm_dma_limit) {
  162. dev_warn(dev, "coherent DMA mask %#llx is smaller "
  163. "than system GFP_DMA mask %#llx\n",
  164. mask, (u64)arm_dma_limit);
  165. return 0;
  166. }
  167. }
  168. return mask;
  169. }
  170. static void __dma_clear_buffer(struct page *page, size_t size)
  171. {
  172. /*
  173. * Ensure that the allocated pages are zeroed, and that any data
  174. * lurking in the kernel direct-mapped region is invalidated.
  175. */
  176. if (PageHighMem(page)) {
  177. phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
  178. phys_addr_t end = base + size;
  179. while (size > 0) {
  180. void *ptr = kmap_atomic(page);
  181. memset(ptr, 0, PAGE_SIZE);
  182. dmac_flush_range(ptr, ptr + PAGE_SIZE);
  183. kunmap_atomic(ptr);
  184. page++;
  185. size -= PAGE_SIZE;
  186. }
  187. outer_flush_range(base, end);
  188. } else {
  189. void *ptr = page_address(page);
  190. memset(ptr, 0, size);
  191. dmac_flush_range(ptr, ptr + size);
  192. outer_flush_range(__pa(ptr), __pa(ptr) + size);
  193. }
  194. }
  195. /*
  196. * Allocate a DMA buffer for 'dev' of size 'size' using the
  197. * specified gfp mask. Note that 'size' must be page aligned.
  198. */
  199. static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
  200. {
  201. unsigned long order = get_order(size);
  202. struct page *page, *p, *e;
  203. page = alloc_pages(gfp, order);
  204. if (!page)
  205. return NULL;
  206. /*
  207. * Now split the huge page and free the excess pages
  208. */
  209. split_page(page, order);
  210. for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
  211. __free_page(p);
  212. __dma_clear_buffer(page, size);
  213. return page;
  214. }
  215. /*
  216. * Free a DMA buffer. 'size' must be page aligned.
  217. */
  218. static void __dma_free_buffer(struct page *page, size_t size)
  219. {
  220. struct page *e = page + (size >> PAGE_SHIFT);
  221. while (page < e) {
  222. __free_page(page);
  223. page++;
  224. }
  225. }
  226. #ifdef CONFIG_MMU
  227. #ifdef CONFIG_HUGETLB_PAGE
  228. #error ARM Coherent DMA allocator does not (yet) support huge TLB
  229. #endif
  230. static void *__alloc_from_contiguous(struct device *dev, size_t size,
  231. pgprot_t prot, struct page **ret_page,
  232. const void *caller);
  233. static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
  234. pgprot_t prot, struct page **ret_page,
  235. const void *caller);
  236. static void *
  237. __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
  238. const void *caller)
  239. {
  240. struct vm_struct *area;
  241. unsigned long addr;
  242. /*
  243. * DMA allocation can be mapped to user space, so lets
  244. * set VM_USERMAP flags too.
  245. */
  246. area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
  247. caller);
  248. if (!area)
  249. return NULL;
  250. addr = (unsigned long)area->addr;
  251. area->phys_addr = __pfn_to_phys(page_to_pfn(page));
  252. if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
  253. vunmap((void *)addr);
  254. return NULL;
  255. }
  256. return (void *)addr;
  257. }
  258. static void __dma_free_remap(void *cpu_addr, size_t size)
  259. {
  260. unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
  261. struct vm_struct *area = find_vm_area(cpu_addr);
  262. if (!area || (area->flags & flags) != flags) {
  263. WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
  264. return;
  265. }
  266. unmap_kernel_range((unsigned long)cpu_addr, size);
  267. vunmap(cpu_addr);
  268. }
  269. #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
  270. struct dma_pool {
  271. size_t size;
  272. spinlock_t lock;
  273. unsigned long *bitmap;
  274. unsigned long nr_pages;
  275. void *vaddr;
  276. struct page **pages;
  277. };
  278. static struct dma_pool atomic_pool = {
  279. .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
  280. };
  281. static int __init early_coherent_pool(char *p)
  282. {
  283. atomic_pool.size = memparse(p, &p);
  284. return 0;
  285. }
  286. early_param("coherent_pool", early_coherent_pool);
  287. void __init init_dma_coherent_pool_size(unsigned long size)
  288. {
  289. /*
  290. * Catch any attempt to set the pool size too late.
  291. */
  292. BUG_ON(atomic_pool.vaddr);
  293. /*
  294. * Set architecture specific coherent pool size only if
  295. * it has not been changed by kernel command line parameter.
  296. */
  297. if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
  298. atomic_pool.size = size;
  299. }
  300. /*
  301. * Initialise the coherent pool for atomic allocations.
  302. */
  303. static int __init atomic_pool_init(void)
  304. {
  305. struct dma_pool *pool = &atomic_pool;
  306. pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
  307. unsigned long nr_pages = pool->size >> PAGE_SHIFT;
  308. unsigned long *bitmap;
  309. struct page *page;
  310. struct page **pages;
  311. void *ptr;
  312. int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
  313. bitmap = kzalloc(bitmap_size, GFP_KERNEL);
  314. if (!bitmap)
  315. goto no_bitmap;
  316. pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
  317. if (!pages)
  318. goto no_pages;
  319. if (IS_ENABLED(CONFIG_CMA))
  320. ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
  321. atomic_pool_init);
  322. else
  323. ptr = __alloc_remap_buffer(NULL, pool->size, GFP_KERNEL, prot,
  324. &page, atomic_pool_init);
  325. if (ptr) {
  326. int i;
  327. for (i = 0; i < nr_pages; i++)
  328. pages[i] = page + i;
  329. spin_lock_init(&pool->lock);
  330. pool->vaddr = ptr;
  331. pool->pages = pages;
  332. pool->bitmap = bitmap;
  333. pool->nr_pages = nr_pages;
  334. pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
  335. (unsigned)pool->size / 1024);
  336. return 0;
  337. }
  338. kfree(pages);
  339. no_pages:
  340. kfree(bitmap);
  341. no_bitmap:
  342. pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
  343. (unsigned)pool->size / 1024);
  344. return -ENOMEM;
  345. }
  346. /*
  347. * CMA is activated by core_initcall, so we must be called after it.
  348. */
  349. postcore_initcall(atomic_pool_init);
  350. struct dma_contig_early_reserve {
  351. phys_addr_t base;
  352. unsigned long size;
  353. };
  354. static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
  355. static int dma_mmu_remap_num __initdata;
  356. void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
  357. {
  358. dma_mmu_remap[dma_mmu_remap_num].base = base;
  359. dma_mmu_remap[dma_mmu_remap_num].size = size;
  360. dma_mmu_remap_num++;
  361. }
  362. void __init dma_contiguous_remap(void)
  363. {
  364. int i;
  365. for (i = 0; i < dma_mmu_remap_num; i++) {
  366. phys_addr_t start = dma_mmu_remap[i].base;
  367. phys_addr_t end = start + dma_mmu_remap[i].size;
  368. struct map_desc map;
  369. unsigned long addr;
  370. if (end > arm_lowmem_limit)
  371. end = arm_lowmem_limit;
  372. if (start >= end)
  373. continue;
  374. map.pfn = __phys_to_pfn(start);
  375. map.virtual = __phys_to_virt(start);
  376. map.length = end - start;
  377. map.type = MT_MEMORY_DMA_READY;
  378. /*
  379. * Clear previous low-memory mapping
  380. */
  381. for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
  382. addr += PMD_SIZE)
  383. pmd_clear(pmd_off_k(addr));
  384. iotable_init(&map, 1);
  385. }
  386. }
  387. static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
  388. void *data)
  389. {
  390. struct page *page = virt_to_page(addr);
  391. pgprot_t prot = *(pgprot_t *)data;
  392. set_pte_ext(pte, mk_pte(page, prot), 0);
  393. return 0;
  394. }
  395. static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
  396. {
  397. unsigned long start = (unsigned long) page_address(page);
  398. unsigned end = start + size;
  399. apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
  400. dsb();
  401. flush_tlb_kernel_range(start, end);
  402. }
  403. static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
  404. pgprot_t prot, struct page **ret_page,
  405. const void *caller)
  406. {
  407. struct page *page;
  408. void *ptr;
  409. page = __dma_alloc_buffer(dev, size, gfp);
  410. if (!page)
  411. return NULL;
  412. ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
  413. if (!ptr) {
  414. __dma_free_buffer(page, size);
  415. return NULL;
  416. }
  417. *ret_page = page;
  418. return ptr;
  419. }
  420. static void *__alloc_from_pool(size_t size, struct page **ret_page)
  421. {
  422. struct dma_pool *pool = &atomic_pool;
  423. unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  424. unsigned int pageno;
  425. unsigned long flags;
  426. void *ptr = NULL;
  427. unsigned long align_mask;
  428. if (!pool->vaddr) {
  429. WARN(1, "coherent pool not initialised!\n");
  430. return NULL;
  431. }
  432. /*
  433. * Align the region allocation - allocations from pool are rather
  434. * small, so align them to their order in pages, minimum is a page
  435. * size. This helps reduce fragmentation of the DMA space.
  436. */
  437. align_mask = (1 << get_order(size)) - 1;
  438. spin_lock_irqsave(&pool->lock, flags);
  439. pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
  440. 0, count, align_mask);
  441. if (pageno < pool->nr_pages) {
  442. bitmap_set(pool->bitmap, pageno, count);
  443. ptr = pool->vaddr + PAGE_SIZE * pageno;
  444. *ret_page = pool->pages[pageno];
  445. } else {
  446. pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
  447. "Please increase it with coherent_pool= kernel parameter!\n",
  448. (unsigned)pool->size / 1024);
  449. }
  450. spin_unlock_irqrestore(&pool->lock, flags);
  451. return ptr;
  452. }
  453. static bool __in_atomic_pool(void *start, size_t size)
  454. {
  455. struct dma_pool *pool = &atomic_pool;
  456. void *end = start + size;
  457. void *pool_start = pool->vaddr;
  458. void *pool_end = pool->vaddr + pool->size;
  459. if (start < pool_start || start >= pool_end)
  460. return false;
  461. if (end <= pool_end)
  462. return true;
  463. WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
  464. start, end - 1, pool_start, pool_end - 1);
  465. return false;
  466. }
  467. static int __free_from_pool(void *start, size_t size)
  468. {
  469. struct dma_pool *pool = &atomic_pool;
  470. unsigned long pageno, count;
  471. unsigned long flags;
  472. if (!__in_atomic_pool(start, size))
  473. return 0;
  474. pageno = (start - pool->vaddr) >> PAGE_SHIFT;
  475. count = size >> PAGE_SHIFT;
  476. spin_lock_irqsave(&pool->lock, flags);
  477. bitmap_clear(pool->bitmap, pageno, count);
  478. spin_unlock_irqrestore(&pool->lock, flags);
  479. return 1;
  480. }
  481. static void *__alloc_from_contiguous(struct device *dev, size_t size,
  482. pgprot_t prot, struct page **ret_page,
  483. const void *caller)
  484. {
  485. unsigned long order = get_order(size);
  486. size_t count = size >> PAGE_SHIFT;
  487. struct page *page;
  488. void *ptr;
  489. page = dma_alloc_from_contiguous(dev, count, order);
  490. if (!page)
  491. return NULL;
  492. __dma_clear_buffer(page, size);
  493. if (PageHighMem(page)) {
  494. ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
  495. if (!ptr) {
  496. dma_release_from_contiguous(dev, page, count);
  497. return NULL;
  498. }
  499. } else {
  500. __dma_remap(page, size, prot);
  501. ptr = page_address(page);
  502. }
  503. *ret_page = page;
  504. return ptr;
  505. }
  506. static void __free_from_contiguous(struct device *dev, struct page *page,
  507. void *cpu_addr, size_t size)
  508. {
  509. if (PageHighMem(page))
  510. __dma_free_remap(cpu_addr, size);
  511. else
  512. __dma_remap(page, size, pgprot_kernel);
  513. dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
  514. }
  515. static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
  516. {
  517. prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
  518. pgprot_writecombine(prot) :
  519. pgprot_dmacoherent(prot);
  520. return prot;
  521. }
  522. #define nommu() 0
  523. #else /* !CONFIG_MMU */
  524. #define nommu() 1
  525. #define __get_dma_pgprot(attrs, prot) __pgprot(0)
  526. #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
  527. #define __alloc_from_pool(size, ret_page) NULL
  528. #define __alloc_from_contiguous(dev, size, prot, ret, c) NULL
  529. #define __free_from_pool(cpu_addr, size) 0
  530. #define __free_from_contiguous(dev, page, cpu_addr, size) do { } while (0)
  531. #define __dma_free_remap(cpu_addr, size) do { } while (0)
  532. #endif /* CONFIG_MMU */
  533. static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
  534. struct page **ret_page)
  535. {
  536. struct page *page;
  537. page = __dma_alloc_buffer(dev, size, gfp);
  538. if (!page)
  539. return NULL;
  540. *ret_page = page;
  541. return page_address(page);
  542. }
  543. static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
  544. gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
  545. {
  546. u64 mask = get_coherent_dma_mask(dev);
  547. struct page *page = NULL;
  548. void *addr;
  549. #ifdef CONFIG_DMA_API_DEBUG
  550. u64 limit = (mask + 1) & ~mask;
  551. if (limit && size >= limit) {
  552. dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
  553. size, mask);
  554. return NULL;
  555. }
  556. #endif
  557. if (!mask)
  558. return NULL;
  559. if (mask < 0xffffffffULL)
  560. gfp |= GFP_DMA;
  561. /*
  562. * Following is a work-around (a.k.a. hack) to prevent pages
  563. * with __GFP_COMP being passed to split_page() which cannot
  564. * handle them. The real problem is that this flag probably
  565. * should be 0 on ARM as it is not supported on this
  566. * platform; see CONFIG_HUGETLBFS.
  567. */
  568. gfp &= ~(__GFP_COMP);
  569. *handle = DMA_ERROR_CODE;
  570. size = PAGE_ALIGN(size);
  571. if (is_coherent || nommu())
  572. addr = __alloc_simple_buffer(dev, size, gfp, &page);
  573. else if (!(gfp & __GFP_WAIT))
  574. addr = __alloc_from_pool(size, &page);
  575. else if (!IS_ENABLED(CONFIG_CMA))
  576. addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
  577. else
  578. addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
  579. if (addr)
  580. *handle = pfn_to_dma(dev, page_to_pfn(page));
  581. return addr;
  582. }
  583. /*
  584. * Allocate DMA-coherent memory space and return both the kernel remapped
  585. * virtual and bus address for that space.
  586. */
  587. void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
  588. gfp_t gfp, struct dma_attrs *attrs)
  589. {
  590. pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
  591. void *memory;
  592. if (dma_alloc_from_coherent(dev, size, handle, &memory))
  593. return memory;
  594. return __dma_alloc(dev, size, handle, gfp, prot, false,
  595. __builtin_return_address(0));
  596. }
  597. static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
  598. dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
  599. {
  600. pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
  601. void *memory;
  602. if (dma_alloc_from_coherent(dev, size, handle, &memory))
  603. return memory;
  604. return __dma_alloc(dev, size, handle, gfp, prot, true,
  605. __builtin_return_address(0));
  606. }
  607. /*
  608. * Create userspace mapping for the DMA-coherent memory.
  609. */
  610. int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
  611. void *cpu_addr, dma_addr_t dma_addr, size_t size,
  612. struct dma_attrs *attrs)
  613. {
  614. int ret = -ENXIO;
  615. #ifdef CONFIG_MMU
  616. unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  617. unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
  618. unsigned long pfn = dma_to_pfn(dev, dma_addr);
  619. unsigned long off = vma->vm_pgoff;
  620. vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
  621. if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
  622. return ret;
  623. if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
  624. ret = remap_pfn_range(vma, vma->vm_start,
  625. pfn + off,
  626. vma->vm_end - vma->vm_start,
  627. vma->vm_page_prot);
  628. }
  629. #endif /* CONFIG_MMU */
  630. return ret;
  631. }
  632. /*
  633. * Free a buffer as defined by the above mapping.
  634. */
  635. static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
  636. dma_addr_t handle, struct dma_attrs *attrs,
  637. bool is_coherent)
  638. {
  639. struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
  640. if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
  641. return;
  642. size = PAGE_ALIGN(size);
  643. if (is_coherent || nommu()) {
  644. __dma_free_buffer(page, size);
  645. } else if (__free_from_pool(cpu_addr, size)) {
  646. return;
  647. } else if (!IS_ENABLED(CONFIG_CMA)) {
  648. __dma_free_remap(cpu_addr, size);
  649. __dma_free_buffer(page, size);
  650. } else {
  651. /*
  652. * Non-atomic allocations cannot be freed with IRQs disabled
  653. */
  654. WARN_ON(irqs_disabled());
  655. __free_from_contiguous(dev, page, cpu_addr, size);
  656. }
  657. }
  658. void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
  659. dma_addr_t handle, struct dma_attrs *attrs)
  660. {
  661. __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
  662. }
  663. static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
  664. dma_addr_t handle, struct dma_attrs *attrs)
  665. {
  666. __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
  667. }
  668. int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
  669. void *cpu_addr, dma_addr_t handle, size_t size,
  670. struct dma_attrs *attrs)
  671. {
  672. struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
  673. int ret;
  674. ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
  675. if (unlikely(ret))
  676. return ret;
  677. sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
  678. return 0;
  679. }
  680. static void dma_cache_maint_page(struct page *page, unsigned long offset,
  681. size_t size, enum dma_data_direction dir,
  682. void (*op)(const void *, size_t, int))
  683. {
  684. unsigned long pfn;
  685. size_t left = size;
  686. pfn = page_to_pfn(page) + offset / PAGE_SIZE;
  687. offset %= PAGE_SIZE;
  688. /*
  689. * A single sg entry may refer to multiple physically contiguous
  690. * pages. But we still need to process highmem pages individually.
  691. * If highmem is not configured then the bulk of this loop gets
  692. * optimized out.
  693. */
  694. do {
  695. size_t len = left;
  696. void *vaddr;
  697. page = pfn_to_page(pfn);
  698. if (PageHighMem(page)) {
  699. if (len + offset > PAGE_SIZE)
  700. len = PAGE_SIZE - offset;
  701. vaddr = kmap_high_get(page);
  702. if (vaddr) {
  703. vaddr += offset;
  704. op(vaddr, len, dir);
  705. kunmap_high(page);
  706. } else if (cache_is_vipt()) {
  707. /* unmapped pages might still be cached */
  708. vaddr = kmap_atomic(page);
  709. op(vaddr + offset, len, dir);
  710. kunmap_atomic(vaddr);
  711. }
  712. } else {
  713. vaddr = page_address(page) + offset;
  714. op(vaddr, len, dir);
  715. }
  716. offset = 0;
  717. pfn++;
  718. left -= len;
  719. } while (left);
  720. }
  721. /*
  722. * Make an area consistent for devices.
  723. * Note: Drivers should NOT use this function directly, as it will break
  724. * platforms with CONFIG_DMABOUNCE.
  725. * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
  726. */
  727. static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
  728. size_t size, enum dma_data_direction dir)
  729. {
  730. unsigned long paddr;
  731. dma_cache_maint_page(page, off, size, dir, dmac_map_area);
  732. paddr = page_to_phys(page) + off;
  733. if (dir == DMA_FROM_DEVICE) {
  734. outer_inv_range(paddr, paddr + size);
  735. } else {
  736. outer_clean_range(paddr, paddr + size);
  737. }
  738. /* FIXME: non-speculating: flush on bidirectional mappings? */
  739. }
  740. static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
  741. size_t size, enum dma_data_direction dir)
  742. {
  743. unsigned long paddr = page_to_phys(page) + off;
  744. /* FIXME: non-speculating: not required */
  745. /* don't bother invalidating if DMA to device */
  746. if (dir != DMA_TO_DEVICE)
  747. outer_inv_range(paddr, paddr + size);
  748. dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
  749. /*
  750. * Mark the D-cache clean for this page to avoid extra flushing.
  751. */
  752. if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
  753. set_bit(PG_dcache_clean, &page->flags);
  754. }
  755. /**
  756. * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
  757. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  758. * @sg: list of buffers
  759. * @nents: number of buffers to map
  760. * @dir: DMA transfer direction
  761. *
  762. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  763. * This is the scatter-gather version of the dma_map_single interface.
  764. * Here the scatter gather list elements are each tagged with the
  765. * appropriate dma address and length. They are obtained via
  766. * sg_dma_{address,length}.
  767. *
  768. * Device ownership issues as mentioned for dma_map_single are the same
  769. * here.
  770. */
  771. int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
  772. enum dma_data_direction dir, struct dma_attrs *attrs)
  773. {
  774. struct dma_map_ops *ops = get_dma_ops(dev);
  775. struct scatterlist *s;
  776. int i, j;
  777. for_each_sg(sg, s, nents, i) {
  778. #ifdef CONFIG_NEED_SG_DMA_LENGTH
  779. s->dma_length = s->length;
  780. #endif
  781. s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
  782. s->length, dir, attrs);
  783. if (dma_mapping_error(dev, s->dma_address))
  784. goto bad_mapping;
  785. }
  786. return nents;
  787. bad_mapping:
  788. for_each_sg(sg, s, i, j)
  789. ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
  790. return 0;
  791. }
  792. /**
  793. * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
  794. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  795. * @sg: list of buffers
  796. * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
  797. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  798. *
  799. * Unmap a set of streaming mode DMA translations. Again, CPU access
  800. * rules concerning calls here are the same as for dma_unmap_single().
  801. */
  802. void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
  803. enum dma_data_direction dir, struct dma_attrs *attrs)
  804. {
  805. struct dma_map_ops *ops = get_dma_ops(dev);
  806. struct scatterlist *s;
  807. int i;
  808. for_each_sg(sg, s, nents, i)
  809. ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
  810. }
  811. /**
  812. * arm_dma_sync_sg_for_cpu
  813. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  814. * @sg: list of buffers
  815. * @nents: number of buffers to map (returned from dma_map_sg)
  816. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  817. */
  818. void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
  819. int nents, enum dma_data_direction dir)
  820. {
  821. struct dma_map_ops *ops = get_dma_ops(dev);
  822. struct scatterlist *s;
  823. int i;
  824. for_each_sg(sg, s, nents, i)
  825. ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
  826. dir);
  827. }
  828. /**
  829. * arm_dma_sync_sg_for_device
  830. * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  831. * @sg: list of buffers
  832. * @nents: number of buffers to map (returned from dma_map_sg)
  833. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  834. */
  835. void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
  836. int nents, enum dma_data_direction dir)
  837. {
  838. struct dma_map_ops *ops = get_dma_ops(dev);
  839. struct scatterlist *s;
  840. int i;
  841. for_each_sg(sg, s, nents, i)
  842. ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
  843. dir);
  844. }
  845. /*
  846. * Return whether the given device DMA address mask can be supported
  847. * properly. For example, if your device can only drive the low 24-bits
  848. * during bus mastering, then you would pass 0x00ffffff as the mask
  849. * to this function.
  850. */
  851. int dma_supported(struct device *dev, u64 mask)
  852. {
  853. if (mask < (u64)arm_dma_limit)
  854. return 0;
  855. return 1;
  856. }
  857. EXPORT_SYMBOL(dma_supported);
  858. int arm_dma_set_mask(struct device *dev, u64 dma_mask)
  859. {
  860. if (!dev->dma_mask || !dma_supported(dev, dma_mask))
  861. return -EIO;
  862. *dev->dma_mask = dma_mask;
  863. return 0;
  864. }
  865. #define PREALLOC_DMA_DEBUG_ENTRIES 4096
  866. static int __init dma_debug_do_init(void)
  867. {
  868. dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
  869. return 0;
  870. }
  871. fs_initcall(dma_debug_do_init);
  872. #ifdef CONFIG_ARM_DMA_USE_IOMMU
  873. /* IOMMU */
  874. static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
  875. size_t size)
  876. {
  877. unsigned int order = get_order(size);
  878. unsigned int align = 0;
  879. unsigned int count, start;
  880. unsigned long flags;
  881. count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
  882. (1 << mapping->order) - 1) >> mapping->order;
  883. if (order > mapping->order)
  884. align = (1 << (order - mapping->order)) - 1;
  885. spin_lock_irqsave(&mapping->lock, flags);
  886. start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
  887. count, align);
  888. if (start > mapping->bits) {
  889. spin_unlock_irqrestore(&mapping->lock, flags);
  890. return DMA_ERROR_CODE;
  891. }
  892. bitmap_set(mapping->bitmap, start, count);
  893. spin_unlock_irqrestore(&mapping->lock, flags);
  894. return mapping->base + (start << (mapping->order + PAGE_SHIFT));
  895. }
  896. static inline void __free_iova(struct dma_iommu_mapping *mapping,
  897. dma_addr_t addr, size_t size)
  898. {
  899. unsigned int start = (addr - mapping->base) >>
  900. (mapping->order + PAGE_SHIFT);
  901. unsigned int count = ((size >> PAGE_SHIFT) +
  902. (1 << mapping->order) - 1) >> mapping->order;
  903. unsigned long flags;
  904. spin_lock_irqsave(&mapping->lock, flags);
  905. bitmap_clear(mapping->bitmap, start, count);
  906. spin_unlock_irqrestore(&mapping->lock, flags);
  907. }
  908. static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
  909. gfp_t gfp, struct dma_attrs *attrs)
  910. {
  911. struct page **pages;
  912. int count = size >> PAGE_SHIFT;
  913. int array_size = count * sizeof(struct page *);
  914. int i = 0;
  915. if (array_size <= PAGE_SIZE)
  916. pages = kzalloc(array_size, gfp);
  917. else
  918. pages = vzalloc(array_size);
  919. if (!pages)
  920. return NULL;
  921. if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
  922. {
  923. unsigned long order = get_order(size);
  924. struct page *page;
  925. page = dma_alloc_from_contiguous(dev, count, order);
  926. if (!page)
  927. goto error;
  928. __dma_clear_buffer(page, size);
  929. for (i = 0; i < count; i++)
  930. pages[i] = page + i;
  931. return pages;
  932. }
  933. while (count) {
  934. int j, order = __fls(count);
  935. pages[i] = alloc_pages(gfp | __GFP_NOWARN, order);
  936. while (!pages[i] && order)
  937. pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order);
  938. if (!pages[i])
  939. goto error;
  940. if (order) {
  941. split_page(pages[i], order);
  942. j = 1 << order;
  943. while (--j)
  944. pages[i + j] = pages[i] + j;
  945. }
  946. __dma_clear_buffer(pages[i], PAGE_SIZE << order);
  947. i += 1 << order;
  948. count -= 1 << order;
  949. }
  950. return pages;
  951. error:
  952. while (i--)
  953. if (pages[i])
  954. __free_pages(pages[i], 0);
  955. if (array_size <= PAGE_SIZE)
  956. kfree(pages);
  957. else
  958. vfree(pages);
  959. return NULL;
  960. }
  961. static int __iommu_free_buffer(struct device *dev, struct page **pages,
  962. size_t size, struct dma_attrs *attrs)
  963. {
  964. int count = size >> PAGE_SHIFT;
  965. int array_size = count * sizeof(struct page *);
  966. int i;
  967. if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
  968. dma_release_from_contiguous(dev, pages[0], count);
  969. } else {
  970. for (i = 0; i < count; i++)
  971. if (pages[i])
  972. __free_pages(pages[i], 0);
  973. }
  974. if (array_size <= PAGE_SIZE)
  975. kfree(pages);
  976. else
  977. vfree(pages);
  978. return 0;
  979. }
  980. /*
  981. * Create a CPU mapping for a specified pages
  982. */
  983. static void *
  984. __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
  985. const void *caller)
  986. {
  987. unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
  988. struct vm_struct *area;
  989. unsigned long p;
  990. area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
  991. caller);
  992. if (!area)
  993. return NULL;
  994. area->pages = pages;
  995. area->nr_pages = nr_pages;
  996. p = (unsigned long)area->addr;
  997. for (i = 0; i < nr_pages; i++) {
  998. phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
  999. if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
  1000. goto err;
  1001. p += PAGE_SIZE;
  1002. }
  1003. return area->addr;
  1004. err:
  1005. unmap_kernel_range((unsigned long)area->addr, size);
  1006. vunmap(area->addr);
  1007. return NULL;
  1008. }
  1009. /*
  1010. * Create a mapping in device IO address space for specified pages
  1011. */
  1012. static dma_addr_t
  1013. __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
  1014. {
  1015. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1016. unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  1017. dma_addr_t dma_addr, iova;
  1018. int i, ret = DMA_ERROR_CODE;
  1019. dma_addr = __alloc_iova(mapping, size);
  1020. if (dma_addr == DMA_ERROR_CODE)
  1021. return dma_addr;
  1022. iova = dma_addr;
  1023. for (i = 0; i < count; ) {
  1024. unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
  1025. phys_addr_t phys = page_to_phys(pages[i]);
  1026. unsigned int len, j;
  1027. for (j = i + 1; j < count; j++, next_pfn++)
  1028. if (page_to_pfn(pages[j]) != next_pfn)
  1029. break;
  1030. len = (j - i) << PAGE_SHIFT;
  1031. ret = iommu_map(mapping->domain, iova, phys, len, 0);
  1032. if (ret < 0)
  1033. goto fail;
  1034. iova += len;
  1035. i = j;
  1036. }
  1037. return dma_addr;
  1038. fail:
  1039. iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
  1040. __free_iova(mapping, dma_addr, size);
  1041. return DMA_ERROR_CODE;
  1042. }
  1043. static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
  1044. {
  1045. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1046. /*
  1047. * add optional in-page offset from iova to size and align
  1048. * result to page size
  1049. */
  1050. size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
  1051. iova &= PAGE_MASK;
  1052. iommu_unmap(mapping->domain, iova, size);
  1053. __free_iova(mapping, iova, size);
  1054. return 0;
  1055. }
  1056. static struct page **__atomic_get_pages(void *addr)
  1057. {
  1058. struct dma_pool *pool = &atomic_pool;
  1059. struct page **pages = pool->pages;
  1060. int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
  1061. return pages + offs;
  1062. }
  1063. static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
  1064. {
  1065. struct vm_struct *area;
  1066. if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
  1067. return __atomic_get_pages(cpu_addr);
  1068. if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
  1069. return cpu_addr;
  1070. area = find_vm_area(cpu_addr);
  1071. if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
  1072. return area->pages;
  1073. return NULL;
  1074. }
  1075. static void *__iommu_alloc_atomic(struct device *dev, size_t size,
  1076. dma_addr_t *handle)
  1077. {
  1078. struct page *page;
  1079. void *addr;
  1080. addr = __alloc_from_pool(size, &page);
  1081. if (!addr)
  1082. return NULL;
  1083. *handle = __iommu_create_mapping(dev, &page, size);
  1084. if (*handle == DMA_ERROR_CODE)
  1085. goto err_mapping;
  1086. return addr;
  1087. err_mapping:
  1088. __free_from_pool(addr, size);
  1089. return NULL;
  1090. }
  1091. static void __iommu_free_atomic(struct device *dev, struct page **pages,
  1092. dma_addr_t handle, size_t size)
  1093. {
  1094. __iommu_remove_mapping(dev, handle, size);
  1095. __free_from_pool(page_address(pages[0]), size);
  1096. }
  1097. static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
  1098. dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
  1099. {
  1100. pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
  1101. struct page **pages;
  1102. void *addr = NULL;
  1103. *handle = DMA_ERROR_CODE;
  1104. size = PAGE_ALIGN(size);
  1105. if (gfp & GFP_ATOMIC)
  1106. return __iommu_alloc_atomic(dev, size, handle);
  1107. pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
  1108. if (!pages)
  1109. return NULL;
  1110. *handle = __iommu_create_mapping(dev, pages, size);
  1111. if (*handle == DMA_ERROR_CODE)
  1112. goto err_buffer;
  1113. if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
  1114. return pages;
  1115. addr = __iommu_alloc_remap(pages, size, gfp, prot,
  1116. __builtin_return_address(0));
  1117. if (!addr)
  1118. goto err_mapping;
  1119. return addr;
  1120. err_mapping:
  1121. __iommu_remove_mapping(dev, *handle, size);
  1122. err_buffer:
  1123. __iommu_free_buffer(dev, pages, size, attrs);
  1124. return NULL;
  1125. }
  1126. static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
  1127. void *cpu_addr, dma_addr_t dma_addr, size_t size,
  1128. struct dma_attrs *attrs)
  1129. {
  1130. unsigned long uaddr = vma->vm_start;
  1131. unsigned long usize = vma->vm_end - vma->vm_start;
  1132. struct page **pages = __iommu_get_pages(cpu_addr, attrs);
  1133. vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
  1134. if (!pages)
  1135. return -ENXIO;
  1136. do {
  1137. int ret = vm_insert_page(vma, uaddr, *pages++);
  1138. if (ret) {
  1139. pr_err("Remapping memory failed: %d\n", ret);
  1140. return ret;
  1141. }
  1142. uaddr += PAGE_SIZE;
  1143. usize -= PAGE_SIZE;
  1144. } while (usize > 0);
  1145. return 0;
  1146. }
  1147. /*
  1148. * free a page as defined by the above mapping.
  1149. * Must not be called with IRQs disabled.
  1150. */
  1151. void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
  1152. dma_addr_t handle, struct dma_attrs *attrs)
  1153. {
  1154. struct page **pages = __iommu_get_pages(cpu_addr, attrs);
  1155. size = PAGE_ALIGN(size);
  1156. if (!pages) {
  1157. WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
  1158. return;
  1159. }
  1160. if (__in_atomic_pool(cpu_addr, size)) {
  1161. __iommu_free_atomic(dev, pages, handle, size);
  1162. return;
  1163. }
  1164. if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
  1165. unmap_kernel_range((unsigned long)cpu_addr, size);
  1166. vunmap(cpu_addr);
  1167. }
  1168. __iommu_remove_mapping(dev, handle, size);
  1169. __iommu_free_buffer(dev, pages, size, attrs);
  1170. }
  1171. static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
  1172. void *cpu_addr, dma_addr_t dma_addr,
  1173. size_t size, struct dma_attrs *attrs)
  1174. {
  1175. unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
  1176. struct page **pages = __iommu_get_pages(cpu_addr, attrs);
  1177. if (!pages)
  1178. return -ENXIO;
  1179. return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
  1180. GFP_KERNEL);
  1181. }
  1182. /*
  1183. * Map a part of the scatter-gather list into contiguous io address space
  1184. */
  1185. static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
  1186. size_t size, dma_addr_t *handle,
  1187. enum dma_data_direction dir, struct dma_attrs *attrs,
  1188. bool is_coherent)
  1189. {
  1190. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1191. dma_addr_t iova, iova_base;
  1192. int ret = 0;
  1193. unsigned int count;
  1194. struct scatterlist *s;
  1195. size = PAGE_ALIGN(size);
  1196. *handle = DMA_ERROR_CODE;
  1197. iova_base = iova = __alloc_iova(mapping, size);
  1198. if (iova == DMA_ERROR_CODE)
  1199. return -ENOMEM;
  1200. for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
  1201. phys_addr_t phys = page_to_phys(sg_page(s));
  1202. unsigned int len = PAGE_ALIGN(s->offset + s->length);
  1203. if (!is_coherent &&
  1204. !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  1205. __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
  1206. ret = iommu_map(mapping->domain, iova, phys, len, 0);
  1207. if (ret < 0)
  1208. goto fail;
  1209. count += len >> PAGE_SHIFT;
  1210. iova += len;
  1211. }
  1212. *handle = iova_base;
  1213. return 0;
  1214. fail:
  1215. iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
  1216. __free_iova(mapping, iova_base, size);
  1217. return ret;
  1218. }
  1219. static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
  1220. enum dma_data_direction dir, struct dma_attrs *attrs,
  1221. bool is_coherent)
  1222. {
  1223. struct scatterlist *s = sg, *dma = sg, *start = sg;
  1224. int i, count = 0;
  1225. unsigned int offset = s->offset;
  1226. unsigned int size = s->offset + s->length;
  1227. unsigned int max = dma_get_max_seg_size(dev);
  1228. for (i = 1; i < nents; i++) {
  1229. s = sg_next(s);
  1230. s->dma_address = DMA_ERROR_CODE;
  1231. s->dma_length = 0;
  1232. if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
  1233. if (__map_sg_chunk(dev, start, size, &dma->dma_address,
  1234. dir, attrs, is_coherent) < 0)
  1235. goto bad_mapping;
  1236. dma->dma_address += offset;
  1237. dma->dma_length = size - offset;
  1238. size = offset = s->offset;
  1239. start = s;
  1240. dma = sg_next(dma);
  1241. count += 1;
  1242. }
  1243. size += s->length;
  1244. }
  1245. if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
  1246. is_coherent) < 0)
  1247. goto bad_mapping;
  1248. dma->dma_address += offset;
  1249. dma->dma_length = size - offset;
  1250. return count+1;
  1251. bad_mapping:
  1252. for_each_sg(sg, s, count, i)
  1253. __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
  1254. return 0;
  1255. }
  1256. /**
  1257. * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
  1258. * @dev: valid struct device pointer
  1259. * @sg: list of buffers
  1260. * @nents: number of buffers to map
  1261. * @dir: DMA transfer direction
  1262. *
  1263. * Map a set of i/o coherent buffers described by scatterlist in streaming
  1264. * mode for DMA. The scatter gather list elements are merged together (if
  1265. * possible) and tagged with the appropriate dma address and length. They are
  1266. * obtained via sg_dma_{address,length}.
  1267. */
  1268. int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
  1269. int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
  1270. {
  1271. return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
  1272. }
  1273. /**
  1274. * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
  1275. * @dev: valid struct device pointer
  1276. * @sg: list of buffers
  1277. * @nents: number of buffers to map
  1278. * @dir: DMA transfer direction
  1279. *
  1280. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  1281. * The scatter gather list elements are merged together (if possible) and
  1282. * tagged with the appropriate dma address and length. They are obtained via
  1283. * sg_dma_{address,length}.
  1284. */
  1285. int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
  1286. int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
  1287. {
  1288. return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
  1289. }
  1290. static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
  1291. int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
  1292. bool is_coherent)
  1293. {
  1294. struct scatterlist *s;
  1295. int i;
  1296. for_each_sg(sg, s, nents, i) {
  1297. if (sg_dma_len(s))
  1298. __iommu_remove_mapping(dev, sg_dma_address(s),
  1299. sg_dma_len(s));
  1300. if (!is_coherent &&
  1301. !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  1302. __dma_page_dev_to_cpu(sg_page(s), s->offset,
  1303. s->length, dir);
  1304. }
  1305. }
  1306. /**
  1307. * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
  1308. * @dev: valid struct device pointer
  1309. * @sg: list of buffers
  1310. * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
  1311. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  1312. *
  1313. * Unmap a set of streaming mode DMA translations. Again, CPU access
  1314. * rules concerning calls here are the same as for dma_unmap_single().
  1315. */
  1316. void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
  1317. int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
  1318. {
  1319. __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
  1320. }
  1321. /**
  1322. * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
  1323. * @dev: valid struct device pointer
  1324. * @sg: list of buffers
  1325. * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
  1326. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  1327. *
  1328. * Unmap a set of streaming mode DMA translations. Again, CPU access
  1329. * rules concerning calls here are the same as for dma_unmap_single().
  1330. */
  1331. void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
  1332. enum dma_data_direction dir, struct dma_attrs *attrs)
  1333. {
  1334. __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
  1335. }
  1336. /**
  1337. * arm_iommu_sync_sg_for_cpu
  1338. * @dev: valid struct device pointer
  1339. * @sg: list of buffers
  1340. * @nents: number of buffers to map (returned from dma_map_sg)
  1341. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  1342. */
  1343. void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
  1344. int nents, enum dma_data_direction dir)
  1345. {
  1346. struct scatterlist *s;
  1347. int i;
  1348. for_each_sg(sg, s, nents, i)
  1349. __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
  1350. }
  1351. /**
  1352. * arm_iommu_sync_sg_for_device
  1353. * @dev: valid struct device pointer
  1354. * @sg: list of buffers
  1355. * @nents: number of buffers to map (returned from dma_map_sg)
  1356. * @dir: DMA transfer direction (same as was passed to dma_map_sg)
  1357. */
  1358. void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
  1359. int nents, enum dma_data_direction dir)
  1360. {
  1361. struct scatterlist *s;
  1362. int i;
  1363. for_each_sg(sg, s, nents, i)
  1364. __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
  1365. }
  1366. /**
  1367. * arm_coherent_iommu_map_page
  1368. * @dev: valid struct device pointer
  1369. * @page: page that buffer resides in
  1370. * @offset: offset into page for start of buffer
  1371. * @size: size of buffer to map
  1372. * @dir: DMA transfer direction
  1373. *
  1374. * Coherent IOMMU aware version of arm_dma_map_page()
  1375. */
  1376. static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
  1377. unsigned long offset, size_t size, enum dma_data_direction dir,
  1378. struct dma_attrs *attrs)
  1379. {
  1380. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1381. dma_addr_t dma_addr;
  1382. int ret, len = PAGE_ALIGN(size + offset);
  1383. dma_addr = __alloc_iova(mapping, len);
  1384. if (dma_addr == DMA_ERROR_CODE)
  1385. return dma_addr;
  1386. ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
  1387. if (ret < 0)
  1388. goto fail;
  1389. return dma_addr + offset;
  1390. fail:
  1391. __free_iova(mapping, dma_addr, len);
  1392. return DMA_ERROR_CODE;
  1393. }
  1394. /**
  1395. * arm_iommu_map_page
  1396. * @dev: valid struct device pointer
  1397. * @page: page that buffer resides in
  1398. * @offset: offset into page for start of buffer
  1399. * @size: size of buffer to map
  1400. * @dir: DMA transfer direction
  1401. *
  1402. * IOMMU aware version of arm_dma_map_page()
  1403. */
  1404. static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
  1405. unsigned long offset, size_t size, enum dma_data_direction dir,
  1406. struct dma_attrs *attrs)
  1407. {
  1408. if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  1409. __dma_page_cpu_to_dev(page, offset, size, dir);
  1410. return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
  1411. }
  1412. /**
  1413. * arm_coherent_iommu_unmap_page
  1414. * @dev: valid struct device pointer
  1415. * @handle: DMA address of buffer
  1416. * @size: size of buffer (same as passed to dma_map_page)
  1417. * @dir: DMA transfer direction (same as passed to dma_map_page)
  1418. *
  1419. * Coherent IOMMU aware version of arm_dma_unmap_page()
  1420. */
  1421. static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
  1422. size_t size, enum dma_data_direction dir,
  1423. struct dma_attrs *attrs)
  1424. {
  1425. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1426. dma_addr_t iova = handle & PAGE_MASK;
  1427. int offset = handle & ~PAGE_MASK;
  1428. int len = PAGE_ALIGN(size + offset);
  1429. if (!iova)
  1430. return;
  1431. iommu_unmap(mapping->domain, iova, len);
  1432. __free_iova(mapping, iova, len);
  1433. }
  1434. /**
  1435. * arm_iommu_unmap_page
  1436. * @dev: valid struct device pointer
  1437. * @handle: DMA address of buffer
  1438. * @size: size of buffer (same as passed to dma_map_page)
  1439. * @dir: DMA transfer direction (same as passed to dma_map_page)
  1440. *
  1441. * IOMMU aware version of arm_dma_unmap_page()
  1442. */
  1443. static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
  1444. size_t size, enum dma_data_direction dir,
  1445. struct dma_attrs *attrs)
  1446. {
  1447. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1448. dma_addr_t iova = handle & PAGE_MASK;
  1449. struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
  1450. int offset = handle & ~PAGE_MASK;
  1451. int len = PAGE_ALIGN(size + offset);
  1452. if (!iova)
  1453. return;
  1454. if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
  1455. __dma_page_dev_to_cpu(page, offset, size, dir);
  1456. iommu_unmap(mapping->domain, iova, len);
  1457. __free_iova(mapping, iova, len);
  1458. }
  1459. static void arm_iommu_sync_single_for_cpu(struct device *dev,
  1460. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  1461. {
  1462. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1463. dma_addr_t iova = handle & PAGE_MASK;
  1464. struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
  1465. unsigned int offset = handle & ~PAGE_MASK;
  1466. if (!iova)
  1467. return;
  1468. __dma_page_dev_to_cpu(page, offset, size, dir);
  1469. }
  1470. static void arm_iommu_sync_single_for_device(struct device *dev,
  1471. dma_addr_t handle, size_t size, enum dma_data_direction dir)
  1472. {
  1473. struct dma_iommu_mapping *mapping = dev->archdata.mapping;
  1474. dma_addr_t iova = handle & PAGE_MASK;
  1475. struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
  1476. unsigned int offset = handle & ~PAGE_MASK;
  1477. if (!iova)
  1478. return;
  1479. __dma_page_cpu_to_dev(page, offset, size, dir);
  1480. }
  1481. struct dma_map_ops iommu_ops = {
  1482. .alloc = arm_iommu_alloc_attrs,
  1483. .free = arm_iommu_free_attrs,
  1484. .mmap = arm_iommu_mmap_attrs,
  1485. .get_sgtable = arm_iommu_get_sgtable,
  1486. .map_page = arm_iommu_map_page,
  1487. .unmap_page = arm_iommu_unmap_page,
  1488. .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
  1489. .sync_single_for_device = arm_iommu_sync_single_for_device,
  1490. .map_sg = arm_iommu_map_sg,
  1491. .unmap_sg = arm_iommu_unmap_sg,
  1492. .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
  1493. .sync_sg_for_device = arm_iommu_sync_sg_for_device,
  1494. .set_dma_mask = arm_dma_set_mask,
  1495. };
  1496. struct dma_map_ops iommu_coherent_ops = {
  1497. .alloc = arm_iommu_alloc_attrs,
  1498. .free = arm_iommu_free_attrs,
  1499. .mmap = arm_iommu_mmap_attrs,
  1500. .get_sgtable = arm_iommu_get_sgtable,
  1501. .map_page = arm_coherent_iommu_map_page,
  1502. .unmap_page = arm_coherent_iommu_unmap_page,
  1503. .map_sg = arm_coherent_iommu_map_sg,
  1504. .unmap_sg = arm_coherent_iommu_unmap_sg,
  1505. .set_dma_mask = arm_dma_set_mask,
  1506. };
  1507. /**
  1508. * arm_iommu_create_mapping
  1509. * @bus: pointer to the bus holding the client device (for IOMMU calls)
  1510. * @base: start address of the valid IO address space
  1511. * @size: size of the valid IO address space
  1512. * @order: accuracy of the IO addresses allocations
  1513. *
  1514. * Creates a mapping structure which holds information about used/unused
  1515. * IO address ranges, which is required to perform memory allocation and
  1516. * mapping with IOMMU aware functions.
  1517. *
  1518. * The client device need to be attached to the mapping with
  1519. * arm_iommu_attach_device function.
  1520. */
  1521. struct dma_iommu_mapping *
  1522. arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
  1523. int order)
  1524. {
  1525. unsigned int count = size >> (PAGE_SHIFT + order);
  1526. unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
  1527. struct dma_iommu_mapping *mapping;
  1528. int err = -ENOMEM;
  1529. if (!count)
  1530. return ERR_PTR(-EINVAL);
  1531. mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
  1532. if (!mapping)
  1533. goto err;
  1534. mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
  1535. if (!mapping->bitmap)
  1536. goto err2;
  1537. mapping->base = base;
  1538. mapping->bits = BITS_PER_BYTE * bitmap_size;
  1539. mapping->order = order;
  1540. spin_lock_init(&mapping->lock);
  1541. mapping->domain = iommu_domain_alloc(bus);
  1542. if (!mapping->domain)
  1543. goto err3;
  1544. kref_init(&mapping->kref);
  1545. return mapping;
  1546. err3:
  1547. kfree(mapping->bitmap);
  1548. err2:
  1549. kfree(mapping);
  1550. err:
  1551. return ERR_PTR(err);
  1552. }
  1553. EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
  1554. static void release_iommu_mapping(struct kref *kref)
  1555. {
  1556. struct dma_iommu_mapping *mapping =
  1557. container_of(kref, struct dma_iommu_mapping, kref);
  1558. iommu_domain_free(mapping->domain);
  1559. kfree(mapping->bitmap);
  1560. kfree(mapping);
  1561. }
  1562. void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
  1563. {
  1564. if (mapping)
  1565. kref_put(&mapping->kref, release_iommu_mapping);
  1566. }
  1567. EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
  1568. /**
  1569. * arm_iommu_attach_device
  1570. * @dev: valid struct device pointer
  1571. * @mapping: io address space mapping structure (returned from
  1572. * arm_iommu_create_mapping)
  1573. *
  1574. * Attaches specified io address space mapping to the provided device,
  1575. * this replaces the dma operations (dma_map_ops pointer) with the
  1576. * IOMMU aware version. More than one client might be attached to
  1577. * the same io address space mapping.
  1578. */
  1579. int arm_iommu_attach_device(struct device *dev,
  1580. struct dma_iommu_mapping *mapping)
  1581. {
  1582. int err;
  1583. err = iommu_attach_device(mapping->domain, dev);
  1584. if (err)
  1585. return err;
  1586. kref_get(&mapping->kref);
  1587. dev->archdata.mapping = mapping;
  1588. set_dma_ops(dev, &iommu_ops);
  1589. pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
  1590. return 0;
  1591. }
  1592. EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
  1593. /**
  1594. * arm_iommu_detach_device
  1595. * @dev: valid struct device pointer
  1596. *
  1597. * Detaches the provided device from a previously attached map.
  1598. * This voids the dma operations (dma_map_ops pointer)
  1599. */
  1600. void arm_iommu_detach_device(struct device *dev)
  1601. {
  1602. struct dma_iommu_mapping *mapping;
  1603. mapping = to_dma_iommu_mapping(dev);
  1604. if (!mapping) {
  1605. dev_warn(dev, "Not attached\n");
  1606. return;
  1607. }
  1608. iommu_detach_device(mapping->domain, dev);
  1609. kref_put(&mapping->kref, release_iommu_mapping);
  1610. mapping = NULL;
  1611. set_dma_ops(dev, NULL);
  1612. pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
  1613. }
  1614. EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
  1615. #endif