ptrace.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053
  1. /*
  2. * linux/kernel/ptrace.c
  3. *
  4. * (C) Copyright 1999 Linus Torvalds
  5. *
  6. * Common interfaces for "ptrace()" which we do not want
  7. * to continually duplicate across every architecture.
  8. */
  9. #include <linux/capability.h>
  10. #include <linux/module.h>
  11. #include <linux/sched.h>
  12. #include <linux/errno.h>
  13. #include <linux/mm.h>
  14. #include <linux/highmem.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/ptrace.h>
  17. #include <linux/security.h>
  18. #include <linux/signal.h>
  19. #include <linux/audit.h>
  20. #include <linux/pid_namespace.h>
  21. #include <linux/syscalls.h>
  22. #include <linux/uaccess.h>
  23. #include <linux/regset.h>
  24. #include <linux/hw_breakpoint.h>
  25. static int ptrace_trapping_sleep_fn(void *flags)
  26. {
  27. schedule();
  28. return 0;
  29. }
  30. /*
  31. * ptrace a task: make the debugger its new parent and
  32. * move it to the ptrace list.
  33. *
  34. * Must be called with the tasklist lock write-held.
  35. */
  36. void __ptrace_link(struct task_struct *child, struct task_struct *new_parent)
  37. {
  38. BUG_ON(!list_empty(&child->ptrace_entry));
  39. list_add(&child->ptrace_entry, &new_parent->ptraced);
  40. child->parent = new_parent;
  41. }
  42. /**
  43. * __ptrace_unlink - unlink ptracee and restore its execution state
  44. * @child: ptracee to be unlinked
  45. *
  46. * Remove @child from the ptrace list, move it back to the original parent,
  47. * and restore the execution state so that it conforms to the group stop
  48. * state.
  49. *
  50. * Unlinking can happen via two paths - explicit PTRACE_DETACH or ptracer
  51. * exiting. For PTRACE_DETACH, unless the ptracee has been killed between
  52. * ptrace_check_attach() and here, it's guaranteed to be in TASK_TRACED.
  53. * If the ptracer is exiting, the ptracee can be in any state.
  54. *
  55. * After detach, the ptracee should be in a state which conforms to the
  56. * group stop. If the group is stopped or in the process of stopping, the
  57. * ptracee should be put into TASK_STOPPED; otherwise, it should be woken
  58. * up from TASK_TRACED.
  59. *
  60. * If the ptracee is in TASK_TRACED and needs to be moved to TASK_STOPPED,
  61. * it goes through TRACED -> RUNNING -> STOPPED transition which is similar
  62. * to but in the opposite direction of what happens while attaching to a
  63. * stopped task. However, in this direction, the intermediate RUNNING
  64. * state is not hidden even from the current ptracer and if it immediately
  65. * re-attaches and performs a WNOHANG wait(2), it may fail.
  66. *
  67. * CONTEXT:
  68. * write_lock_irq(tasklist_lock)
  69. */
  70. void __ptrace_unlink(struct task_struct *child)
  71. {
  72. BUG_ON(!child->ptrace);
  73. child->ptrace = 0;
  74. child->parent = child->real_parent;
  75. list_del_init(&child->ptrace_entry);
  76. spin_lock(&child->sighand->siglock);
  77. /*
  78. * Clear all pending traps and TRAPPING. TRAPPING should be
  79. * cleared regardless of JOBCTL_STOP_PENDING. Do it explicitly.
  80. */
  81. task_clear_jobctl_pending(child, JOBCTL_TRAP_MASK);
  82. task_clear_jobctl_trapping(child);
  83. /*
  84. * Reinstate JOBCTL_STOP_PENDING if group stop is in effect and
  85. * @child isn't dead.
  86. */
  87. if (!(child->flags & PF_EXITING) &&
  88. (child->signal->flags & SIGNAL_STOP_STOPPED ||
  89. child->signal->group_stop_count))
  90. child->jobctl |= JOBCTL_STOP_PENDING;
  91. /*
  92. * If transition to TASK_STOPPED is pending or in TASK_TRACED, kick
  93. * @child in the butt. Note that @resume should be used iff @child
  94. * is in TASK_TRACED; otherwise, we might unduly disrupt
  95. * TASK_KILLABLE sleeps.
  96. */
  97. if (child->jobctl & JOBCTL_STOP_PENDING || task_is_traced(child))
  98. signal_wake_up(child, task_is_traced(child));
  99. spin_unlock(&child->sighand->siglock);
  100. }
  101. /**
  102. * ptrace_check_attach - check whether ptracee is ready for ptrace operation
  103. * @child: ptracee to check for
  104. * @ignore_state: don't check whether @child is currently %TASK_TRACED
  105. *
  106. * Check whether @child is being ptraced by %current and ready for further
  107. * ptrace operations. If @ignore_state is %false, @child also should be in
  108. * %TASK_TRACED state and on return the child is guaranteed to be traced
  109. * and not executing. If @ignore_state is %true, @child can be in any
  110. * state.
  111. *
  112. * CONTEXT:
  113. * Grabs and releases tasklist_lock and @child->sighand->siglock.
  114. *
  115. * RETURNS:
  116. * 0 on success, -ESRCH if %child is not ready.
  117. */
  118. int ptrace_check_attach(struct task_struct *child, bool ignore_state)
  119. {
  120. int ret = -ESRCH;
  121. /*
  122. * We take the read lock around doing both checks to close a
  123. * possible race where someone else was tracing our child and
  124. * detached between these two checks. After this locked check,
  125. * we are sure that this is our traced child and that can only
  126. * be changed by us so it's not changing right after this.
  127. */
  128. read_lock(&tasklist_lock);
  129. if ((child->ptrace & PT_PTRACED) && child->parent == current) {
  130. /*
  131. * child->sighand can't be NULL, release_task()
  132. * does ptrace_unlink() before __exit_signal().
  133. */
  134. spin_lock_irq(&child->sighand->siglock);
  135. WARN_ON_ONCE(task_is_stopped(child));
  136. if (ignore_state || (task_is_traced(child) &&
  137. !(child->jobctl & JOBCTL_LISTENING)))
  138. ret = 0;
  139. spin_unlock_irq(&child->sighand->siglock);
  140. }
  141. read_unlock(&tasklist_lock);
  142. if (!ret && !ignore_state)
  143. ret = wait_task_inactive(child, TASK_TRACED) ? 0 : -ESRCH;
  144. /* All systems go.. */
  145. return ret;
  146. }
  147. int __ptrace_may_access(struct task_struct *task, unsigned int mode)
  148. {
  149. const struct cred *cred = current_cred(), *tcred;
  150. /* May we inspect the given task?
  151. * This check is used both for attaching with ptrace
  152. * and for allowing access to sensitive information in /proc.
  153. *
  154. * ptrace_attach denies several cases that /proc allows
  155. * because setting up the necessary parent/child relationship
  156. * or halting the specified task is impossible.
  157. */
  158. int dumpable = 0;
  159. /* Don't let security modules deny introspection */
  160. if (task == current)
  161. return 0;
  162. rcu_read_lock();
  163. tcred = __task_cred(task);
  164. if (cred->user->user_ns == tcred->user->user_ns &&
  165. (cred->uid == tcred->euid &&
  166. cred->uid == tcred->suid &&
  167. cred->uid == tcred->uid &&
  168. cred->gid == tcred->egid &&
  169. cred->gid == tcred->sgid &&
  170. cred->gid == tcred->gid))
  171. goto ok;
  172. if (ns_capable(tcred->user->user_ns, CAP_SYS_PTRACE))
  173. goto ok;
  174. rcu_read_unlock();
  175. return -EPERM;
  176. ok:
  177. rcu_read_unlock();
  178. smp_rmb();
  179. if (task->mm)
  180. dumpable = get_dumpable(task->mm);
  181. if (!dumpable && !task_ns_capable(task, CAP_SYS_PTRACE))
  182. return -EPERM;
  183. return security_ptrace_access_check(task, mode);
  184. }
  185. bool ptrace_may_access(struct task_struct *task, unsigned int mode)
  186. {
  187. int err;
  188. task_lock(task);
  189. err = __ptrace_may_access(task, mode);
  190. task_unlock(task);
  191. return !err;
  192. }
  193. static int ptrace_attach(struct task_struct *task, long request,
  194. unsigned long flags)
  195. {
  196. bool seize = (request == PTRACE_SEIZE);
  197. int retval;
  198. /*
  199. * SEIZE will enable new ptrace behaviors which will be implemented
  200. * gradually. SEIZE_DEVEL is used to prevent applications
  201. * expecting full SEIZE behaviors trapping on kernel commits which
  202. * are still in the process of implementing them.
  203. *
  204. * Only test programs for new ptrace behaviors being implemented
  205. * should set SEIZE_DEVEL. If unset, SEIZE will fail with -EIO.
  206. *
  207. * Once SEIZE behaviors are completely implemented, this flag and
  208. * the following test will be removed.
  209. */
  210. retval = -EIO;
  211. if (seize && !(flags & PTRACE_SEIZE_DEVEL))
  212. goto out;
  213. audit_ptrace(task);
  214. retval = -EPERM;
  215. if (unlikely(task->flags & PF_KTHREAD))
  216. goto out;
  217. if (same_thread_group(task, current))
  218. goto out;
  219. /*
  220. * Protect exec's credential calculations against our interference;
  221. * interference; SUID, SGID and LSM creds get determined differently
  222. * under ptrace.
  223. */
  224. retval = -ERESTARTNOINTR;
  225. if (mutex_lock_interruptible(&task->signal->cred_guard_mutex))
  226. goto out;
  227. task_lock(task);
  228. retval = __ptrace_may_access(task, PTRACE_MODE_ATTACH);
  229. task_unlock(task);
  230. if (retval)
  231. goto unlock_creds;
  232. write_lock_irq(&tasklist_lock);
  233. retval = -EPERM;
  234. if (unlikely(task->exit_state))
  235. goto unlock_tasklist;
  236. if (task->ptrace)
  237. goto unlock_tasklist;
  238. task->ptrace = PT_PTRACED;
  239. if (seize)
  240. task->ptrace |= PT_SEIZED;
  241. if (task_ns_capable(task, CAP_SYS_PTRACE))
  242. task->ptrace |= PT_PTRACE_CAP;
  243. __ptrace_link(task, current);
  244. /* SEIZE doesn't trap tracee on attach */
  245. if (!seize)
  246. send_sig_info(SIGSTOP, SEND_SIG_FORCED, task);
  247. spin_lock(&task->sighand->siglock);
  248. /*
  249. * If the task is already STOPPED, set JOBCTL_TRAP_STOP and
  250. * TRAPPING, and kick it so that it transits to TRACED. TRAPPING
  251. * will be cleared if the child completes the transition or any
  252. * event which clears the group stop states happens. We'll wait
  253. * for the transition to complete before returning from this
  254. * function.
  255. *
  256. * This hides STOPPED -> RUNNING -> TRACED transition from the
  257. * attaching thread but a different thread in the same group can
  258. * still observe the transient RUNNING state. IOW, if another
  259. * thread's WNOHANG wait(2) on the stopped tracee races against
  260. * ATTACH, the wait(2) may fail due to the transient RUNNING.
  261. *
  262. * The following task_is_stopped() test is safe as both transitions
  263. * in and out of STOPPED are protected by siglock.
  264. */
  265. if (task_is_stopped(task) &&
  266. task_set_jobctl_pending(task, JOBCTL_TRAP_STOP | JOBCTL_TRAPPING))
  267. signal_wake_up(task, 1);
  268. spin_unlock(&task->sighand->siglock);
  269. retval = 0;
  270. unlock_tasklist:
  271. write_unlock_irq(&tasklist_lock);
  272. unlock_creds:
  273. mutex_unlock(&task->signal->cred_guard_mutex);
  274. out:
  275. if (!retval)
  276. wait_on_bit(&task->jobctl, JOBCTL_TRAPPING_BIT,
  277. ptrace_trapping_sleep_fn, TASK_UNINTERRUPTIBLE);
  278. return retval;
  279. }
  280. /**
  281. * ptrace_traceme -- helper for PTRACE_TRACEME
  282. *
  283. * Performs checks and sets PT_PTRACED.
  284. * Should be used by all ptrace implementations for PTRACE_TRACEME.
  285. */
  286. static int ptrace_traceme(void)
  287. {
  288. int ret = -EPERM;
  289. write_lock_irq(&tasklist_lock);
  290. /* Are we already being traced? */
  291. if (!current->ptrace) {
  292. ret = security_ptrace_traceme(current->parent);
  293. /*
  294. * Check PF_EXITING to ensure ->real_parent has not passed
  295. * exit_ptrace(). Otherwise we don't report the error but
  296. * pretend ->real_parent untraces us right after return.
  297. */
  298. if (!ret && !(current->real_parent->flags & PF_EXITING)) {
  299. current->ptrace = PT_PTRACED;
  300. __ptrace_link(current, current->real_parent);
  301. }
  302. }
  303. write_unlock_irq(&tasklist_lock);
  304. return ret;
  305. }
  306. /*
  307. * Called with irqs disabled, returns true if childs should reap themselves.
  308. */
  309. static int ignoring_children(struct sighand_struct *sigh)
  310. {
  311. int ret;
  312. spin_lock(&sigh->siglock);
  313. ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) ||
  314. (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT);
  315. spin_unlock(&sigh->siglock);
  316. return ret;
  317. }
  318. /*
  319. * Called with tasklist_lock held for writing.
  320. * Unlink a traced task, and clean it up if it was a traced zombie.
  321. * Return true if it needs to be reaped with release_task().
  322. * (We can't call release_task() here because we already hold tasklist_lock.)
  323. *
  324. * If it's a zombie, our attachedness prevented normal parent notification
  325. * or self-reaping. Do notification now if it would have happened earlier.
  326. * If it should reap itself, return true.
  327. *
  328. * If it's our own child, there is no notification to do. But if our normal
  329. * children self-reap, then this child was prevented by ptrace and we must
  330. * reap it now, in that case we must also wake up sub-threads sleeping in
  331. * do_wait().
  332. */
  333. static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p)
  334. {
  335. bool dead;
  336. __ptrace_unlink(p);
  337. if (p->exit_state != EXIT_ZOMBIE)
  338. return false;
  339. dead = !thread_group_leader(p);
  340. if (!dead && thread_group_empty(p)) {
  341. if (!same_thread_group(p->real_parent, tracer))
  342. dead = do_notify_parent(p, p->exit_signal);
  343. else if (ignoring_children(tracer->sighand)) {
  344. __wake_up_parent(p, tracer);
  345. p->exit_signal = -1;
  346. dead = true;
  347. }
  348. }
  349. /* Mark it as in the process of being reaped. */
  350. if (dead)
  351. p->exit_state = EXIT_DEAD;
  352. return dead;
  353. }
  354. static int ptrace_detach(struct task_struct *child, unsigned int data)
  355. {
  356. bool dead = false;
  357. if (!valid_signal(data))
  358. return -EIO;
  359. /* Architecture-specific hardware disable .. */
  360. ptrace_disable(child);
  361. clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
  362. write_lock_irq(&tasklist_lock);
  363. /*
  364. * This child can be already killed. Make sure de_thread() or
  365. * our sub-thread doing do_wait() didn't do release_task() yet.
  366. */
  367. if (child->ptrace) {
  368. child->exit_code = data;
  369. dead = __ptrace_detach(current, child);
  370. }
  371. write_unlock_irq(&tasklist_lock);
  372. if (unlikely(dead))
  373. release_task(child);
  374. return 0;
  375. }
  376. /*
  377. * Detach all tasks we were using ptrace on. Called with tasklist held
  378. * for writing, and returns with it held too. But note it can release
  379. * and reacquire the lock.
  380. */
  381. void exit_ptrace(struct task_struct *tracer)
  382. __releases(&tasklist_lock)
  383. __acquires(&tasklist_lock)
  384. {
  385. struct task_struct *p, *n;
  386. LIST_HEAD(ptrace_dead);
  387. if (likely(list_empty(&tracer->ptraced)))
  388. return;
  389. list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) {
  390. if (__ptrace_detach(tracer, p))
  391. list_add(&p->ptrace_entry, &ptrace_dead);
  392. }
  393. write_unlock_irq(&tasklist_lock);
  394. BUG_ON(!list_empty(&tracer->ptraced));
  395. list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_entry) {
  396. list_del_init(&p->ptrace_entry);
  397. release_task(p);
  398. }
  399. write_lock_irq(&tasklist_lock);
  400. }
  401. int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len)
  402. {
  403. int copied = 0;
  404. while (len > 0) {
  405. char buf[128];
  406. int this_len, retval;
  407. this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
  408. retval = access_process_vm(tsk, src, buf, this_len, 0);
  409. if (!retval) {
  410. if (copied)
  411. break;
  412. return -EIO;
  413. }
  414. if (copy_to_user(dst, buf, retval))
  415. return -EFAULT;
  416. copied += retval;
  417. src += retval;
  418. dst += retval;
  419. len -= retval;
  420. }
  421. return copied;
  422. }
  423. int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len)
  424. {
  425. int copied = 0;
  426. while (len > 0) {
  427. char buf[128];
  428. int this_len, retval;
  429. this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
  430. if (copy_from_user(buf, src, this_len))
  431. return -EFAULT;
  432. retval = access_process_vm(tsk, dst, buf, this_len, 1);
  433. if (!retval) {
  434. if (copied)
  435. break;
  436. return -EIO;
  437. }
  438. copied += retval;
  439. src += retval;
  440. dst += retval;
  441. len -= retval;
  442. }
  443. return copied;
  444. }
  445. static int ptrace_setoptions(struct task_struct *child, unsigned long data)
  446. {
  447. child->ptrace &= ~PT_TRACE_MASK;
  448. if (data & PTRACE_O_TRACESYSGOOD)
  449. child->ptrace |= PT_TRACESYSGOOD;
  450. if (data & PTRACE_O_TRACEFORK)
  451. child->ptrace |= PT_TRACE_FORK;
  452. if (data & PTRACE_O_TRACEVFORK)
  453. child->ptrace |= PT_TRACE_VFORK;
  454. if (data & PTRACE_O_TRACECLONE)
  455. child->ptrace |= PT_TRACE_CLONE;
  456. if (data & PTRACE_O_TRACEEXEC)
  457. child->ptrace |= PT_TRACE_EXEC;
  458. if (data & PTRACE_O_TRACEVFORKDONE)
  459. child->ptrace |= PT_TRACE_VFORK_DONE;
  460. if (data & PTRACE_O_TRACEEXIT)
  461. child->ptrace |= PT_TRACE_EXIT;
  462. return (data & ~PTRACE_O_MASK) ? -EINVAL : 0;
  463. }
  464. static int ptrace_getsiginfo(struct task_struct *child, siginfo_t *info)
  465. {
  466. unsigned long flags;
  467. int error = -ESRCH;
  468. if (lock_task_sighand(child, &flags)) {
  469. error = -EINVAL;
  470. if (likely(child->last_siginfo != NULL)) {
  471. *info = *child->last_siginfo;
  472. error = 0;
  473. }
  474. unlock_task_sighand(child, &flags);
  475. }
  476. return error;
  477. }
  478. static int ptrace_setsiginfo(struct task_struct *child, const siginfo_t *info)
  479. {
  480. unsigned long flags;
  481. int error = -ESRCH;
  482. if (lock_task_sighand(child, &flags)) {
  483. error = -EINVAL;
  484. if (likely(child->last_siginfo != NULL)) {
  485. *child->last_siginfo = *info;
  486. error = 0;
  487. }
  488. unlock_task_sighand(child, &flags);
  489. }
  490. return error;
  491. }
  492. #ifdef PTRACE_SINGLESTEP
  493. #define is_singlestep(request) ((request) == PTRACE_SINGLESTEP)
  494. #else
  495. #define is_singlestep(request) 0
  496. #endif
  497. #ifdef PTRACE_SINGLEBLOCK
  498. #define is_singleblock(request) ((request) == PTRACE_SINGLEBLOCK)
  499. #else
  500. #define is_singleblock(request) 0
  501. #endif
  502. #ifdef PTRACE_SYSEMU
  503. #define is_sysemu_singlestep(request) ((request) == PTRACE_SYSEMU_SINGLESTEP)
  504. #else
  505. #define is_sysemu_singlestep(request) 0
  506. #endif
  507. static int ptrace_resume(struct task_struct *child, long request,
  508. unsigned long data)
  509. {
  510. if (!valid_signal(data))
  511. return -EIO;
  512. if (request == PTRACE_SYSCALL)
  513. set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
  514. else
  515. clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
  516. #ifdef TIF_SYSCALL_EMU
  517. if (request == PTRACE_SYSEMU || request == PTRACE_SYSEMU_SINGLESTEP)
  518. set_tsk_thread_flag(child, TIF_SYSCALL_EMU);
  519. else
  520. clear_tsk_thread_flag(child, TIF_SYSCALL_EMU);
  521. #endif
  522. if (is_singleblock(request)) {
  523. if (unlikely(!arch_has_block_step()))
  524. return -EIO;
  525. user_enable_block_step(child);
  526. } else if (is_singlestep(request) || is_sysemu_singlestep(request)) {
  527. if (unlikely(!arch_has_single_step()))
  528. return -EIO;
  529. user_enable_single_step(child);
  530. } else {
  531. user_disable_single_step(child);
  532. }
  533. child->exit_code = data;
  534. wake_up_state(child, __TASK_TRACED);
  535. return 0;
  536. }
  537. #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
  538. static const struct user_regset *
  539. find_regset(const struct user_regset_view *view, unsigned int type)
  540. {
  541. const struct user_regset *regset;
  542. int n;
  543. for (n = 0; n < view->n; ++n) {
  544. regset = view->regsets + n;
  545. if (regset->core_note_type == type)
  546. return regset;
  547. }
  548. return NULL;
  549. }
  550. static int ptrace_regset(struct task_struct *task, int req, unsigned int type,
  551. struct iovec *kiov)
  552. {
  553. const struct user_regset_view *view = task_user_regset_view(task);
  554. const struct user_regset *regset = find_regset(view, type);
  555. int regset_no;
  556. if (!regset || (kiov->iov_len % regset->size) != 0)
  557. return -EINVAL;
  558. regset_no = regset - view->regsets;
  559. kiov->iov_len = min(kiov->iov_len,
  560. (__kernel_size_t) (regset->n * regset->size));
  561. if (req == PTRACE_GETREGSET)
  562. return copy_regset_to_user(task, view, regset_no, 0,
  563. kiov->iov_len, kiov->iov_base);
  564. else
  565. return copy_regset_from_user(task, view, regset_no, 0,
  566. kiov->iov_len, kiov->iov_base);
  567. }
  568. #endif
  569. int ptrace_request(struct task_struct *child, long request,
  570. unsigned long addr, unsigned long data)
  571. {
  572. bool seized = child->ptrace & PT_SEIZED;
  573. int ret = -EIO;
  574. siginfo_t siginfo, *si;
  575. void __user *datavp = (void __user *) data;
  576. unsigned long __user *datalp = datavp;
  577. unsigned long flags;
  578. switch (request) {
  579. case PTRACE_PEEKTEXT:
  580. case PTRACE_PEEKDATA:
  581. return generic_ptrace_peekdata(child, addr, data);
  582. case PTRACE_POKETEXT:
  583. case PTRACE_POKEDATA:
  584. return generic_ptrace_pokedata(child, addr, data);
  585. #ifdef PTRACE_OLDSETOPTIONS
  586. case PTRACE_OLDSETOPTIONS:
  587. #endif
  588. case PTRACE_SETOPTIONS:
  589. ret = ptrace_setoptions(child, data);
  590. break;
  591. case PTRACE_GETEVENTMSG:
  592. ret = put_user(child->ptrace_message, datalp);
  593. break;
  594. case PTRACE_GETSIGINFO:
  595. ret = ptrace_getsiginfo(child, &siginfo);
  596. if (!ret)
  597. ret = copy_siginfo_to_user(datavp, &siginfo);
  598. break;
  599. case PTRACE_SETSIGINFO:
  600. if (copy_from_user(&siginfo, datavp, sizeof siginfo))
  601. ret = -EFAULT;
  602. else
  603. ret = ptrace_setsiginfo(child, &siginfo);
  604. break;
  605. case PTRACE_INTERRUPT:
  606. /*
  607. * Stop tracee without any side-effect on signal or job
  608. * control. At least one trap is guaranteed to happen
  609. * after this request. If @child is already trapped, the
  610. * current trap is not disturbed and another trap will
  611. * happen after the current trap is ended with PTRACE_CONT.
  612. *
  613. * The actual trap might not be PTRACE_EVENT_STOP trap but
  614. * the pending condition is cleared regardless.
  615. */
  616. if (unlikely(!seized || !lock_task_sighand(child, &flags)))
  617. break;
  618. /*
  619. * INTERRUPT doesn't disturb existing trap sans one
  620. * exception. If ptracer issued LISTEN for the current
  621. * STOP, this INTERRUPT should clear LISTEN and re-trap
  622. * tracee into STOP.
  623. */
  624. if (likely(task_set_jobctl_pending(child, JOBCTL_TRAP_STOP)))
  625. signal_wake_up(child, child->jobctl & JOBCTL_LISTENING);
  626. unlock_task_sighand(child, &flags);
  627. ret = 0;
  628. break;
  629. case PTRACE_LISTEN:
  630. /*
  631. * Listen for events. Tracee must be in STOP. It's not
  632. * resumed per-se but is not considered to be in TRACED by
  633. * wait(2) or ptrace(2). If an async event (e.g. group
  634. * stop state change) happens, tracee will enter STOP trap
  635. * again. Alternatively, ptracer can issue INTERRUPT to
  636. * finish listening and re-trap tracee into STOP.
  637. */
  638. if (unlikely(!seized || !lock_task_sighand(child, &flags)))
  639. break;
  640. si = child->last_siginfo;
  641. if (unlikely(!si || si->si_code >> 8 != PTRACE_EVENT_STOP))
  642. break;
  643. child->jobctl |= JOBCTL_LISTENING;
  644. /*
  645. * If NOTIFY is set, it means event happened between start
  646. * of this trap and now. Trigger re-trap immediately.
  647. */
  648. if (child->jobctl & JOBCTL_TRAP_NOTIFY)
  649. signal_wake_up(child, true);
  650. unlock_task_sighand(child, &flags);
  651. ret = 0;
  652. break;
  653. case PTRACE_DETACH: /* detach a process that was attached. */
  654. ret = ptrace_detach(child, data);
  655. break;
  656. #ifdef CONFIG_BINFMT_ELF_FDPIC
  657. case PTRACE_GETFDPIC: {
  658. struct mm_struct *mm = get_task_mm(child);
  659. unsigned long tmp = 0;
  660. ret = -ESRCH;
  661. if (!mm)
  662. break;
  663. switch (addr) {
  664. case PTRACE_GETFDPIC_EXEC:
  665. tmp = mm->context.exec_fdpic_loadmap;
  666. break;
  667. case PTRACE_GETFDPIC_INTERP:
  668. tmp = mm->context.interp_fdpic_loadmap;
  669. break;
  670. default:
  671. break;
  672. }
  673. mmput(mm);
  674. ret = put_user(tmp, datalp);
  675. break;
  676. }
  677. #endif
  678. #ifdef PTRACE_SINGLESTEP
  679. case PTRACE_SINGLESTEP:
  680. #endif
  681. #ifdef PTRACE_SINGLEBLOCK
  682. case PTRACE_SINGLEBLOCK:
  683. #endif
  684. #ifdef PTRACE_SYSEMU
  685. case PTRACE_SYSEMU:
  686. case PTRACE_SYSEMU_SINGLESTEP:
  687. #endif
  688. case PTRACE_SYSCALL:
  689. case PTRACE_CONT:
  690. return ptrace_resume(child, request, data);
  691. case PTRACE_KILL:
  692. if (child->exit_state) /* already dead */
  693. return 0;
  694. return ptrace_resume(child, request, SIGKILL);
  695. #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
  696. case PTRACE_GETREGSET:
  697. case PTRACE_SETREGSET:
  698. {
  699. struct iovec kiov;
  700. struct iovec __user *uiov = datavp;
  701. if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
  702. return -EFAULT;
  703. if (__get_user(kiov.iov_base, &uiov->iov_base) ||
  704. __get_user(kiov.iov_len, &uiov->iov_len))
  705. return -EFAULT;
  706. ret = ptrace_regset(child, request, addr, &kiov);
  707. if (!ret)
  708. ret = __put_user(kiov.iov_len, &uiov->iov_len);
  709. break;
  710. }
  711. #endif
  712. default:
  713. break;
  714. }
  715. return ret;
  716. }
  717. static struct task_struct *ptrace_get_task_struct(pid_t pid)
  718. {
  719. struct task_struct *child;
  720. rcu_read_lock();
  721. child = find_task_by_vpid(pid);
  722. if (child)
  723. get_task_struct(child);
  724. rcu_read_unlock();
  725. if (!child)
  726. return ERR_PTR(-ESRCH);
  727. return child;
  728. }
  729. #ifndef arch_ptrace_attach
  730. #define arch_ptrace_attach(child) do { } while (0)
  731. #endif
  732. SYSCALL_DEFINE4(ptrace, long, request, long, pid, unsigned long, addr,
  733. unsigned long, data)
  734. {
  735. struct task_struct *child;
  736. long ret;
  737. if (request == PTRACE_TRACEME) {
  738. ret = ptrace_traceme();
  739. if (!ret)
  740. arch_ptrace_attach(current);
  741. goto out;
  742. }
  743. child = ptrace_get_task_struct(pid);
  744. if (IS_ERR(child)) {
  745. ret = PTR_ERR(child);
  746. goto out;
  747. }
  748. if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
  749. ret = ptrace_attach(child, request, data);
  750. /*
  751. * Some architectures need to do book-keeping after
  752. * a ptrace attach.
  753. */
  754. if (!ret)
  755. arch_ptrace_attach(child);
  756. goto out_put_task_struct;
  757. }
  758. ret = ptrace_check_attach(child, request == PTRACE_KILL ||
  759. request == PTRACE_INTERRUPT);
  760. if (ret < 0)
  761. goto out_put_task_struct;
  762. ret = arch_ptrace(child, request, addr, data);
  763. out_put_task_struct:
  764. put_task_struct(child);
  765. out:
  766. return ret;
  767. }
  768. int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
  769. unsigned long data)
  770. {
  771. unsigned long tmp;
  772. int copied;
  773. copied = access_process_vm(tsk, addr, &tmp, sizeof(tmp), 0);
  774. if (copied != sizeof(tmp))
  775. return -EIO;
  776. return put_user(tmp, (unsigned long __user *)data);
  777. }
  778. int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
  779. unsigned long data)
  780. {
  781. int copied;
  782. copied = access_process_vm(tsk, addr, &data, sizeof(data), 1);
  783. return (copied == sizeof(data)) ? 0 : -EIO;
  784. }
  785. #if defined CONFIG_COMPAT
  786. #include <linux/compat.h>
  787. int compat_ptrace_request(struct task_struct *child, compat_long_t request,
  788. compat_ulong_t addr, compat_ulong_t data)
  789. {
  790. compat_ulong_t __user *datap = compat_ptr(data);
  791. compat_ulong_t word;
  792. siginfo_t siginfo;
  793. int ret;
  794. switch (request) {
  795. case PTRACE_PEEKTEXT:
  796. case PTRACE_PEEKDATA:
  797. ret = access_process_vm(child, addr, &word, sizeof(word), 0);
  798. if (ret != sizeof(word))
  799. ret = -EIO;
  800. else
  801. ret = put_user(word, datap);
  802. break;
  803. case PTRACE_POKETEXT:
  804. case PTRACE_POKEDATA:
  805. ret = access_process_vm(child, addr, &data, sizeof(data), 1);
  806. ret = (ret != sizeof(data) ? -EIO : 0);
  807. break;
  808. case PTRACE_GETEVENTMSG:
  809. ret = put_user((compat_ulong_t) child->ptrace_message, datap);
  810. break;
  811. case PTRACE_GETSIGINFO:
  812. ret = ptrace_getsiginfo(child, &siginfo);
  813. if (!ret)
  814. ret = copy_siginfo_to_user32(
  815. (struct compat_siginfo __user *) datap,
  816. &siginfo);
  817. break;
  818. case PTRACE_SETSIGINFO:
  819. memset(&siginfo, 0, sizeof siginfo);
  820. if (copy_siginfo_from_user32(
  821. &siginfo, (struct compat_siginfo __user *) datap))
  822. ret = -EFAULT;
  823. else
  824. ret = ptrace_setsiginfo(child, &siginfo);
  825. break;
  826. #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
  827. case PTRACE_GETREGSET:
  828. case PTRACE_SETREGSET:
  829. {
  830. struct iovec kiov;
  831. struct compat_iovec __user *uiov =
  832. (struct compat_iovec __user *) datap;
  833. compat_uptr_t ptr;
  834. compat_size_t len;
  835. if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
  836. return -EFAULT;
  837. if (__get_user(ptr, &uiov->iov_base) ||
  838. __get_user(len, &uiov->iov_len))
  839. return -EFAULT;
  840. kiov.iov_base = compat_ptr(ptr);
  841. kiov.iov_len = len;
  842. ret = ptrace_regset(child, request, addr, &kiov);
  843. if (!ret)
  844. ret = __put_user(kiov.iov_len, &uiov->iov_len);
  845. break;
  846. }
  847. #endif
  848. default:
  849. ret = ptrace_request(child, request, addr, data);
  850. }
  851. return ret;
  852. }
  853. asmlinkage long compat_sys_ptrace(compat_long_t request, compat_long_t pid,
  854. compat_long_t addr, compat_long_t data)
  855. {
  856. struct task_struct *child;
  857. long ret;
  858. if (request == PTRACE_TRACEME) {
  859. ret = ptrace_traceme();
  860. goto out;
  861. }
  862. child = ptrace_get_task_struct(pid);
  863. if (IS_ERR(child)) {
  864. ret = PTR_ERR(child);
  865. goto out;
  866. }
  867. if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
  868. ret = ptrace_attach(child, request, data);
  869. /*
  870. * Some architectures need to do book-keeping after
  871. * a ptrace attach.
  872. */
  873. if (!ret)
  874. arch_ptrace_attach(child);
  875. goto out_put_task_struct;
  876. }
  877. ret = ptrace_check_attach(child, request == PTRACE_KILL ||
  878. request == PTRACE_INTERRUPT);
  879. if (!ret)
  880. ret = compat_arch_ptrace(child, request, addr, data);
  881. out_put_task_struct:
  882. put_task_struct(child);
  883. out:
  884. return ret;
  885. }
  886. #endif /* CONFIG_COMPAT */
  887. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  888. int ptrace_get_breakpoints(struct task_struct *tsk)
  889. {
  890. if (atomic_inc_not_zero(&tsk->ptrace_bp_refcnt))
  891. return 0;
  892. return -1;
  893. }
  894. void ptrace_put_breakpoints(struct task_struct *tsk)
  895. {
  896. if (atomic_dec_and_test(&tsk->ptrace_bp_refcnt))
  897. flush_ptrace_hw_breakpoint(tsk);
  898. }
  899. #endif /* CONFIG_HAVE_HW_BREAKPOINT */