skge.c 88 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License, or
  15. * (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/config.h>
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/moduleparam.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/pci.h>
  34. #include <linux/if_vlan.h>
  35. #include <linux/ip.h>
  36. #include <linux/delay.h>
  37. #include <linux/crc32.h>
  38. #include <linux/dma-mapping.h>
  39. #include <asm/irq.h>
  40. #include "skge.h"
  41. #define DRV_NAME "skge"
  42. #define DRV_VERSION "0.6"
  43. #define PFX DRV_NAME " "
  44. #define DEFAULT_TX_RING_SIZE 128
  45. #define DEFAULT_RX_RING_SIZE 512
  46. #define MAX_TX_RING_SIZE 1024
  47. #define MAX_RX_RING_SIZE 4096
  48. #define PHY_RETRIES 1000
  49. #define ETH_JUMBO_MTU 9000
  50. #define TX_WATCHDOG (5 * HZ)
  51. #define NAPI_WEIGHT 64
  52. #define BLINK_HZ (HZ/4)
  53. #define LINK_POLL_HZ (HZ/10)
  54. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  55. MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
  56. MODULE_LICENSE("GPL");
  57. MODULE_VERSION(DRV_VERSION);
  58. static const u32 default_msg
  59. = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
  60. | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
  61. static int debug = -1; /* defaults above */
  62. module_param(debug, int, 0);
  63. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  64. static const struct pci_device_id skge_id_table[] = {
  65. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  66. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  67. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  68. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  69. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x9E00) }, /* SK-9Exx */
  70. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
  71. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  72. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  73. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  74. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1032) },
  75. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  76. { 0 }
  77. };
  78. MODULE_DEVICE_TABLE(pci, skge_id_table);
  79. static int skge_up(struct net_device *dev);
  80. static int skge_down(struct net_device *dev);
  81. static void skge_tx_clean(struct skge_port *skge);
  82. static void xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  83. static void gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  84. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  85. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  86. static void yukon_init(struct skge_hw *hw, int port);
  87. static void yukon_reset(struct skge_hw *hw, int port);
  88. static void genesis_mac_init(struct skge_hw *hw, int port);
  89. static void genesis_reset(struct skge_hw *hw, int port);
  90. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  91. static const int rxqaddr[] = { Q_R1, Q_R2 };
  92. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  93. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  94. /* Don't need to look at whole 16K.
  95. * last interesting register is descriptor poll timer.
  96. */
  97. #define SKGE_REGS_LEN (29*128)
  98. static int skge_get_regs_len(struct net_device *dev)
  99. {
  100. return SKGE_REGS_LEN;
  101. }
  102. /*
  103. * Returns copy of control register region
  104. * I/O region is divided into banks and certain regions are unreadable
  105. */
  106. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  107. void *p)
  108. {
  109. const struct skge_port *skge = netdev_priv(dev);
  110. unsigned long offs;
  111. const void __iomem *io = skge->hw->regs;
  112. static const unsigned long bankmap
  113. = (1<<0) | (1<<2) | (1<<8) | (1<<9)
  114. | (1<<12) | (1<<13) | (1<<14) | (1<<15) | (1<<16)
  115. | (1<<17) | (1<<20) | (1<<21) | (1<<22) | (1<<23)
  116. | (1<<24) | (1<<25) | (1<<26) | (1<<27) | (1<<28);
  117. regs->version = 1;
  118. for (offs = 0; offs < regs->len; offs += 128) {
  119. u32 len = min_t(u32, 128, regs->len - offs);
  120. if (bankmap & (1<<(offs/128)))
  121. memcpy_fromio(p + offs, io + offs, len);
  122. else
  123. memset(p + offs, 0, len);
  124. }
  125. }
  126. /* Wake on Lan only supported on Yukon chps with rev 1 or above */
  127. static int wol_supported(const struct skge_hw *hw)
  128. {
  129. return !((hw->chip_id == CHIP_ID_GENESIS ||
  130. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
  131. }
  132. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  133. {
  134. struct skge_port *skge = netdev_priv(dev);
  135. wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
  136. wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
  137. }
  138. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  139. {
  140. struct skge_port *skge = netdev_priv(dev);
  141. struct skge_hw *hw = skge->hw;
  142. if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
  143. return -EOPNOTSUPP;
  144. if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
  145. return -EOPNOTSUPP;
  146. skge->wol = wol->wolopts == WAKE_MAGIC;
  147. if (skge->wol) {
  148. memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
  149. skge_write16(hw, WOL_CTRL_STAT,
  150. WOL_CTL_ENA_PME_ON_MAGIC_PKT |
  151. WOL_CTL_ENA_MAGIC_PKT_UNIT);
  152. } else
  153. skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
  154. return 0;
  155. }
  156. static int skge_get_settings(struct net_device *dev,
  157. struct ethtool_cmd *ecmd)
  158. {
  159. struct skge_port *skge = netdev_priv(dev);
  160. struct skge_hw *hw = skge->hw;
  161. ecmd->transceiver = XCVR_INTERNAL;
  162. if (iscopper(hw)) {
  163. if (hw->chip_id == CHIP_ID_GENESIS)
  164. ecmd->supported = SUPPORTED_1000baseT_Full
  165. | SUPPORTED_1000baseT_Half
  166. | SUPPORTED_Autoneg | SUPPORTED_TP;
  167. else {
  168. ecmd->supported = SUPPORTED_10baseT_Half
  169. | SUPPORTED_10baseT_Full
  170. | SUPPORTED_100baseT_Half
  171. | SUPPORTED_100baseT_Full
  172. | SUPPORTED_1000baseT_Half
  173. | SUPPORTED_1000baseT_Full
  174. | SUPPORTED_Autoneg| SUPPORTED_TP;
  175. if (hw->chip_id == CHIP_ID_YUKON)
  176. ecmd->supported &= ~SUPPORTED_1000baseT_Half;
  177. else if (hw->chip_id == CHIP_ID_YUKON_FE)
  178. ecmd->supported &= ~(SUPPORTED_1000baseT_Half
  179. | SUPPORTED_1000baseT_Full);
  180. }
  181. ecmd->port = PORT_TP;
  182. ecmd->phy_address = hw->phy_addr;
  183. } else {
  184. ecmd->supported = SUPPORTED_1000baseT_Full
  185. | SUPPORTED_FIBRE
  186. | SUPPORTED_Autoneg;
  187. ecmd->port = PORT_FIBRE;
  188. }
  189. ecmd->advertising = skge->advertising;
  190. ecmd->autoneg = skge->autoneg;
  191. ecmd->speed = skge->speed;
  192. ecmd->duplex = skge->duplex;
  193. return 0;
  194. }
  195. static u32 skge_modes(const struct skge_hw *hw)
  196. {
  197. u32 modes = ADVERTISED_Autoneg
  198. | ADVERTISED_1000baseT_Full | ADVERTISED_1000baseT_Half
  199. | ADVERTISED_100baseT_Full | ADVERTISED_100baseT_Half
  200. | ADVERTISED_10baseT_Full | ADVERTISED_10baseT_Half;
  201. if (iscopper(hw)) {
  202. modes |= ADVERTISED_TP;
  203. switch (hw->chip_id) {
  204. case CHIP_ID_GENESIS:
  205. modes &= ~(ADVERTISED_100baseT_Full
  206. | ADVERTISED_100baseT_Half
  207. | ADVERTISED_10baseT_Full
  208. | ADVERTISED_10baseT_Half);
  209. break;
  210. case CHIP_ID_YUKON:
  211. modes &= ~ADVERTISED_1000baseT_Half;
  212. break;
  213. case CHIP_ID_YUKON_FE:
  214. modes &= ~(ADVERTISED_1000baseT_Half|ADVERTISED_1000baseT_Full);
  215. break;
  216. }
  217. } else {
  218. modes |= ADVERTISED_FIBRE;
  219. modes &= ~ADVERTISED_1000baseT_Half;
  220. }
  221. return modes;
  222. }
  223. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  224. {
  225. struct skge_port *skge = netdev_priv(dev);
  226. const struct skge_hw *hw = skge->hw;
  227. if (ecmd->autoneg == AUTONEG_ENABLE) {
  228. if (ecmd->advertising & skge_modes(hw))
  229. return -EINVAL;
  230. } else {
  231. switch (ecmd->speed) {
  232. case SPEED_1000:
  233. if (hw->chip_id == CHIP_ID_YUKON_FE)
  234. return -EINVAL;
  235. break;
  236. case SPEED_100:
  237. case SPEED_10:
  238. if (iscopper(hw) || hw->chip_id == CHIP_ID_GENESIS)
  239. return -EINVAL;
  240. break;
  241. default:
  242. return -EINVAL;
  243. }
  244. }
  245. skge->autoneg = ecmd->autoneg;
  246. skge->speed = ecmd->speed;
  247. skge->duplex = ecmd->duplex;
  248. skge->advertising = ecmd->advertising;
  249. if (netif_running(dev)) {
  250. skge_down(dev);
  251. skge_up(dev);
  252. }
  253. return (0);
  254. }
  255. static void skge_get_drvinfo(struct net_device *dev,
  256. struct ethtool_drvinfo *info)
  257. {
  258. struct skge_port *skge = netdev_priv(dev);
  259. strcpy(info->driver, DRV_NAME);
  260. strcpy(info->version, DRV_VERSION);
  261. strcpy(info->fw_version, "N/A");
  262. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  263. }
  264. static const struct skge_stat {
  265. char name[ETH_GSTRING_LEN];
  266. u16 xmac_offset;
  267. u16 gma_offset;
  268. } skge_stats[] = {
  269. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  270. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  271. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  272. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  273. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  274. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  275. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  276. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  277. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  278. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  279. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  280. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  281. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  282. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  283. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  284. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  285. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  286. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  287. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  288. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  289. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  290. };
  291. static int skge_get_stats_count(struct net_device *dev)
  292. {
  293. return ARRAY_SIZE(skge_stats);
  294. }
  295. static void skge_get_ethtool_stats(struct net_device *dev,
  296. struct ethtool_stats *stats, u64 *data)
  297. {
  298. struct skge_port *skge = netdev_priv(dev);
  299. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  300. genesis_get_stats(skge, data);
  301. else
  302. yukon_get_stats(skge, data);
  303. }
  304. /* Use hardware MIB variables for critical path statistics and
  305. * transmit feedback not reported at interrupt.
  306. * Other errors are accounted for in interrupt handler.
  307. */
  308. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  309. {
  310. struct skge_port *skge = netdev_priv(dev);
  311. u64 data[ARRAY_SIZE(skge_stats)];
  312. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  313. genesis_get_stats(skge, data);
  314. else
  315. yukon_get_stats(skge, data);
  316. skge->net_stats.tx_bytes = data[0];
  317. skge->net_stats.rx_bytes = data[1];
  318. skge->net_stats.tx_packets = data[2] + data[4] + data[6];
  319. skge->net_stats.rx_packets = data[3] + data[5] + data[7];
  320. skge->net_stats.multicast = data[5] + data[7];
  321. skge->net_stats.collisions = data[10];
  322. skge->net_stats.tx_aborted_errors = data[12];
  323. return &skge->net_stats;
  324. }
  325. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  326. {
  327. int i;
  328. switch (stringset) {
  329. case ETH_SS_STATS:
  330. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  331. memcpy(data + i * ETH_GSTRING_LEN,
  332. skge_stats[i].name, ETH_GSTRING_LEN);
  333. break;
  334. }
  335. }
  336. static void skge_get_ring_param(struct net_device *dev,
  337. struct ethtool_ringparam *p)
  338. {
  339. struct skge_port *skge = netdev_priv(dev);
  340. p->rx_max_pending = MAX_RX_RING_SIZE;
  341. p->tx_max_pending = MAX_TX_RING_SIZE;
  342. p->rx_mini_max_pending = 0;
  343. p->rx_jumbo_max_pending = 0;
  344. p->rx_pending = skge->rx_ring.count;
  345. p->tx_pending = skge->tx_ring.count;
  346. p->rx_mini_pending = 0;
  347. p->rx_jumbo_pending = 0;
  348. }
  349. static int skge_set_ring_param(struct net_device *dev,
  350. struct ethtool_ringparam *p)
  351. {
  352. struct skge_port *skge = netdev_priv(dev);
  353. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  354. p->tx_pending == 0 || p->tx_pending > MAX_TX_RING_SIZE)
  355. return -EINVAL;
  356. skge->rx_ring.count = p->rx_pending;
  357. skge->tx_ring.count = p->tx_pending;
  358. if (netif_running(dev)) {
  359. skge_down(dev);
  360. skge_up(dev);
  361. }
  362. return 0;
  363. }
  364. static u32 skge_get_msglevel(struct net_device *netdev)
  365. {
  366. struct skge_port *skge = netdev_priv(netdev);
  367. return skge->msg_enable;
  368. }
  369. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  370. {
  371. struct skge_port *skge = netdev_priv(netdev);
  372. skge->msg_enable = value;
  373. }
  374. static int skge_nway_reset(struct net_device *dev)
  375. {
  376. struct skge_port *skge = netdev_priv(dev);
  377. struct skge_hw *hw = skge->hw;
  378. int port = skge->port;
  379. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  380. return -EINVAL;
  381. spin_lock_bh(&hw->phy_lock);
  382. if (hw->chip_id == CHIP_ID_GENESIS) {
  383. genesis_reset(hw, port);
  384. genesis_mac_init(hw, port);
  385. } else {
  386. yukon_reset(hw, port);
  387. yukon_init(hw, port);
  388. }
  389. spin_unlock_bh(&hw->phy_lock);
  390. return 0;
  391. }
  392. static int skge_set_sg(struct net_device *dev, u32 data)
  393. {
  394. struct skge_port *skge = netdev_priv(dev);
  395. struct skge_hw *hw = skge->hw;
  396. if (hw->chip_id == CHIP_ID_GENESIS && data)
  397. return -EOPNOTSUPP;
  398. return ethtool_op_set_sg(dev, data);
  399. }
  400. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  401. {
  402. struct skge_port *skge = netdev_priv(dev);
  403. struct skge_hw *hw = skge->hw;
  404. if (hw->chip_id == CHIP_ID_GENESIS && data)
  405. return -EOPNOTSUPP;
  406. return ethtool_op_set_tx_csum(dev, data);
  407. }
  408. static u32 skge_get_rx_csum(struct net_device *dev)
  409. {
  410. struct skge_port *skge = netdev_priv(dev);
  411. return skge->rx_csum;
  412. }
  413. /* Only Yukon supports checksum offload. */
  414. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  415. {
  416. struct skge_port *skge = netdev_priv(dev);
  417. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  418. return -EOPNOTSUPP;
  419. skge->rx_csum = data;
  420. return 0;
  421. }
  422. /* Only Yukon II supports TSO (not implemented yet) */
  423. static int skge_set_tso(struct net_device *dev, u32 data)
  424. {
  425. if (data)
  426. return -EOPNOTSUPP;
  427. return 0;
  428. }
  429. static void skge_get_pauseparam(struct net_device *dev,
  430. struct ethtool_pauseparam *ecmd)
  431. {
  432. struct skge_port *skge = netdev_priv(dev);
  433. ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
  434. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  435. ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
  436. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  437. ecmd->autoneg = skge->autoneg;
  438. }
  439. static int skge_set_pauseparam(struct net_device *dev,
  440. struct ethtool_pauseparam *ecmd)
  441. {
  442. struct skge_port *skge = netdev_priv(dev);
  443. skge->autoneg = ecmd->autoneg;
  444. if (ecmd->rx_pause && ecmd->tx_pause)
  445. skge->flow_control = FLOW_MODE_SYMMETRIC;
  446. else if (ecmd->rx_pause && !ecmd->tx_pause)
  447. skge->flow_control = FLOW_MODE_REM_SEND;
  448. else if (!ecmd->rx_pause && ecmd->tx_pause)
  449. skge->flow_control = FLOW_MODE_LOC_SEND;
  450. else
  451. skge->flow_control = FLOW_MODE_NONE;
  452. if (netif_running(dev)) {
  453. skge_down(dev);
  454. skge_up(dev);
  455. }
  456. return 0;
  457. }
  458. /* Chip internal frequency for clock calculations */
  459. static inline u32 hwkhz(const struct skge_hw *hw)
  460. {
  461. if (hw->chip_id == CHIP_ID_GENESIS)
  462. return 53215; /* or: 53.125 MHz */
  463. else if (hw->chip_id == CHIP_ID_YUKON_EC)
  464. return 125000; /* or: 125.000 MHz */
  465. else
  466. return 78215; /* or: 78.125 MHz */
  467. }
  468. /* Chip hz to microseconds */
  469. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  470. {
  471. return (ticks * 1000) / hwkhz(hw);
  472. }
  473. /* Microseconds to chip hz */
  474. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  475. {
  476. return hwkhz(hw) * usec / 1000;
  477. }
  478. static int skge_get_coalesce(struct net_device *dev,
  479. struct ethtool_coalesce *ecmd)
  480. {
  481. struct skge_port *skge = netdev_priv(dev);
  482. struct skge_hw *hw = skge->hw;
  483. int port = skge->port;
  484. ecmd->rx_coalesce_usecs = 0;
  485. ecmd->tx_coalesce_usecs = 0;
  486. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  487. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  488. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  489. if (msk & rxirqmask[port])
  490. ecmd->rx_coalesce_usecs = delay;
  491. if (msk & txirqmask[port])
  492. ecmd->tx_coalesce_usecs = delay;
  493. }
  494. return 0;
  495. }
  496. /* Note: interrupt timer is per board, but can turn on/off per port */
  497. static int skge_set_coalesce(struct net_device *dev,
  498. struct ethtool_coalesce *ecmd)
  499. {
  500. struct skge_port *skge = netdev_priv(dev);
  501. struct skge_hw *hw = skge->hw;
  502. int port = skge->port;
  503. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  504. u32 delay = 25;
  505. if (ecmd->rx_coalesce_usecs == 0)
  506. msk &= ~rxirqmask[port];
  507. else if (ecmd->rx_coalesce_usecs < 25 ||
  508. ecmd->rx_coalesce_usecs > 33333)
  509. return -EINVAL;
  510. else {
  511. msk |= rxirqmask[port];
  512. delay = ecmd->rx_coalesce_usecs;
  513. }
  514. if (ecmd->tx_coalesce_usecs == 0)
  515. msk &= ~txirqmask[port];
  516. else if (ecmd->tx_coalesce_usecs < 25 ||
  517. ecmd->tx_coalesce_usecs > 33333)
  518. return -EINVAL;
  519. else {
  520. msk |= txirqmask[port];
  521. delay = min(delay, ecmd->rx_coalesce_usecs);
  522. }
  523. skge_write32(hw, B2_IRQM_MSK, msk);
  524. if (msk == 0)
  525. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  526. else {
  527. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  528. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  529. }
  530. return 0;
  531. }
  532. static void skge_led_on(struct skge_hw *hw, int port)
  533. {
  534. if (hw->chip_id == CHIP_ID_GENESIS) {
  535. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  536. skge_write8(hw, B0_LED, LED_STAT_ON);
  537. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  538. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  539. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  540. switch (hw->phy_type) {
  541. case SK_PHY_BCOM:
  542. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL,
  543. PHY_B_PEC_LED_ON);
  544. break;
  545. case SK_PHY_LONE:
  546. xm_phy_write(hw, port, PHY_LONE_LED_CFG,
  547. 0x0800);
  548. break;
  549. default:
  550. skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
  551. skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
  552. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  553. }
  554. } else {
  555. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  556. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  557. PHY_M_LED_MO_DUP(MO_LED_ON) |
  558. PHY_M_LED_MO_10(MO_LED_ON) |
  559. PHY_M_LED_MO_100(MO_LED_ON) |
  560. PHY_M_LED_MO_1000(MO_LED_ON) |
  561. PHY_M_LED_MO_RX(MO_LED_ON));
  562. }
  563. }
  564. static void skge_led_off(struct skge_hw *hw, int port)
  565. {
  566. if (hw->chip_id == CHIP_ID_GENESIS) {
  567. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  568. skge_write8(hw, B0_LED, LED_STAT_OFF);
  569. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  570. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  571. switch (hw->phy_type) {
  572. case SK_PHY_BCOM:
  573. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL,
  574. PHY_B_PEC_LED_OFF);
  575. break;
  576. case SK_PHY_LONE:
  577. xm_phy_write(hw, port, PHY_LONE_LED_CFG,
  578. PHY_L_LC_LEDT);
  579. break;
  580. default:
  581. skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
  582. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
  583. }
  584. } else {
  585. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  586. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  587. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  588. PHY_M_LED_MO_10(MO_LED_OFF) |
  589. PHY_M_LED_MO_100(MO_LED_OFF) |
  590. PHY_M_LED_MO_1000(MO_LED_OFF) |
  591. PHY_M_LED_MO_RX(MO_LED_OFF));
  592. }
  593. }
  594. static void skge_blink_timer(unsigned long data)
  595. {
  596. struct skge_port *skge = (struct skge_port *) data;
  597. struct skge_hw *hw = skge->hw;
  598. unsigned long flags;
  599. spin_lock_irqsave(&hw->phy_lock, flags);
  600. if (skge->blink_on)
  601. skge_led_on(hw, skge->port);
  602. else
  603. skge_led_off(hw, skge->port);
  604. spin_unlock_irqrestore(&hw->phy_lock, flags);
  605. skge->blink_on = !skge->blink_on;
  606. mod_timer(&skge->led_blink, jiffies + BLINK_HZ);
  607. }
  608. /* blink LED's for finding board */
  609. static int skge_phys_id(struct net_device *dev, u32 data)
  610. {
  611. struct skge_port *skge = netdev_priv(dev);
  612. if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  613. data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
  614. /* start blinking */
  615. skge->blink_on = 1;
  616. mod_timer(&skge->led_blink, jiffies+1);
  617. msleep_interruptible(data * 1000);
  618. del_timer_sync(&skge->led_blink);
  619. skge_led_off(skge->hw, skge->port);
  620. return 0;
  621. }
  622. static struct ethtool_ops skge_ethtool_ops = {
  623. .get_settings = skge_get_settings,
  624. .set_settings = skge_set_settings,
  625. .get_drvinfo = skge_get_drvinfo,
  626. .get_regs_len = skge_get_regs_len,
  627. .get_regs = skge_get_regs,
  628. .get_wol = skge_get_wol,
  629. .set_wol = skge_set_wol,
  630. .get_msglevel = skge_get_msglevel,
  631. .set_msglevel = skge_set_msglevel,
  632. .nway_reset = skge_nway_reset,
  633. .get_link = ethtool_op_get_link,
  634. .get_ringparam = skge_get_ring_param,
  635. .set_ringparam = skge_set_ring_param,
  636. .get_pauseparam = skge_get_pauseparam,
  637. .set_pauseparam = skge_set_pauseparam,
  638. .get_coalesce = skge_get_coalesce,
  639. .set_coalesce = skge_set_coalesce,
  640. .get_tso = ethtool_op_get_tso,
  641. .set_tso = skge_set_tso,
  642. .get_sg = ethtool_op_get_sg,
  643. .set_sg = skge_set_sg,
  644. .get_tx_csum = ethtool_op_get_tx_csum,
  645. .set_tx_csum = skge_set_tx_csum,
  646. .get_rx_csum = skge_get_rx_csum,
  647. .set_rx_csum = skge_set_rx_csum,
  648. .get_strings = skge_get_strings,
  649. .phys_id = skge_phys_id,
  650. .get_stats_count = skge_get_stats_count,
  651. .get_ethtool_stats = skge_get_ethtool_stats,
  652. };
  653. /*
  654. * Allocate ring elements and chain them together
  655. * One-to-one association of board descriptors with ring elements
  656. */
  657. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u64 base)
  658. {
  659. struct skge_tx_desc *d;
  660. struct skge_element *e;
  661. int i;
  662. ring->start = kmalloc(sizeof(*e)*ring->count, GFP_KERNEL);
  663. if (!ring->start)
  664. return -ENOMEM;
  665. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  666. e->desc = d;
  667. if (i == ring->count - 1) {
  668. e->next = ring->start;
  669. d->next_offset = base;
  670. } else {
  671. e->next = e + 1;
  672. d->next_offset = base + (i+1) * sizeof(*d);
  673. }
  674. }
  675. ring->to_use = ring->to_clean = ring->start;
  676. return 0;
  677. }
  678. /* Setup buffer for receiving */
  679. static inline int skge_rx_alloc(struct skge_port *skge,
  680. struct skge_element *e)
  681. {
  682. unsigned long bufsize = skge->netdev->mtu + ETH_HLEN; /* VLAN? */
  683. struct skge_rx_desc *rd = e->desc;
  684. struct sk_buff *skb;
  685. u64 map;
  686. skb = dev_alloc_skb(bufsize + NET_IP_ALIGN);
  687. if (unlikely(!skb)) {
  688. printk(KERN_DEBUG PFX "%s: out of memory for receive\n",
  689. skge->netdev->name);
  690. return -ENOMEM;
  691. }
  692. skb->dev = skge->netdev;
  693. skb_reserve(skb, NET_IP_ALIGN);
  694. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  695. PCI_DMA_FROMDEVICE);
  696. rd->dma_lo = map;
  697. rd->dma_hi = map >> 32;
  698. e->skb = skb;
  699. rd->csum1_start = ETH_HLEN;
  700. rd->csum2_start = ETH_HLEN;
  701. rd->csum1 = 0;
  702. rd->csum2 = 0;
  703. wmb();
  704. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  705. pci_unmap_addr_set(e, mapaddr, map);
  706. pci_unmap_len_set(e, maplen, bufsize);
  707. return 0;
  708. }
  709. /* Free all unused buffers in receive ring, assumes receiver stopped */
  710. static void skge_rx_clean(struct skge_port *skge)
  711. {
  712. struct skge_hw *hw = skge->hw;
  713. struct skge_ring *ring = &skge->rx_ring;
  714. struct skge_element *e;
  715. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  716. struct skge_rx_desc *rd = e->desc;
  717. rd->control = 0;
  718. pci_unmap_single(hw->pdev,
  719. pci_unmap_addr(e, mapaddr),
  720. pci_unmap_len(e, maplen),
  721. PCI_DMA_FROMDEVICE);
  722. dev_kfree_skb(e->skb);
  723. e->skb = NULL;
  724. }
  725. ring->to_clean = e;
  726. }
  727. /* Allocate buffers for receive ring
  728. * For receive: to_use is refill location
  729. * to_clean is next received frame.
  730. *
  731. * if (to_use == to_clean)
  732. * then ring all frames in ring need buffers
  733. * if (to_use->next == to_clean)
  734. * then ring all frames in ring have buffers
  735. */
  736. static int skge_rx_fill(struct skge_port *skge)
  737. {
  738. struct skge_ring *ring = &skge->rx_ring;
  739. struct skge_element *e;
  740. int ret = 0;
  741. for (e = ring->to_use; e->next != ring->to_clean; e = e->next) {
  742. if (skge_rx_alloc(skge, e)) {
  743. ret = 1;
  744. break;
  745. }
  746. }
  747. ring->to_use = e;
  748. return ret;
  749. }
  750. static void skge_link_up(struct skge_port *skge)
  751. {
  752. netif_carrier_on(skge->netdev);
  753. if (skge->tx_avail > MAX_SKB_FRAGS + 1)
  754. netif_wake_queue(skge->netdev);
  755. if (netif_msg_link(skge))
  756. printk(KERN_INFO PFX
  757. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  758. skge->netdev->name, skge->speed,
  759. skge->duplex == DUPLEX_FULL ? "full" : "half",
  760. (skge->flow_control == FLOW_MODE_NONE) ? "none" :
  761. (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
  762. (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
  763. (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
  764. "unknown");
  765. }
  766. static void skge_link_down(struct skge_port *skge)
  767. {
  768. netif_carrier_off(skge->netdev);
  769. netif_stop_queue(skge->netdev);
  770. if (netif_msg_link(skge))
  771. printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
  772. }
  773. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  774. {
  775. int i;
  776. u16 v;
  777. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  778. v = xm_read16(hw, port, XM_PHY_DATA);
  779. if (hw->phy_type != SK_PHY_XMAC) {
  780. for (i = 0; i < PHY_RETRIES; i++) {
  781. udelay(1);
  782. if (xm_read16(hw, port, XM_MMU_CMD)
  783. & XM_MMU_PHY_RDY)
  784. goto ready;
  785. }
  786. printk(KERN_WARNING PFX "%s: phy read timed out\n",
  787. hw->dev[port]->name);
  788. return 0;
  789. ready:
  790. v = xm_read16(hw, port, XM_PHY_DATA);
  791. }
  792. return v;
  793. }
  794. static void xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  795. {
  796. int i;
  797. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  798. for (i = 0; i < PHY_RETRIES; i++) {
  799. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  800. goto ready;
  801. cpu_relax();
  802. }
  803. printk(KERN_WARNING PFX "%s: phy write failed to come ready\n",
  804. hw->dev[port]->name);
  805. ready:
  806. xm_write16(hw, port, XM_PHY_DATA, val);
  807. for (i = 0; i < PHY_RETRIES; i++) {
  808. udelay(1);
  809. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  810. return;
  811. }
  812. printk(KERN_WARNING PFX "%s: phy write timed out\n",
  813. hw->dev[port]->name);
  814. }
  815. static void genesis_init(struct skge_hw *hw)
  816. {
  817. /* set blink source counter */
  818. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  819. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  820. /* configure mac arbiter */
  821. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  822. /* configure mac arbiter timeout values */
  823. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  824. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  825. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  826. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  827. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  828. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  829. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  830. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  831. /* configure packet arbiter timeout */
  832. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  833. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  834. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  835. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  836. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  837. }
  838. static void genesis_reset(struct skge_hw *hw, int port)
  839. {
  840. int i;
  841. u64 zero = 0;
  842. /* reset the statistics module */
  843. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  844. xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
  845. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  846. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  847. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  848. /* disable all PHY IRQs */
  849. if (hw->phy_type == SK_PHY_BCOM)
  850. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  851. xm_outhash(hw, port, XM_HSM, (u8 *) &zero);
  852. for (i = 0; i < 15; i++)
  853. xm_outaddr(hw, port, XM_EXM(i), (u8 *) &zero);
  854. xm_outhash(hw, port, XM_SRC_CHK, (u8 *) &zero);
  855. }
  856. static void genesis_mac_init(struct skge_hw *hw, int port)
  857. {
  858. struct skge_port *skge = netdev_priv(hw->dev[port]);
  859. int i;
  860. u32 r;
  861. u16 id1;
  862. u16 ctrl1, ctrl2, ctrl3, ctrl4, ctrl5;
  863. /* magic workaround patterns for Broadcom */
  864. static const struct {
  865. u16 reg;
  866. u16 val;
  867. } A1hack[] = {
  868. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  869. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  870. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  871. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  872. }, C0hack[] = {
  873. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  874. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  875. };
  876. /* initialize Rx, Tx and Link LED */
  877. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  878. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  879. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  880. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  881. /* Unreset the XMAC. */
  882. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  883. /*
  884. * Perform additional initialization for external PHYs,
  885. * namely for the 1000baseTX cards that use the XMAC's
  886. * GMII mode.
  887. */
  888. spin_lock_bh(&hw->phy_lock);
  889. if (hw->phy_type != SK_PHY_XMAC) {
  890. /* Take PHY out of reset. */
  891. r = skge_read32(hw, B2_GP_IO);
  892. if (port == 0)
  893. r |= GP_DIR_0|GP_IO_0;
  894. else
  895. r |= GP_DIR_2|GP_IO_2;
  896. skge_write32(hw, B2_GP_IO, r);
  897. skge_read32(hw, B2_GP_IO);
  898. /* Enable GMII mode on the XMAC. */
  899. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  900. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  901. /* Optimize MDIO transfer by suppressing preamble. */
  902. xm_write16(hw, port, XM_MMU_CMD,
  903. xm_read16(hw, port, XM_MMU_CMD)
  904. | XM_MMU_NO_PRE);
  905. if (id1 == PHY_BCOM_ID1_C0) {
  906. /*
  907. * Workaround BCOM Errata for the C0 type.
  908. * Write magic patterns to reserved registers.
  909. */
  910. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  911. xm_phy_write(hw, port,
  912. C0hack[i].reg, C0hack[i].val);
  913. } else if (id1 == PHY_BCOM_ID1_A1) {
  914. /*
  915. * Workaround BCOM Errata for the A1 type.
  916. * Write magic patterns to reserved registers.
  917. */
  918. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  919. xm_phy_write(hw, port,
  920. A1hack[i].reg, A1hack[i].val);
  921. }
  922. /*
  923. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  924. * Disable Power Management after reset.
  925. */
  926. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  927. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r | PHY_B_AC_DIS_PM);
  928. }
  929. /* Dummy read */
  930. xm_read16(hw, port, XM_ISRC);
  931. r = xm_read32(hw, port, XM_MODE);
  932. xm_write32(hw, port, XM_MODE, r|XM_MD_CSA);
  933. /* We don't need the FCS appended to the packet. */
  934. r = xm_read16(hw, port, XM_RX_CMD);
  935. xm_write16(hw, port, XM_RX_CMD, r | XM_RX_STRIP_FCS);
  936. /* We want short frames padded to 60 bytes. */
  937. r = xm_read16(hw, port, XM_TX_CMD);
  938. xm_write16(hw, port, XM_TX_CMD, r | XM_TX_AUTO_PAD);
  939. /*
  940. * Enable the reception of all error frames. This is is
  941. * a necessary evil due to the design of the XMAC. The
  942. * XMAC's receive FIFO is only 8K in size, however jumbo
  943. * frames can be up to 9000 bytes in length. When bad
  944. * frame filtering is enabled, the XMAC's RX FIFO operates
  945. * in 'store and forward' mode. For this to work, the
  946. * entire frame has to fit into the FIFO, but that means
  947. * that jumbo frames larger than 8192 bytes will be
  948. * truncated. Disabling all bad frame filtering causes
  949. * the RX FIFO to operate in streaming mode, in which
  950. * case the XMAC will start transfering frames out of the
  951. * RX FIFO as soon as the FIFO threshold is reached.
  952. */
  953. r = xm_read32(hw, port, XM_MODE);
  954. xm_write32(hw, port, XM_MODE,
  955. XM_MD_RX_CRCE|XM_MD_RX_LONG|XM_MD_RX_RUNT|
  956. XM_MD_RX_ERR|XM_MD_RX_IRLE);
  957. xm_outaddr(hw, port, XM_SA, hw->dev[port]->dev_addr);
  958. xm_outaddr(hw, port, XM_EXM(0), hw->dev[port]->dev_addr);
  959. /*
  960. * Bump up the transmit threshold. This helps hold off transmit
  961. * underruns when we're blasting traffic from both ports at once.
  962. */
  963. xm_write16(hw, port, XM_TX_THR, 512);
  964. /* Configure MAC arbiter */
  965. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  966. /* configure timeout values */
  967. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  968. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  969. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  970. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  971. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  972. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  973. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  974. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  975. /* Configure Rx MAC FIFO */
  976. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  977. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  978. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  979. /* Configure Tx MAC FIFO */
  980. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  981. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  982. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  983. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  984. /* Enable frame flushing if jumbo frames used */
  985. skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
  986. } else {
  987. /* enable timeout timers if normal frames */
  988. skge_write16(hw, B3_PA_CTRL,
  989. port == 0 ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  990. }
  991. r = xm_read16(hw, port, XM_RX_CMD);
  992. if (hw->dev[port]->mtu > ETH_DATA_LEN)
  993. xm_write16(hw, port, XM_RX_CMD, r | XM_RX_BIG_PK_OK);
  994. else
  995. xm_write16(hw, port, XM_RX_CMD, r & ~(XM_RX_BIG_PK_OK));
  996. switch (hw->phy_type) {
  997. case SK_PHY_XMAC:
  998. if (skge->autoneg == AUTONEG_ENABLE) {
  999. ctrl1 = PHY_X_AN_FD | PHY_X_AN_HD;
  1000. switch (skge->flow_control) {
  1001. case FLOW_MODE_NONE:
  1002. ctrl1 |= PHY_X_P_NO_PAUSE;
  1003. break;
  1004. case FLOW_MODE_LOC_SEND:
  1005. ctrl1 |= PHY_X_P_ASYM_MD;
  1006. break;
  1007. case FLOW_MODE_SYMMETRIC:
  1008. ctrl1 |= PHY_X_P_SYM_MD;
  1009. break;
  1010. case FLOW_MODE_REM_SEND:
  1011. ctrl1 |= PHY_X_P_BOTH_MD;
  1012. break;
  1013. }
  1014. xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl1);
  1015. ctrl2 = PHY_CT_ANE | PHY_CT_RE_CFG;
  1016. } else {
  1017. ctrl2 = 0;
  1018. if (skge->duplex == DUPLEX_FULL)
  1019. ctrl2 |= PHY_CT_DUP_MD;
  1020. }
  1021. xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl2);
  1022. break;
  1023. case SK_PHY_BCOM:
  1024. ctrl1 = PHY_CT_SP1000;
  1025. ctrl2 = 0;
  1026. ctrl3 = PHY_SEL_TYPE;
  1027. ctrl4 = PHY_B_PEC_EN_LTR;
  1028. ctrl5 = PHY_B_AC_TX_TST;
  1029. if (skge->autoneg == AUTONEG_ENABLE) {
  1030. /*
  1031. * Workaround BCOM Errata #1 for the C5 type.
  1032. * 1000Base-T Link Acquisition Failure in Slave Mode
  1033. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  1034. */
  1035. ctrl2 |= PHY_B_1000C_RD;
  1036. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1037. ctrl2 |= PHY_B_1000C_AHD;
  1038. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1039. ctrl2 |= PHY_B_1000C_AFD;
  1040. /* Set Flow-control capabilities */
  1041. switch (skge->flow_control) {
  1042. case FLOW_MODE_NONE:
  1043. ctrl3 |= PHY_B_P_NO_PAUSE;
  1044. break;
  1045. case FLOW_MODE_LOC_SEND:
  1046. ctrl3 |= PHY_B_P_ASYM_MD;
  1047. break;
  1048. case FLOW_MODE_SYMMETRIC:
  1049. ctrl3 |= PHY_B_P_SYM_MD;
  1050. break;
  1051. case FLOW_MODE_REM_SEND:
  1052. ctrl3 |= PHY_B_P_BOTH_MD;
  1053. break;
  1054. }
  1055. /* Restart Auto-negotiation */
  1056. ctrl1 |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1057. } else {
  1058. if (skge->duplex == DUPLEX_FULL)
  1059. ctrl1 |= PHY_CT_DUP_MD;
  1060. ctrl2 |= PHY_B_1000C_MSE; /* set it to Slave */
  1061. }
  1062. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, ctrl2);
  1063. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV, ctrl3);
  1064. if (skge->netdev->mtu > ETH_DATA_LEN) {
  1065. ctrl4 |= PHY_B_PEC_HIGH_LA;
  1066. ctrl5 |= PHY_B_AC_LONG_PACK;
  1067. xm_phy_write(hw, port,PHY_BCOM_AUX_CTRL, ctrl5);
  1068. }
  1069. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ctrl4);
  1070. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctrl1);
  1071. break;
  1072. }
  1073. spin_unlock_bh(&hw->phy_lock);
  1074. /* Clear MIB counters */
  1075. xm_write16(hw, port, XM_STAT_CMD,
  1076. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1077. /* Clear two times according to Errata #3 */
  1078. xm_write16(hw, port, XM_STAT_CMD,
  1079. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1080. /* Start polling for link status */
  1081. mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
  1082. }
  1083. static void genesis_stop(struct skge_port *skge)
  1084. {
  1085. struct skge_hw *hw = skge->hw;
  1086. int port = skge->port;
  1087. /* Clear Tx packet arbiter timeout IRQ */
  1088. skge_write16(hw, B3_PA_CTRL,
  1089. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1090. /*
  1091. * If the transfer stucks at the MAC the STOP command will not
  1092. * terminate if we don't flush the XMAC's transmit FIFO !
  1093. */
  1094. xm_write32(hw, port, XM_MODE,
  1095. xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
  1096. /* Reset the MAC */
  1097. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1098. /* For external PHYs there must be special handling */
  1099. if (hw->phy_type != SK_PHY_XMAC) {
  1100. u32 reg = skge_read32(hw, B2_GP_IO);
  1101. if (port == 0) {
  1102. reg |= GP_DIR_0;
  1103. reg &= ~GP_IO_0;
  1104. } else {
  1105. reg |= GP_DIR_2;
  1106. reg &= ~GP_IO_2;
  1107. }
  1108. skge_write32(hw, B2_GP_IO, reg);
  1109. skge_read32(hw, B2_GP_IO);
  1110. }
  1111. xm_write16(hw, port, XM_MMU_CMD,
  1112. xm_read16(hw, port, XM_MMU_CMD)
  1113. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1114. xm_read16(hw, port, XM_MMU_CMD);
  1115. }
  1116. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1117. {
  1118. struct skge_hw *hw = skge->hw;
  1119. int port = skge->port;
  1120. int i;
  1121. unsigned long timeout = jiffies + HZ;
  1122. xm_write16(hw, port,
  1123. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1124. /* wait for update to complete */
  1125. while (xm_read16(hw, port, XM_STAT_CMD)
  1126. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1127. if (time_after(jiffies, timeout))
  1128. break;
  1129. udelay(10);
  1130. }
  1131. /* special case for 64 bit octet counter */
  1132. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1133. | xm_read32(hw, port, XM_TXO_OK_LO);
  1134. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1135. | xm_read32(hw, port, XM_RXO_OK_LO);
  1136. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1137. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1138. }
  1139. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1140. {
  1141. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1142. u16 status = xm_read16(hw, port, XM_ISRC);
  1143. pr_debug("genesis_intr status %x\n", status);
  1144. if (hw->phy_type == SK_PHY_XMAC) {
  1145. /* LInk down, start polling for state change */
  1146. if (status & XM_IS_INP_ASS) {
  1147. xm_write16(hw, port, XM_IMSK,
  1148. xm_read16(hw, port, XM_IMSK) | XM_IS_INP_ASS);
  1149. mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
  1150. }
  1151. else if (status & XM_IS_AND)
  1152. mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
  1153. }
  1154. if (status & XM_IS_TXF_UR) {
  1155. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1156. ++skge->net_stats.tx_fifo_errors;
  1157. }
  1158. if (status & XM_IS_RXF_OV) {
  1159. xm_write32(hw, port, XM_MODE, XM_MD_FRF);
  1160. ++skge->net_stats.rx_fifo_errors;
  1161. }
  1162. }
  1163. static void gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1164. {
  1165. int i;
  1166. gma_write16(hw, port, GM_SMI_DATA, val);
  1167. gma_write16(hw, port, GM_SMI_CTRL,
  1168. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1169. for (i = 0; i < PHY_RETRIES; i++) {
  1170. udelay(1);
  1171. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1172. break;
  1173. }
  1174. }
  1175. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1176. {
  1177. int i;
  1178. gma_write16(hw, port, GM_SMI_CTRL,
  1179. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1180. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1181. for (i = 0; i < PHY_RETRIES; i++) {
  1182. udelay(1);
  1183. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1184. goto ready;
  1185. }
  1186. printk(KERN_WARNING PFX "%s: phy read timeout\n",
  1187. hw->dev[port]->name);
  1188. return 0;
  1189. ready:
  1190. return gma_read16(hw, port, GM_SMI_DATA);
  1191. }
  1192. static void genesis_link_down(struct skge_port *skge)
  1193. {
  1194. struct skge_hw *hw = skge->hw;
  1195. int port = skge->port;
  1196. pr_debug("genesis_link_down\n");
  1197. xm_write16(hw, port, XM_MMU_CMD,
  1198. xm_read16(hw, port, XM_MMU_CMD)
  1199. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1200. /* dummy read to ensure writing */
  1201. (void) xm_read16(hw, port, XM_MMU_CMD);
  1202. skge_link_down(skge);
  1203. }
  1204. static void genesis_link_up(struct skge_port *skge)
  1205. {
  1206. struct skge_hw *hw = skge->hw;
  1207. int port = skge->port;
  1208. u16 cmd;
  1209. u32 mode, msk;
  1210. pr_debug("genesis_link_up\n");
  1211. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1212. /*
  1213. * enabling pause frame reception is required for 1000BT
  1214. * because the XMAC is not reset if the link is going down
  1215. */
  1216. if (skge->flow_control == FLOW_MODE_NONE ||
  1217. skge->flow_control == FLOW_MODE_LOC_SEND)
  1218. cmd |= XM_MMU_IGN_PF;
  1219. else
  1220. /* Enable Pause Frame Reception */
  1221. cmd &= ~XM_MMU_IGN_PF;
  1222. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1223. mode = xm_read32(hw, port, XM_MODE);
  1224. if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1225. skge->flow_control == FLOW_MODE_LOC_SEND) {
  1226. /*
  1227. * Configure Pause Frame Generation
  1228. * Use internal and external Pause Frame Generation.
  1229. * Sending pause frames is edge triggered.
  1230. * Send a Pause frame with the maximum pause time if
  1231. * internal oder external FIFO full condition occurs.
  1232. * Send a zero pause time frame to re-start transmission.
  1233. */
  1234. /* XM_PAUSE_DA = '010000C28001' (default) */
  1235. /* XM_MAC_PTIME = 0xffff (maximum) */
  1236. /* remember this value is defined in big endian (!) */
  1237. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1238. mode |= XM_PAUSE_MODE;
  1239. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1240. } else {
  1241. /*
  1242. * disable pause frame generation is required for 1000BT
  1243. * because the XMAC is not reset if the link is going down
  1244. */
  1245. /* Disable Pause Mode in Mode Register */
  1246. mode &= ~XM_PAUSE_MODE;
  1247. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1248. }
  1249. xm_write32(hw, port, XM_MODE, mode);
  1250. msk = XM_DEF_MSK;
  1251. if (hw->phy_type != SK_PHY_XMAC)
  1252. msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */
  1253. xm_write16(hw, port, XM_IMSK, msk);
  1254. xm_read16(hw, port, XM_ISRC);
  1255. /* get MMU Command Reg. */
  1256. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1257. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  1258. cmd |= XM_MMU_GMII_FD;
  1259. if (hw->phy_type == SK_PHY_BCOM) {
  1260. /*
  1261. * Workaround BCOM Errata (#10523) for all BCom Phys
  1262. * Enable Power Management after link up
  1263. */
  1264. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1265. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1266. & ~PHY_B_AC_DIS_PM);
  1267. xm_phy_write(hw, port, PHY_BCOM_INT_MASK,
  1268. PHY_B_DEF_MSK);
  1269. }
  1270. /* enable Rx/Tx */
  1271. xm_write16(hw, port, XM_MMU_CMD,
  1272. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1273. skge_link_up(skge);
  1274. }
  1275. static void genesis_bcom_intr(struct skge_port *skge)
  1276. {
  1277. struct skge_hw *hw = skge->hw;
  1278. int port = skge->port;
  1279. u16 stat = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1280. pr_debug("genesis_bcom intr stat=%x\n", stat);
  1281. /* Workaround BCom Errata:
  1282. * enable and disable loopback mode if "NO HCD" occurs.
  1283. */
  1284. if (stat & PHY_B_IS_NO_HDCL) {
  1285. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1286. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1287. ctrl | PHY_CT_LOOP);
  1288. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1289. ctrl & ~PHY_CT_LOOP);
  1290. }
  1291. stat = xm_phy_read(hw, port, PHY_BCOM_STAT);
  1292. if (stat & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE)) {
  1293. u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  1294. if ( !(aux & PHY_B_AS_LS) && netif_carrier_ok(skge->netdev))
  1295. genesis_link_down(skge);
  1296. else if (stat & PHY_B_IS_LST_CHANGE) {
  1297. if (aux & PHY_B_AS_AN_C) {
  1298. switch (aux & PHY_B_AS_AN_RES_MSK) {
  1299. case PHY_B_RES_1000FD:
  1300. skge->duplex = DUPLEX_FULL;
  1301. break;
  1302. case PHY_B_RES_1000HD:
  1303. skge->duplex = DUPLEX_HALF;
  1304. break;
  1305. }
  1306. switch (aux & PHY_B_AS_PAUSE_MSK) {
  1307. case PHY_B_AS_PAUSE_MSK:
  1308. skge->flow_control = FLOW_MODE_SYMMETRIC;
  1309. break;
  1310. case PHY_B_AS_PRR:
  1311. skge->flow_control = FLOW_MODE_REM_SEND;
  1312. break;
  1313. case PHY_B_AS_PRT:
  1314. skge->flow_control = FLOW_MODE_LOC_SEND;
  1315. break;
  1316. default:
  1317. skge->flow_control = FLOW_MODE_NONE;
  1318. }
  1319. skge->speed = SPEED_1000;
  1320. }
  1321. genesis_link_up(skge);
  1322. }
  1323. else
  1324. mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
  1325. }
  1326. }
  1327. /* Perodic poll of phy status to check for link transistion */
  1328. static void skge_link_timer(unsigned long __arg)
  1329. {
  1330. struct skge_port *skge = (struct skge_port *) __arg;
  1331. struct skge_hw *hw = skge->hw;
  1332. int port = skge->port;
  1333. if (hw->chip_id != CHIP_ID_GENESIS || !netif_running(skge->netdev))
  1334. return;
  1335. spin_lock_bh(&hw->phy_lock);
  1336. if (hw->phy_type == SK_PHY_BCOM)
  1337. genesis_bcom_intr(skge);
  1338. else {
  1339. int i;
  1340. for (i = 0; i < 3; i++)
  1341. if (xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
  1342. break;
  1343. if (i == 3)
  1344. mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
  1345. else
  1346. genesis_link_up(skge);
  1347. }
  1348. spin_unlock_bh(&hw->phy_lock);
  1349. }
  1350. /* Marvell Phy Initailization */
  1351. static void yukon_init(struct skge_hw *hw, int port)
  1352. {
  1353. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1354. u16 ctrl, ct1000, adv;
  1355. u16 ledctrl, ledover;
  1356. pr_debug("yukon_init\n");
  1357. if (skge->autoneg == AUTONEG_ENABLE) {
  1358. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1359. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1360. PHY_M_EC_MAC_S_MSK);
  1361. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1362. /* on PHY 88E1111 there is a change for downshift control */
  1363. if (hw->chip_id == CHIP_ID_YUKON_EC)
  1364. ectrl |= PHY_M_EC_M_DSC_2(0) | PHY_M_EC_DOWN_S_ENA;
  1365. else
  1366. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1367. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1368. }
  1369. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1370. if (skge->autoneg == AUTONEG_DISABLE)
  1371. ctrl &= ~PHY_CT_ANE;
  1372. ctrl |= PHY_CT_RESET;
  1373. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1374. ctrl = 0;
  1375. ct1000 = 0;
  1376. adv = PHY_SEL_TYPE;
  1377. if (skge->autoneg == AUTONEG_ENABLE) {
  1378. if (iscopper(hw)) {
  1379. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1380. ct1000 |= PHY_M_1000C_AFD;
  1381. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1382. ct1000 |= PHY_M_1000C_AHD;
  1383. if (skge->advertising & ADVERTISED_100baseT_Full)
  1384. adv |= PHY_M_AN_100_FD;
  1385. if (skge->advertising & ADVERTISED_100baseT_Half)
  1386. adv |= PHY_M_AN_100_HD;
  1387. if (skge->advertising & ADVERTISED_10baseT_Full)
  1388. adv |= PHY_M_AN_10_FD;
  1389. if (skge->advertising & ADVERTISED_10baseT_Half)
  1390. adv |= PHY_M_AN_10_HD;
  1391. /* Set Flow-control capabilities */
  1392. switch (skge->flow_control) {
  1393. case FLOW_MODE_NONE:
  1394. adv |= PHY_B_P_NO_PAUSE;
  1395. break;
  1396. case FLOW_MODE_LOC_SEND:
  1397. adv |= PHY_B_P_ASYM_MD;
  1398. break;
  1399. case FLOW_MODE_SYMMETRIC:
  1400. adv |= PHY_B_P_SYM_MD;
  1401. break;
  1402. case FLOW_MODE_REM_SEND:
  1403. adv |= PHY_B_P_BOTH_MD;
  1404. break;
  1405. }
  1406. } else { /* special defines for FIBER (88E1011S only) */
  1407. adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
  1408. /* Set Flow-control capabilities */
  1409. switch (skge->flow_control) {
  1410. case FLOW_MODE_NONE:
  1411. adv |= PHY_M_P_NO_PAUSE_X;
  1412. break;
  1413. case FLOW_MODE_LOC_SEND:
  1414. adv |= PHY_M_P_ASYM_MD_X;
  1415. break;
  1416. case FLOW_MODE_SYMMETRIC:
  1417. adv |= PHY_M_P_SYM_MD_X;
  1418. break;
  1419. case FLOW_MODE_REM_SEND:
  1420. adv |= PHY_M_P_BOTH_MD_X;
  1421. break;
  1422. }
  1423. }
  1424. /* Restart Auto-negotiation */
  1425. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1426. } else {
  1427. /* forced speed/duplex settings */
  1428. ct1000 = PHY_M_1000C_MSE;
  1429. if (skge->duplex == DUPLEX_FULL)
  1430. ctrl |= PHY_CT_DUP_MD;
  1431. switch (skge->speed) {
  1432. case SPEED_1000:
  1433. ctrl |= PHY_CT_SP1000;
  1434. break;
  1435. case SPEED_100:
  1436. ctrl |= PHY_CT_SP100;
  1437. break;
  1438. }
  1439. ctrl |= PHY_CT_RESET;
  1440. }
  1441. if (hw->chip_id != CHIP_ID_YUKON_FE)
  1442. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1443. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1444. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1445. /* Setup Phy LED's */
  1446. ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS);
  1447. ledover = 0;
  1448. if (hw->chip_id == CHIP_ID_YUKON_FE) {
  1449. /* on 88E3082 these bits are at 11..9 (shifted left) */
  1450. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1;
  1451. gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR,
  1452. ((gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR)
  1453. & ~PHY_M_FELP_LED1_MSK)
  1454. | PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL)));
  1455. } else {
  1456. /* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */
  1457. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
  1458. /* turn off the Rx LED (LED_RX) */
  1459. ledover |= PHY_M_LED_MO_RX(MO_LED_OFF);
  1460. }
  1461. /* disable blink mode (LED_DUPLEX) on collisions */
  1462. ctrl |= PHY_M_LEDC_DP_CTRL;
  1463. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
  1464. if (skge->autoneg == AUTONEG_DISABLE || skge->speed == SPEED_100) {
  1465. /* turn on 100 Mbps LED (LED_LINK100) */
  1466. ledover |= PHY_M_LED_MO_100(MO_LED_ON);
  1467. }
  1468. if (ledover)
  1469. gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
  1470. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1471. if (skge->autoneg == AUTONEG_ENABLE)
  1472. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL);
  1473. else
  1474. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  1475. }
  1476. static void yukon_reset(struct skge_hw *hw, int port)
  1477. {
  1478. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1479. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1480. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1481. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1482. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1483. gma_write16(hw, port, GM_RX_CTRL,
  1484. gma_read16(hw, port, GM_RX_CTRL)
  1485. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1486. }
  1487. static void yukon_mac_init(struct skge_hw *hw, int port)
  1488. {
  1489. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1490. int i;
  1491. u32 reg;
  1492. const u8 *addr = hw->dev[port]->dev_addr;
  1493. /* WA code for COMA mode -- set PHY reset */
  1494. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1495. hw->chip_rev == CHIP_REV_YU_LITE_A3)
  1496. skge_write32(hw, B2_GP_IO,
  1497. (skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9));
  1498. /* hard reset */
  1499. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1500. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1501. /* WA code for COMA mode -- clear PHY reset */
  1502. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1503. hw->chip_rev == CHIP_REV_YU_LITE_A3)
  1504. skge_write32(hw, B2_GP_IO,
  1505. (skge_read32(hw, B2_GP_IO) | GP_DIR_9)
  1506. & ~GP_IO_9);
  1507. /* Set hardware config mode */
  1508. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1509. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1510. reg |= iscopper(hw) ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1511. /* Clear GMC reset */
  1512. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1513. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1514. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1515. if (skge->autoneg == AUTONEG_DISABLE) {
  1516. reg = GM_GPCR_AU_ALL_DIS;
  1517. gma_write16(hw, port, GM_GP_CTRL,
  1518. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1519. switch (skge->speed) {
  1520. case SPEED_1000:
  1521. reg |= GM_GPCR_SPEED_1000;
  1522. /* fallthru */
  1523. case SPEED_100:
  1524. reg |= GM_GPCR_SPEED_100;
  1525. }
  1526. if (skge->duplex == DUPLEX_FULL)
  1527. reg |= GM_GPCR_DUP_FULL;
  1528. } else
  1529. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1530. switch (skge->flow_control) {
  1531. case FLOW_MODE_NONE:
  1532. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1533. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1534. break;
  1535. case FLOW_MODE_LOC_SEND:
  1536. /* disable Rx flow-control */
  1537. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1538. }
  1539. gma_write16(hw, port, GM_GP_CTRL, reg);
  1540. skge_read16(hw, GMAC_IRQ_SRC);
  1541. spin_lock_bh(&hw->phy_lock);
  1542. yukon_init(hw, port);
  1543. spin_unlock_bh(&hw->phy_lock);
  1544. /* MIB clear */
  1545. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1546. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1547. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1548. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1549. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1550. /* transmit control */
  1551. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1552. /* receive control reg: unicast + multicast + no FCS */
  1553. gma_write16(hw, port, GM_RX_CTRL,
  1554. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1555. /* transmit flow control */
  1556. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1557. /* transmit parameter */
  1558. gma_write16(hw, port, GM_TX_PARAM,
  1559. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1560. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1561. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1562. /* serial mode register */
  1563. reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1564. if (hw->dev[port]->mtu > 1500)
  1565. reg |= GM_SMOD_JUMBO_ENA;
  1566. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1567. /* physical address: used for pause frames */
  1568. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1569. /* virtual address for data */
  1570. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1571. /* enable interrupt mask for counter overflows */
  1572. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1573. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1574. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1575. /* Initialize Mac Fifo */
  1576. /* Configure Rx MAC FIFO */
  1577. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1578. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1579. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1580. hw->chip_rev == CHIP_REV_YU_LITE_A3)
  1581. reg &= ~GMF_RX_F_FL_ON;
  1582. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1583. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1584. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF);
  1585. /* Configure Tx MAC FIFO */
  1586. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1587. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1588. }
  1589. static void yukon_stop(struct skge_port *skge)
  1590. {
  1591. struct skge_hw *hw = skge->hw;
  1592. int port = skge->port;
  1593. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1594. hw->chip_rev == CHIP_REV_YU_LITE_A3) {
  1595. skge_write32(hw, B2_GP_IO,
  1596. skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9);
  1597. }
  1598. gma_write16(hw, port, GM_GP_CTRL,
  1599. gma_read16(hw, port, GM_GP_CTRL)
  1600. & ~(GM_GPCR_RX_ENA|GM_GPCR_RX_ENA));
  1601. gma_read16(hw, port, GM_GP_CTRL);
  1602. /* set GPHY Control reset */
  1603. gma_write32(hw, port, GPHY_CTRL, GPC_RST_SET);
  1604. gma_write32(hw, port, GMAC_CTRL, GMC_RST_SET);
  1605. }
  1606. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1607. {
  1608. struct skge_hw *hw = skge->hw;
  1609. int port = skge->port;
  1610. int i;
  1611. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1612. | gma_read32(hw, port, GM_TXO_OK_LO);
  1613. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1614. | gma_read32(hw, port, GM_RXO_OK_LO);
  1615. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1616. data[i] = gma_read32(hw, port,
  1617. skge_stats[i].gma_offset);
  1618. }
  1619. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1620. {
  1621. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1622. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1623. pr_debug("yukon_intr status %x\n", status);
  1624. if (status & GM_IS_RX_FF_OR) {
  1625. ++skge->net_stats.rx_fifo_errors;
  1626. gma_write8(hw, port, RX_GMF_CTRL_T, GMF_CLI_RX_FO);
  1627. }
  1628. if (status & GM_IS_TX_FF_UR) {
  1629. ++skge->net_stats.tx_fifo_errors;
  1630. gma_write8(hw, port, TX_GMF_CTRL_T, GMF_CLI_TX_FU);
  1631. }
  1632. }
  1633. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1634. {
  1635. if (hw->chip_id == CHIP_ID_YUKON_FE)
  1636. return (aux & PHY_M_PS_SPEED_100) ? SPEED_100 : SPEED_10;
  1637. switch (aux & PHY_M_PS_SPEED_MSK) {
  1638. case PHY_M_PS_SPEED_1000:
  1639. return SPEED_1000;
  1640. case PHY_M_PS_SPEED_100:
  1641. return SPEED_100;
  1642. default:
  1643. return SPEED_10;
  1644. }
  1645. }
  1646. static void yukon_link_up(struct skge_port *skge)
  1647. {
  1648. struct skge_hw *hw = skge->hw;
  1649. int port = skge->port;
  1650. u16 reg;
  1651. pr_debug("yukon_link_up\n");
  1652. /* Enable Transmit FIFO Underrun */
  1653. skge_write8(hw, GMAC_IRQ_MSK, GMAC_DEF_MSK);
  1654. reg = gma_read16(hw, port, GM_GP_CTRL);
  1655. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1656. reg |= GM_GPCR_DUP_FULL;
  1657. /* enable Rx/Tx */
  1658. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1659. gma_write16(hw, port, GM_GP_CTRL, reg);
  1660. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  1661. skge_link_up(skge);
  1662. }
  1663. static void yukon_link_down(struct skge_port *skge)
  1664. {
  1665. struct skge_hw *hw = skge->hw;
  1666. int port = skge->port;
  1667. pr_debug("yukon_link_down\n");
  1668. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  1669. gm_phy_write(hw, port, GM_GP_CTRL,
  1670. gm_phy_read(hw, port, GM_GP_CTRL)
  1671. & ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA));
  1672. if (hw->chip_id != CHIP_ID_YUKON_FE &&
  1673. skge->flow_control == FLOW_MODE_REM_SEND) {
  1674. /* restore Asymmetric Pause bit */
  1675. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  1676. gm_phy_read(hw, port,
  1677. PHY_MARV_AUNE_ADV)
  1678. | PHY_M_AN_ASP);
  1679. }
  1680. yukon_reset(hw, port);
  1681. skge_link_down(skge);
  1682. yukon_init(hw, port);
  1683. }
  1684. static void yukon_phy_intr(struct skge_port *skge)
  1685. {
  1686. struct skge_hw *hw = skge->hw;
  1687. int port = skge->port;
  1688. const char *reason = NULL;
  1689. u16 istatus, phystat;
  1690. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1691. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1692. pr_debug("yukon phy intr istat=%x phy_stat=%x\n", istatus, phystat);
  1693. if (istatus & PHY_M_IS_AN_COMPL) {
  1694. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1695. & PHY_M_AN_RF) {
  1696. reason = "remote fault";
  1697. goto failed;
  1698. }
  1699. if (!(hw->chip_id == CHIP_ID_YUKON_FE || hw->chip_id == CHIP_ID_YUKON_EC)
  1700. && (gm_phy_read(hw, port, PHY_MARV_1000T_STAT)
  1701. & PHY_B_1000S_MSF)) {
  1702. reason = "master/slave fault";
  1703. goto failed;
  1704. }
  1705. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1706. reason = "speed/duplex";
  1707. goto failed;
  1708. }
  1709. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1710. ? DUPLEX_FULL : DUPLEX_HALF;
  1711. skge->speed = yukon_speed(hw, phystat);
  1712. /* Tx & Rx Pause Enabled bits are at 9..8 */
  1713. if (hw->chip_id == CHIP_ID_YUKON_XL)
  1714. phystat >>= 6;
  1715. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1716. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1717. case PHY_M_PS_PAUSE_MSK:
  1718. skge->flow_control = FLOW_MODE_SYMMETRIC;
  1719. break;
  1720. case PHY_M_PS_RX_P_EN:
  1721. skge->flow_control = FLOW_MODE_REM_SEND;
  1722. break;
  1723. case PHY_M_PS_TX_P_EN:
  1724. skge->flow_control = FLOW_MODE_LOC_SEND;
  1725. break;
  1726. default:
  1727. skge->flow_control = FLOW_MODE_NONE;
  1728. }
  1729. if (skge->flow_control == FLOW_MODE_NONE ||
  1730. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1731. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1732. else
  1733. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1734. yukon_link_up(skge);
  1735. return;
  1736. }
  1737. if (istatus & PHY_M_IS_LSP_CHANGE)
  1738. skge->speed = yukon_speed(hw, phystat);
  1739. if (istatus & PHY_M_IS_DUP_CHANGE)
  1740. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1741. if (istatus & PHY_M_IS_LST_CHANGE) {
  1742. if (phystat & PHY_M_PS_LINK_UP)
  1743. yukon_link_up(skge);
  1744. else
  1745. yukon_link_down(skge);
  1746. }
  1747. return;
  1748. failed:
  1749. printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
  1750. skge->netdev->name, reason);
  1751. /* XXX restart autonegotiation? */
  1752. }
  1753. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  1754. {
  1755. u32 end;
  1756. start /= 8;
  1757. len /= 8;
  1758. end = start + len - 1;
  1759. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  1760. skge_write32(hw, RB_ADDR(q, RB_START), start);
  1761. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  1762. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  1763. skge_write32(hw, RB_ADDR(q, RB_END), end);
  1764. if (q == Q_R1 || q == Q_R2) {
  1765. /* Set thresholds on receive queue's */
  1766. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  1767. start + (2*len)/3);
  1768. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  1769. start + (len/3));
  1770. } else {
  1771. /* Enable store & forward on Tx queue's because
  1772. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  1773. */
  1774. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  1775. }
  1776. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  1777. }
  1778. /* Setup Bus Memory Interface */
  1779. static void skge_qset(struct skge_port *skge, u16 q,
  1780. const struct skge_element *e)
  1781. {
  1782. struct skge_hw *hw = skge->hw;
  1783. u32 watermark = 0x600;
  1784. u64 base = skge->dma + (e->desc - skge->mem);
  1785. /* optimization to reduce window on 32bit/33mhz */
  1786. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  1787. watermark /= 2;
  1788. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  1789. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  1790. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  1791. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  1792. }
  1793. static int skge_up(struct net_device *dev)
  1794. {
  1795. struct skge_port *skge = netdev_priv(dev);
  1796. struct skge_hw *hw = skge->hw;
  1797. int port = skge->port;
  1798. u32 chunk, ram_addr;
  1799. size_t rx_size, tx_size;
  1800. int err;
  1801. if (netif_msg_ifup(skge))
  1802. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  1803. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  1804. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  1805. skge->mem_size = tx_size + rx_size;
  1806. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  1807. if (!skge->mem)
  1808. return -ENOMEM;
  1809. memset(skge->mem, 0, skge->mem_size);
  1810. if ((err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma)))
  1811. goto free_pci_mem;
  1812. if (skge_rx_fill(skge))
  1813. goto free_rx_ring;
  1814. if ((err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  1815. skge->dma + rx_size)))
  1816. goto free_rx_ring;
  1817. skge->tx_avail = skge->tx_ring.count - 1;
  1818. /* Initialze MAC */
  1819. if (hw->chip_id == CHIP_ID_GENESIS)
  1820. genesis_mac_init(hw, port);
  1821. else
  1822. yukon_mac_init(hw, port);
  1823. /* Configure RAMbuffers */
  1824. chunk = hw->ram_size / ((hw->ports + 1)*2);
  1825. ram_addr = hw->ram_offset + 2 * chunk * port;
  1826. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  1827. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  1828. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  1829. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  1830. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  1831. /* Start receiver BMU */
  1832. wmb();
  1833. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  1834. pr_debug("skge_up completed\n");
  1835. return 0;
  1836. free_rx_ring:
  1837. skge_rx_clean(skge);
  1838. kfree(skge->rx_ring.start);
  1839. free_pci_mem:
  1840. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  1841. return err;
  1842. }
  1843. static int skge_down(struct net_device *dev)
  1844. {
  1845. struct skge_port *skge = netdev_priv(dev);
  1846. struct skge_hw *hw = skge->hw;
  1847. int port = skge->port;
  1848. if (netif_msg_ifdown(skge))
  1849. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  1850. netif_stop_queue(dev);
  1851. del_timer_sync(&skge->led_blink);
  1852. del_timer_sync(&skge->link_check);
  1853. /* Stop transmitter */
  1854. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  1855. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  1856. RB_RST_SET|RB_DIS_OP_MD);
  1857. if (hw->chip_id == CHIP_ID_GENESIS)
  1858. genesis_stop(skge);
  1859. else
  1860. yukon_stop(skge);
  1861. /* Disable Force Sync bit and Enable Alloc bit */
  1862. skge_write8(hw, SK_REG(port, TXA_CTRL),
  1863. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  1864. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  1865. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  1866. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  1867. /* Reset PCI FIFO */
  1868. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  1869. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  1870. /* Reset the RAM Buffer async Tx queue */
  1871. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  1872. /* stop receiver */
  1873. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  1874. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  1875. RB_RST_SET|RB_DIS_OP_MD);
  1876. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  1877. if (hw->chip_id == CHIP_ID_GENESIS) {
  1878. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  1879. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  1880. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_STOP);
  1881. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_STOP);
  1882. } else {
  1883. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  1884. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  1885. }
  1886. /* turn off led's */
  1887. skge_write16(hw, B0_LED, LED_STAT_OFF);
  1888. skge_tx_clean(skge);
  1889. skge_rx_clean(skge);
  1890. kfree(skge->rx_ring.start);
  1891. kfree(skge->tx_ring.start);
  1892. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  1893. return 0;
  1894. }
  1895. static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  1896. {
  1897. struct skge_port *skge = netdev_priv(dev);
  1898. struct skge_hw *hw = skge->hw;
  1899. struct skge_ring *ring = &skge->tx_ring;
  1900. struct skge_element *e;
  1901. struct skge_tx_desc *td;
  1902. int i;
  1903. u32 control, len;
  1904. u64 map;
  1905. unsigned long flags;
  1906. skb = skb_padto(skb, ETH_ZLEN);
  1907. if (!skb)
  1908. return NETDEV_TX_OK;
  1909. local_irq_save(flags);
  1910. if (!spin_trylock(&skge->tx_lock)) {
  1911. /* Collision - tell upper layer to requeue */
  1912. local_irq_restore(flags);
  1913. return NETDEV_TX_LOCKED;
  1914. }
  1915. if (unlikely(skge->tx_avail < skb_shinfo(skb)->nr_frags +1)) {
  1916. netif_stop_queue(dev);
  1917. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1918. printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
  1919. dev->name);
  1920. return NETDEV_TX_BUSY;
  1921. }
  1922. e = ring->to_use;
  1923. td = e->desc;
  1924. e->skb = skb;
  1925. len = skb_headlen(skb);
  1926. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1927. pci_unmap_addr_set(e, mapaddr, map);
  1928. pci_unmap_len_set(e, maplen, len);
  1929. td->dma_lo = map;
  1930. td->dma_hi = map >> 32;
  1931. if (skb->ip_summed == CHECKSUM_HW) {
  1932. const struct iphdr *ip
  1933. = (const struct iphdr *) (skb->data + ETH_HLEN);
  1934. int offset = skb->h.raw - skb->data;
  1935. /* This seems backwards, but it is what the sk98lin
  1936. * does. Looks like hardware is wrong?
  1937. */
  1938. if (ip->protocol == IPPROTO_UDP
  1939. && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  1940. control = BMU_TCP_CHECK;
  1941. else
  1942. control = BMU_UDP_CHECK;
  1943. td->csum_offs = 0;
  1944. td->csum_start = offset;
  1945. td->csum_write = offset + skb->csum;
  1946. } else
  1947. control = BMU_CHECK;
  1948. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  1949. control |= BMU_EOF| BMU_IRQ_EOF;
  1950. else {
  1951. struct skge_tx_desc *tf = td;
  1952. control |= BMU_STFWD;
  1953. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1954. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1955. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  1956. frag->size, PCI_DMA_TODEVICE);
  1957. e = e->next;
  1958. e->skb = NULL;
  1959. tf = e->desc;
  1960. tf->dma_lo = map;
  1961. tf->dma_hi = (u64) map >> 32;
  1962. pci_unmap_addr_set(e, mapaddr, map);
  1963. pci_unmap_len_set(e, maplen, frag->size);
  1964. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  1965. }
  1966. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  1967. }
  1968. /* Make sure all the descriptors written */
  1969. wmb();
  1970. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  1971. wmb();
  1972. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  1973. if (netif_msg_tx_queued(skge))
  1974. printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
  1975. dev->name, e - ring->start, skb->len);
  1976. ring->to_use = e->next;
  1977. skge->tx_avail -= skb_shinfo(skb)->nr_frags + 1;
  1978. if (skge->tx_avail <= MAX_SKB_FRAGS + 1) {
  1979. pr_debug("%s: transmit queue full\n", dev->name);
  1980. netif_stop_queue(dev);
  1981. }
  1982. dev->trans_start = jiffies;
  1983. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1984. return NETDEV_TX_OK;
  1985. }
  1986. static inline void skge_tx_free(struct skge_hw *hw, struct skge_element *e)
  1987. {
  1988. if (e->skb) {
  1989. pci_unmap_single(hw->pdev,
  1990. pci_unmap_addr(e, mapaddr),
  1991. pci_unmap_len(e, maplen),
  1992. PCI_DMA_TODEVICE);
  1993. dev_kfree_skb_any(e->skb);
  1994. e->skb = NULL;
  1995. } else {
  1996. pci_unmap_page(hw->pdev,
  1997. pci_unmap_addr(e, mapaddr),
  1998. pci_unmap_len(e, maplen),
  1999. PCI_DMA_TODEVICE);
  2000. }
  2001. }
  2002. static void skge_tx_clean(struct skge_port *skge)
  2003. {
  2004. struct skge_ring *ring = &skge->tx_ring;
  2005. struct skge_element *e;
  2006. unsigned long flags;
  2007. spin_lock_irqsave(&skge->tx_lock, flags);
  2008. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2009. ++skge->tx_avail;
  2010. skge_tx_free(skge->hw, e);
  2011. }
  2012. ring->to_clean = e;
  2013. spin_unlock_irqrestore(&skge->tx_lock, flags);
  2014. }
  2015. static void skge_tx_timeout(struct net_device *dev)
  2016. {
  2017. struct skge_port *skge = netdev_priv(dev);
  2018. if (netif_msg_timer(skge))
  2019. printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
  2020. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  2021. skge_tx_clean(skge);
  2022. }
  2023. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  2024. {
  2025. int err = 0;
  2026. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2027. return -EINVAL;
  2028. dev->mtu = new_mtu;
  2029. if (netif_running(dev)) {
  2030. skge_down(dev);
  2031. skge_up(dev);
  2032. }
  2033. return err;
  2034. }
  2035. static void genesis_set_multicast(struct net_device *dev)
  2036. {
  2037. struct skge_port *skge = netdev_priv(dev);
  2038. struct skge_hw *hw = skge->hw;
  2039. int port = skge->port;
  2040. int i, count = dev->mc_count;
  2041. struct dev_mc_list *list = dev->mc_list;
  2042. u32 mode;
  2043. u8 filter[8];
  2044. mode = xm_read32(hw, port, XM_MODE);
  2045. mode |= XM_MD_ENA_HASH;
  2046. if (dev->flags & IFF_PROMISC)
  2047. mode |= XM_MD_ENA_PROM;
  2048. else
  2049. mode &= ~XM_MD_ENA_PROM;
  2050. if (dev->flags & IFF_ALLMULTI)
  2051. memset(filter, 0xff, sizeof(filter));
  2052. else {
  2053. memset(filter, 0, sizeof(filter));
  2054. for (i = 0; list && i < count; i++, list = list->next) {
  2055. u32 crc = crc32_le(~0, list->dmi_addr, ETH_ALEN);
  2056. u8 bit = 63 - (crc & 63);
  2057. filter[bit/8] |= 1 << (bit%8);
  2058. }
  2059. }
  2060. xm_outhash(hw, port, XM_HSM, filter);
  2061. xm_write32(hw, port, XM_MODE, mode);
  2062. }
  2063. static void yukon_set_multicast(struct net_device *dev)
  2064. {
  2065. struct skge_port *skge = netdev_priv(dev);
  2066. struct skge_hw *hw = skge->hw;
  2067. int port = skge->port;
  2068. struct dev_mc_list *list = dev->mc_list;
  2069. u16 reg;
  2070. u8 filter[8];
  2071. memset(filter, 0, sizeof(filter));
  2072. reg = gma_read16(hw, port, GM_RX_CTRL);
  2073. reg |= GM_RXCR_UCF_ENA;
  2074. if (dev->flags & IFF_PROMISC) /* promiscious */
  2075. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2076. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2077. memset(filter, 0xff, sizeof(filter));
  2078. else if (dev->mc_count == 0) /* no multicast */
  2079. reg &= ~GM_RXCR_MCF_ENA;
  2080. else {
  2081. int i;
  2082. reg |= GM_RXCR_MCF_ENA;
  2083. for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
  2084. u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
  2085. filter[bit/8] |= 1 << (bit%8);
  2086. }
  2087. }
  2088. gma_write16(hw, port, GM_MC_ADDR_H1,
  2089. (u16)filter[0] | ((u16)filter[1] << 8));
  2090. gma_write16(hw, port, GM_MC_ADDR_H2,
  2091. (u16)filter[2] | ((u16)filter[3] << 8));
  2092. gma_write16(hw, port, GM_MC_ADDR_H3,
  2093. (u16)filter[4] | ((u16)filter[5] << 8));
  2094. gma_write16(hw, port, GM_MC_ADDR_H4,
  2095. (u16)filter[6] | ((u16)filter[7] << 8));
  2096. gma_write16(hw, port, GM_RX_CTRL, reg);
  2097. }
  2098. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2099. {
  2100. if (hw->chip_id == CHIP_ID_GENESIS)
  2101. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2102. else
  2103. return (status & GMR_FS_ANY_ERR) ||
  2104. (status & GMR_FS_RX_OK) == 0;
  2105. }
  2106. static void skge_rx_error(struct skge_port *skge, int slot,
  2107. u32 control, u32 status)
  2108. {
  2109. if (netif_msg_rx_err(skge))
  2110. printk(KERN_DEBUG PFX "%s: rx err, slot %d control 0x%x status 0x%x\n",
  2111. skge->netdev->name, slot, control, status);
  2112. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)
  2113. || (control & BMU_BBC) > skge->netdev->mtu + VLAN_ETH_HLEN)
  2114. skge->net_stats.rx_length_errors++;
  2115. else {
  2116. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2117. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2118. skge->net_stats.rx_length_errors++;
  2119. if (status & XMR_FS_FRA_ERR)
  2120. skge->net_stats.rx_frame_errors++;
  2121. if (status & XMR_FS_FCS_ERR)
  2122. skge->net_stats.rx_crc_errors++;
  2123. } else {
  2124. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2125. skge->net_stats.rx_length_errors++;
  2126. if (status & GMR_FS_FRAGMENT)
  2127. skge->net_stats.rx_frame_errors++;
  2128. if (status & GMR_FS_CRC_ERR)
  2129. skge->net_stats.rx_crc_errors++;
  2130. }
  2131. }
  2132. }
  2133. static int skge_poll(struct net_device *dev, int *budget)
  2134. {
  2135. struct skge_port *skge = netdev_priv(dev);
  2136. struct skge_hw *hw = skge->hw;
  2137. struct skge_ring *ring = &skge->rx_ring;
  2138. struct skge_element *e;
  2139. unsigned int to_do = min(dev->quota, *budget);
  2140. unsigned int work_done = 0;
  2141. int done;
  2142. static const u32 irqmask[] = { IS_PORT_1, IS_PORT_2 };
  2143. for (e = ring->to_clean; e != ring->to_use && work_done < to_do;
  2144. e = e->next) {
  2145. struct skge_rx_desc *rd = e->desc;
  2146. struct sk_buff *skb = e->skb;
  2147. u32 control, len, status;
  2148. rmb();
  2149. control = rd->control;
  2150. if (control & BMU_OWN)
  2151. break;
  2152. len = control & BMU_BBC;
  2153. e->skb = NULL;
  2154. pci_unmap_single(hw->pdev,
  2155. pci_unmap_addr(e, mapaddr),
  2156. pci_unmap_len(e, maplen),
  2157. PCI_DMA_FROMDEVICE);
  2158. status = rd->status;
  2159. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)
  2160. || len > dev->mtu + VLAN_ETH_HLEN
  2161. || bad_phy_status(hw, status)) {
  2162. skge_rx_error(skge, e - ring->start, control, status);
  2163. dev_kfree_skb(skb);
  2164. continue;
  2165. }
  2166. if (netif_msg_rx_status(skge))
  2167. printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
  2168. dev->name, e - ring->start, rd->status, len);
  2169. skb_put(skb, len);
  2170. skb->protocol = eth_type_trans(skb, dev);
  2171. if (skge->rx_csum) {
  2172. skb->csum = le16_to_cpu(rd->csum2);
  2173. skb->ip_summed = CHECKSUM_HW;
  2174. }
  2175. dev->last_rx = jiffies;
  2176. netif_receive_skb(skb);
  2177. ++work_done;
  2178. }
  2179. ring->to_clean = e;
  2180. *budget -= work_done;
  2181. dev->quota -= work_done;
  2182. done = work_done < to_do;
  2183. if (skge_rx_fill(skge))
  2184. done = 0;
  2185. /* restart receiver */
  2186. wmb();
  2187. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR),
  2188. CSR_START | CSR_IRQ_CL_F);
  2189. if (done) {
  2190. local_irq_disable();
  2191. hw->intr_mask |= irqmask[skge->port];
  2192. /* Order is important since data can get interrupted */
  2193. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2194. __netif_rx_complete(dev);
  2195. local_irq_enable();
  2196. }
  2197. return !done;
  2198. }
  2199. static inline void skge_tx_intr(struct net_device *dev)
  2200. {
  2201. struct skge_port *skge = netdev_priv(dev);
  2202. struct skge_hw *hw = skge->hw;
  2203. struct skge_ring *ring = &skge->tx_ring;
  2204. struct skge_element *e;
  2205. spin_lock(&skge->tx_lock);
  2206. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2207. struct skge_tx_desc *td = e->desc;
  2208. u32 control;
  2209. rmb();
  2210. control = td->control;
  2211. if (control & BMU_OWN)
  2212. break;
  2213. if (unlikely(netif_msg_tx_done(skge)))
  2214. printk(KERN_DEBUG PFX "%s: tx done slot %td status 0x%x\n",
  2215. dev->name, e - ring->start, td->status);
  2216. skge_tx_free(hw, e);
  2217. e->skb = NULL;
  2218. ++skge->tx_avail;
  2219. }
  2220. ring->to_clean = e;
  2221. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2222. if (skge->tx_avail > MAX_SKB_FRAGS + 1)
  2223. netif_wake_queue(dev);
  2224. spin_unlock(&skge->tx_lock);
  2225. }
  2226. static void skge_mac_parity(struct skge_hw *hw, int port)
  2227. {
  2228. printk(KERN_ERR PFX "%s: mac data parity error\n",
  2229. hw->dev[port] ? hw->dev[port]->name
  2230. : (port == 0 ? "(port A)": "(port B"));
  2231. if (hw->chip_id == CHIP_ID_GENESIS)
  2232. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2233. MFF_CLR_PERR);
  2234. else
  2235. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2236. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2237. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2238. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2239. }
  2240. static void skge_pci_clear(struct skge_hw *hw)
  2241. {
  2242. u16 status;
  2243. pci_read_config_word(hw->pdev, PCI_STATUS, &status);
  2244. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2245. pci_write_config_word(hw->pdev, PCI_STATUS,
  2246. status | PCI_STATUS_ERROR_BITS);
  2247. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2248. }
  2249. static void skge_mac_intr(struct skge_hw *hw, int port)
  2250. {
  2251. if (hw->chip_id == CHIP_ID_GENESIS)
  2252. genesis_mac_intr(hw, port);
  2253. else
  2254. yukon_mac_intr(hw, port);
  2255. }
  2256. /* Handle device specific framing and timeout interrupts */
  2257. static void skge_error_irq(struct skge_hw *hw)
  2258. {
  2259. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2260. if (hw->chip_id == CHIP_ID_GENESIS) {
  2261. /* clear xmac errors */
  2262. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2263. skge_write16(hw, SK_REG(0, RX_MFF_CTRL1), MFF_CLR_INSTAT);
  2264. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2265. skge_write16(hw, SK_REG(0, RX_MFF_CTRL2), MFF_CLR_INSTAT);
  2266. } else {
  2267. /* Timestamp (unused) overflow */
  2268. if (hwstatus & IS_IRQ_TIST_OV)
  2269. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2270. if (hwstatus & IS_IRQ_SENSOR) {
  2271. /* no sensors on 32-bit Yukon */
  2272. if (!(skge_read16(hw, B0_CTST) & CS_BUS_SLOT_SZ)) {
  2273. printk(KERN_ERR PFX "ignoring bogus sensor interrups\n");
  2274. skge_write32(hw, B0_HWE_IMSK,
  2275. IS_ERR_MSK & ~IS_IRQ_SENSOR);
  2276. } else
  2277. printk(KERN_WARNING PFX "sensor interrupt\n");
  2278. }
  2279. }
  2280. if (hwstatus & IS_RAM_RD_PAR) {
  2281. printk(KERN_ERR PFX "Ram read data parity error\n");
  2282. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2283. }
  2284. if (hwstatus & IS_RAM_WR_PAR) {
  2285. printk(KERN_ERR PFX "Ram write data parity error\n");
  2286. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2287. }
  2288. if (hwstatus & IS_M1_PAR_ERR)
  2289. skge_mac_parity(hw, 0);
  2290. if (hwstatus & IS_M2_PAR_ERR)
  2291. skge_mac_parity(hw, 1);
  2292. if (hwstatus & IS_R1_PAR_ERR)
  2293. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2294. if (hwstatus & IS_R2_PAR_ERR)
  2295. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2296. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2297. printk(KERN_ERR PFX "hardware error detected (status 0x%x)\n",
  2298. hwstatus);
  2299. skge_pci_clear(hw);
  2300. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2301. if (hwstatus & IS_IRQ_STAT) {
  2302. printk(KERN_WARNING PFX "IRQ status %x: still set ignoring hardware errors\n",
  2303. hwstatus);
  2304. hw->intr_mask &= ~IS_HW_ERR;
  2305. }
  2306. }
  2307. }
  2308. /*
  2309. * Interrrupt from PHY are handled in tasklet (soft irq)
  2310. * because accessing phy registers requires spin wait which might
  2311. * cause excess interrupt latency.
  2312. */
  2313. static void skge_extirq(unsigned long data)
  2314. {
  2315. struct skge_hw *hw = (struct skge_hw *) data;
  2316. int port;
  2317. spin_lock(&hw->phy_lock);
  2318. for (port = 0; port < 2; port++) {
  2319. struct net_device *dev = hw->dev[port];
  2320. if (dev && netif_running(dev)) {
  2321. struct skge_port *skge = netdev_priv(dev);
  2322. if (hw->chip_id != CHIP_ID_GENESIS)
  2323. yukon_phy_intr(skge);
  2324. else if (hw->phy_type == SK_PHY_BCOM)
  2325. genesis_bcom_intr(skge);
  2326. }
  2327. }
  2328. spin_unlock(&hw->phy_lock);
  2329. local_irq_disable();
  2330. hw->intr_mask |= IS_EXT_REG;
  2331. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2332. local_irq_enable();
  2333. }
  2334. static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
  2335. {
  2336. struct skge_hw *hw = dev_id;
  2337. u32 status = skge_read32(hw, B0_SP_ISRC);
  2338. if (status == 0 || status == ~0) /* hotplug or shared irq */
  2339. return IRQ_NONE;
  2340. status &= hw->intr_mask;
  2341. if ((status & IS_R1_F) && netif_rx_schedule_prep(hw->dev[0])) {
  2342. status &= ~IS_R1_F;
  2343. hw->intr_mask &= ~IS_R1_F;
  2344. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2345. __netif_rx_schedule(hw->dev[0]);
  2346. }
  2347. if ((status & IS_R2_F) && netif_rx_schedule_prep(hw->dev[1])) {
  2348. status &= ~IS_R2_F;
  2349. hw->intr_mask &= ~IS_R2_F;
  2350. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2351. __netif_rx_schedule(hw->dev[1]);
  2352. }
  2353. if (status & IS_XA1_F)
  2354. skge_tx_intr(hw->dev[0]);
  2355. if (status & IS_XA2_F)
  2356. skge_tx_intr(hw->dev[1]);
  2357. if (status & IS_MAC1)
  2358. skge_mac_intr(hw, 0);
  2359. if (status & IS_MAC2)
  2360. skge_mac_intr(hw, 1);
  2361. if (status & IS_HW_ERR)
  2362. skge_error_irq(hw);
  2363. if (status & IS_EXT_REG) {
  2364. hw->intr_mask &= ~IS_EXT_REG;
  2365. tasklet_schedule(&hw->ext_tasklet);
  2366. }
  2367. if (status)
  2368. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2369. return IRQ_HANDLED;
  2370. }
  2371. #ifdef CONFIG_NET_POLL_CONTROLLER
  2372. static void skge_netpoll(struct net_device *dev)
  2373. {
  2374. struct skge_port *skge = netdev_priv(dev);
  2375. disable_irq(dev->irq);
  2376. skge_intr(dev->irq, skge->hw, NULL);
  2377. enable_irq(dev->irq);
  2378. }
  2379. #endif
  2380. static int skge_set_mac_address(struct net_device *dev, void *p)
  2381. {
  2382. struct skge_port *skge = netdev_priv(dev);
  2383. struct sockaddr *addr = p;
  2384. int err = 0;
  2385. if (!is_valid_ether_addr(addr->sa_data))
  2386. return -EADDRNOTAVAIL;
  2387. skge_down(dev);
  2388. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2389. memcpy_toio(skge->hw->regs + B2_MAC_1 + skge->port*8,
  2390. dev->dev_addr, ETH_ALEN);
  2391. memcpy_toio(skge->hw->regs + B2_MAC_2 + skge->port*8,
  2392. dev->dev_addr, ETH_ALEN);
  2393. if (dev->flags & IFF_UP)
  2394. err = skge_up(dev);
  2395. return err;
  2396. }
  2397. static const struct {
  2398. u8 id;
  2399. const char *name;
  2400. } skge_chips[] = {
  2401. { CHIP_ID_GENESIS, "Genesis" },
  2402. { CHIP_ID_YUKON, "Yukon" },
  2403. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2404. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2405. { CHIP_ID_YUKON_XL, "Yukon-2 XL"},
  2406. { CHIP_ID_YUKON_EC, "YUKON-2 EC"},
  2407. { CHIP_ID_YUKON_FE, "YUKON-2 FE"},
  2408. };
  2409. static const char *skge_board_name(const struct skge_hw *hw)
  2410. {
  2411. int i;
  2412. static char buf[16];
  2413. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2414. if (skge_chips[i].id == hw->chip_id)
  2415. return skge_chips[i].name;
  2416. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2417. return buf;
  2418. }
  2419. /*
  2420. * Setup the board data structure, but don't bring up
  2421. * the port(s)
  2422. */
  2423. static int skge_reset(struct skge_hw *hw)
  2424. {
  2425. u16 ctst;
  2426. u8 t8, mac_cfg;
  2427. int i;
  2428. ctst = skge_read16(hw, B0_CTST);
  2429. /* do a SW reset */
  2430. skge_write8(hw, B0_CTST, CS_RST_SET);
  2431. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2432. /* clear PCI errors, if any */
  2433. skge_pci_clear(hw);
  2434. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2435. /* restore CLK_RUN bits (for Yukon-Lite) */
  2436. skge_write16(hw, B0_CTST,
  2437. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2438. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2439. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2440. hw->pmd_type = skge_read8(hw, B2_PMD_TYP);
  2441. switch (hw->chip_id) {
  2442. case CHIP_ID_GENESIS:
  2443. switch (hw->phy_type) {
  2444. case SK_PHY_XMAC:
  2445. hw->phy_addr = PHY_ADDR_XMAC;
  2446. break;
  2447. case SK_PHY_BCOM:
  2448. hw->phy_addr = PHY_ADDR_BCOM;
  2449. break;
  2450. default:
  2451. printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
  2452. pci_name(hw->pdev), hw->phy_type);
  2453. return -EOPNOTSUPP;
  2454. }
  2455. break;
  2456. case CHIP_ID_YUKON:
  2457. case CHIP_ID_YUKON_LITE:
  2458. case CHIP_ID_YUKON_LP:
  2459. if (hw->phy_type < SK_PHY_MARV_COPPER && hw->pmd_type != 'S')
  2460. hw->phy_type = SK_PHY_MARV_COPPER;
  2461. hw->phy_addr = PHY_ADDR_MARV;
  2462. if (!iscopper(hw))
  2463. hw->phy_type = SK_PHY_MARV_FIBER;
  2464. break;
  2465. default:
  2466. printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
  2467. pci_name(hw->pdev), hw->chip_id);
  2468. return -EOPNOTSUPP;
  2469. }
  2470. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2471. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2472. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2473. /* read the adapters RAM size */
  2474. t8 = skge_read8(hw, B2_E_0);
  2475. if (hw->chip_id == CHIP_ID_GENESIS) {
  2476. if (t8 == 3) {
  2477. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2478. hw->ram_size = 0x100000;
  2479. hw->ram_offset = 0x80000;
  2480. } else
  2481. hw->ram_size = t8 * 512;
  2482. }
  2483. else if (t8 == 0)
  2484. hw->ram_size = 0x20000;
  2485. else
  2486. hw->ram_size = t8 * 4096;
  2487. if (hw->chip_id == CHIP_ID_GENESIS)
  2488. genesis_init(hw);
  2489. else {
  2490. /* switch power to VCC (WA for VAUX problem) */
  2491. skge_write8(hw, B0_POWER_CTRL,
  2492. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2493. for (i = 0; i < hw->ports; i++) {
  2494. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2495. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2496. }
  2497. }
  2498. /* turn off hardware timer (unused) */
  2499. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2500. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2501. skge_write8(hw, B0_LED, LED_STAT_ON);
  2502. /* enable the Tx Arbiters */
  2503. for (i = 0; i < hw->ports; i++)
  2504. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2505. /* Initialize ram interface */
  2506. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2507. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2508. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2509. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2510. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2511. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2512. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2513. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2514. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2515. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2516. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2517. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2518. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2519. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2520. /* Set interrupt moderation for Transmit only
  2521. * Receive interrupts avoided by NAPI
  2522. */
  2523. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2524. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2525. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2526. hw->intr_mask = IS_HW_ERR | IS_EXT_REG | IS_PORT_1;
  2527. if (hw->ports > 1)
  2528. hw->intr_mask |= IS_PORT_2;
  2529. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2530. if (hw->chip_id != CHIP_ID_GENESIS)
  2531. skge_write8(hw, GMAC_IRQ_MSK, 0);
  2532. spin_lock_bh(&hw->phy_lock);
  2533. for (i = 0; i < hw->ports; i++) {
  2534. if (hw->chip_id == CHIP_ID_GENESIS)
  2535. genesis_reset(hw, i);
  2536. else
  2537. yukon_reset(hw, i);
  2538. }
  2539. spin_unlock_bh(&hw->phy_lock);
  2540. return 0;
  2541. }
  2542. /* Initialize network device */
  2543. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  2544. int highmem)
  2545. {
  2546. struct skge_port *skge;
  2547. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  2548. if (!dev) {
  2549. printk(KERN_ERR "skge etherdev alloc failed");
  2550. return NULL;
  2551. }
  2552. SET_MODULE_OWNER(dev);
  2553. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2554. dev->open = skge_up;
  2555. dev->stop = skge_down;
  2556. dev->hard_start_xmit = skge_xmit_frame;
  2557. dev->get_stats = skge_get_stats;
  2558. if (hw->chip_id == CHIP_ID_GENESIS)
  2559. dev->set_multicast_list = genesis_set_multicast;
  2560. else
  2561. dev->set_multicast_list = yukon_set_multicast;
  2562. dev->set_mac_address = skge_set_mac_address;
  2563. dev->change_mtu = skge_change_mtu;
  2564. SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
  2565. dev->tx_timeout = skge_tx_timeout;
  2566. dev->watchdog_timeo = TX_WATCHDOG;
  2567. dev->poll = skge_poll;
  2568. dev->weight = NAPI_WEIGHT;
  2569. #ifdef CONFIG_NET_POLL_CONTROLLER
  2570. dev->poll_controller = skge_netpoll;
  2571. #endif
  2572. dev->irq = hw->pdev->irq;
  2573. dev->features = NETIF_F_LLTX;
  2574. if (highmem)
  2575. dev->features |= NETIF_F_HIGHDMA;
  2576. skge = netdev_priv(dev);
  2577. skge->netdev = dev;
  2578. skge->hw = hw;
  2579. skge->msg_enable = netif_msg_init(debug, default_msg);
  2580. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  2581. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  2582. /* Auto speed and flow control */
  2583. skge->autoneg = AUTONEG_ENABLE;
  2584. skge->flow_control = FLOW_MODE_SYMMETRIC;
  2585. skge->duplex = -1;
  2586. skge->speed = -1;
  2587. skge->advertising = skge_modes(hw);
  2588. hw->dev[port] = dev;
  2589. skge->port = port;
  2590. spin_lock_init(&skge->tx_lock);
  2591. init_timer(&skge->link_check);
  2592. skge->link_check.function = skge_link_timer;
  2593. skge->link_check.data = (unsigned long) skge;
  2594. init_timer(&skge->led_blink);
  2595. skge->led_blink.function = skge_blink_timer;
  2596. skge->led_blink.data = (unsigned long) skge;
  2597. if (hw->chip_id != CHIP_ID_GENESIS) {
  2598. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2599. skge->rx_csum = 1;
  2600. }
  2601. /* read the mac address */
  2602. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  2603. /* device is off until link detection */
  2604. netif_carrier_off(dev);
  2605. netif_stop_queue(dev);
  2606. return dev;
  2607. }
  2608. static void __devinit skge_show_addr(struct net_device *dev)
  2609. {
  2610. const struct skge_port *skge = netdev_priv(dev);
  2611. if (netif_msg_probe(skge))
  2612. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2613. dev->name,
  2614. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2615. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2616. }
  2617. static int __devinit skge_probe(struct pci_dev *pdev,
  2618. const struct pci_device_id *ent)
  2619. {
  2620. struct net_device *dev, *dev1;
  2621. struct skge_hw *hw;
  2622. int err, using_dac = 0;
  2623. if ((err = pci_enable_device(pdev))) {
  2624. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  2625. pci_name(pdev));
  2626. goto err_out;
  2627. }
  2628. if ((err = pci_request_regions(pdev, DRV_NAME))) {
  2629. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  2630. pci_name(pdev));
  2631. goto err_out_disable_pdev;
  2632. }
  2633. pci_set_master(pdev);
  2634. if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)))
  2635. using_dac = 1;
  2636. else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  2637. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  2638. pci_name(pdev));
  2639. goto err_out_free_regions;
  2640. }
  2641. #ifdef __BIG_ENDIAN
  2642. /* byte swap decriptors in hardware */
  2643. {
  2644. u32 reg;
  2645. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  2646. reg |= PCI_REV_DESC;
  2647. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  2648. }
  2649. #endif
  2650. err = -ENOMEM;
  2651. hw = kmalloc(sizeof(*hw), GFP_KERNEL);
  2652. if (!hw) {
  2653. printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
  2654. pci_name(pdev));
  2655. goto err_out_free_regions;
  2656. }
  2657. memset(hw, 0, sizeof(*hw));
  2658. hw->pdev = pdev;
  2659. spin_lock_init(&hw->phy_lock);
  2660. tasklet_init(&hw->ext_tasklet, skge_extirq, (unsigned long) hw);
  2661. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2662. if (!hw->regs) {
  2663. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  2664. pci_name(pdev));
  2665. goto err_out_free_hw;
  2666. }
  2667. if ((err = request_irq(pdev->irq, skge_intr, SA_SHIRQ, DRV_NAME, hw))) {
  2668. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2669. pci_name(pdev), pdev->irq);
  2670. goto err_out_iounmap;
  2671. }
  2672. pci_set_drvdata(pdev, hw);
  2673. err = skge_reset(hw);
  2674. if (err)
  2675. goto err_out_free_irq;
  2676. printk(KERN_INFO PFX "addr 0x%lx irq %d chip %s rev %d\n",
  2677. pci_resource_start(pdev, 0), pdev->irq,
  2678. skge_board_name(hw), hw->chip_rev);
  2679. if ((dev = skge_devinit(hw, 0, using_dac)) == NULL)
  2680. goto err_out_led_off;
  2681. if ((err = register_netdev(dev))) {
  2682. printk(KERN_ERR PFX "%s: cannot register net device\n",
  2683. pci_name(pdev));
  2684. goto err_out_free_netdev;
  2685. }
  2686. skge_show_addr(dev);
  2687. if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
  2688. if (register_netdev(dev1) == 0)
  2689. skge_show_addr(dev1);
  2690. else {
  2691. /* Failure to register second port need not be fatal */
  2692. printk(KERN_WARNING PFX "register of second port failed\n");
  2693. hw->dev[1] = NULL;
  2694. free_netdev(dev1);
  2695. }
  2696. }
  2697. return 0;
  2698. err_out_free_netdev:
  2699. free_netdev(dev);
  2700. err_out_led_off:
  2701. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2702. err_out_free_irq:
  2703. free_irq(pdev->irq, hw);
  2704. err_out_iounmap:
  2705. iounmap(hw->regs);
  2706. err_out_free_hw:
  2707. kfree(hw);
  2708. err_out_free_regions:
  2709. pci_release_regions(pdev);
  2710. err_out_disable_pdev:
  2711. pci_disable_device(pdev);
  2712. pci_set_drvdata(pdev, NULL);
  2713. err_out:
  2714. return err;
  2715. }
  2716. static void __devexit skge_remove(struct pci_dev *pdev)
  2717. {
  2718. struct skge_hw *hw = pci_get_drvdata(pdev);
  2719. struct net_device *dev0, *dev1;
  2720. if (!hw)
  2721. return;
  2722. if ((dev1 = hw->dev[1]))
  2723. unregister_netdev(dev1);
  2724. dev0 = hw->dev[0];
  2725. unregister_netdev(dev0);
  2726. tasklet_kill(&hw->ext_tasklet);
  2727. free_irq(pdev->irq, hw);
  2728. pci_release_regions(pdev);
  2729. pci_disable_device(pdev);
  2730. if (dev1)
  2731. free_netdev(dev1);
  2732. free_netdev(dev0);
  2733. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2734. iounmap(hw->regs);
  2735. kfree(hw);
  2736. pci_set_drvdata(pdev, NULL);
  2737. }
  2738. #ifdef CONFIG_PM
  2739. static int skge_suspend(struct pci_dev *pdev, u32 state)
  2740. {
  2741. struct skge_hw *hw = pci_get_drvdata(pdev);
  2742. int i, wol = 0;
  2743. for (i = 0; i < 2; i++) {
  2744. struct net_device *dev = hw->dev[i];
  2745. if (dev) {
  2746. struct skge_port *skge = netdev_priv(dev);
  2747. if (netif_running(dev)) {
  2748. netif_carrier_off(dev);
  2749. skge_down(dev);
  2750. }
  2751. netif_device_detach(dev);
  2752. wol |= skge->wol;
  2753. }
  2754. }
  2755. pci_save_state(pdev);
  2756. pci_enable_wake(pdev, state, wol);
  2757. pci_disable_device(pdev);
  2758. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  2759. return 0;
  2760. }
  2761. static int skge_resume(struct pci_dev *pdev)
  2762. {
  2763. struct skge_hw *hw = pci_get_drvdata(pdev);
  2764. int i;
  2765. pci_set_power_state(pdev, PCI_D0);
  2766. pci_restore_state(pdev);
  2767. pci_enable_wake(pdev, PCI_D0, 0);
  2768. skge_reset(hw);
  2769. for (i = 0; i < 2; i++) {
  2770. struct net_device *dev = hw->dev[i];
  2771. if (dev) {
  2772. netif_device_attach(dev);
  2773. if (netif_running(dev))
  2774. skge_up(dev);
  2775. }
  2776. }
  2777. return 0;
  2778. }
  2779. #endif
  2780. static struct pci_driver skge_driver = {
  2781. .name = DRV_NAME,
  2782. .id_table = skge_id_table,
  2783. .probe = skge_probe,
  2784. .remove = __devexit_p(skge_remove),
  2785. #ifdef CONFIG_PM
  2786. .suspend = skge_suspend,
  2787. .resume = skge_resume,
  2788. #endif
  2789. };
  2790. static int __init skge_init_module(void)
  2791. {
  2792. return pci_module_init(&skge_driver);
  2793. }
  2794. static void __exit skge_cleanup_module(void)
  2795. {
  2796. pci_unregister_driver(&skge_driver);
  2797. }
  2798. module_init(skge_init_module);
  2799. module_exit(skge_cleanup_module);