dm.c 56 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582
  1. /*
  2. * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
  3. * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
  4. *
  5. * This file is released under the GPL.
  6. */
  7. #include "dm.h"
  8. #include "dm-uevent.h"
  9. #include <linux/init.h>
  10. #include <linux/module.h>
  11. #include <linux/mutex.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/blkpg.h>
  14. #include <linux/bio.h>
  15. #include <linux/buffer_head.h>
  16. #include <linux/mempool.h>
  17. #include <linux/slab.h>
  18. #include <linux/idr.h>
  19. #include <linux/hdreg.h>
  20. #include <trace/events/block.h>
  21. #define DM_MSG_PREFIX "core"
  22. /*
  23. * Cookies are numeric values sent with CHANGE and REMOVE
  24. * uevents while resuming, removing or renaming the device.
  25. */
  26. #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  27. #define DM_COOKIE_LENGTH 24
  28. static const char *_name = DM_NAME;
  29. static unsigned int major = 0;
  30. static unsigned int _major = 0;
  31. static DEFINE_SPINLOCK(_minor_lock);
  32. /*
  33. * For bio-based dm.
  34. * One of these is allocated per bio.
  35. */
  36. struct dm_io {
  37. struct mapped_device *md;
  38. int error;
  39. atomic_t io_count;
  40. struct bio *bio;
  41. unsigned long start_time;
  42. spinlock_t endio_lock;
  43. };
  44. /*
  45. * For bio-based dm.
  46. * One of these is allocated per target within a bio. Hopefully
  47. * this will be simplified out one day.
  48. */
  49. struct dm_target_io {
  50. struct dm_io *io;
  51. struct dm_target *ti;
  52. union map_info info;
  53. };
  54. /*
  55. * For request-based dm.
  56. * One of these is allocated per request.
  57. */
  58. struct dm_rq_target_io {
  59. struct mapped_device *md;
  60. struct dm_target *ti;
  61. struct request *orig, clone;
  62. int error;
  63. union map_info info;
  64. };
  65. /*
  66. * For request-based dm.
  67. * One of these is allocated per bio.
  68. */
  69. struct dm_rq_clone_bio_info {
  70. struct bio *orig;
  71. struct dm_rq_target_io *tio;
  72. };
  73. union map_info *dm_get_mapinfo(struct bio *bio)
  74. {
  75. if (bio && bio->bi_private)
  76. return &((struct dm_target_io *)bio->bi_private)->info;
  77. return NULL;
  78. }
  79. union map_info *dm_get_rq_mapinfo(struct request *rq)
  80. {
  81. if (rq && rq->end_io_data)
  82. return &((struct dm_rq_target_io *)rq->end_io_data)->info;
  83. return NULL;
  84. }
  85. EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
  86. #define MINOR_ALLOCED ((void *)-1)
  87. /*
  88. * Bits for the md->flags field.
  89. */
  90. #define DMF_BLOCK_IO_FOR_SUSPEND 0
  91. #define DMF_SUSPENDED 1
  92. #define DMF_FROZEN 2
  93. #define DMF_FREEING 3
  94. #define DMF_DELETING 4
  95. #define DMF_NOFLUSH_SUSPENDING 5
  96. #define DMF_QUEUE_IO_TO_THREAD 6
  97. /*
  98. * Work processed by per-device workqueue.
  99. */
  100. struct mapped_device {
  101. struct rw_semaphore io_lock;
  102. struct mutex suspend_lock;
  103. rwlock_t map_lock;
  104. atomic_t holders;
  105. atomic_t open_count;
  106. unsigned long flags;
  107. struct request_queue *queue;
  108. struct gendisk *disk;
  109. char name[16];
  110. void *interface_ptr;
  111. /*
  112. * A list of ios that arrived while we were suspended.
  113. */
  114. atomic_t pending[2];
  115. wait_queue_head_t wait;
  116. struct work_struct work;
  117. struct bio_list deferred;
  118. spinlock_t deferred_lock;
  119. /*
  120. * An error from the barrier request currently being processed.
  121. */
  122. int barrier_error;
  123. /*
  124. * Processing queue (flush/barriers)
  125. */
  126. struct workqueue_struct *wq;
  127. /*
  128. * The current mapping.
  129. */
  130. struct dm_table *map;
  131. /*
  132. * io objects are allocated from here.
  133. */
  134. mempool_t *io_pool;
  135. mempool_t *tio_pool;
  136. struct bio_set *bs;
  137. /*
  138. * Event handling.
  139. */
  140. atomic_t event_nr;
  141. wait_queue_head_t eventq;
  142. atomic_t uevent_seq;
  143. struct list_head uevent_list;
  144. spinlock_t uevent_lock; /* Protect access to uevent_list */
  145. /*
  146. * freeze/thaw support require holding onto a super block
  147. */
  148. struct super_block *frozen_sb;
  149. struct block_device *bdev;
  150. /* forced geometry settings */
  151. struct hd_geometry geometry;
  152. /* For saving the address of __make_request for request based dm */
  153. make_request_fn *saved_make_request_fn;
  154. /* sysfs handle */
  155. struct kobject kobj;
  156. /* zero-length barrier that will be cloned and submitted to targets */
  157. struct bio barrier_bio;
  158. };
  159. /*
  160. * For mempools pre-allocation at the table loading time.
  161. */
  162. struct dm_md_mempools {
  163. mempool_t *io_pool;
  164. mempool_t *tio_pool;
  165. struct bio_set *bs;
  166. };
  167. #define MIN_IOS 256
  168. static struct kmem_cache *_io_cache;
  169. static struct kmem_cache *_tio_cache;
  170. static struct kmem_cache *_rq_tio_cache;
  171. static struct kmem_cache *_rq_bio_info_cache;
  172. static int __init local_init(void)
  173. {
  174. int r = -ENOMEM;
  175. /* allocate a slab for the dm_ios */
  176. _io_cache = KMEM_CACHE(dm_io, 0);
  177. if (!_io_cache)
  178. return r;
  179. /* allocate a slab for the target ios */
  180. _tio_cache = KMEM_CACHE(dm_target_io, 0);
  181. if (!_tio_cache)
  182. goto out_free_io_cache;
  183. _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
  184. if (!_rq_tio_cache)
  185. goto out_free_tio_cache;
  186. _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
  187. if (!_rq_bio_info_cache)
  188. goto out_free_rq_tio_cache;
  189. r = dm_uevent_init();
  190. if (r)
  191. goto out_free_rq_bio_info_cache;
  192. _major = major;
  193. r = register_blkdev(_major, _name);
  194. if (r < 0)
  195. goto out_uevent_exit;
  196. if (!_major)
  197. _major = r;
  198. return 0;
  199. out_uevent_exit:
  200. dm_uevent_exit();
  201. out_free_rq_bio_info_cache:
  202. kmem_cache_destroy(_rq_bio_info_cache);
  203. out_free_rq_tio_cache:
  204. kmem_cache_destroy(_rq_tio_cache);
  205. out_free_tio_cache:
  206. kmem_cache_destroy(_tio_cache);
  207. out_free_io_cache:
  208. kmem_cache_destroy(_io_cache);
  209. return r;
  210. }
  211. static void local_exit(void)
  212. {
  213. kmem_cache_destroy(_rq_bio_info_cache);
  214. kmem_cache_destroy(_rq_tio_cache);
  215. kmem_cache_destroy(_tio_cache);
  216. kmem_cache_destroy(_io_cache);
  217. unregister_blkdev(_major, _name);
  218. dm_uevent_exit();
  219. _major = 0;
  220. DMINFO("cleaned up");
  221. }
  222. static int (*_inits[])(void) __initdata = {
  223. local_init,
  224. dm_target_init,
  225. dm_linear_init,
  226. dm_stripe_init,
  227. dm_io_init,
  228. dm_kcopyd_init,
  229. dm_interface_init,
  230. };
  231. static void (*_exits[])(void) = {
  232. local_exit,
  233. dm_target_exit,
  234. dm_linear_exit,
  235. dm_stripe_exit,
  236. dm_io_exit,
  237. dm_kcopyd_exit,
  238. dm_interface_exit,
  239. };
  240. static int __init dm_init(void)
  241. {
  242. const int count = ARRAY_SIZE(_inits);
  243. int r, i;
  244. for (i = 0; i < count; i++) {
  245. r = _inits[i]();
  246. if (r)
  247. goto bad;
  248. }
  249. return 0;
  250. bad:
  251. while (i--)
  252. _exits[i]();
  253. return r;
  254. }
  255. static void __exit dm_exit(void)
  256. {
  257. int i = ARRAY_SIZE(_exits);
  258. while (i--)
  259. _exits[i]();
  260. }
  261. /*
  262. * Block device functions
  263. */
  264. static int dm_blk_open(struct block_device *bdev, fmode_t mode)
  265. {
  266. struct mapped_device *md;
  267. spin_lock(&_minor_lock);
  268. md = bdev->bd_disk->private_data;
  269. if (!md)
  270. goto out;
  271. if (test_bit(DMF_FREEING, &md->flags) ||
  272. test_bit(DMF_DELETING, &md->flags)) {
  273. md = NULL;
  274. goto out;
  275. }
  276. dm_get(md);
  277. atomic_inc(&md->open_count);
  278. out:
  279. spin_unlock(&_minor_lock);
  280. return md ? 0 : -ENXIO;
  281. }
  282. static int dm_blk_close(struct gendisk *disk, fmode_t mode)
  283. {
  284. struct mapped_device *md = disk->private_data;
  285. atomic_dec(&md->open_count);
  286. dm_put(md);
  287. return 0;
  288. }
  289. int dm_open_count(struct mapped_device *md)
  290. {
  291. return atomic_read(&md->open_count);
  292. }
  293. /*
  294. * Guarantees nothing is using the device before it's deleted.
  295. */
  296. int dm_lock_for_deletion(struct mapped_device *md)
  297. {
  298. int r = 0;
  299. spin_lock(&_minor_lock);
  300. if (dm_open_count(md))
  301. r = -EBUSY;
  302. else
  303. set_bit(DMF_DELETING, &md->flags);
  304. spin_unlock(&_minor_lock);
  305. return r;
  306. }
  307. static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  308. {
  309. struct mapped_device *md = bdev->bd_disk->private_data;
  310. return dm_get_geometry(md, geo);
  311. }
  312. static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
  313. unsigned int cmd, unsigned long arg)
  314. {
  315. struct mapped_device *md = bdev->bd_disk->private_data;
  316. struct dm_table *map = dm_get_table(md);
  317. struct dm_target *tgt;
  318. int r = -ENOTTY;
  319. if (!map || !dm_table_get_size(map))
  320. goto out;
  321. /* We only support devices that have a single target */
  322. if (dm_table_get_num_targets(map) != 1)
  323. goto out;
  324. tgt = dm_table_get_target(map, 0);
  325. if (dm_suspended(md)) {
  326. r = -EAGAIN;
  327. goto out;
  328. }
  329. if (tgt->type->ioctl)
  330. r = tgt->type->ioctl(tgt, cmd, arg);
  331. out:
  332. dm_table_put(map);
  333. return r;
  334. }
  335. static struct dm_io *alloc_io(struct mapped_device *md)
  336. {
  337. return mempool_alloc(md->io_pool, GFP_NOIO);
  338. }
  339. static void free_io(struct mapped_device *md, struct dm_io *io)
  340. {
  341. mempool_free(io, md->io_pool);
  342. }
  343. static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
  344. {
  345. mempool_free(tio, md->tio_pool);
  346. }
  347. static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
  348. gfp_t gfp_mask)
  349. {
  350. return mempool_alloc(md->tio_pool, gfp_mask);
  351. }
  352. static void free_rq_tio(struct dm_rq_target_io *tio)
  353. {
  354. mempool_free(tio, tio->md->tio_pool);
  355. }
  356. static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
  357. {
  358. return mempool_alloc(md->io_pool, GFP_ATOMIC);
  359. }
  360. static void free_bio_info(struct dm_rq_clone_bio_info *info)
  361. {
  362. mempool_free(info, info->tio->md->io_pool);
  363. }
  364. static int md_in_flight(struct mapped_device *md)
  365. {
  366. return atomic_read(&md->pending[READ]) +
  367. atomic_read(&md->pending[WRITE]);
  368. }
  369. static void start_io_acct(struct dm_io *io)
  370. {
  371. struct mapped_device *md = io->md;
  372. int cpu;
  373. int rw = bio_data_dir(io->bio);
  374. io->start_time = jiffies;
  375. cpu = part_stat_lock();
  376. part_round_stats(cpu, &dm_disk(md)->part0);
  377. part_stat_unlock();
  378. dm_disk(md)->part0.in_flight[rw] = atomic_inc_return(&md->pending[rw]);
  379. }
  380. static void end_io_acct(struct dm_io *io)
  381. {
  382. struct mapped_device *md = io->md;
  383. struct bio *bio = io->bio;
  384. unsigned long duration = jiffies - io->start_time;
  385. int pending, cpu;
  386. int rw = bio_data_dir(bio);
  387. cpu = part_stat_lock();
  388. part_round_stats(cpu, &dm_disk(md)->part0);
  389. part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
  390. part_stat_unlock();
  391. /*
  392. * After this is decremented the bio must not be touched if it is
  393. * a barrier.
  394. */
  395. dm_disk(md)->part0.in_flight[rw] = pending =
  396. atomic_dec_return(&md->pending[rw]);
  397. pending += atomic_read(&md->pending[rw^0x1]);
  398. /* nudge anyone waiting on suspend queue */
  399. if (!pending)
  400. wake_up(&md->wait);
  401. }
  402. /*
  403. * Add the bio to the list of deferred io.
  404. */
  405. static void queue_io(struct mapped_device *md, struct bio *bio)
  406. {
  407. down_write(&md->io_lock);
  408. spin_lock_irq(&md->deferred_lock);
  409. bio_list_add(&md->deferred, bio);
  410. spin_unlock_irq(&md->deferred_lock);
  411. if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
  412. queue_work(md->wq, &md->work);
  413. up_write(&md->io_lock);
  414. }
  415. /*
  416. * Everyone (including functions in this file), should use this
  417. * function to access the md->map field, and make sure they call
  418. * dm_table_put() when finished.
  419. */
  420. struct dm_table *dm_get_table(struct mapped_device *md)
  421. {
  422. struct dm_table *t;
  423. unsigned long flags;
  424. read_lock_irqsave(&md->map_lock, flags);
  425. t = md->map;
  426. if (t)
  427. dm_table_get(t);
  428. read_unlock_irqrestore(&md->map_lock, flags);
  429. return t;
  430. }
  431. /*
  432. * Get the geometry associated with a dm device
  433. */
  434. int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
  435. {
  436. *geo = md->geometry;
  437. return 0;
  438. }
  439. /*
  440. * Set the geometry of a device.
  441. */
  442. int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
  443. {
  444. sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
  445. if (geo->start > sz) {
  446. DMWARN("Start sector is beyond the geometry limits.");
  447. return -EINVAL;
  448. }
  449. md->geometry = *geo;
  450. return 0;
  451. }
  452. /*-----------------------------------------------------------------
  453. * CRUD START:
  454. * A more elegant soln is in the works that uses the queue
  455. * merge fn, unfortunately there are a couple of changes to
  456. * the block layer that I want to make for this. So in the
  457. * interests of getting something for people to use I give
  458. * you this clearly demarcated crap.
  459. *---------------------------------------------------------------*/
  460. static int __noflush_suspending(struct mapped_device *md)
  461. {
  462. return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
  463. }
  464. /*
  465. * Decrements the number of outstanding ios that a bio has been
  466. * cloned into, completing the original io if necc.
  467. */
  468. static void dec_pending(struct dm_io *io, int error)
  469. {
  470. unsigned long flags;
  471. int io_error;
  472. struct bio *bio;
  473. struct mapped_device *md = io->md;
  474. /* Push-back supersedes any I/O errors */
  475. if (unlikely(error)) {
  476. spin_lock_irqsave(&io->endio_lock, flags);
  477. if (!(io->error > 0 && __noflush_suspending(md)))
  478. io->error = error;
  479. spin_unlock_irqrestore(&io->endio_lock, flags);
  480. }
  481. if (atomic_dec_and_test(&io->io_count)) {
  482. if (io->error == DM_ENDIO_REQUEUE) {
  483. /*
  484. * Target requested pushing back the I/O.
  485. */
  486. spin_lock_irqsave(&md->deferred_lock, flags);
  487. if (__noflush_suspending(md)) {
  488. if (!bio_rw_flagged(io->bio, BIO_RW_BARRIER))
  489. bio_list_add_head(&md->deferred,
  490. io->bio);
  491. } else
  492. /* noflush suspend was interrupted. */
  493. io->error = -EIO;
  494. spin_unlock_irqrestore(&md->deferred_lock, flags);
  495. }
  496. io_error = io->error;
  497. bio = io->bio;
  498. if (bio_rw_flagged(bio, BIO_RW_BARRIER)) {
  499. /*
  500. * There can be just one barrier request so we use
  501. * a per-device variable for error reporting.
  502. * Note that you can't touch the bio after end_io_acct
  503. */
  504. if (!md->barrier_error && io_error != -EOPNOTSUPP)
  505. md->barrier_error = io_error;
  506. end_io_acct(io);
  507. } else {
  508. end_io_acct(io);
  509. if (io_error != DM_ENDIO_REQUEUE) {
  510. trace_block_bio_complete(md->queue, bio);
  511. bio_endio(bio, io_error);
  512. }
  513. }
  514. free_io(md, io);
  515. }
  516. }
  517. static void clone_endio(struct bio *bio, int error)
  518. {
  519. int r = 0;
  520. struct dm_target_io *tio = bio->bi_private;
  521. struct dm_io *io = tio->io;
  522. struct mapped_device *md = tio->io->md;
  523. dm_endio_fn endio = tio->ti->type->end_io;
  524. if (!bio_flagged(bio, BIO_UPTODATE) && !error)
  525. error = -EIO;
  526. if (endio) {
  527. r = endio(tio->ti, bio, error, &tio->info);
  528. if (r < 0 || r == DM_ENDIO_REQUEUE)
  529. /*
  530. * error and requeue request are handled
  531. * in dec_pending().
  532. */
  533. error = r;
  534. else if (r == DM_ENDIO_INCOMPLETE)
  535. /* The target will handle the io */
  536. return;
  537. else if (r) {
  538. DMWARN("unimplemented target endio return value: %d", r);
  539. BUG();
  540. }
  541. }
  542. /*
  543. * Store md for cleanup instead of tio which is about to get freed.
  544. */
  545. bio->bi_private = md->bs;
  546. free_tio(md, tio);
  547. bio_put(bio);
  548. dec_pending(io, error);
  549. }
  550. /*
  551. * Partial completion handling for request-based dm
  552. */
  553. static void end_clone_bio(struct bio *clone, int error)
  554. {
  555. struct dm_rq_clone_bio_info *info = clone->bi_private;
  556. struct dm_rq_target_io *tio = info->tio;
  557. struct bio *bio = info->orig;
  558. unsigned int nr_bytes = info->orig->bi_size;
  559. bio_put(clone);
  560. if (tio->error)
  561. /*
  562. * An error has already been detected on the request.
  563. * Once error occurred, just let clone->end_io() handle
  564. * the remainder.
  565. */
  566. return;
  567. else if (error) {
  568. /*
  569. * Don't notice the error to the upper layer yet.
  570. * The error handling decision is made by the target driver,
  571. * when the request is completed.
  572. */
  573. tio->error = error;
  574. return;
  575. }
  576. /*
  577. * I/O for the bio successfully completed.
  578. * Notice the data completion to the upper layer.
  579. */
  580. /*
  581. * bios are processed from the head of the list.
  582. * So the completing bio should always be rq->bio.
  583. * If it's not, something wrong is happening.
  584. */
  585. if (tio->orig->bio != bio)
  586. DMERR("bio completion is going in the middle of the request");
  587. /*
  588. * Update the original request.
  589. * Do not use blk_end_request() here, because it may complete
  590. * the original request before the clone, and break the ordering.
  591. */
  592. blk_update_request(tio->orig, 0, nr_bytes);
  593. }
  594. /*
  595. * Don't touch any member of the md after calling this function because
  596. * the md may be freed in dm_put() at the end of this function.
  597. * Or do dm_get() before calling this function and dm_put() later.
  598. */
  599. static void rq_completed(struct mapped_device *md, int rw, int run_queue)
  600. {
  601. atomic_dec(&md->pending[rw]);
  602. /* nudge anyone waiting on suspend queue */
  603. if (!md_in_flight(md))
  604. wake_up(&md->wait);
  605. if (run_queue)
  606. blk_run_queue(md->queue);
  607. /*
  608. * dm_put() must be at the end of this function. See the comment above
  609. */
  610. dm_put(md);
  611. }
  612. static void free_rq_clone(struct request *clone)
  613. {
  614. struct dm_rq_target_io *tio = clone->end_io_data;
  615. blk_rq_unprep_clone(clone);
  616. free_rq_tio(tio);
  617. }
  618. /*
  619. * Complete the clone and the original request.
  620. * Must be called without queue lock.
  621. */
  622. static void dm_end_request(struct request *clone, int error)
  623. {
  624. int rw = rq_data_dir(clone);
  625. struct dm_rq_target_io *tio = clone->end_io_data;
  626. struct mapped_device *md = tio->md;
  627. struct request *rq = tio->orig;
  628. if (blk_pc_request(rq)) {
  629. rq->errors = clone->errors;
  630. rq->resid_len = clone->resid_len;
  631. if (rq->sense)
  632. /*
  633. * We are using the sense buffer of the original
  634. * request.
  635. * So setting the length of the sense data is enough.
  636. */
  637. rq->sense_len = clone->sense_len;
  638. }
  639. free_rq_clone(clone);
  640. blk_end_request_all(rq, error);
  641. rq_completed(md, rw, 1);
  642. }
  643. static void dm_unprep_request(struct request *rq)
  644. {
  645. struct request *clone = rq->special;
  646. rq->special = NULL;
  647. rq->cmd_flags &= ~REQ_DONTPREP;
  648. free_rq_clone(clone);
  649. }
  650. /*
  651. * Requeue the original request of a clone.
  652. */
  653. void dm_requeue_unmapped_request(struct request *clone)
  654. {
  655. int rw = rq_data_dir(clone);
  656. struct dm_rq_target_io *tio = clone->end_io_data;
  657. struct mapped_device *md = tio->md;
  658. struct request *rq = tio->orig;
  659. struct request_queue *q = rq->q;
  660. unsigned long flags;
  661. dm_unprep_request(rq);
  662. spin_lock_irqsave(q->queue_lock, flags);
  663. if (elv_queue_empty(q))
  664. blk_plug_device(q);
  665. blk_requeue_request(q, rq);
  666. spin_unlock_irqrestore(q->queue_lock, flags);
  667. rq_completed(md, rw, 0);
  668. }
  669. EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
  670. static void __stop_queue(struct request_queue *q)
  671. {
  672. blk_stop_queue(q);
  673. }
  674. static void stop_queue(struct request_queue *q)
  675. {
  676. unsigned long flags;
  677. spin_lock_irqsave(q->queue_lock, flags);
  678. __stop_queue(q);
  679. spin_unlock_irqrestore(q->queue_lock, flags);
  680. }
  681. static void __start_queue(struct request_queue *q)
  682. {
  683. if (blk_queue_stopped(q))
  684. blk_start_queue(q);
  685. }
  686. static void start_queue(struct request_queue *q)
  687. {
  688. unsigned long flags;
  689. spin_lock_irqsave(q->queue_lock, flags);
  690. __start_queue(q);
  691. spin_unlock_irqrestore(q->queue_lock, flags);
  692. }
  693. static void dm_done(struct request *clone, int error, bool mapped)
  694. {
  695. int r = error;
  696. struct dm_rq_target_io *tio = clone->end_io_data;
  697. dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
  698. if (mapped && rq_end_io)
  699. r = rq_end_io(tio->ti, clone, error, &tio->info);
  700. if (r <= 0)
  701. /* The target wants to complete the I/O */
  702. dm_end_request(clone, r);
  703. else if (r == DM_ENDIO_INCOMPLETE)
  704. /* The target will handle the I/O */
  705. return;
  706. else if (r == DM_ENDIO_REQUEUE)
  707. /* The target wants to requeue the I/O */
  708. dm_requeue_unmapped_request(clone);
  709. else {
  710. DMWARN("unimplemented target endio return value: %d", r);
  711. BUG();
  712. }
  713. }
  714. /*
  715. * Request completion handler for request-based dm
  716. */
  717. static void dm_softirq_done(struct request *rq)
  718. {
  719. bool mapped = true;
  720. struct request *clone = rq->completion_data;
  721. struct dm_rq_target_io *tio = clone->end_io_data;
  722. if (rq->cmd_flags & REQ_FAILED)
  723. mapped = false;
  724. dm_done(clone, tio->error, mapped);
  725. }
  726. /*
  727. * Complete the clone and the original request with the error status
  728. * through softirq context.
  729. */
  730. static void dm_complete_request(struct request *clone, int error)
  731. {
  732. struct dm_rq_target_io *tio = clone->end_io_data;
  733. struct request *rq = tio->orig;
  734. tio->error = error;
  735. rq->completion_data = clone;
  736. blk_complete_request(rq);
  737. }
  738. /*
  739. * Complete the not-mapped clone and the original request with the error status
  740. * through softirq context.
  741. * Target's rq_end_io() function isn't called.
  742. * This may be used when the target's map_rq() function fails.
  743. */
  744. void dm_kill_unmapped_request(struct request *clone, int error)
  745. {
  746. struct dm_rq_target_io *tio = clone->end_io_data;
  747. struct request *rq = tio->orig;
  748. rq->cmd_flags |= REQ_FAILED;
  749. dm_complete_request(clone, error);
  750. }
  751. EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
  752. /*
  753. * Called with the queue lock held
  754. */
  755. static void end_clone_request(struct request *clone, int error)
  756. {
  757. /*
  758. * For just cleaning up the information of the queue in which
  759. * the clone was dispatched.
  760. * The clone is *NOT* freed actually here because it is alloced from
  761. * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
  762. */
  763. __blk_put_request(clone->q, clone);
  764. /*
  765. * Actual request completion is done in a softirq context which doesn't
  766. * hold the queue lock. Otherwise, deadlock could occur because:
  767. * - another request may be submitted by the upper level driver
  768. * of the stacking during the completion
  769. * - the submission which requires queue lock may be done
  770. * against this queue
  771. */
  772. dm_complete_request(clone, error);
  773. }
  774. static sector_t max_io_len(struct mapped_device *md,
  775. sector_t sector, struct dm_target *ti)
  776. {
  777. sector_t offset = sector - ti->begin;
  778. sector_t len = ti->len - offset;
  779. /*
  780. * Does the target need to split even further ?
  781. */
  782. if (ti->split_io) {
  783. sector_t boundary;
  784. boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
  785. - offset;
  786. if (len > boundary)
  787. len = boundary;
  788. }
  789. return len;
  790. }
  791. static void __map_bio(struct dm_target *ti, struct bio *clone,
  792. struct dm_target_io *tio)
  793. {
  794. int r;
  795. sector_t sector;
  796. struct mapped_device *md;
  797. clone->bi_end_io = clone_endio;
  798. clone->bi_private = tio;
  799. /*
  800. * Map the clone. If r == 0 we don't need to do
  801. * anything, the target has assumed ownership of
  802. * this io.
  803. */
  804. atomic_inc(&tio->io->io_count);
  805. sector = clone->bi_sector;
  806. r = ti->type->map(ti, clone, &tio->info);
  807. if (r == DM_MAPIO_REMAPPED) {
  808. /* the bio has been remapped so dispatch it */
  809. trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
  810. tio->io->bio->bi_bdev->bd_dev, sector);
  811. generic_make_request(clone);
  812. } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
  813. /* error the io and bail out, or requeue it if needed */
  814. md = tio->io->md;
  815. dec_pending(tio->io, r);
  816. /*
  817. * Store bio_set for cleanup.
  818. */
  819. clone->bi_private = md->bs;
  820. bio_put(clone);
  821. free_tio(md, tio);
  822. } else if (r) {
  823. DMWARN("unimplemented target map return value: %d", r);
  824. BUG();
  825. }
  826. }
  827. struct clone_info {
  828. struct mapped_device *md;
  829. struct dm_table *map;
  830. struct bio *bio;
  831. struct dm_io *io;
  832. sector_t sector;
  833. sector_t sector_count;
  834. unsigned short idx;
  835. };
  836. static void dm_bio_destructor(struct bio *bio)
  837. {
  838. struct bio_set *bs = bio->bi_private;
  839. bio_free(bio, bs);
  840. }
  841. /*
  842. * Creates a little bio that is just does part of a bvec.
  843. */
  844. static struct bio *split_bvec(struct bio *bio, sector_t sector,
  845. unsigned short idx, unsigned int offset,
  846. unsigned int len, struct bio_set *bs)
  847. {
  848. struct bio *clone;
  849. struct bio_vec *bv = bio->bi_io_vec + idx;
  850. clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
  851. clone->bi_destructor = dm_bio_destructor;
  852. *clone->bi_io_vec = *bv;
  853. clone->bi_sector = sector;
  854. clone->bi_bdev = bio->bi_bdev;
  855. clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER);
  856. clone->bi_vcnt = 1;
  857. clone->bi_size = to_bytes(len);
  858. clone->bi_io_vec->bv_offset = offset;
  859. clone->bi_io_vec->bv_len = clone->bi_size;
  860. clone->bi_flags |= 1 << BIO_CLONED;
  861. if (bio_integrity(bio)) {
  862. bio_integrity_clone(clone, bio, GFP_NOIO, bs);
  863. bio_integrity_trim(clone,
  864. bio_sector_offset(bio, idx, offset), len);
  865. }
  866. return clone;
  867. }
  868. /*
  869. * Creates a bio that consists of range of complete bvecs.
  870. */
  871. static struct bio *clone_bio(struct bio *bio, sector_t sector,
  872. unsigned short idx, unsigned short bv_count,
  873. unsigned int len, struct bio_set *bs)
  874. {
  875. struct bio *clone;
  876. clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
  877. __bio_clone(clone, bio);
  878. clone->bi_rw &= ~(1 << BIO_RW_BARRIER);
  879. clone->bi_destructor = dm_bio_destructor;
  880. clone->bi_sector = sector;
  881. clone->bi_idx = idx;
  882. clone->bi_vcnt = idx + bv_count;
  883. clone->bi_size = to_bytes(len);
  884. clone->bi_flags &= ~(1 << BIO_SEG_VALID);
  885. if (bio_integrity(bio)) {
  886. bio_integrity_clone(clone, bio, GFP_NOIO, bs);
  887. if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
  888. bio_integrity_trim(clone,
  889. bio_sector_offset(bio, idx, 0), len);
  890. }
  891. return clone;
  892. }
  893. static struct dm_target_io *alloc_tio(struct clone_info *ci,
  894. struct dm_target *ti)
  895. {
  896. struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
  897. tio->io = ci->io;
  898. tio->ti = ti;
  899. memset(&tio->info, 0, sizeof(tio->info));
  900. return tio;
  901. }
  902. static void __flush_target(struct clone_info *ci, struct dm_target *ti,
  903. unsigned flush_nr)
  904. {
  905. struct dm_target_io *tio = alloc_tio(ci, ti);
  906. struct bio *clone;
  907. tio->info.flush_request = flush_nr;
  908. clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
  909. __bio_clone(clone, ci->bio);
  910. clone->bi_destructor = dm_bio_destructor;
  911. __map_bio(ti, clone, tio);
  912. }
  913. static int __clone_and_map_empty_barrier(struct clone_info *ci)
  914. {
  915. unsigned target_nr = 0, flush_nr;
  916. struct dm_target *ti;
  917. while ((ti = dm_table_get_target(ci->map, target_nr++)))
  918. for (flush_nr = 0; flush_nr < ti->num_flush_requests;
  919. flush_nr++)
  920. __flush_target(ci, ti, flush_nr);
  921. ci->sector_count = 0;
  922. return 0;
  923. }
  924. static int __clone_and_map(struct clone_info *ci)
  925. {
  926. struct bio *clone, *bio = ci->bio;
  927. struct dm_target *ti;
  928. sector_t len = 0, max;
  929. struct dm_target_io *tio;
  930. if (unlikely(bio_empty_barrier(bio)))
  931. return __clone_and_map_empty_barrier(ci);
  932. ti = dm_table_find_target(ci->map, ci->sector);
  933. if (!dm_target_is_valid(ti))
  934. return -EIO;
  935. max = max_io_len(ci->md, ci->sector, ti);
  936. /*
  937. * Allocate a target io object.
  938. */
  939. tio = alloc_tio(ci, ti);
  940. if (ci->sector_count <= max) {
  941. /*
  942. * Optimise for the simple case where we can do all of
  943. * the remaining io with a single clone.
  944. */
  945. clone = clone_bio(bio, ci->sector, ci->idx,
  946. bio->bi_vcnt - ci->idx, ci->sector_count,
  947. ci->md->bs);
  948. __map_bio(ti, clone, tio);
  949. ci->sector_count = 0;
  950. } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
  951. /*
  952. * There are some bvecs that don't span targets.
  953. * Do as many of these as possible.
  954. */
  955. int i;
  956. sector_t remaining = max;
  957. sector_t bv_len;
  958. for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
  959. bv_len = to_sector(bio->bi_io_vec[i].bv_len);
  960. if (bv_len > remaining)
  961. break;
  962. remaining -= bv_len;
  963. len += bv_len;
  964. }
  965. clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
  966. ci->md->bs);
  967. __map_bio(ti, clone, tio);
  968. ci->sector += len;
  969. ci->sector_count -= len;
  970. ci->idx = i;
  971. } else {
  972. /*
  973. * Handle a bvec that must be split between two or more targets.
  974. */
  975. struct bio_vec *bv = bio->bi_io_vec + ci->idx;
  976. sector_t remaining = to_sector(bv->bv_len);
  977. unsigned int offset = 0;
  978. do {
  979. if (offset) {
  980. ti = dm_table_find_target(ci->map, ci->sector);
  981. if (!dm_target_is_valid(ti))
  982. return -EIO;
  983. max = max_io_len(ci->md, ci->sector, ti);
  984. tio = alloc_tio(ci, ti);
  985. }
  986. len = min(remaining, max);
  987. clone = split_bvec(bio, ci->sector, ci->idx,
  988. bv->bv_offset + offset, len,
  989. ci->md->bs);
  990. __map_bio(ti, clone, tio);
  991. ci->sector += len;
  992. ci->sector_count -= len;
  993. offset += to_bytes(len);
  994. } while (remaining -= len);
  995. ci->idx++;
  996. }
  997. return 0;
  998. }
  999. /*
  1000. * Split the bio into several clones and submit it to targets.
  1001. */
  1002. static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
  1003. {
  1004. struct clone_info ci;
  1005. int error = 0;
  1006. ci.map = dm_get_table(md);
  1007. if (unlikely(!ci.map)) {
  1008. if (!bio_rw_flagged(bio, BIO_RW_BARRIER))
  1009. bio_io_error(bio);
  1010. else
  1011. if (!md->barrier_error)
  1012. md->barrier_error = -EIO;
  1013. return;
  1014. }
  1015. ci.md = md;
  1016. ci.bio = bio;
  1017. ci.io = alloc_io(md);
  1018. ci.io->error = 0;
  1019. atomic_set(&ci.io->io_count, 1);
  1020. ci.io->bio = bio;
  1021. ci.io->md = md;
  1022. spin_lock_init(&ci.io->endio_lock);
  1023. ci.sector = bio->bi_sector;
  1024. ci.sector_count = bio_sectors(bio);
  1025. if (unlikely(bio_empty_barrier(bio)))
  1026. ci.sector_count = 1;
  1027. ci.idx = bio->bi_idx;
  1028. start_io_acct(ci.io);
  1029. while (ci.sector_count && !error)
  1030. error = __clone_and_map(&ci);
  1031. /* drop the extra reference count */
  1032. dec_pending(ci.io, error);
  1033. dm_table_put(ci.map);
  1034. }
  1035. /*-----------------------------------------------------------------
  1036. * CRUD END
  1037. *---------------------------------------------------------------*/
  1038. static int dm_merge_bvec(struct request_queue *q,
  1039. struct bvec_merge_data *bvm,
  1040. struct bio_vec *biovec)
  1041. {
  1042. struct mapped_device *md = q->queuedata;
  1043. struct dm_table *map = dm_get_table(md);
  1044. struct dm_target *ti;
  1045. sector_t max_sectors;
  1046. int max_size = 0;
  1047. if (unlikely(!map))
  1048. goto out;
  1049. ti = dm_table_find_target(map, bvm->bi_sector);
  1050. if (!dm_target_is_valid(ti))
  1051. goto out_table;
  1052. /*
  1053. * Find maximum amount of I/O that won't need splitting
  1054. */
  1055. max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
  1056. (sector_t) BIO_MAX_SECTORS);
  1057. max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
  1058. if (max_size < 0)
  1059. max_size = 0;
  1060. /*
  1061. * merge_bvec_fn() returns number of bytes
  1062. * it can accept at this offset
  1063. * max is precomputed maximal io size
  1064. */
  1065. if (max_size && ti->type->merge)
  1066. max_size = ti->type->merge(ti, bvm, biovec, max_size);
  1067. /*
  1068. * If the target doesn't support merge method and some of the devices
  1069. * provided their merge_bvec method (we know this by looking at
  1070. * queue_max_hw_sectors), then we can't allow bios with multiple vector
  1071. * entries. So always set max_size to 0, and the code below allows
  1072. * just one page.
  1073. */
  1074. else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
  1075. max_size = 0;
  1076. out_table:
  1077. dm_table_put(map);
  1078. out:
  1079. /*
  1080. * Always allow an entire first page
  1081. */
  1082. if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
  1083. max_size = biovec->bv_len;
  1084. return max_size;
  1085. }
  1086. /*
  1087. * The request function that just remaps the bio built up by
  1088. * dm_merge_bvec.
  1089. */
  1090. static int _dm_request(struct request_queue *q, struct bio *bio)
  1091. {
  1092. int rw = bio_data_dir(bio);
  1093. struct mapped_device *md = q->queuedata;
  1094. int cpu;
  1095. down_read(&md->io_lock);
  1096. cpu = part_stat_lock();
  1097. part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
  1098. part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
  1099. part_stat_unlock();
  1100. /*
  1101. * If we're suspended or the thread is processing barriers
  1102. * we have to queue this io for later.
  1103. */
  1104. if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
  1105. unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) {
  1106. up_read(&md->io_lock);
  1107. if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
  1108. bio_rw(bio) == READA) {
  1109. bio_io_error(bio);
  1110. return 0;
  1111. }
  1112. queue_io(md, bio);
  1113. return 0;
  1114. }
  1115. __split_and_process_bio(md, bio);
  1116. up_read(&md->io_lock);
  1117. return 0;
  1118. }
  1119. static int dm_make_request(struct request_queue *q, struct bio *bio)
  1120. {
  1121. struct mapped_device *md = q->queuedata;
  1122. if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) {
  1123. bio_endio(bio, -EOPNOTSUPP);
  1124. return 0;
  1125. }
  1126. return md->saved_make_request_fn(q, bio); /* call __make_request() */
  1127. }
  1128. static int dm_request_based(struct mapped_device *md)
  1129. {
  1130. return blk_queue_stackable(md->queue);
  1131. }
  1132. static int dm_request(struct request_queue *q, struct bio *bio)
  1133. {
  1134. struct mapped_device *md = q->queuedata;
  1135. if (dm_request_based(md))
  1136. return dm_make_request(q, bio);
  1137. return _dm_request(q, bio);
  1138. }
  1139. void dm_dispatch_request(struct request *rq)
  1140. {
  1141. int r;
  1142. if (blk_queue_io_stat(rq->q))
  1143. rq->cmd_flags |= REQ_IO_STAT;
  1144. rq->start_time = jiffies;
  1145. r = blk_insert_cloned_request(rq->q, rq);
  1146. if (r)
  1147. dm_complete_request(rq, r);
  1148. }
  1149. EXPORT_SYMBOL_GPL(dm_dispatch_request);
  1150. static void dm_rq_bio_destructor(struct bio *bio)
  1151. {
  1152. struct dm_rq_clone_bio_info *info = bio->bi_private;
  1153. struct mapped_device *md = info->tio->md;
  1154. free_bio_info(info);
  1155. bio_free(bio, md->bs);
  1156. }
  1157. static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
  1158. void *data)
  1159. {
  1160. struct dm_rq_target_io *tio = data;
  1161. struct mapped_device *md = tio->md;
  1162. struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
  1163. if (!info)
  1164. return -ENOMEM;
  1165. info->orig = bio_orig;
  1166. info->tio = tio;
  1167. bio->bi_end_io = end_clone_bio;
  1168. bio->bi_private = info;
  1169. bio->bi_destructor = dm_rq_bio_destructor;
  1170. return 0;
  1171. }
  1172. static int setup_clone(struct request *clone, struct request *rq,
  1173. struct dm_rq_target_io *tio)
  1174. {
  1175. int r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
  1176. dm_rq_bio_constructor, tio);
  1177. if (r)
  1178. return r;
  1179. clone->cmd = rq->cmd;
  1180. clone->cmd_len = rq->cmd_len;
  1181. clone->sense = rq->sense;
  1182. clone->buffer = rq->buffer;
  1183. clone->end_io = end_clone_request;
  1184. clone->end_io_data = tio;
  1185. return 0;
  1186. }
  1187. static struct request *clone_rq(struct request *rq, struct mapped_device *md,
  1188. gfp_t gfp_mask)
  1189. {
  1190. struct request *clone;
  1191. struct dm_rq_target_io *tio;
  1192. tio = alloc_rq_tio(md, gfp_mask);
  1193. if (!tio)
  1194. return NULL;
  1195. tio->md = md;
  1196. tio->ti = NULL;
  1197. tio->orig = rq;
  1198. tio->error = 0;
  1199. memset(&tio->info, 0, sizeof(tio->info));
  1200. clone = &tio->clone;
  1201. if (setup_clone(clone, rq, tio)) {
  1202. /* -ENOMEM */
  1203. free_rq_tio(tio);
  1204. return NULL;
  1205. }
  1206. return clone;
  1207. }
  1208. /*
  1209. * Called with the queue lock held.
  1210. */
  1211. static int dm_prep_fn(struct request_queue *q, struct request *rq)
  1212. {
  1213. struct mapped_device *md = q->queuedata;
  1214. struct request *clone;
  1215. if (unlikely(rq->special)) {
  1216. DMWARN("Already has something in rq->special.");
  1217. return BLKPREP_KILL;
  1218. }
  1219. clone = clone_rq(rq, md, GFP_ATOMIC);
  1220. if (!clone)
  1221. return BLKPREP_DEFER;
  1222. rq->special = clone;
  1223. rq->cmd_flags |= REQ_DONTPREP;
  1224. return BLKPREP_OK;
  1225. }
  1226. static void map_request(struct dm_target *ti, struct request *clone,
  1227. struct mapped_device *md)
  1228. {
  1229. int r;
  1230. struct dm_rq_target_io *tio = clone->end_io_data;
  1231. /*
  1232. * Hold the md reference here for the in-flight I/O.
  1233. * We can't rely on the reference count by device opener,
  1234. * because the device may be closed during the request completion
  1235. * when all bios are completed.
  1236. * See the comment in rq_completed() too.
  1237. */
  1238. dm_get(md);
  1239. tio->ti = ti;
  1240. r = ti->type->map_rq(ti, clone, &tio->info);
  1241. switch (r) {
  1242. case DM_MAPIO_SUBMITTED:
  1243. /* The target has taken the I/O to submit by itself later */
  1244. break;
  1245. case DM_MAPIO_REMAPPED:
  1246. /* The target has remapped the I/O so dispatch it */
  1247. dm_dispatch_request(clone);
  1248. break;
  1249. case DM_MAPIO_REQUEUE:
  1250. /* The target wants to requeue the I/O */
  1251. dm_requeue_unmapped_request(clone);
  1252. break;
  1253. default:
  1254. if (r > 0) {
  1255. DMWARN("unimplemented target map return value: %d", r);
  1256. BUG();
  1257. }
  1258. /* The target wants to complete the I/O */
  1259. dm_kill_unmapped_request(clone, r);
  1260. break;
  1261. }
  1262. }
  1263. /*
  1264. * q->request_fn for request-based dm.
  1265. * Called with the queue lock held.
  1266. */
  1267. static void dm_request_fn(struct request_queue *q)
  1268. {
  1269. struct mapped_device *md = q->queuedata;
  1270. struct dm_table *map = dm_get_table(md);
  1271. struct dm_target *ti;
  1272. struct request *rq, *clone;
  1273. /*
  1274. * For suspend, check blk_queue_stopped() and increment
  1275. * ->pending within a single queue_lock not to increment the
  1276. * number of in-flight I/Os after the queue is stopped in
  1277. * dm_suspend().
  1278. */
  1279. while (!blk_queue_plugged(q) && !blk_queue_stopped(q)) {
  1280. rq = blk_peek_request(q);
  1281. if (!rq)
  1282. goto plug_and_out;
  1283. ti = dm_table_find_target(map, blk_rq_pos(rq));
  1284. if (ti->type->busy && ti->type->busy(ti))
  1285. goto plug_and_out;
  1286. blk_start_request(rq);
  1287. clone = rq->special;
  1288. atomic_inc(&md->pending[rq_data_dir(clone)]);
  1289. spin_unlock(q->queue_lock);
  1290. map_request(ti, clone, md);
  1291. spin_lock_irq(q->queue_lock);
  1292. }
  1293. goto out;
  1294. plug_and_out:
  1295. if (!elv_queue_empty(q))
  1296. /* Some requests still remain, retry later */
  1297. blk_plug_device(q);
  1298. out:
  1299. dm_table_put(map);
  1300. return;
  1301. }
  1302. int dm_underlying_device_busy(struct request_queue *q)
  1303. {
  1304. return blk_lld_busy(q);
  1305. }
  1306. EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
  1307. static int dm_lld_busy(struct request_queue *q)
  1308. {
  1309. int r;
  1310. struct mapped_device *md = q->queuedata;
  1311. struct dm_table *map = dm_get_table(md);
  1312. if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
  1313. r = 1;
  1314. else
  1315. r = dm_table_any_busy_target(map);
  1316. dm_table_put(map);
  1317. return r;
  1318. }
  1319. static void dm_unplug_all(struct request_queue *q)
  1320. {
  1321. struct mapped_device *md = q->queuedata;
  1322. struct dm_table *map = dm_get_table(md);
  1323. if (map) {
  1324. if (dm_request_based(md))
  1325. generic_unplug_device(q);
  1326. dm_table_unplug_all(map);
  1327. dm_table_put(map);
  1328. }
  1329. }
  1330. static int dm_any_congested(void *congested_data, int bdi_bits)
  1331. {
  1332. int r = bdi_bits;
  1333. struct mapped_device *md = congested_data;
  1334. struct dm_table *map;
  1335. if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
  1336. map = dm_get_table(md);
  1337. if (map) {
  1338. /*
  1339. * Request-based dm cares about only own queue for
  1340. * the query about congestion status of request_queue
  1341. */
  1342. if (dm_request_based(md))
  1343. r = md->queue->backing_dev_info.state &
  1344. bdi_bits;
  1345. else
  1346. r = dm_table_any_congested(map, bdi_bits);
  1347. dm_table_put(map);
  1348. }
  1349. }
  1350. return r;
  1351. }
  1352. /*-----------------------------------------------------------------
  1353. * An IDR is used to keep track of allocated minor numbers.
  1354. *---------------------------------------------------------------*/
  1355. static DEFINE_IDR(_minor_idr);
  1356. static void free_minor(int minor)
  1357. {
  1358. spin_lock(&_minor_lock);
  1359. idr_remove(&_minor_idr, minor);
  1360. spin_unlock(&_minor_lock);
  1361. }
  1362. /*
  1363. * See if the device with a specific minor # is free.
  1364. */
  1365. static int specific_minor(int minor)
  1366. {
  1367. int r, m;
  1368. if (minor >= (1 << MINORBITS))
  1369. return -EINVAL;
  1370. r = idr_pre_get(&_minor_idr, GFP_KERNEL);
  1371. if (!r)
  1372. return -ENOMEM;
  1373. spin_lock(&_minor_lock);
  1374. if (idr_find(&_minor_idr, minor)) {
  1375. r = -EBUSY;
  1376. goto out;
  1377. }
  1378. r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
  1379. if (r)
  1380. goto out;
  1381. if (m != minor) {
  1382. idr_remove(&_minor_idr, m);
  1383. r = -EBUSY;
  1384. goto out;
  1385. }
  1386. out:
  1387. spin_unlock(&_minor_lock);
  1388. return r;
  1389. }
  1390. static int next_free_minor(int *minor)
  1391. {
  1392. int r, m;
  1393. r = idr_pre_get(&_minor_idr, GFP_KERNEL);
  1394. if (!r)
  1395. return -ENOMEM;
  1396. spin_lock(&_minor_lock);
  1397. r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
  1398. if (r)
  1399. goto out;
  1400. if (m >= (1 << MINORBITS)) {
  1401. idr_remove(&_minor_idr, m);
  1402. r = -ENOSPC;
  1403. goto out;
  1404. }
  1405. *minor = m;
  1406. out:
  1407. spin_unlock(&_minor_lock);
  1408. return r;
  1409. }
  1410. static const struct block_device_operations dm_blk_dops;
  1411. static void dm_wq_work(struct work_struct *work);
  1412. /*
  1413. * Allocate and initialise a blank device with a given minor.
  1414. */
  1415. static struct mapped_device *alloc_dev(int minor)
  1416. {
  1417. int r;
  1418. struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
  1419. void *old_md;
  1420. if (!md) {
  1421. DMWARN("unable to allocate device, out of memory.");
  1422. return NULL;
  1423. }
  1424. if (!try_module_get(THIS_MODULE))
  1425. goto bad_module_get;
  1426. /* get a minor number for the dev */
  1427. if (minor == DM_ANY_MINOR)
  1428. r = next_free_minor(&minor);
  1429. else
  1430. r = specific_minor(minor);
  1431. if (r < 0)
  1432. goto bad_minor;
  1433. init_rwsem(&md->io_lock);
  1434. mutex_init(&md->suspend_lock);
  1435. spin_lock_init(&md->deferred_lock);
  1436. rwlock_init(&md->map_lock);
  1437. atomic_set(&md->holders, 1);
  1438. atomic_set(&md->open_count, 0);
  1439. atomic_set(&md->event_nr, 0);
  1440. atomic_set(&md->uevent_seq, 0);
  1441. INIT_LIST_HEAD(&md->uevent_list);
  1442. spin_lock_init(&md->uevent_lock);
  1443. md->queue = blk_init_queue(dm_request_fn, NULL);
  1444. if (!md->queue)
  1445. goto bad_queue;
  1446. /*
  1447. * Request-based dm devices cannot be stacked on top of bio-based dm
  1448. * devices. The type of this dm device has not been decided yet,
  1449. * although we initialized the queue using blk_init_queue().
  1450. * The type is decided at the first table loading time.
  1451. * To prevent problematic device stacking, clear the queue flag
  1452. * for request stacking support until then.
  1453. *
  1454. * This queue is new, so no concurrency on the queue_flags.
  1455. */
  1456. queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
  1457. md->saved_make_request_fn = md->queue->make_request_fn;
  1458. md->queue->queuedata = md;
  1459. md->queue->backing_dev_info.congested_fn = dm_any_congested;
  1460. md->queue->backing_dev_info.congested_data = md;
  1461. blk_queue_make_request(md->queue, dm_request);
  1462. blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
  1463. md->queue->unplug_fn = dm_unplug_all;
  1464. blk_queue_merge_bvec(md->queue, dm_merge_bvec);
  1465. blk_queue_softirq_done(md->queue, dm_softirq_done);
  1466. blk_queue_prep_rq(md->queue, dm_prep_fn);
  1467. blk_queue_lld_busy(md->queue, dm_lld_busy);
  1468. md->disk = alloc_disk(1);
  1469. if (!md->disk)
  1470. goto bad_disk;
  1471. atomic_set(&md->pending[0], 0);
  1472. atomic_set(&md->pending[1], 0);
  1473. init_waitqueue_head(&md->wait);
  1474. INIT_WORK(&md->work, dm_wq_work);
  1475. init_waitqueue_head(&md->eventq);
  1476. md->disk->major = _major;
  1477. md->disk->first_minor = minor;
  1478. md->disk->fops = &dm_blk_dops;
  1479. md->disk->queue = md->queue;
  1480. md->disk->private_data = md;
  1481. sprintf(md->disk->disk_name, "dm-%d", minor);
  1482. add_disk(md->disk);
  1483. format_dev_t(md->name, MKDEV(_major, minor));
  1484. md->wq = create_singlethread_workqueue("kdmflush");
  1485. if (!md->wq)
  1486. goto bad_thread;
  1487. md->bdev = bdget_disk(md->disk, 0);
  1488. if (!md->bdev)
  1489. goto bad_bdev;
  1490. /* Populate the mapping, nobody knows we exist yet */
  1491. spin_lock(&_minor_lock);
  1492. old_md = idr_replace(&_minor_idr, md, minor);
  1493. spin_unlock(&_minor_lock);
  1494. BUG_ON(old_md != MINOR_ALLOCED);
  1495. return md;
  1496. bad_bdev:
  1497. destroy_workqueue(md->wq);
  1498. bad_thread:
  1499. del_gendisk(md->disk);
  1500. put_disk(md->disk);
  1501. bad_disk:
  1502. blk_cleanup_queue(md->queue);
  1503. bad_queue:
  1504. free_minor(minor);
  1505. bad_minor:
  1506. module_put(THIS_MODULE);
  1507. bad_module_get:
  1508. kfree(md);
  1509. return NULL;
  1510. }
  1511. static void unlock_fs(struct mapped_device *md);
  1512. static void free_dev(struct mapped_device *md)
  1513. {
  1514. int minor = MINOR(disk_devt(md->disk));
  1515. unlock_fs(md);
  1516. bdput(md->bdev);
  1517. destroy_workqueue(md->wq);
  1518. if (md->tio_pool)
  1519. mempool_destroy(md->tio_pool);
  1520. if (md->io_pool)
  1521. mempool_destroy(md->io_pool);
  1522. if (md->bs)
  1523. bioset_free(md->bs);
  1524. blk_integrity_unregister(md->disk);
  1525. del_gendisk(md->disk);
  1526. free_minor(minor);
  1527. spin_lock(&_minor_lock);
  1528. md->disk->private_data = NULL;
  1529. spin_unlock(&_minor_lock);
  1530. put_disk(md->disk);
  1531. blk_cleanup_queue(md->queue);
  1532. module_put(THIS_MODULE);
  1533. kfree(md);
  1534. }
  1535. static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
  1536. {
  1537. struct dm_md_mempools *p;
  1538. if (md->io_pool && md->tio_pool && md->bs)
  1539. /* the md already has necessary mempools */
  1540. goto out;
  1541. p = dm_table_get_md_mempools(t);
  1542. BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
  1543. md->io_pool = p->io_pool;
  1544. p->io_pool = NULL;
  1545. md->tio_pool = p->tio_pool;
  1546. p->tio_pool = NULL;
  1547. md->bs = p->bs;
  1548. p->bs = NULL;
  1549. out:
  1550. /* mempool bind completed, now no need any mempools in the table */
  1551. dm_table_free_md_mempools(t);
  1552. }
  1553. /*
  1554. * Bind a table to the device.
  1555. */
  1556. static void event_callback(void *context)
  1557. {
  1558. unsigned long flags;
  1559. LIST_HEAD(uevents);
  1560. struct mapped_device *md = (struct mapped_device *) context;
  1561. spin_lock_irqsave(&md->uevent_lock, flags);
  1562. list_splice_init(&md->uevent_list, &uevents);
  1563. spin_unlock_irqrestore(&md->uevent_lock, flags);
  1564. dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
  1565. atomic_inc(&md->event_nr);
  1566. wake_up(&md->eventq);
  1567. }
  1568. static void __set_size(struct mapped_device *md, sector_t size)
  1569. {
  1570. set_capacity(md->disk, size);
  1571. mutex_lock(&md->bdev->bd_inode->i_mutex);
  1572. i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
  1573. mutex_unlock(&md->bdev->bd_inode->i_mutex);
  1574. }
  1575. static int __bind(struct mapped_device *md, struct dm_table *t,
  1576. struct queue_limits *limits)
  1577. {
  1578. struct request_queue *q = md->queue;
  1579. sector_t size;
  1580. unsigned long flags;
  1581. size = dm_table_get_size(t);
  1582. /*
  1583. * Wipe any geometry if the size of the table changed.
  1584. */
  1585. if (size != get_capacity(md->disk))
  1586. memset(&md->geometry, 0, sizeof(md->geometry));
  1587. __set_size(md, size);
  1588. if (!size) {
  1589. dm_table_destroy(t);
  1590. return 0;
  1591. }
  1592. dm_table_event_callback(t, event_callback, md);
  1593. /*
  1594. * The queue hasn't been stopped yet, if the old table type wasn't
  1595. * for request-based during suspension. So stop it to prevent
  1596. * I/O mapping before resume.
  1597. * This must be done before setting the queue restrictions,
  1598. * because request-based dm may be run just after the setting.
  1599. */
  1600. if (dm_table_request_based(t) && !blk_queue_stopped(q))
  1601. stop_queue(q);
  1602. __bind_mempools(md, t);
  1603. write_lock_irqsave(&md->map_lock, flags);
  1604. md->map = t;
  1605. dm_table_set_restrictions(t, q, limits);
  1606. write_unlock_irqrestore(&md->map_lock, flags);
  1607. return 0;
  1608. }
  1609. static void __unbind(struct mapped_device *md)
  1610. {
  1611. struct dm_table *map = md->map;
  1612. unsigned long flags;
  1613. if (!map)
  1614. return;
  1615. dm_table_event_callback(map, NULL, NULL);
  1616. write_lock_irqsave(&md->map_lock, flags);
  1617. md->map = NULL;
  1618. write_unlock_irqrestore(&md->map_lock, flags);
  1619. dm_table_destroy(map);
  1620. }
  1621. /*
  1622. * Constructor for a new device.
  1623. */
  1624. int dm_create(int minor, struct mapped_device **result)
  1625. {
  1626. struct mapped_device *md;
  1627. md = alloc_dev(minor);
  1628. if (!md)
  1629. return -ENXIO;
  1630. dm_sysfs_init(md);
  1631. *result = md;
  1632. return 0;
  1633. }
  1634. static struct mapped_device *dm_find_md(dev_t dev)
  1635. {
  1636. struct mapped_device *md;
  1637. unsigned minor = MINOR(dev);
  1638. if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
  1639. return NULL;
  1640. spin_lock(&_minor_lock);
  1641. md = idr_find(&_minor_idr, minor);
  1642. if (md && (md == MINOR_ALLOCED ||
  1643. (MINOR(disk_devt(dm_disk(md))) != minor) ||
  1644. test_bit(DMF_FREEING, &md->flags))) {
  1645. md = NULL;
  1646. goto out;
  1647. }
  1648. out:
  1649. spin_unlock(&_minor_lock);
  1650. return md;
  1651. }
  1652. struct mapped_device *dm_get_md(dev_t dev)
  1653. {
  1654. struct mapped_device *md = dm_find_md(dev);
  1655. if (md)
  1656. dm_get(md);
  1657. return md;
  1658. }
  1659. void *dm_get_mdptr(struct mapped_device *md)
  1660. {
  1661. return md->interface_ptr;
  1662. }
  1663. void dm_set_mdptr(struct mapped_device *md, void *ptr)
  1664. {
  1665. md->interface_ptr = ptr;
  1666. }
  1667. void dm_get(struct mapped_device *md)
  1668. {
  1669. atomic_inc(&md->holders);
  1670. }
  1671. const char *dm_device_name(struct mapped_device *md)
  1672. {
  1673. return md->name;
  1674. }
  1675. EXPORT_SYMBOL_GPL(dm_device_name);
  1676. void dm_put(struct mapped_device *md)
  1677. {
  1678. struct dm_table *map;
  1679. BUG_ON(test_bit(DMF_FREEING, &md->flags));
  1680. if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
  1681. map = dm_get_table(md);
  1682. idr_replace(&_minor_idr, MINOR_ALLOCED,
  1683. MINOR(disk_devt(dm_disk(md))));
  1684. set_bit(DMF_FREEING, &md->flags);
  1685. spin_unlock(&_minor_lock);
  1686. if (!dm_suspended(md)) {
  1687. dm_table_presuspend_targets(map);
  1688. dm_table_postsuspend_targets(map);
  1689. }
  1690. dm_sysfs_exit(md);
  1691. dm_table_put(map);
  1692. __unbind(md);
  1693. free_dev(md);
  1694. }
  1695. }
  1696. EXPORT_SYMBOL_GPL(dm_put);
  1697. static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
  1698. {
  1699. int r = 0;
  1700. DECLARE_WAITQUEUE(wait, current);
  1701. dm_unplug_all(md->queue);
  1702. add_wait_queue(&md->wait, &wait);
  1703. while (1) {
  1704. set_current_state(interruptible);
  1705. smp_mb();
  1706. if (!md_in_flight(md))
  1707. break;
  1708. if (interruptible == TASK_INTERRUPTIBLE &&
  1709. signal_pending(current)) {
  1710. r = -EINTR;
  1711. break;
  1712. }
  1713. io_schedule();
  1714. }
  1715. set_current_state(TASK_RUNNING);
  1716. remove_wait_queue(&md->wait, &wait);
  1717. return r;
  1718. }
  1719. static void dm_flush(struct mapped_device *md)
  1720. {
  1721. dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
  1722. bio_init(&md->barrier_bio);
  1723. md->barrier_bio.bi_bdev = md->bdev;
  1724. md->barrier_bio.bi_rw = WRITE_BARRIER;
  1725. __split_and_process_bio(md, &md->barrier_bio);
  1726. dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
  1727. }
  1728. static void process_barrier(struct mapped_device *md, struct bio *bio)
  1729. {
  1730. md->barrier_error = 0;
  1731. dm_flush(md);
  1732. if (!bio_empty_barrier(bio)) {
  1733. __split_and_process_bio(md, bio);
  1734. dm_flush(md);
  1735. }
  1736. if (md->barrier_error != DM_ENDIO_REQUEUE)
  1737. bio_endio(bio, md->barrier_error);
  1738. else {
  1739. spin_lock_irq(&md->deferred_lock);
  1740. bio_list_add_head(&md->deferred, bio);
  1741. spin_unlock_irq(&md->deferred_lock);
  1742. }
  1743. }
  1744. /*
  1745. * Process the deferred bios
  1746. */
  1747. static void dm_wq_work(struct work_struct *work)
  1748. {
  1749. struct mapped_device *md = container_of(work, struct mapped_device,
  1750. work);
  1751. struct bio *c;
  1752. down_write(&md->io_lock);
  1753. while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
  1754. spin_lock_irq(&md->deferred_lock);
  1755. c = bio_list_pop(&md->deferred);
  1756. spin_unlock_irq(&md->deferred_lock);
  1757. if (!c) {
  1758. clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
  1759. break;
  1760. }
  1761. up_write(&md->io_lock);
  1762. if (dm_request_based(md))
  1763. generic_make_request(c);
  1764. else {
  1765. if (bio_rw_flagged(c, BIO_RW_BARRIER))
  1766. process_barrier(md, c);
  1767. else
  1768. __split_and_process_bio(md, c);
  1769. }
  1770. down_write(&md->io_lock);
  1771. }
  1772. up_write(&md->io_lock);
  1773. }
  1774. static void dm_queue_flush(struct mapped_device *md)
  1775. {
  1776. clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
  1777. smp_mb__after_clear_bit();
  1778. queue_work(md->wq, &md->work);
  1779. }
  1780. /*
  1781. * Swap in a new table (destroying old one).
  1782. */
  1783. int dm_swap_table(struct mapped_device *md, struct dm_table *table)
  1784. {
  1785. struct queue_limits limits;
  1786. int r = -EINVAL;
  1787. mutex_lock(&md->suspend_lock);
  1788. /* device must be suspended */
  1789. if (!dm_suspended(md))
  1790. goto out;
  1791. r = dm_calculate_queue_limits(table, &limits);
  1792. if (r)
  1793. goto out;
  1794. /* cannot change the device type, once a table is bound */
  1795. if (md->map &&
  1796. (dm_table_get_type(md->map) != dm_table_get_type(table))) {
  1797. DMWARN("can't change the device type after a table is bound");
  1798. goto out;
  1799. }
  1800. __unbind(md);
  1801. r = __bind(md, table, &limits);
  1802. out:
  1803. mutex_unlock(&md->suspend_lock);
  1804. return r;
  1805. }
  1806. /*
  1807. * Functions to lock and unlock any filesystem running on the
  1808. * device.
  1809. */
  1810. static int lock_fs(struct mapped_device *md)
  1811. {
  1812. int r;
  1813. WARN_ON(md->frozen_sb);
  1814. md->frozen_sb = freeze_bdev(md->bdev);
  1815. if (IS_ERR(md->frozen_sb)) {
  1816. r = PTR_ERR(md->frozen_sb);
  1817. md->frozen_sb = NULL;
  1818. return r;
  1819. }
  1820. set_bit(DMF_FROZEN, &md->flags);
  1821. return 0;
  1822. }
  1823. static void unlock_fs(struct mapped_device *md)
  1824. {
  1825. if (!test_bit(DMF_FROZEN, &md->flags))
  1826. return;
  1827. thaw_bdev(md->bdev, md->frozen_sb);
  1828. md->frozen_sb = NULL;
  1829. clear_bit(DMF_FROZEN, &md->flags);
  1830. }
  1831. /*
  1832. * We need to be able to change a mapping table under a mounted
  1833. * filesystem. For example we might want to move some data in
  1834. * the background. Before the table can be swapped with
  1835. * dm_bind_table, dm_suspend must be called to flush any in
  1836. * flight bios and ensure that any further io gets deferred.
  1837. */
  1838. /*
  1839. * Suspend mechanism in request-based dm.
  1840. *
  1841. * 1. Flush all I/Os by lock_fs() if needed.
  1842. * 2. Stop dispatching any I/O by stopping the request_queue.
  1843. * 3. Wait for all in-flight I/Os to be completed or requeued.
  1844. *
  1845. * To abort suspend, start the request_queue.
  1846. */
  1847. int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
  1848. {
  1849. struct dm_table *map = NULL;
  1850. int r = 0;
  1851. int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
  1852. int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
  1853. mutex_lock(&md->suspend_lock);
  1854. if (dm_suspended(md)) {
  1855. r = -EINVAL;
  1856. goto out_unlock;
  1857. }
  1858. map = dm_get_table(md);
  1859. /*
  1860. * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
  1861. * This flag is cleared before dm_suspend returns.
  1862. */
  1863. if (noflush)
  1864. set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
  1865. /* This does not get reverted if there's an error later. */
  1866. dm_table_presuspend_targets(map);
  1867. /*
  1868. * Flush I/O to the device.
  1869. * Any I/O submitted after lock_fs() may not be flushed.
  1870. * noflush takes precedence over do_lockfs.
  1871. * (lock_fs() flushes I/Os and waits for them to complete.)
  1872. */
  1873. if (!noflush && do_lockfs) {
  1874. r = lock_fs(md);
  1875. if (r)
  1876. goto out;
  1877. }
  1878. /*
  1879. * Here we must make sure that no processes are submitting requests
  1880. * to target drivers i.e. no one may be executing
  1881. * __split_and_process_bio. This is called from dm_request and
  1882. * dm_wq_work.
  1883. *
  1884. * To get all processes out of __split_and_process_bio in dm_request,
  1885. * we take the write lock. To prevent any process from reentering
  1886. * __split_and_process_bio from dm_request, we set
  1887. * DMF_QUEUE_IO_TO_THREAD.
  1888. *
  1889. * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
  1890. * and call flush_workqueue(md->wq). flush_workqueue will wait until
  1891. * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
  1892. * further calls to __split_and_process_bio from dm_wq_work.
  1893. */
  1894. down_write(&md->io_lock);
  1895. set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
  1896. set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
  1897. up_write(&md->io_lock);
  1898. flush_workqueue(md->wq);
  1899. if (dm_request_based(md))
  1900. stop_queue(md->queue);
  1901. /*
  1902. * At this point no more requests are entering target request routines.
  1903. * We call dm_wait_for_completion to wait for all existing requests
  1904. * to finish.
  1905. */
  1906. r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
  1907. down_write(&md->io_lock);
  1908. if (noflush)
  1909. clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
  1910. up_write(&md->io_lock);
  1911. /* were we interrupted ? */
  1912. if (r < 0) {
  1913. dm_queue_flush(md);
  1914. if (dm_request_based(md))
  1915. start_queue(md->queue);
  1916. unlock_fs(md);
  1917. goto out; /* pushback list is already flushed, so skip flush */
  1918. }
  1919. /*
  1920. * If dm_wait_for_completion returned 0, the device is completely
  1921. * quiescent now. There is no request-processing activity. All new
  1922. * requests are being added to md->deferred list.
  1923. */
  1924. dm_table_postsuspend_targets(map);
  1925. set_bit(DMF_SUSPENDED, &md->flags);
  1926. out:
  1927. dm_table_put(map);
  1928. out_unlock:
  1929. mutex_unlock(&md->suspend_lock);
  1930. return r;
  1931. }
  1932. int dm_resume(struct mapped_device *md)
  1933. {
  1934. int r = -EINVAL;
  1935. struct dm_table *map = NULL;
  1936. mutex_lock(&md->suspend_lock);
  1937. if (!dm_suspended(md))
  1938. goto out;
  1939. map = dm_get_table(md);
  1940. if (!map || !dm_table_get_size(map))
  1941. goto out;
  1942. r = dm_table_resume_targets(map);
  1943. if (r)
  1944. goto out;
  1945. dm_queue_flush(md);
  1946. /*
  1947. * Flushing deferred I/Os must be done after targets are resumed
  1948. * so that mapping of targets can work correctly.
  1949. * Request-based dm is queueing the deferred I/Os in its request_queue.
  1950. */
  1951. if (dm_request_based(md))
  1952. start_queue(md->queue);
  1953. unlock_fs(md);
  1954. clear_bit(DMF_SUSPENDED, &md->flags);
  1955. dm_table_unplug_all(map);
  1956. r = 0;
  1957. out:
  1958. dm_table_put(map);
  1959. mutex_unlock(&md->suspend_lock);
  1960. return r;
  1961. }
  1962. /*-----------------------------------------------------------------
  1963. * Event notification.
  1964. *---------------------------------------------------------------*/
  1965. void dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
  1966. unsigned cookie)
  1967. {
  1968. char udev_cookie[DM_COOKIE_LENGTH];
  1969. char *envp[] = { udev_cookie, NULL };
  1970. if (!cookie)
  1971. kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
  1972. else {
  1973. snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
  1974. DM_COOKIE_ENV_VAR_NAME, cookie);
  1975. kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
  1976. }
  1977. }
  1978. uint32_t dm_next_uevent_seq(struct mapped_device *md)
  1979. {
  1980. return atomic_add_return(1, &md->uevent_seq);
  1981. }
  1982. uint32_t dm_get_event_nr(struct mapped_device *md)
  1983. {
  1984. return atomic_read(&md->event_nr);
  1985. }
  1986. int dm_wait_event(struct mapped_device *md, int event_nr)
  1987. {
  1988. return wait_event_interruptible(md->eventq,
  1989. (event_nr != atomic_read(&md->event_nr)));
  1990. }
  1991. void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
  1992. {
  1993. unsigned long flags;
  1994. spin_lock_irqsave(&md->uevent_lock, flags);
  1995. list_add(elist, &md->uevent_list);
  1996. spin_unlock_irqrestore(&md->uevent_lock, flags);
  1997. }
  1998. /*
  1999. * The gendisk is only valid as long as you have a reference
  2000. * count on 'md'.
  2001. */
  2002. struct gendisk *dm_disk(struct mapped_device *md)
  2003. {
  2004. return md->disk;
  2005. }
  2006. struct kobject *dm_kobject(struct mapped_device *md)
  2007. {
  2008. return &md->kobj;
  2009. }
  2010. /*
  2011. * struct mapped_device should not be exported outside of dm.c
  2012. * so use this check to verify that kobj is part of md structure
  2013. */
  2014. struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
  2015. {
  2016. struct mapped_device *md;
  2017. md = container_of(kobj, struct mapped_device, kobj);
  2018. if (&md->kobj != kobj)
  2019. return NULL;
  2020. if (test_bit(DMF_FREEING, &md->flags) ||
  2021. test_bit(DMF_DELETING, &md->flags))
  2022. return NULL;
  2023. dm_get(md);
  2024. return md;
  2025. }
  2026. int dm_suspended(struct mapped_device *md)
  2027. {
  2028. return test_bit(DMF_SUSPENDED, &md->flags);
  2029. }
  2030. int dm_noflush_suspending(struct dm_target *ti)
  2031. {
  2032. struct mapped_device *md = dm_table_get_md(ti->table);
  2033. int r = __noflush_suspending(md);
  2034. dm_put(md);
  2035. return r;
  2036. }
  2037. EXPORT_SYMBOL_GPL(dm_noflush_suspending);
  2038. struct dm_md_mempools *dm_alloc_md_mempools(unsigned type)
  2039. {
  2040. struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
  2041. if (!pools)
  2042. return NULL;
  2043. pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
  2044. mempool_create_slab_pool(MIN_IOS, _io_cache) :
  2045. mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
  2046. if (!pools->io_pool)
  2047. goto free_pools_and_out;
  2048. pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
  2049. mempool_create_slab_pool(MIN_IOS, _tio_cache) :
  2050. mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
  2051. if (!pools->tio_pool)
  2052. goto free_io_pool_and_out;
  2053. pools->bs = (type == DM_TYPE_BIO_BASED) ?
  2054. bioset_create(16, 0) : bioset_create(MIN_IOS, 0);
  2055. if (!pools->bs)
  2056. goto free_tio_pool_and_out;
  2057. return pools;
  2058. free_tio_pool_and_out:
  2059. mempool_destroy(pools->tio_pool);
  2060. free_io_pool_and_out:
  2061. mempool_destroy(pools->io_pool);
  2062. free_pools_and_out:
  2063. kfree(pools);
  2064. return NULL;
  2065. }
  2066. void dm_free_md_mempools(struct dm_md_mempools *pools)
  2067. {
  2068. if (!pools)
  2069. return;
  2070. if (pools->io_pool)
  2071. mempool_destroy(pools->io_pool);
  2072. if (pools->tio_pool)
  2073. mempool_destroy(pools->tio_pool);
  2074. if (pools->bs)
  2075. bioset_free(pools->bs);
  2076. kfree(pools);
  2077. }
  2078. static const struct block_device_operations dm_blk_dops = {
  2079. .open = dm_blk_open,
  2080. .release = dm_blk_close,
  2081. .ioctl = dm_blk_ioctl,
  2082. .getgeo = dm_blk_getgeo,
  2083. .owner = THIS_MODULE
  2084. };
  2085. EXPORT_SYMBOL(dm_get_mapinfo);
  2086. /*
  2087. * module hooks
  2088. */
  2089. module_init(dm_init);
  2090. module_exit(dm_exit);
  2091. module_param(major, uint, 0);
  2092. MODULE_PARM_DESC(major, "The major number of the device mapper");
  2093. MODULE_DESCRIPTION(DM_NAME " driver");
  2094. MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
  2095. MODULE_LICENSE("GPL");