evlist.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852
  1. /*
  2. * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
  3. *
  4. * Parts came from builtin-{top,stat,record}.c, see those files for further
  5. * copyright notes.
  6. *
  7. * Released under the GPL v2. (and only v2, not any later version)
  8. */
  9. #include "util.h"
  10. #include "debugfs.h"
  11. #include <poll.h>
  12. #include "cpumap.h"
  13. #include "thread_map.h"
  14. #include "target.h"
  15. #include "evlist.h"
  16. #include "evsel.h"
  17. #include <unistd.h>
  18. #include "parse-events.h"
  19. #include <sys/mman.h>
  20. #include <linux/bitops.h>
  21. #include <linux/hash.h>
  22. #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
  23. #define SID(e, x, y) xyarray__entry(e->sample_id, x, y)
  24. void perf_evlist__init(struct perf_evlist *evlist, struct cpu_map *cpus,
  25. struct thread_map *threads)
  26. {
  27. int i;
  28. for (i = 0; i < PERF_EVLIST__HLIST_SIZE; ++i)
  29. INIT_HLIST_HEAD(&evlist->heads[i]);
  30. INIT_LIST_HEAD(&evlist->entries);
  31. perf_evlist__set_maps(evlist, cpus, threads);
  32. evlist->workload.pid = -1;
  33. }
  34. struct perf_evlist *perf_evlist__new(struct cpu_map *cpus,
  35. struct thread_map *threads)
  36. {
  37. struct perf_evlist *evlist = zalloc(sizeof(*evlist));
  38. if (evlist != NULL)
  39. perf_evlist__init(evlist, cpus, threads);
  40. return evlist;
  41. }
  42. void perf_evlist__config(struct perf_evlist *evlist,
  43. struct perf_record_opts *opts)
  44. {
  45. struct perf_evsel *evsel;
  46. /*
  47. * Set the evsel leader links before we configure attributes,
  48. * since some might depend on this info.
  49. */
  50. if (opts->group)
  51. perf_evlist__set_leader(evlist);
  52. if (evlist->cpus->map[0] < 0)
  53. opts->no_inherit = true;
  54. list_for_each_entry(evsel, &evlist->entries, node) {
  55. perf_evsel__config(evsel, opts);
  56. if (evlist->nr_entries > 1)
  57. perf_evsel__set_sample_id(evsel);
  58. }
  59. }
  60. static void perf_evlist__purge(struct perf_evlist *evlist)
  61. {
  62. struct perf_evsel *pos, *n;
  63. list_for_each_entry_safe(pos, n, &evlist->entries, node) {
  64. list_del_init(&pos->node);
  65. perf_evsel__delete(pos);
  66. }
  67. evlist->nr_entries = 0;
  68. }
  69. void perf_evlist__exit(struct perf_evlist *evlist)
  70. {
  71. free(evlist->mmap);
  72. free(evlist->pollfd);
  73. evlist->mmap = NULL;
  74. evlist->pollfd = NULL;
  75. }
  76. void perf_evlist__delete(struct perf_evlist *evlist)
  77. {
  78. perf_evlist__purge(evlist);
  79. perf_evlist__exit(evlist);
  80. free(evlist);
  81. }
  82. void perf_evlist__add(struct perf_evlist *evlist, struct perf_evsel *entry)
  83. {
  84. list_add_tail(&entry->node, &evlist->entries);
  85. ++evlist->nr_entries;
  86. }
  87. void perf_evlist__splice_list_tail(struct perf_evlist *evlist,
  88. struct list_head *list,
  89. int nr_entries)
  90. {
  91. list_splice_tail(list, &evlist->entries);
  92. evlist->nr_entries += nr_entries;
  93. }
  94. void __perf_evlist__set_leader(struct list_head *list)
  95. {
  96. struct perf_evsel *evsel, *leader;
  97. leader = list_entry(list->next, struct perf_evsel, node);
  98. evsel = list_entry(list->prev, struct perf_evsel, node);
  99. leader->nr_members = evsel->idx - leader->idx + 1;
  100. list_for_each_entry(evsel, list, node) {
  101. if (evsel != leader)
  102. evsel->leader = leader;
  103. }
  104. }
  105. void perf_evlist__set_leader(struct perf_evlist *evlist)
  106. {
  107. if (evlist->nr_entries) {
  108. evlist->nr_groups = evlist->nr_entries > 1 ? 1 : 0;
  109. __perf_evlist__set_leader(&evlist->entries);
  110. }
  111. }
  112. int perf_evlist__add_default(struct perf_evlist *evlist)
  113. {
  114. struct perf_event_attr attr = {
  115. .type = PERF_TYPE_HARDWARE,
  116. .config = PERF_COUNT_HW_CPU_CYCLES,
  117. };
  118. struct perf_evsel *evsel;
  119. event_attr_init(&attr);
  120. evsel = perf_evsel__new(&attr, 0);
  121. if (evsel == NULL)
  122. goto error;
  123. /* use strdup() because free(evsel) assumes name is allocated */
  124. evsel->name = strdup("cycles");
  125. if (!evsel->name)
  126. goto error_free;
  127. perf_evlist__add(evlist, evsel);
  128. return 0;
  129. error_free:
  130. perf_evsel__delete(evsel);
  131. error:
  132. return -ENOMEM;
  133. }
  134. static int perf_evlist__add_attrs(struct perf_evlist *evlist,
  135. struct perf_event_attr *attrs, size_t nr_attrs)
  136. {
  137. struct perf_evsel *evsel, *n;
  138. LIST_HEAD(head);
  139. size_t i;
  140. for (i = 0; i < nr_attrs; i++) {
  141. evsel = perf_evsel__new(attrs + i, evlist->nr_entries + i);
  142. if (evsel == NULL)
  143. goto out_delete_partial_list;
  144. list_add_tail(&evsel->node, &head);
  145. }
  146. perf_evlist__splice_list_tail(evlist, &head, nr_attrs);
  147. return 0;
  148. out_delete_partial_list:
  149. list_for_each_entry_safe(evsel, n, &head, node)
  150. perf_evsel__delete(evsel);
  151. return -1;
  152. }
  153. int __perf_evlist__add_default_attrs(struct perf_evlist *evlist,
  154. struct perf_event_attr *attrs, size_t nr_attrs)
  155. {
  156. size_t i;
  157. for (i = 0; i < nr_attrs; i++)
  158. event_attr_init(attrs + i);
  159. return perf_evlist__add_attrs(evlist, attrs, nr_attrs);
  160. }
  161. struct perf_evsel *
  162. perf_evlist__find_tracepoint_by_id(struct perf_evlist *evlist, int id)
  163. {
  164. struct perf_evsel *evsel;
  165. list_for_each_entry(evsel, &evlist->entries, node) {
  166. if (evsel->attr.type == PERF_TYPE_TRACEPOINT &&
  167. (int)evsel->attr.config == id)
  168. return evsel;
  169. }
  170. return NULL;
  171. }
  172. int perf_evlist__add_newtp(struct perf_evlist *evlist,
  173. const char *sys, const char *name, void *handler)
  174. {
  175. struct perf_evsel *evsel;
  176. evsel = perf_evsel__newtp(sys, name, evlist->nr_entries);
  177. if (evsel == NULL)
  178. return -1;
  179. evsel->handler.func = handler;
  180. perf_evlist__add(evlist, evsel);
  181. return 0;
  182. }
  183. void perf_evlist__disable(struct perf_evlist *evlist)
  184. {
  185. int cpu, thread;
  186. struct perf_evsel *pos;
  187. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  188. list_for_each_entry(pos, &evlist->entries, node) {
  189. if (!perf_evsel__is_group_leader(pos))
  190. continue;
  191. for (thread = 0; thread < evlist->threads->nr; thread++)
  192. ioctl(FD(pos, cpu, thread),
  193. PERF_EVENT_IOC_DISABLE, 0);
  194. }
  195. }
  196. }
  197. void perf_evlist__enable(struct perf_evlist *evlist)
  198. {
  199. int cpu, thread;
  200. struct perf_evsel *pos;
  201. for (cpu = 0; cpu < cpu_map__nr(evlist->cpus); cpu++) {
  202. list_for_each_entry(pos, &evlist->entries, node) {
  203. if (!perf_evsel__is_group_leader(pos))
  204. continue;
  205. for (thread = 0; thread < evlist->threads->nr; thread++)
  206. ioctl(FD(pos, cpu, thread),
  207. PERF_EVENT_IOC_ENABLE, 0);
  208. }
  209. }
  210. }
  211. static int perf_evlist__alloc_pollfd(struct perf_evlist *evlist)
  212. {
  213. int nfds = cpu_map__nr(evlist->cpus) * evlist->threads->nr * evlist->nr_entries;
  214. evlist->pollfd = malloc(sizeof(struct pollfd) * nfds);
  215. return evlist->pollfd != NULL ? 0 : -ENOMEM;
  216. }
  217. void perf_evlist__add_pollfd(struct perf_evlist *evlist, int fd)
  218. {
  219. fcntl(fd, F_SETFL, O_NONBLOCK);
  220. evlist->pollfd[evlist->nr_fds].fd = fd;
  221. evlist->pollfd[evlist->nr_fds].events = POLLIN;
  222. evlist->nr_fds++;
  223. }
  224. static void perf_evlist__id_hash(struct perf_evlist *evlist,
  225. struct perf_evsel *evsel,
  226. int cpu, int thread, u64 id)
  227. {
  228. int hash;
  229. struct perf_sample_id *sid = SID(evsel, cpu, thread);
  230. sid->id = id;
  231. sid->evsel = evsel;
  232. hash = hash_64(sid->id, PERF_EVLIST__HLIST_BITS);
  233. hlist_add_head(&sid->node, &evlist->heads[hash]);
  234. }
  235. void perf_evlist__id_add(struct perf_evlist *evlist, struct perf_evsel *evsel,
  236. int cpu, int thread, u64 id)
  237. {
  238. perf_evlist__id_hash(evlist, evsel, cpu, thread, id);
  239. evsel->id[evsel->ids++] = id;
  240. }
  241. static int perf_evlist__id_add_fd(struct perf_evlist *evlist,
  242. struct perf_evsel *evsel,
  243. int cpu, int thread, int fd)
  244. {
  245. u64 read_data[4] = { 0, };
  246. int id_idx = 1; /* The first entry is the counter value */
  247. if (!(evsel->attr.read_format & PERF_FORMAT_ID) ||
  248. read(fd, &read_data, sizeof(read_data)) == -1)
  249. return -1;
  250. if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  251. ++id_idx;
  252. if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  253. ++id_idx;
  254. perf_evlist__id_add(evlist, evsel, cpu, thread, read_data[id_idx]);
  255. return 0;
  256. }
  257. struct perf_evsel *perf_evlist__id2evsel(struct perf_evlist *evlist, u64 id)
  258. {
  259. struct hlist_head *head;
  260. struct hlist_node *pos;
  261. struct perf_sample_id *sid;
  262. int hash;
  263. if (evlist->nr_entries == 1)
  264. return perf_evlist__first(evlist);
  265. hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
  266. head = &evlist->heads[hash];
  267. hlist_for_each_entry(sid, pos, head, node)
  268. if (sid->id == id)
  269. return sid->evsel;
  270. if (!perf_evlist__sample_id_all(evlist))
  271. return perf_evlist__first(evlist);
  272. return NULL;
  273. }
  274. union perf_event *perf_evlist__mmap_read(struct perf_evlist *evlist, int idx)
  275. {
  276. struct perf_mmap *md = &evlist->mmap[idx];
  277. unsigned int head = perf_mmap__read_head(md);
  278. unsigned int old = md->prev;
  279. unsigned char *data = md->base + page_size;
  280. union perf_event *event = NULL;
  281. if (evlist->overwrite) {
  282. /*
  283. * If we're further behind than half the buffer, there's a chance
  284. * the writer will bite our tail and mess up the samples under us.
  285. *
  286. * If we somehow ended up ahead of the head, we got messed up.
  287. *
  288. * In either case, truncate and restart at head.
  289. */
  290. int diff = head - old;
  291. if (diff > md->mask / 2 || diff < 0) {
  292. fprintf(stderr, "WARNING: failed to keep up with mmap data.\n");
  293. /*
  294. * head points to a known good entry, start there.
  295. */
  296. old = head;
  297. }
  298. }
  299. if (old != head) {
  300. size_t size;
  301. event = (union perf_event *)&data[old & md->mask];
  302. size = event->header.size;
  303. /*
  304. * Event straddles the mmap boundary -- header should always
  305. * be inside due to u64 alignment of output.
  306. */
  307. if ((old & md->mask) + size != ((old + size) & md->mask)) {
  308. unsigned int offset = old;
  309. unsigned int len = min(sizeof(*event), size), cpy;
  310. void *dst = &evlist->event_copy;
  311. do {
  312. cpy = min(md->mask + 1 - (offset & md->mask), len);
  313. memcpy(dst, &data[offset & md->mask], cpy);
  314. offset += cpy;
  315. dst += cpy;
  316. len -= cpy;
  317. } while (len);
  318. event = &evlist->event_copy;
  319. }
  320. old += size;
  321. }
  322. md->prev = old;
  323. if (!evlist->overwrite)
  324. perf_mmap__write_tail(md, old);
  325. return event;
  326. }
  327. void perf_evlist__munmap(struct perf_evlist *evlist)
  328. {
  329. int i;
  330. for (i = 0; i < evlist->nr_mmaps; i++) {
  331. if (evlist->mmap[i].base != NULL) {
  332. munmap(evlist->mmap[i].base, evlist->mmap_len);
  333. evlist->mmap[i].base = NULL;
  334. }
  335. }
  336. free(evlist->mmap);
  337. evlist->mmap = NULL;
  338. }
  339. static int perf_evlist__alloc_mmap(struct perf_evlist *evlist)
  340. {
  341. evlist->nr_mmaps = cpu_map__nr(evlist->cpus);
  342. if (cpu_map__all(evlist->cpus))
  343. evlist->nr_mmaps = evlist->threads->nr;
  344. evlist->mmap = zalloc(evlist->nr_mmaps * sizeof(struct perf_mmap));
  345. return evlist->mmap != NULL ? 0 : -ENOMEM;
  346. }
  347. static int __perf_evlist__mmap(struct perf_evlist *evlist,
  348. int idx, int prot, int mask, int fd)
  349. {
  350. evlist->mmap[idx].prev = 0;
  351. evlist->mmap[idx].mask = mask;
  352. evlist->mmap[idx].base = mmap(NULL, evlist->mmap_len, prot,
  353. MAP_SHARED, fd, 0);
  354. if (evlist->mmap[idx].base == MAP_FAILED) {
  355. evlist->mmap[idx].base = NULL;
  356. return -1;
  357. }
  358. perf_evlist__add_pollfd(evlist, fd);
  359. return 0;
  360. }
  361. static int perf_evlist__mmap_per_cpu(struct perf_evlist *evlist, int prot, int mask)
  362. {
  363. struct perf_evsel *evsel;
  364. int cpu, thread;
  365. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  366. int output = -1;
  367. for (thread = 0; thread < evlist->threads->nr; thread++) {
  368. list_for_each_entry(evsel, &evlist->entries, node) {
  369. int fd = FD(evsel, cpu, thread);
  370. if (output == -1) {
  371. output = fd;
  372. if (__perf_evlist__mmap(evlist, cpu,
  373. prot, mask, output) < 0)
  374. goto out_unmap;
  375. } else {
  376. if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
  377. goto out_unmap;
  378. }
  379. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  380. perf_evlist__id_add_fd(evlist, evsel, cpu, thread, fd) < 0)
  381. goto out_unmap;
  382. }
  383. }
  384. }
  385. return 0;
  386. out_unmap:
  387. for (cpu = 0; cpu < evlist->cpus->nr; cpu++) {
  388. if (evlist->mmap[cpu].base != NULL) {
  389. munmap(evlist->mmap[cpu].base, evlist->mmap_len);
  390. evlist->mmap[cpu].base = NULL;
  391. }
  392. }
  393. return -1;
  394. }
  395. static int perf_evlist__mmap_per_thread(struct perf_evlist *evlist, int prot, int mask)
  396. {
  397. struct perf_evsel *evsel;
  398. int thread;
  399. for (thread = 0; thread < evlist->threads->nr; thread++) {
  400. int output = -1;
  401. list_for_each_entry(evsel, &evlist->entries, node) {
  402. int fd = FD(evsel, 0, thread);
  403. if (output == -1) {
  404. output = fd;
  405. if (__perf_evlist__mmap(evlist, thread,
  406. prot, mask, output) < 0)
  407. goto out_unmap;
  408. } else {
  409. if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0)
  410. goto out_unmap;
  411. }
  412. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  413. perf_evlist__id_add_fd(evlist, evsel, 0, thread, fd) < 0)
  414. goto out_unmap;
  415. }
  416. }
  417. return 0;
  418. out_unmap:
  419. for (thread = 0; thread < evlist->threads->nr; thread++) {
  420. if (evlist->mmap[thread].base != NULL) {
  421. munmap(evlist->mmap[thread].base, evlist->mmap_len);
  422. evlist->mmap[thread].base = NULL;
  423. }
  424. }
  425. return -1;
  426. }
  427. /** perf_evlist__mmap - Create per cpu maps to receive events
  428. *
  429. * @evlist - list of events
  430. * @pages - map length in pages
  431. * @overwrite - overwrite older events?
  432. *
  433. * If overwrite is false the user needs to signal event consuption using:
  434. *
  435. * struct perf_mmap *m = &evlist->mmap[cpu];
  436. * unsigned int head = perf_mmap__read_head(m);
  437. *
  438. * perf_mmap__write_tail(m, head)
  439. *
  440. * Using perf_evlist__read_on_cpu does this automatically.
  441. */
  442. int perf_evlist__mmap(struct perf_evlist *evlist, unsigned int pages,
  443. bool overwrite)
  444. {
  445. struct perf_evsel *evsel;
  446. const struct cpu_map *cpus = evlist->cpus;
  447. const struct thread_map *threads = evlist->threads;
  448. int prot = PROT_READ | (overwrite ? 0 : PROT_WRITE), mask;
  449. /* 512 kiB: default amount of unprivileged mlocked memory */
  450. if (pages == UINT_MAX)
  451. pages = (512 * 1024) / page_size;
  452. else if (!is_power_of_2(pages))
  453. return -EINVAL;
  454. mask = pages * page_size - 1;
  455. if (evlist->mmap == NULL && perf_evlist__alloc_mmap(evlist) < 0)
  456. return -ENOMEM;
  457. if (evlist->pollfd == NULL && perf_evlist__alloc_pollfd(evlist) < 0)
  458. return -ENOMEM;
  459. evlist->overwrite = overwrite;
  460. evlist->mmap_len = (pages + 1) * page_size;
  461. list_for_each_entry(evsel, &evlist->entries, node) {
  462. if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
  463. evsel->sample_id == NULL &&
  464. perf_evsel__alloc_id(evsel, cpu_map__nr(cpus), threads->nr) < 0)
  465. return -ENOMEM;
  466. }
  467. if (cpu_map__all(cpus))
  468. return perf_evlist__mmap_per_thread(evlist, prot, mask);
  469. return perf_evlist__mmap_per_cpu(evlist, prot, mask);
  470. }
  471. int perf_evlist__create_maps(struct perf_evlist *evlist,
  472. struct perf_target *target)
  473. {
  474. evlist->threads = thread_map__new_str(target->pid, target->tid,
  475. target->uid);
  476. if (evlist->threads == NULL)
  477. return -1;
  478. if (perf_target__has_task(target))
  479. evlist->cpus = cpu_map__dummy_new();
  480. else if (!perf_target__has_cpu(target) && !target->uses_mmap)
  481. evlist->cpus = cpu_map__dummy_new();
  482. else
  483. evlist->cpus = cpu_map__new(target->cpu_list);
  484. if (evlist->cpus == NULL)
  485. goto out_delete_threads;
  486. return 0;
  487. out_delete_threads:
  488. thread_map__delete(evlist->threads);
  489. return -1;
  490. }
  491. void perf_evlist__delete_maps(struct perf_evlist *evlist)
  492. {
  493. cpu_map__delete(evlist->cpus);
  494. thread_map__delete(evlist->threads);
  495. evlist->cpus = NULL;
  496. evlist->threads = NULL;
  497. }
  498. int perf_evlist__apply_filters(struct perf_evlist *evlist)
  499. {
  500. struct perf_evsel *evsel;
  501. int err = 0;
  502. const int ncpus = cpu_map__nr(evlist->cpus),
  503. nthreads = evlist->threads->nr;
  504. list_for_each_entry(evsel, &evlist->entries, node) {
  505. if (evsel->filter == NULL)
  506. continue;
  507. err = perf_evsel__set_filter(evsel, ncpus, nthreads, evsel->filter);
  508. if (err)
  509. break;
  510. }
  511. return err;
  512. }
  513. int perf_evlist__set_filter(struct perf_evlist *evlist, const char *filter)
  514. {
  515. struct perf_evsel *evsel;
  516. int err = 0;
  517. const int ncpus = cpu_map__nr(evlist->cpus),
  518. nthreads = evlist->threads->nr;
  519. list_for_each_entry(evsel, &evlist->entries, node) {
  520. err = perf_evsel__set_filter(evsel, ncpus, nthreads, filter);
  521. if (err)
  522. break;
  523. }
  524. return err;
  525. }
  526. bool perf_evlist__valid_sample_type(struct perf_evlist *evlist)
  527. {
  528. struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
  529. list_for_each_entry_continue(pos, &evlist->entries, node) {
  530. if (first->attr.sample_type != pos->attr.sample_type)
  531. return false;
  532. }
  533. return true;
  534. }
  535. u64 perf_evlist__sample_type(struct perf_evlist *evlist)
  536. {
  537. struct perf_evsel *first = perf_evlist__first(evlist);
  538. return first->attr.sample_type;
  539. }
  540. u16 perf_evlist__id_hdr_size(struct perf_evlist *evlist)
  541. {
  542. struct perf_evsel *first = perf_evlist__first(evlist);
  543. struct perf_sample *data;
  544. u64 sample_type;
  545. u16 size = 0;
  546. if (!first->attr.sample_id_all)
  547. goto out;
  548. sample_type = first->attr.sample_type;
  549. if (sample_type & PERF_SAMPLE_TID)
  550. size += sizeof(data->tid) * 2;
  551. if (sample_type & PERF_SAMPLE_TIME)
  552. size += sizeof(data->time);
  553. if (sample_type & PERF_SAMPLE_ID)
  554. size += sizeof(data->id);
  555. if (sample_type & PERF_SAMPLE_STREAM_ID)
  556. size += sizeof(data->stream_id);
  557. if (sample_type & PERF_SAMPLE_CPU)
  558. size += sizeof(data->cpu) * 2;
  559. out:
  560. return size;
  561. }
  562. bool perf_evlist__valid_sample_id_all(struct perf_evlist *evlist)
  563. {
  564. struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
  565. list_for_each_entry_continue(pos, &evlist->entries, node) {
  566. if (first->attr.sample_id_all != pos->attr.sample_id_all)
  567. return false;
  568. }
  569. return true;
  570. }
  571. bool perf_evlist__sample_id_all(struct perf_evlist *evlist)
  572. {
  573. struct perf_evsel *first = perf_evlist__first(evlist);
  574. return first->attr.sample_id_all;
  575. }
  576. void perf_evlist__set_selected(struct perf_evlist *evlist,
  577. struct perf_evsel *evsel)
  578. {
  579. evlist->selected = evsel;
  580. }
  581. int perf_evlist__open(struct perf_evlist *evlist)
  582. {
  583. struct perf_evsel *evsel;
  584. int err, ncpus, nthreads;
  585. list_for_each_entry(evsel, &evlist->entries, node) {
  586. err = perf_evsel__open(evsel, evlist->cpus, evlist->threads);
  587. if (err < 0)
  588. goto out_err;
  589. }
  590. return 0;
  591. out_err:
  592. ncpus = evlist->cpus ? evlist->cpus->nr : 1;
  593. nthreads = evlist->threads ? evlist->threads->nr : 1;
  594. list_for_each_entry_reverse(evsel, &evlist->entries, node)
  595. perf_evsel__close(evsel, ncpus, nthreads);
  596. errno = -err;
  597. return err;
  598. }
  599. int perf_evlist__prepare_workload(struct perf_evlist *evlist,
  600. struct perf_record_opts *opts,
  601. const char *argv[])
  602. {
  603. int child_ready_pipe[2], go_pipe[2];
  604. char bf;
  605. if (pipe(child_ready_pipe) < 0) {
  606. perror("failed to create 'ready' pipe");
  607. return -1;
  608. }
  609. if (pipe(go_pipe) < 0) {
  610. perror("failed to create 'go' pipe");
  611. goto out_close_ready_pipe;
  612. }
  613. evlist->workload.pid = fork();
  614. if (evlist->workload.pid < 0) {
  615. perror("failed to fork");
  616. goto out_close_pipes;
  617. }
  618. if (!evlist->workload.pid) {
  619. if (opts->pipe_output)
  620. dup2(2, 1);
  621. close(child_ready_pipe[0]);
  622. close(go_pipe[1]);
  623. fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
  624. /*
  625. * Do a dummy execvp to get the PLT entry resolved,
  626. * so we avoid the resolver overhead on the real
  627. * execvp call.
  628. */
  629. execvp("", (char **)argv);
  630. /*
  631. * Tell the parent we're ready to go
  632. */
  633. close(child_ready_pipe[1]);
  634. /*
  635. * Wait until the parent tells us to go.
  636. */
  637. if (read(go_pipe[0], &bf, 1) == -1)
  638. perror("unable to read pipe");
  639. execvp(argv[0], (char **)argv);
  640. perror(argv[0]);
  641. kill(getppid(), SIGUSR1);
  642. exit(-1);
  643. }
  644. if (perf_target__none(&opts->target))
  645. evlist->threads->map[0] = evlist->workload.pid;
  646. close(child_ready_pipe[1]);
  647. close(go_pipe[0]);
  648. /*
  649. * wait for child to settle
  650. */
  651. if (read(child_ready_pipe[0], &bf, 1) == -1) {
  652. perror("unable to read pipe");
  653. goto out_close_pipes;
  654. }
  655. evlist->workload.cork_fd = go_pipe[1];
  656. close(child_ready_pipe[0]);
  657. return 0;
  658. out_close_pipes:
  659. close(go_pipe[0]);
  660. close(go_pipe[1]);
  661. out_close_ready_pipe:
  662. close(child_ready_pipe[0]);
  663. close(child_ready_pipe[1]);
  664. return -1;
  665. }
  666. int perf_evlist__start_workload(struct perf_evlist *evlist)
  667. {
  668. if (evlist->workload.cork_fd > 0) {
  669. /*
  670. * Remove the cork, let it rip!
  671. */
  672. return close(evlist->workload.cork_fd);
  673. }
  674. return 0;
  675. }
  676. int perf_evlist__parse_sample(struct perf_evlist *evlist, union perf_event *event,
  677. struct perf_sample *sample)
  678. {
  679. struct perf_evsel *evsel = perf_evlist__first(evlist);
  680. return perf_evsel__parse_sample(evsel, event, sample);
  681. }
  682. size_t perf_evlist__fprintf(struct perf_evlist *evlist, FILE *fp)
  683. {
  684. struct perf_evsel *evsel;
  685. size_t printed = 0;
  686. list_for_each_entry(evsel, &evlist->entries, node) {
  687. printed += fprintf(fp, "%s%s", evsel->idx ? ", " : "",
  688. perf_evsel__name(evsel));
  689. }
  690. return printed + fprintf(fp, "\n");;
  691. }