keyboard.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414
  1. /*
  2. * linux/drivers/char/keyboard.c
  3. *
  4. * Written for linux by Johan Myreen as a translation from
  5. * the assembly version by Linus (with diacriticals added)
  6. *
  7. * Some additional features added by Christoph Niemann (ChN), March 1993
  8. *
  9. * Loadable keymaps by Risto Kankkunen, May 1993
  10. *
  11. * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
  12. * Added decr/incr_console, dynamic keymaps, Unicode support,
  13. * dynamic function/string keys, led setting, Sept 1994
  14. * `Sticky' modifier keys, 951006.
  15. *
  16. * 11-11-96: SAK should now work in the raw mode (Martin Mares)
  17. *
  18. * Modified to provide 'generic' keyboard support by Hamish Macdonald
  19. * Merge with the m68k keyboard driver and split-off of the PC low-level
  20. * parts by Geert Uytterhoeven, May 1997
  21. *
  22. * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
  23. * 30-07-98: Dead keys redone, aeb@cwi.nl.
  24. * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
  25. */
  26. #include <linux/consolemap.h>
  27. #include <linux/module.h>
  28. #include <linux/sched.h>
  29. #include <linux/tty.h>
  30. #include <linux/tty_flip.h>
  31. #include <linux/mm.h>
  32. #include <linux/string.h>
  33. #include <linux/init.h>
  34. #include <linux/slab.h>
  35. #include <linux/irq.h>
  36. #include <linux/kbd_kern.h>
  37. #include <linux/kbd_diacr.h>
  38. #include <linux/vt_kern.h>
  39. #include <linux/input.h>
  40. #include <linux/reboot.h>
  41. #include <linux/notifier.h>
  42. #include <linux/jiffies.h>
  43. extern void ctrl_alt_del(void);
  44. /*
  45. * Exported functions/variables
  46. */
  47. #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
  48. /*
  49. * Some laptops take the 789uiojklm,. keys as number pad when NumLock is on.
  50. * This seems a good reason to start with NumLock off. On HIL keyboards
  51. * of PARISC machines however there is no NumLock key and everyone expects the keypad
  52. * to be used for numbers.
  53. */
  54. #if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD))
  55. #define KBD_DEFLEDS (1 << VC_NUMLOCK)
  56. #else
  57. #define KBD_DEFLEDS 0
  58. #endif
  59. #define KBD_DEFLOCK 0
  60. void compute_shiftstate(void);
  61. /*
  62. * Handler Tables.
  63. */
  64. #define K_HANDLERS\
  65. k_self, k_fn, k_spec, k_pad,\
  66. k_dead, k_cons, k_cur, k_shift,\
  67. k_meta, k_ascii, k_lock, k_lowercase,\
  68. k_slock, k_dead2, k_brl, k_ignore
  69. typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
  70. char up_flag);
  71. static k_handler_fn K_HANDLERS;
  72. static k_handler_fn *k_handler[16] = { K_HANDLERS };
  73. #define FN_HANDLERS\
  74. fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
  75. fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
  76. fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
  77. fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
  78. fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
  79. typedef void (fn_handler_fn)(struct vc_data *vc);
  80. static fn_handler_fn FN_HANDLERS;
  81. static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
  82. /*
  83. * Variables exported for vt_ioctl.c
  84. */
  85. /* maximum values each key_handler can handle */
  86. const int max_vals[] = {
  87. 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
  88. NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
  89. 255, NR_LOCK - 1, 255, NR_BRL - 1
  90. };
  91. const int NR_TYPES = ARRAY_SIZE(max_vals);
  92. struct kbd_struct kbd_table[MAX_NR_CONSOLES];
  93. EXPORT_SYMBOL_GPL(kbd_table);
  94. static struct kbd_struct *kbd = kbd_table;
  95. struct vt_spawn_console vt_spawn_con = {
  96. .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
  97. .pid = NULL,
  98. .sig = 0,
  99. };
  100. /*
  101. * Variables exported for vt.c
  102. */
  103. int shift_state = 0;
  104. /*
  105. * Internal Data.
  106. */
  107. static struct input_handler kbd_handler;
  108. static DEFINE_SPINLOCK(kbd_event_lock);
  109. static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
  110. static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
  111. static int dead_key_next;
  112. static int npadch = -1; /* -1 or number assembled on pad */
  113. static unsigned int diacr;
  114. static char rep; /* flag telling character repeat */
  115. static unsigned char ledstate = 0xff; /* undefined */
  116. static unsigned char ledioctl;
  117. static struct ledptr {
  118. unsigned int *addr;
  119. unsigned int mask;
  120. unsigned char valid:1;
  121. } ledptrs[3];
  122. /*
  123. * Notifier list for console keyboard events
  124. */
  125. static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
  126. int register_keyboard_notifier(struct notifier_block *nb)
  127. {
  128. return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
  129. }
  130. EXPORT_SYMBOL_GPL(register_keyboard_notifier);
  131. int unregister_keyboard_notifier(struct notifier_block *nb)
  132. {
  133. return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
  134. }
  135. EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
  136. /*
  137. * Translation of scancodes to keycodes. We set them on only the first
  138. * keyboard in the list that accepts the scancode and keycode.
  139. * Explanation for not choosing the first attached keyboard anymore:
  140. * USB keyboards for example have two event devices: one for all "normal"
  141. * keys and one for extra function keys (like "volume up", "make coffee",
  142. * etc.). So this means that scancodes for the extra function keys won't
  143. * be valid for the first event device, but will be for the second.
  144. */
  145. struct getset_keycode_data {
  146. unsigned int scancode;
  147. unsigned int keycode;
  148. int error;
  149. };
  150. static int getkeycode_helper(struct input_handle *handle, void *data)
  151. {
  152. struct getset_keycode_data *d = data;
  153. d->error = input_get_keycode(handle->dev, d->scancode, &d->keycode);
  154. return d->error == 0; /* stop as soon as we successfully get one */
  155. }
  156. int getkeycode(unsigned int scancode)
  157. {
  158. struct getset_keycode_data d = { scancode, 0, -ENODEV };
  159. input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
  160. return d.error ?: d.keycode;
  161. }
  162. static int setkeycode_helper(struct input_handle *handle, void *data)
  163. {
  164. struct getset_keycode_data *d = data;
  165. d->error = input_set_keycode(handle->dev, d->scancode, d->keycode);
  166. return d->error == 0; /* stop as soon as we successfully set one */
  167. }
  168. int setkeycode(unsigned int scancode, unsigned int keycode)
  169. {
  170. struct getset_keycode_data d = { scancode, keycode, -ENODEV };
  171. input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
  172. return d.error;
  173. }
  174. /*
  175. * Making beeps and bells. Note that we prefer beeps to bells, but when
  176. * shutting the sound off we do both.
  177. */
  178. static int kd_sound_helper(struct input_handle *handle, void *data)
  179. {
  180. unsigned int *hz = data;
  181. struct input_dev *dev = handle->dev;
  182. if (test_bit(EV_SND, dev->evbit)) {
  183. if (test_bit(SND_TONE, dev->sndbit)) {
  184. input_inject_event(handle, EV_SND, SND_TONE, *hz);
  185. if (*hz)
  186. return 0;
  187. }
  188. if (test_bit(SND_BELL, dev->sndbit))
  189. input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
  190. }
  191. return 0;
  192. }
  193. static void kd_nosound(unsigned long ignored)
  194. {
  195. static unsigned int zero;
  196. input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
  197. }
  198. static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
  199. void kd_mksound(unsigned int hz, unsigned int ticks)
  200. {
  201. del_timer_sync(&kd_mksound_timer);
  202. input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
  203. if (hz && ticks)
  204. mod_timer(&kd_mksound_timer, jiffies + ticks);
  205. }
  206. EXPORT_SYMBOL(kd_mksound);
  207. /*
  208. * Setting the keyboard rate.
  209. */
  210. static int kbd_rate_helper(struct input_handle *handle, void *data)
  211. {
  212. struct input_dev *dev = handle->dev;
  213. struct kbd_repeat *rep = data;
  214. if (test_bit(EV_REP, dev->evbit)) {
  215. if (rep[0].delay > 0)
  216. input_inject_event(handle,
  217. EV_REP, REP_DELAY, rep[0].delay);
  218. if (rep[0].period > 0)
  219. input_inject_event(handle,
  220. EV_REP, REP_PERIOD, rep[0].period);
  221. rep[1].delay = dev->rep[REP_DELAY];
  222. rep[1].period = dev->rep[REP_PERIOD];
  223. }
  224. return 0;
  225. }
  226. int kbd_rate(struct kbd_repeat *rep)
  227. {
  228. struct kbd_repeat data[2] = { *rep };
  229. input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
  230. *rep = data[1]; /* Copy currently used settings */
  231. return 0;
  232. }
  233. /*
  234. * Helper Functions.
  235. */
  236. static void put_queue(struct vc_data *vc, int ch)
  237. {
  238. struct tty_struct *tty = vc->vc_tty;
  239. if (tty) {
  240. tty_insert_flip_char(tty, ch, 0);
  241. con_schedule_flip(tty);
  242. }
  243. }
  244. static void puts_queue(struct vc_data *vc, char *cp)
  245. {
  246. struct tty_struct *tty = vc->vc_tty;
  247. if (!tty)
  248. return;
  249. while (*cp) {
  250. tty_insert_flip_char(tty, *cp, 0);
  251. cp++;
  252. }
  253. con_schedule_flip(tty);
  254. }
  255. static void applkey(struct vc_data *vc, int key, char mode)
  256. {
  257. static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
  258. buf[1] = (mode ? 'O' : '[');
  259. buf[2] = key;
  260. puts_queue(vc, buf);
  261. }
  262. /*
  263. * Many other routines do put_queue, but I think either
  264. * they produce ASCII, or they produce some user-assigned
  265. * string, and in both cases we might assume that it is
  266. * in utf-8 already.
  267. */
  268. static void to_utf8(struct vc_data *vc, uint c)
  269. {
  270. if (c < 0x80)
  271. /* 0******* */
  272. put_queue(vc, c);
  273. else if (c < 0x800) {
  274. /* 110***** 10****** */
  275. put_queue(vc, 0xc0 | (c >> 6));
  276. put_queue(vc, 0x80 | (c & 0x3f));
  277. } else if (c < 0x10000) {
  278. if (c >= 0xD800 && c < 0xE000)
  279. return;
  280. if (c == 0xFFFF)
  281. return;
  282. /* 1110**** 10****** 10****** */
  283. put_queue(vc, 0xe0 | (c >> 12));
  284. put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
  285. put_queue(vc, 0x80 | (c & 0x3f));
  286. } else if (c < 0x110000) {
  287. /* 11110*** 10****** 10****** 10****** */
  288. put_queue(vc, 0xf0 | (c >> 18));
  289. put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
  290. put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
  291. put_queue(vc, 0x80 | (c & 0x3f));
  292. }
  293. }
  294. /*
  295. * Called after returning from RAW mode or when changing consoles - recompute
  296. * shift_down[] and shift_state from key_down[] maybe called when keymap is
  297. * undefined, so that shiftkey release is seen
  298. */
  299. void compute_shiftstate(void)
  300. {
  301. unsigned int i, j, k, sym, val;
  302. shift_state = 0;
  303. memset(shift_down, 0, sizeof(shift_down));
  304. for (i = 0; i < ARRAY_SIZE(key_down); i++) {
  305. if (!key_down[i])
  306. continue;
  307. k = i * BITS_PER_LONG;
  308. for (j = 0; j < BITS_PER_LONG; j++, k++) {
  309. if (!test_bit(k, key_down))
  310. continue;
  311. sym = U(key_maps[0][k]);
  312. if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
  313. continue;
  314. val = KVAL(sym);
  315. if (val == KVAL(K_CAPSSHIFT))
  316. val = KVAL(K_SHIFT);
  317. shift_down[val]++;
  318. shift_state |= (1 << val);
  319. }
  320. }
  321. }
  322. /*
  323. * We have a combining character DIACR here, followed by the character CH.
  324. * If the combination occurs in the table, return the corresponding value.
  325. * Otherwise, if CH is a space or equals DIACR, return DIACR.
  326. * Otherwise, conclude that DIACR was not combining after all,
  327. * queue it and return CH.
  328. */
  329. static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
  330. {
  331. unsigned int d = diacr;
  332. unsigned int i;
  333. diacr = 0;
  334. if ((d & ~0xff) == BRL_UC_ROW) {
  335. if ((ch & ~0xff) == BRL_UC_ROW)
  336. return d | ch;
  337. } else {
  338. for (i = 0; i < accent_table_size; i++)
  339. if (accent_table[i].diacr == d && accent_table[i].base == ch)
  340. return accent_table[i].result;
  341. }
  342. if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
  343. return d;
  344. if (kbd->kbdmode == VC_UNICODE)
  345. to_utf8(vc, d);
  346. else {
  347. int c = conv_uni_to_8bit(d);
  348. if (c != -1)
  349. put_queue(vc, c);
  350. }
  351. return ch;
  352. }
  353. /*
  354. * Special function handlers
  355. */
  356. static void fn_enter(struct vc_data *vc)
  357. {
  358. if (diacr) {
  359. if (kbd->kbdmode == VC_UNICODE)
  360. to_utf8(vc, diacr);
  361. else {
  362. int c = conv_uni_to_8bit(diacr);
  363. if (c != -1)
  364. put_queue(vc, c);
  365. }
  366. diacr = 0;
  367. }
  368. put_queue(vc, 13);
  369. if (vc_kbd_mode(kbd, VC_CRLF))
  370. put_queue(vc, 10);
  371. }
  372. static void fn_caps_toggle(struct vc_data *vc)
  373. {
  374. if (rep)
  375. return;
  376. chg_vc_kbd_led(kbd, VC_CAPSLOCK);
  377. }
  378. static void fn_caps_on(struct vc_data *vc)
  379. {
  380. if (rep)
  381. return;
  382. set_vc_kbd_led(kbd, VC_CAPSLOCK);
  383. }
  384. static void fn_show_ptregs(struct vc_data *vc)
  385. {
  386. struct pt_regs *regs = get_irq_regs();
  387. if (regs)
  388. show_regs(regs);
  389. }
  390. static void fn_hold(struct vc_data *vc)
  391. {
  392. struct tty_struct *tty = vc->vc_tty;
  393. if (rep || !tty)
  394. return;
  395. /*
  396. * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
  397. * these routines are also activated by ^S/^Q.
  398. * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
  399. */
  400. if (tty->stopped)
  401. start_tty(tty);
  402. else
  403. stop_tty(tty);
  404. }
  405. static void fn_num(struct vc_data *vc)
  406. {
  407. if (vc_kbd_mode(kbd,VC_APPLIC))
  408. applkey(vc, 'P', 1);
  409. else
  410. fn_bare_num(vc);
  411. }
  412. /*
  413. * Bind this to Shift-NumLock if you work in application keypad mode
  414. * but want to be able to change the NumLock flag.
  415. * Bind this to NumLock if you prefer that the NumLock key always
  416. * changes the NumLock flag.
  417. */
  418. static void fn_bare_num(struct vc_data *vc)
  419. {
  420. if (!rep)
  421. chg_vc_kbd_led(kbd, VC_NUMLOCK);
  422. }
  423. static void fn_lastcons(struct vc_data *vc)
  424. {
  425. /* switch to the last used console, ChN */
  426. set_console(last_console);
  427. }
  428. static void fn_dec_console(struct vc_data *vc)
  429. {
  430. int i, cur = fg_console;
  431. /* Currently switching? Queue this next switch relative to that. */
  432. if (want_console != -1)
  433. cur = want_console;
  434. for (i = cur - 1; i != cur; i--) {
  435. if (i == -1)
  436. i = MAX_NR_CONSOLES - 1;
  437. if (vc_cons_allocated(i))
  438. break;
  439. }
  440. set_console(i);
  441. }
  442. static void fn_inc_console(struct vc_data *vc)
  443. {
  444. int i, cur = fg_console;
  445. /* Currently switching? Queue this next switch relative to that. */
  446. if (want_console != -1)
  447. cur = want_console;
  448. for (i = cur+1; i != cur; i++) {
  449. if (i == MAX_NR_CONSOLES)
  450. i = 0;
  451. if (vc_cons_allocated(i))
  452. break;
  453. }
  454. set_console(i);
  455. }
  456. static void fn_send_intr(struct vc_data *vc)
  457. {
  458. struct tty_struct *tty = vc->vc_tty;
  459. if (!tty)
  460. return;
  461. tty_insert_flip_char(tty, 0, TTY_BREAK);
  462. con_schedule_flip(tty);
  463. }
  464. static void fn_scroll_forw(struct vc_data *vc)
  465. {
  466. scrollfront(vc, 0);
  467. }
  468. static void fn_scroll_back(struct vc_data *vc)
  469. {
  470. scrollback(vc, 0);
  471. }
  472. static void fn_show_mem(struct vc_data *vc)
  473. {
  474. show_mem();
  475. }
  476. static void fn_show_state(struct vc_data *vc)
  477. {
  478. show_state();
  479. }
  480. static void fn_boot_it(struct vc_data *vc)
  481. {
  482. ctrl_alt_del();
  483. }
  484. static void fn_compose(struct vc_data *vc)
  485. {
  486. dead_key_next = 1;
  487. }
  488. static void fn_spawn_con(struct vc_data *vc)
  489. {
  490. spin_lock(&vt_spawn_con.lock);
  491. if (vt_spawn_con.pid)
  492. if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
  493. put_pid(vt_spawn_con.pid);
  494. vt_spawn_con.pid = NULL;
  495. }
  496. spin_unlock(&vt_spawn_con.lock);
  497. }
  498. static void fn_SAK(struct vc_data *vc)
  499. {
  500. struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
  501. schedule_work(SAK_work);
  502. }
  503. static void fn_null(struct vc_data *vc)
  504. {
  505. compute_shiftstate();
  506. }
  507. /*
  508. * Special key handlers
  509. */
  510. static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
  511. {
  512. }
  513. static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
  514. {
  515. if (up_flag)
  516. return;
  517. if (value >= ARRAY_SIZE(fn_handler))
  518. return;
  519. if ((kbd->kbdmode == VC_RAW ||
  520. kbd->kbdmode == VC_MEDIUMRAW) &&
  521. value != KVAL(K_SAK))
  522. return; /* SAK is allowed even in raw mode */
  523. fn_handler[value](vc);
  524. }
  525. static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
  526. {
  527. printk(KERN_ERR "keyboard.c: k_lowercase was called - impossible\n");
  528. }
  529. static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
  530. {
  531. if (up_flag)
  532. return; /* no action, if this is a key release */
  533. if (diacr)
  534. value = handle_diacr(vc, value);
  535. if (dead_key_next) {
  536. dead_key_next = 0;
  537. diacr = value;
  538. return;
  539. }
  540. if (kbd->kbdmode == VC_UNICODE)
  541. to_utf8(vc, value);
  542. else {
  543. int c = conv_uni_to_8bit(value);
  544. if (c != -1)
  545. put_queue(vc, c);
  546. }
  547. }
  548. /*
  549. * Handle dead key. Note that we now may have several
  550. * dead keys modifying the same character. Very useful
  551. * for Vietnamese.
  552. */
  553. static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
  554. {
  555. if (up_flag)
  556. return;
  557. diacr = (diacr ? handle_diacr(vc, value) : value);
  558. }
  559. static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
  560. {
  561. k_unicode(vc, conv_8bit_to_uni(value), up_flag);
  562. }
  563. static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
  564. {
  565. k_deadunicode(vc, value, up_flag);
  566. }
  567. /*
  568. * Obsolete - for backwards compatibility only
  569. */
  570. static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
  571. {
  572. static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
  573. value = ret_diacr[value];
  574. k_deadunicode(vc, value, up_flag);
  575. }
  576. static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
  577. {
  578. if (up_flag)
  579. return;
  580. set_console(value);
  581. }
  582. static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
  583. {
  584. unsigned v;
  585. if (up_flag)
  586. return;
  587. v = value;
  588. if (v < ARRAY_SIZE(func_table)) {
  589. if (func_table[value])
  590. puts_queue(vc, func_table[value]);
  591. } else
  592. printk(KERN_ERR "k_fn called with value=%d\n", value);
  593. }
  594. static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
  595. {
  596. static const char cur_chars[] = "BDCA";
  597. if (up_flag)
  598. return;
  599. applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
  600. }
  601. static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
  602. {
  603. static const char pad_chars[] = "0123456789+-*/\015,.?()#";
  604. static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
  605. if (up_flag)
  606. return; /* no action, if this is a key release */
  607. /* kludge... shift forces cursor/number keys */
  608. if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
  609. applkey(vc, app_map[value], 1);
  610. return;
  611. }
  612. if (!vc_kbd_led(kbd, VC_NUMLOCK))
  613. switch (value) {
  614. case KVAL(K_PCOMMA):
  615. case KVAL(K_PDOT):
  616. k_fn(vc, KVAL(K_REMOVE), 0);
  617. return;
  618. case KVAL(K_P0):
  619. k_fn(vc, KVAL(K_INSERT), 0);
  620. return;
  621. case KVAL(K_P1):
  622. k_fn(vc, KVAL(K_SELECT), 0);
  623. return;
  624. case KVAL(K_P2):
  625. k_cur(vc, KVAL(K_DOWN), 0);
  626. return;
  627. case KVAL(K_P3):
  628. k_fn(vc, KVAL(K_PGDN), 0);
  629. return;
  630. case KVAL(K_P4):
  631. k_cur(vc, KVAL(K_LEFT), 0);
  632. return;
  633. case KVAL(K_P6):
  634. k_cur(vc, KVAL(K_RIGHT), 0);
  635. return;
  636. case KVAL(K_P7):
  637. k_fn(vc, KVAL(K_FIND), 0);
  638. return;
  639. case KVAL(K_P8):
  640. k_cur(vc, KVAL(K_UP), 0);
  641. return;
  642. case KVAL(K_P9):
  643. k_fn(vc, KVAL(K_PGUP), 0);
  644. return;
  645. case KVAL(K_P5):
  646. applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
  647. return;
  648. }
  649. put_queue(vc, pad_chars[value]);
  650. if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
  651. put_queue(vc, 10);
  652. }
  653. static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
  654. {
  655. int old_state = shift_state;
  656. if (rep)
  657. return;
  658. /*
  659. * Mimic typewriter:
  660. * a CapsShift key acts like Shift but undoes CapsLock
  661. */
  662. if (value == KVAL(K_CAPSSHIFT)) {
  663. value = KVAL(K_SHIFT);
  664. if (!up_flag)
  665. clr_vc_kbd_led(kbd, VC_CAPSLOCK);
  666. }
  667. if (up_flag) {
  668. /*
  669. * handle the case that two shift or control
  670. * keys are depressed simultaneously
  671. */
  672. if (shift_down[value])
  673. shift_down[value]--;
  674. } else
  675. shift_down[value]++;
  676. if (shift_down[value])
  677. shift_state |= (1 << value);
  678. else
  679. shift_state &= ~(1 << value);
  680. /* kludge */
  681. if (up_flag && shift_state != old_state && npadch != -1) {
  682. if (kbd->kbdmode == VC_UNICODE)
  683. to_utf8(vc, npadch);
  684. else
  685. put_queue(vc, npadch & 0xff);
  686. npadch = -1;
  687. }
  688. }
  689. static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
  690. {
  691. if (up_flag)
  692. return;
  693. if (vc_kbd_mode(kbd, VC_META)) {
  694. put_queue(vc, '\033');
  695. put_queue(vc, value);
  696. } else
  697. put_queue(vc, value | 0x80);
  698. }
  699. static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
  700. {
  701. int base;
  702. if (up_flag)
  703. return;
  704. if (value < 10) {
  705. /* decimal input of code, while Alt depressed */
  706. base = 10;
  707. } else {
  708. /* hexadecimal input of code, while AltGr depressed */
  709. value -= 10;
  710. base = 16;
  711. }
  712. if (npadch == -1)
  713. npadch = value;
  714. else
  715. npadch = npadch * base + value;
  716. }
  717. static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
  718. {
  719. if (up_flag || rep)
  720. return;
  721. chg_vc_kbd_lock(kbd, value);
  722. }
  723. static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
  724. {
  725. k_shift(vc, value, up_flag);
  726. if (up_flag || rep)
  727. return;
  728. chg_vc_kbd_slock(kbd, value);
  729. /* try to make Alt, oops, AltGr and such work */
  730. if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
  731. kbd->slockstate = 0;
  732. chg_vc_kbd_slock(kbd, value);
  733. }
  734. }
  735. /* by default, 300ms interval for combination release */
  736. static unsigned brl_timeout = 300;
  737. MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
  738. module_param(brl_timeout, uint, 0644);
  739. static unsigned brl_nbchords = 1;
  740. MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
  741. module_param(brl_nbchords, uint, 0644);
  742. static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
  743. {
  744. static unsigned long chords;
  745. static unsigned committed;
  746. if (!brl_nbchords)
  747. k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
  748. else {
  749. committed |= pattern;
  750. chords++;
  751. if (chords == brl_nbchords) {
  752. k_unicode(vc, BRL_UC_ROW | committed, up_flag);
  753. chords = 0;
  754. committed = 0;
  755. }
  756. }
  757. }
  758. static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
  759. {
  760. static unsigned pressed,committing;
  761. static unsigned long releasestart;
  762. if (kbd->kbdmode != VC_UNICODE) {
  763. if (!up_flag)
  764. printk("keyboard mode must be unicode for braille patterns\n");
  765. return;
  766. }
  767. if (!value) {
  768. k_unicode(vc, BRL_UC_ROW, up_flag);
  769. return;
  770. }
  771. if (value > 8)
  772. return;
  773. if (up_flag) {
  774. if (brl_timeout) {
  775. if (!committing ||
  776. time_after(jiffies,
  777. releasestart + msecs_to_jiffies(brl_timeout))) {
  778. committing = pressed;
  779. releasestart = jiffies;
  780. }
  781. pressed &= ~(1 << (value - 1));
  782. if (!pressed) {
  783. if (committing) {
  784. k_brlcommit(vc, committing, 0);
  785. committing = 0;
  786. }
  787. }
  788. } else {
  789. if (committing) {
  790. k_brlcommit(vc, committing, 0);
  791. committing = 0;
  792. }
  793. pressed &= ~(1 << (value - 1));
  794. }
  795. } else {
  796. pressed |= 1 << (value - 1);
  797. if (!brl_timeout)
  798. committing = pressed;
  799. }
  800. }
  801. /*
  802. * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
  803. * or (ii) whatever pattern of lights people want to show using KDSETLED,
  804. * or (iii) specified bits of specified words in kernel memory.
  805. */
  806. unsigned char getledstate(void)
  807. {
  808. return ledstate;
  809. }
  810. void setledstate(struct kbd_struct *kbd, unsigned int led)
  811. {
  812. if (!(led & ~7)) {
  813. ledioctl = led;
  814. kbd->ledmode = LED_SHOW_IOCTL;
  815. } else
  816. kbd->ledmode = LED_SHOW_FLAGS;
  817. set_leds();
  818. }
  819. static inline unsigned char getleds(void)
  820. {
  821. struct kbd_struct *kbd = kbd_table + fg_console;
  822. unsigned char leds;
  823. int i;
  824. if (kbd->ledmode == LED_SHOW_IOCTL)
  825. return ledioctl;
  826. leds = kbd->ledflagstate;
  827. if (kbd->ledmode == LED_SHOW_MEM) {
  828. for (i = 0; i < 3; i++)
  829. if (ledptrs[i].valid) {
  830. if (*ledptrs[i].addr & ledptrs[i].mask)
  831. leds |= (1 << i);
  832. else
  833. leds &= ~(1 << i);
  834. }
  835. }
  836. return leds;
  837. }
  838. static int kbd_update_leds_helper(struct input_handle *handle, void *data)
  839. {
  840. unsigned char leds = *(unsigned char *)data;
  841. if (test_bit(EV_LED, handle->dev->evbit)) {
  842. input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
  843. input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
  844. input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
  845. input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
  846. }
  847. return 0;
  848. }
  849. /*
  850. * This is the tasklet that updates LED state on all keyboards
  851. * attached to the box. The reason we use tasklet is that we
  852. * need to handle the scenario when keyboard handler is not
  853. * registered yet but we already getting updates form VT to
  854. * update led state.
  855. */
  856. static void kbd_bh(unsigned long dummy)
  857. {
  858. unsigned char leds = getleds();
  859. if (leds != ledstate) {
  860. input_handler_for_each_handle(&kbd_handler, &leds,
  861. kbd_update_leds_helper);
  862. ledstate = leds;
  863. }
  864. }
  865. DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
  866. #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
  867. defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
  868. defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
  869. (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
  870. defined(CONFIG_AVR32)
  871. #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
  872. ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
  873. static const unsigned short x86_keycodes[256] =
  874. { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  875. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
  876. 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
  877. 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
  878. 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  879. 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
  880. 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
  881. 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
  882. 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
  883. 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
  884. 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
  885. 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
  886. 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
  887. 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
  888. 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
  889. #ifdef CONFIG_SPARC
  890. static int sparc_l1_a_state = 0;
  891. extern void sun_do_break(void);
  892. #endif
  893. static int emulate_raw(struct vc_data *vc, unsigned int keycode,
  894. unsigned char up_flag)
  895. {
  896. int code;
  897. switch (keycode) {
  898. case KEY_PAUSE:
  899. put_queue(vc, 0xe1);
  900. put_queue(vc, 0x1d | up_flag);
  901. put_queue(vc, 0x45 | up_flag);
  902. break;
  903. case KEY_HANGEUL:
  904. if (!up_flag)
  905. put_queue(vc, 0xf2);
  906. break;
  907. case KEY_HANJA:
  908. if (!up_flag)
  909. put_queue(vc, 0xf1);
  910. break;
  911. case KEY_SYSRQ:
  912. /*
  913. * Real AT keyboards (that's what we're trying
  914. * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
  915. * pressing PrtSc/SysRq alone, but simply 0x54
  916. * when pressing Alt+PrtSc/SysRq.
  917. */
  918. if (test_bit(KEY_LEFTALT, key_down) ||
  919. test_bit(KEY_RIGHTALT, key_down)) {
  920. put_queue(vc, 0x54 | up_flag);
  921. } else {
  922. put_queue(vc, 0xe0);
  923. put_queue(vc, 0x2a | up_flag);
  924. put_queue(vc, 0xe0);
  925. put_queue(vc, 0x37 | up_flag);
  926. }
  927. break;
  928. default:
  929. if (keycode > 255)
  930. return -1;
  931. code = x86_keycodes[keycode];
  932. if (!code)
  933. return -1;
  934. if (code & 0x100)
  935. put_queue(vc, 0xe0);
  936. put_queue(vc, (code & 0x7f) | up_flag);
  937. break;
  938. }
  939. return 0;
  940. }
  941. #else
  942. #define HW_RAW(dev) 0
  943. static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
  944. {
  945. if (keycode > 127)
  946. return -1;
  947. put_queue(vc, keycode | up_flag);
  948. return 0;
  949. }
  950. #endif
  951. static void kbd_rawcode(unsigned char data)
  952. {
  953. struct vc_data *vc = vc_cons[fg_console].d;
  954. kbd = kbd_table + vc->vc_num;
  955. if (kbd->kbdmode == VC_RAW)
  956. put_queue(vc, data);
  957. }
  958. static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
  959. {
  960. struct vc_data *vc = vc_cons[fg_console].d;
  961. unsigned short keysym, *key_map;
  962. unsigned char type, raw_mode;
  963. struct tty_struct *tty;
  964. int shift_final;
  965. struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
  966. tty = vc->vc_tty;
  967. if (tty && (!tty->driver_data)) {
  968. /* No driver data? Strange. Okay we fix it then. */
  969. tty->driver_data = vc;
  970. }
  971. kbd = kbd_table + vc->vc_num;
  972. #ifdef CONFIG_SPARC
  973. if (keycode == KEY_STOP)
  974. sparc_l1_a_state = down;
  975. #endif
  976. rep = (down == 2);
  977. if ((raw_mode = (kbd->kbdmode == VC_RAW)) && !hw_raw)
  978. if (emulate_raw(vc, keycode, !down << 7))
  979. if (keycode < BTN_MISC && printk_ratelimit())
  980. printk(KERN_WARNING "keyboard.c: can't emulate rawmode for keycode %d\n", keycode);
  981. #ifdef CONFIG_SPARC
  982. if (keycode == KEY_A && sparc_l1_a_state) {
  983. sparc_l1_a_state = 0;
  984. sun_do_break();
  985. }
  986. #endif
  987. if (kbd->kbdmode == VC_MEDIUMRAW) {
  988. /*
  989. * This is extended medium raw mode, with keys above 127
  990. * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
  991. * the 'up' flag if needed. 0 is reserved, so this shouldn't
  992. * interfere with anything else. The two bytes after 0 will
  993. * always have the up flag set not to interfere with older
  994. * applications. This allows for 16384 different keycodes,
  995. * which should be enough.
  996. */
  997. if (keycode < 128) {
  998. put_queue(vc, keycode | (!down << 7));
  999. } else {
  1000. put_queue(vc, !down << 7);
  1001. put_queue(vc, (keycode >> 7) | 0x80);
  1002. put_queue(vc, keycode | 0x80);
  1003. }
  1004. raw_mode = 1;
  1005. }
  1006. if (down)
  1007. set_bit(keycode, key_down);
  1008. else
  1009. clear_bit(keycode, key_down);
  1010. if (rep &&
  1011. (!vc_kbd_mode(kbd, VC_REPEAT) ||
  1012. (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
  1013. /*
  1014. * Don't repeat a key if the input buffers are not empty and the
  1015. * characters get aren't echoed locally. This makes key repeat
  1016. * usable with slow applications and under heavy loads.
  1017. */
  1018. return;
  1019. }
  1020. param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
  1021. param.ledstate = kbd->ledflagstate;
  1022. key_map = key_maps[shift_final];
  1023. if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_KEYCODE, &param) == NOTIFY_STOP || !key_map) {
  1024. atomic_notifier_call_chain(&keyboard_notifier_list, KBD_UNBOUND_KEYCODE, &param);
  1025. compute_shiftstate();
  1026. kbd->slockstate = 0;
  1027. return;
  1028. }
  1029. if (keycode >= NR_KEYS)
  1030. if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
  1031. keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
  1032. else
  1033. return;
  1034. else
  1035. keysym = key_map[keycode];
  1036. type = KTYP(keysym);
  1037. if (type < 0xf0) {
  1038. param.value = keysym;
  1039. if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_UNICODE, &param) == NOTIFY_STOP)
  1040. return;
  1041. if (down && !raw_mode)
  1042. to_utf8(vc, keysym);
  1043. return;
  1044. }
  1045. type -= 0xf0;
  1046. if (type == KT_LETTER) {
  1047. type = KT_LATIN;
  1048. if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
  1049. key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
  1050. if (key_map)
  1051. keysym = key_map[keycode];
  1052. }
  1053. }
  1054. param.value = keysym;
  1055. if (atomic_notifier_call_chain(&keyboard_notifier_list, KBD_KEYSYM, &param) == NOTIFY_STOP)
  1056. return;
  1057. if (raw_mode && type != KT_SPEC && type != KT_SHIFT)
  1058. return;
  1059. (*k_handler[type])(vc, keysym & 0xff, !down);
  1060. param.ledstate = kbd->ledflagstate;
  1061. atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
  1062. if (type != KT_SLOCK)
  1063. kbd->slockstate = 0;
  1064. }
  1065. static void kbd_event(struct input_handle *handle, unsigned int event_type,
  1066. unsigned int event_code, int value)
  1067. {
  1068. /* We are called with interrupts disabled, just take the lock */
  1069. spin_lock(&kbd_event_lock);
  1070. if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
  1071. kbd_rawcode(value);
  1072. if (event_type == EV_KEY)
  1073. kbd_keycode(event_code, value, HW_RAW(handle->dev));
  1074. spin_unlock(&kbd_event_lock);
  1075. tasklet_schedule(&keyboard_tasklet);
  1076. do_poke_blanked_console = 1;
  1077. schedule_console_callback();
  1078. }
  1079. static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
  1080. {
  1081. int i;
  1082. if (test_bit(EV_SND, dev->evbit))
  1083. return true;
  1084. if (test_bit(EV_KEY, dev->evbit))
  1085. for (i = KEY_RESERVED; i < BTN_MISC; i++)
  1086. if (test_bit(i, dev->keybit))
  1087. return true;
  1088. return false;
  1089. }
  1090. /*
  1091. * When a keyboard (or other input device) is found, the kbd_connect
  1092. * function is called. The function then looks at the device, and if it
  1093. * likes it, it can open it and get events from it. In this (kbd_connect)
  1094. * function, we should decide which VT to bind that keyboard to initially.
  1095. */
  1096. static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
  1097. const struct input_device_id *id)
  1098. {
  1099. struct input_handle *handle;
  1100. int error;
  1101. handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
  1102. if (!handle)
  1103. return -ENOMEM;
  1104. handle->dev = dev;
  1105. handle->handler = handler;
  1106. handle->name = "kbd";
  1107. error = input_register_handle(handle);
  1108. if (error)
  1109. goto err_free_handle;
  1110. error = input_open_device(handle);
  1111. if (error)
  1112. goto err_unregister_handle;
  1113. return 0;
  1114. err_unregister_handle:
  1115. input_unregister_handle(handle);
  1116. err_free_handle:
  1117. kfree(handle);
  1118. return error;
  1119. }
  1120. static void kbd_disconnect(struct input_handle *handle)
  1121. {
  1122. input_close_device(handle);
  1123. input_unregister_handle(handle);
  1124. kfree(handle);
  1125. }
  1126. /*
  1127. * Start keyboard handler on the new keyboard by refreshing LED state to
  1128. * match the rest of the system.
  1129. */
  1130. static void kbd_start(struct input_handle *handle)
  1131. {
  1132. tasklet_disable(&keyboard_tasklet);
  1133. if (ledstate != 0xff)
  1134. kbd_update_leds_helper(handle, &ledstate);
  1135. tasklet_enable(&keyboard_tasklet);
  1136. }
  1137. static const struct input_device_id kbd_ids[] = {
  1138. {
  1139. .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
  1140. .evbit = { BIT_MASK(EV_KEY) },
  1141. },
  1142. {
  1143. .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
  1144. .evbit = { BIT_MASK(EV_SND) },
  1145. },
  1146. { }, /* Terminating entry */
  1147. };
  1148. MODULE_DEVICE_TABLE(input, kbd_ids);
  1149. static struct input_handler kbd_handler = {
  1150. .event = kbd_event,
  1151. .match = kbd_match,
  1152. .connect = kbd_connect,
  1153. .disconnect = kbd_disconnect,
  1154. .start = kbd_start,
  1155. .name = "kbd",
  1156. .id_table = kbd_ids,
  1157. };
  1158. int __init kbd_init(void)
  1159. {
  1160. int i;
  1161. int error;
  1162. for (i = 0; i < MAX_NR_CONSOLES; i++) {
  1163. kbd_table[i].ledflagstate = KBD_DEFLEDS;
  1164. kbd_table[i].default_ledflagstate = KBD_DEFLEDS;
  1165. kbd_table[i].ledmode = LED_SHOW_FLAGS;
  1166. kbd_table[i].lockstate = KBD_DEFLOCK;
  1167. kbd_table[i].slockstate = 0;
  1168. kbd_table[i].modeflags = KBD_DEFMODE;
  1169. kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
  1170. }
  1171. error = input_register_handler(&kbd_handler);
  1172. if (error)
  1173. return error;
  1174. tasklet_enable(&keyboard_tasklet);
  1175. tasklet_schedule(&keyboard_tasklet);
  1176. return 0;
  1177. }