paging_tmpl.h 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. /*
  21. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  22. * so the code in this file is compiled twice, once per pte size.
  23. */
  24. #if PTTYPE == 64
  25. #define pt_element_t u64
  26. #define guest_walker guest_walker64
  27. #define FNAME(name) paging##64_##name
  28. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  29. #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
  30. #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
  31. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  32. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  33. #ifdef CONFIG_X86_64
  34. #define PT_MAX_FULL_LEVELS 4
  35. #define CMPXCHG cmpxchg
  36. #else
  37. #define CMPXCHG cmpxchg64
  38. #define PT_MAX_FULL_LEVELS 2
  39. #endif
  40. #elif PTTYPE == 32
  41. #define pt_element_t u32
  42. #define guest_walker guest_walker32
  43. #define FNAME(name) paging##32_##name
  44. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  45. #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
  46. #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
  47. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  48. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  49. #define PT_MAX_FULL_LEVELS 2
  50. #define CMPXCHG cmpxchg
  51. #else
  52. #error Invalid PTTYPE value
  53. #endif
  54. #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
  55. #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
  56. /*
  57. * The guest_walker structure emulates the behavior of the hardware page
  58. * table walker.
  59. */
  60. struct guest_walker {
  61. int level;
  62. unsigned max_level;
  63. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  64. pt_element_t ptes[PT_MAX_FULL_LEVELS];
  65. pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
  66. gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
  67. pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
  68. unsigned pt_access;
  69. unsigned pte_access;
  70. gfn_t gfn;
  71. struct x86_exception fault;
  72. };
  73. static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
  74. {
  75. return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
  76. }
  77. static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  78. pt_element_t __user *ptep_user, unsigned index,
  79. pt_element_t orig_pte, pt_element_t new_pte)
  80. {
  81. int npages;
  82. pt_element_t ret;
  83. pt_element_t *table;
  84. struct page *page;
  85. npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
  86. /* Check if the user is doing something meaningless. */
  87. if (unlikely(npages != 1))
  88. return -EFAULT;
  89. table = kmap_atomic(page);
  90. ret = CMPXCHG(&table[index], orig_pte, new_pte);
  91. kunmap_atomic(table);
  92. kvm_release_page_dirty(page);
  93. return (ret != orig_pte);
  94. }
  95. static bool FNAME(is_last_gpte)(struct guest_walker *walker,
  96. struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  97. pt_element_t gpte)
  98. {
  99. if (walker->level == PT_PAGE_TABLE_LEVEL)
  100. return true;
  101. if ((walker->level == PT_DIRECTORY_LEVEL) && is_large_pte(gpte) &&
  102. (PTTYPE == 64 || is_pse(vcpu)))
  103. return true;
  104. if ((walker->level == PT_PDPE_LEVEL) && is_large_pte(gpte) &&
  105. (mmu->root_level == PT64_ROOT_LEVEL))
  106. return true;
  107. return false;
  108. }
  109. static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
  110. struct kvm_mmu *mmu,
  111. struct guest_walker *walker,
  112. int write_fault)
  113. {
  114. unsigned level, index;
  115. pt_element_t pte, orig_pte;
  116. pt_element_t __user *ptep_user;
  117. gfn_t table_gfn;
  118. int ret;
  119. for (level = walker->max_level; level >= walker->level; --level) {
  120. pte = orig_pte = walker->ptes[level - 1];
  121. table_gfn = walker->table_gfn[level - 1];
  122. ptep_user = walker->ptep_user[level - 1];
  123. index = offset_in_page(ptep_user) / sizeof(pt_element_t);
  124. if (!(pte & PT_ACCESSED_MASK)) {
  125. trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
  126. pte |= PT_ACCESSED_MASK;
  127. }
  128. if (level == walker->level && write_fault && !is_dirty_gpte(pte)) {
  129. trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
  130. pte |= PT_DIRTY_MASK;
  131. }
  132. if (pte == orig_pte)
  133. continue;
  134. ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
  135. if (ret)
  136. return ret;
  137. mark_page_dirty(vcpu->kvm, table_gfn);
  138. walker->ptes[level] = pte;
  139. }
  140. return 0;
  141. }
  142. /*
  143. * Fetch a guest pte for a guest virtual address
  144. */
  145. static int FNAME(walk_addr_generic)(struct guest_walker *walker,
  146. struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  147. gva_t addr, u32 access)
  148. {
  149. int ret;
  150. pt_element_t pte;
  151. pt_element_t __user *uninitialized_var(ptep_user);
  152. gfn_t table_gfn;
  153. unsigned index, pt_access, pte_access;
  154. gpa_t pte_gpa;
  155. bool eperm, last_gpte;
  156. int offset;
  157. const int write_fault = access & PFERR_WRITE_MASK;
  158. const int user_fault = access & PFERR_USER_MASK;
  159. const int fetch_fault = access & PFERR_FETCH_MASK;
  160. u16 errcode = 0;
  161. trace_kvm_mmu_pagetable_walk(addr, access);
  162. retry_walk:
  163. eperm = false;
  164. walker->level = mmu->root_level;
  165. pte = mmu->get_cr3(vcpu);
  166. #if PTTYPE == 64
  167. if (walker->level == PT32E_ROOT_LEVEL) {
  168. pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
  169. trace_kvm_mmu_paging_element(pte, walker->level);
  170. if (!is_present_gpte(pte))
  171. goto error;
  172. --walker->level;
  173. }
  174. #endif
  175. walker->max_level = walker->level;
  176. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  177. (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0);
  178. pt_access = ACC_ALL;
  179. for (;;) {
  180. gfn_t real_gfn;
  181. unsigned long host_addr;
  182. index = PT_INDEX(addr, walker->level);
  183. table_gfn = gpte_to_gfn(pte);
  184. offset = index * sizeof(pt_element_t);
  185. pte_gpa = gfn_to_gpa(table_gfn) + offset;
  186. walker->table_gfn[walker->level - 1] = table_gfn;
  187. walker->pte_gpa[walker->level - 1] = pte_gpa;
  188. real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
  189. PFERR_USER_MASK|PFERR_WRITE_MASK);
  190. if (unlikely(real_gfn == UNMAPPED_GVA))
  191. goto error;
  192. real_gfn = gpa_to_gfn(real_gfn);
  193. host_addr = gfn_to_hva(vcpu->kvm, real_gfn);
  194. if (unlikely(kvm_is_error_hva(host_addr)))
  195. goto error;
  196. ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
  197. if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
  198. goto error;
  199. walker->ptep_user[walker->level - 1] = ptep_user;
  200. trace_kvm_mmu_paging_element(pte, walker->level);
  201. if (unlikely(!is_present_gpte(pte)))
  202. goto error;
  203. if (unlikely(is_rsvd_bits_set(&vcpu->arch.mmu, pte,
  204. walker->level))) {
  205. errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
  206. goto error;
  207. }
  208. pte_access = pt_access & gpte_access(vcpu, pte);
  209. last_gpte = FNAME(is_last_gpte)(walker, vcpu, mmu, pte);
  210. walker->ptes[walker->level - 1] = pte;
  211. if (last_gpte) {
  212. int lvl = walker->level;
  213. gpa_t real_gpa;
  214. gfn_t gfn;
  215. u32 ac;
  216. gfn = gpte_to_gfn_lvl(pte, lvl);
  217. gfn += (addr & PT_LVL_OFFSET_MASK(lvl)) >> PAGE_SHIFT;
  218. if (PTTYPE == 32 &&
  219. walker->level == PT_DIRECTORY_LEVEL &&
  220. is_cpuid_PSE36())
  221. gfn += pse36_gfn_delta(pte);
  222. ac = write_fault | fetch_fault | user_fault;
  223. real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn),
  224. ac);
  225. if (real_gpa == UNMAPPED_GVA)
  226. return 0;
  227. walker->gfn = real_gpa >> PAGE_SHIFT;
  228. break;
  229. }
  230. pt_access &= pte_access;
  231. --walker->level;
  232. }
  233. eperm |= permission_fault(mmu, pte_access, access);
  234. if (unlikely(eperm)) {
  235. errcode |= PFERR_PRESENT_MASK;
  236. goto error;
  237. }
  238. if (!write_fault)
  239. protect_clean_gpte(&pte_access, pte);
  240. ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
  241. if (unlikely(ret < 0))
  242. goto error;
  243. else if (ret)
  244. goto retry_walk;
  245. walker->pt_access = pt_access;
  246. walker->pte_access = pte_access;
  247. pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
  248. __func__, (u64)pte, pte_access, pt_access);
  249. return 1;
  250. error:
  251. errcode |= write_fault | user_fault;
  252. if (fetch_fault && (mmu->nx ||
  253. kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
  254. errcode |= PFERR_FETCH_MASK;
  255. walker->fault.vector = PF_VECTOR;
  256. walker->fault.error_code_valid = true;
  257. walker->fault.error_code = errcode;
  258. walker->fault.address = addr;
  259. walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
  260. trace_kvm_mmu_walker_error(walker->fault.error_code);
  261. return 0;
  262. }
  263. static int FNAME(walk_addr)(struct guest_walker *walker,
  264. struct kvm_vcpu *vcpu, gva_t addr, u32 access)
  265. {
  266. return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
  267. access);
  268. }
  269. static int FNAME(walk_addr_nested)(struct guest_walker *walker,
  270. struct kvm_vcpu *vcpu, gva_t addr,
  271. u32 access)
  272. {
  273. return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
  274. addr, access);
  275. }
  276. static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
  277. struct kvm_mmu_page *sp, u64 *spte,
  278. pt_element_t gpte)
  279. {
  280. if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
  281. goto no_present;
  282. if (!is_present_gpte(gpte))
  283. goto no_present;
  284. if (!(gpte & PT_ACCESSED_MASK))
  285. goto no_present;
  286. return false;
  287. no_present:
  288. drop_spte(vcpu->kvm, spte);
  289. return true;
  290. }
  291. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  292. u64 *spte, const void *pte)
  293. {
  294. pt_element_t gpte;
  295. unsigned pte_access;
  296. pfn_t pfn;
  297. gpte = *(const pt_element_t *)pte;
  298. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
  299. return;
  300. pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
  301. pte_access = sp->role.access & gpte_access(vcpu, gpte);
  302. protect_clean_gpte(&pte_access, gpte);
  303. pfn = gfn_to_pfn_atomic(vcpu->kvm, gpte_to_gfn(gpte));
  304. if (mmu_invalid_pfn(pfn))
  305. return;
  306. /*
  307. * we call mmu_set_spte() with host_writable = true because that
  308. * vcpu->arch.update_pte.pfn was fetched from get_user_pages(write = 1).
  309. */
  310. mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
  311. NULL, PT_PAGE_TABLE_LEVEL,
  312. gpte_to_gfn(gpte), pfn, true, true);
  313. }
  314. static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
  315. struct guest_walker *gw, int level)
  316. {
  317. pt_element_t curr_pte;
  318. gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
  319. u64 mask;
  320. int r, index;
  321. if (level == PT_PAGE_TABLE_LEVEL) {
  322. mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
  323. base_gpa = pte_gpa & ~mask;
  324. index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
  325. r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
  326. gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
  327. curr_pte = gw->prefetch_ptes[index];
  328. } else
  329. r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
  330. &curr_pte, sizeof(curr_pte));
  331. return r || curr_pte != gw->ptes[level - 1];
  332. }
  333. static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
  334. u64 *sptep)
  335. {
  336. struct kvm_mmu_page *sp;
  337. pt_element_t *gptep = gw->prefetch_ptes;
  338. u64 *spte;
  339. int i;
  340. sp = page_header(__pa(sptep));
  341. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  342. return;
  343. if (sp->role.direct)
  344. return __direct_pte_prefetch(vcpu, sp, sptep);
  345. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  346. spte = sp->spt + i;
  347. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  348. pt_element_t gpte;
  349. unsigned pte_access;
  350. gfn_t gfn;
  351. pfn_t pfn;
  352. if (spte == sptep)
  353. continue;
  354. if (is_shadow_present_pte(*spte))
  355. continue;
  356. gpte = gptep[i];
  357. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
  358. continue;
  359. pte_access = sp->role.access & gpte_access(vcpu, gpte);
  360. protect_clean_gpte(&pte_access, gpte);
  361. gfn = gpte_to_gfn(gpte);
  362. pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
  363. pte_access & ACC_WRITE_MASK);
  364. if (mmu_invalid_pfn(pfn))
  365. break;
  366. mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
  367. NULL, PT_PAGE_TABLE_LEVEL, gfn,
  368. pfn, true, true);
  369. }
  370. }
  371. /*
  372. * Fetch a shadow pte for a specific level in the paging hierarchy.
  373. */
  374. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  375. struct guest_walker *gw,
  376. int user_fault, int write_fault, int hlevel,
  377. int *emulate, pfn_t pfn, bool map_writable,
  378. bool prefault)
  379. {
  380. unsigned access = gw->pt_access;
  381. struct kvm_mmu_page *sp = NULL;
  382. int top_level;
  383. unsigned direct_access;
  384. struct kvm_shadow_walk_iterator it;
  385. if (!is_present_gpte(gw->ptes[gw->level - 1]))
  386. return NULL;
  387. direct_access = gw->pte_access;
  388. top_level = vcpu->arch.mmu.root_level;
  389. if (top_level == PT32E_ROOT_LEVEL)
  390. top_level = PT32_ROOT_LEVEL;
  391. /*
  392. * Verify that the top-level gpte is still there. Since the page
  393. * is a root page, it is either write protected (and cannot be
  394. * changed from now on) or it is invalid (in which case, we don't
  395. * really care if it changes underneath us after this point).
  396. */
  397. if (FNAME(gpte_changed)(vcpu, gw, top_level))
  398. goto out_gpte_changed;
  399. for (shadow_walk_init(&it, vcpu, addr);
  400. shadow_walk_okay(&it) && it.level > gw->level;
  401. shadow_walk_next(&it)) {
  402. gfn_t table_gfn;
  403. clear_sp_write_flooding_count(it.sptep);
  404. drop_large_spte(vcpu, it.sptep);
  405. sp = NULL;
  406. if (!is_shadow_present_pte(*it.sptep)) {
  407. table_gfn = gw->table_gfn[it.level - 2];
  408. sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
  409. false, access, it.sptep);
  410. }
  411. /*
  412. * Verify that the gpte in the page we've just write
  413. * protected is still there.
  414. */
  415. if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
  416. goto out_gpte_changed;
  417. if (sp)
  418. link_shadow_page(it.sptep, sp);
  419. }
  420. for (;
  421. shadow_walk_okay(&it) && it.level > hlevel;
  422. shadow_walk_next(&it)) {
  423. gfn_t direct_gfn;
  424. clear_sp_write_flooding_count(it.sptep);
  425. validate_direct_spte(vcpu, it.sptep, direct_access);
  426. drop_large_spte(vcpu, it.sptep);
  427. if (is_shadow_present_pte(*it.sptep))
  428. continue;
  429. direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
  430. sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
  431. true, direct_access, it.sptep);
  432. link_shadow_page(it.sptep, sp);
  433. }
  434. clear_sp_write_flooding_count(it.sptep);
  435. mmu_set_spte(vcpu, it.sptep, access, gw->pte_access,
  436. user_fault, write_fault, emulate, it.level,
  437. gw->gfn, pfn, prefault, map_writable);
  438. FNAME(pte_prefetch)(vcpu, gw, it.sptep);
  439. return it.sptep;
  440. out_gpte_changed:
  441. if (sp)
  442. kvm_mmu_put_page(sp, it.sptep);
  443. kvm_release_pfn_clean(pfn);
  444. return NULL;
  445. }
  446. /*
  447. * Page fault handler. There are several causes for a page fault:
  448. * - there is no shadow pte for the guest pte
  449. * - write access through a shadow pte marked read only so that we can set
  450. * the dirty bit
  451. * - write access to a shadow pte marked read only so we can update the page
  452. * dirty bitmap, when userspace requests it
  453. * - mmio access; in this case we will never install a present shadow pte
  454. * - normal guest page fault due to the guest pte marked not present, not
  455. * writable, or not executable
  456. *
  457. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  458. * a negative value on error.
  459. */
  460. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
  461. bool prefault)
  462. {
  463. int write_fault = error_code & PFERR_WRITE_MASK;
  464. int user_fault = error_code & PFERR_USER_MASK;
  465. struct guest_walker walker;
  466. u64 *sptep;
  467. int emulate = 0;
  468. int r;
  469. pfn_t pfn;
  470. int level = PT_PAGE_TABLE_LEVEL;
  471. int force_pt_level;
  472. unsigned long mmu_seq;
  473. bool map_writable;
  474. pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
  475. if (unlikely(error_code & PFERR_RSVD_MASK))
  476. return handle_mmio_page_fault(vcpu, addr, error_code,
  477. mmu_is_nested(vcpu));
  478. r = mmu_topup_memory_caches(vcpu);
  479. if (r)
  480. return r;
  481. /*
  482. * Look up the guest pte for the faulting address.
  483. */
  484. r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
  485. /*
  486. * The page is not mapped by the guest. Let the guest handle it.
  487. */
  488. if (!r) {
  489. pgprintk("%s: guest page fault\n", __func__);
  490. if (!prefault)
  491. inject_page_fault(vcpu, &walker.fault);
  492. return 0;
  493. }
  494. if (walker.level >= PT_DIRECTORY_LEVEL)
  495. force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn);
  496. else
  497. force_pt_level = 1;
  498. if (!force_pt_level) {
  499. level = min(walker.level, mapping_level(vcpu, walker.gfn));
  500. walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
  501. }
  502. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  503. smp_rmb();
  504. if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
  505. &map_writable))
  506. return 0;
  507. if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
  508. walker.gfn, pfn, walker.pte_access, &r))
  509. return r;
  510. spin_lock(&vcpu->kvm->mmu_lock);
  511. if (mmu_notifier_retry(vcpu, mmu_seq))
  512. goto out_unlock;
  513. kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
  514. kvm_mmu_free_some_pages(vcpu);
  515. if (!force_pt_level)
  516. transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
  517. sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  518. level, &emulate, pfn, map_writable, prefault);
  519. (void)sptep;
  520. pgprintk("%s: shadow pte %p %llx emulate %d\n", __func__,
  521. sptep, *sptep, emulate);
  522. ++vcpu->stat.pf_fixed;
  523. kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
  524. spin_unlock(&vcpu->kvm->mmu_lock);
  525. return emulate;
  526. out_unlock:
  527. spin_unlock(&vcpu->kvm->mmu_lock);
  528. kvm_release_pfn_clean(pfn);
  529. return 0;
  530. }
  531. static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
  532. {
  533. int offset = 0;
  534. WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
  535. if (PTTYPE == 32)
  536. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  537. return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
  538. }
  539. static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
  540. {
  541. struct kvm_shadow_walk_iterator iterator;
  542. struct kvm_mmu_page *sp;
  543. int level;
  544. u64 *sptep;
  545. vcpu_clear_mmio_info(vcpu, gva);
  546. /*
  547. * No need to check return value here, rmap_can_add() can
  548. * help us to skip pte prefetch later.
  549. */
  550. mmu_topup_memory_caches(vcpu);
  551. spin_lock(&vcpu->kvm->mmu_lock);
  552. for_each_shadow_entry(vcpu, gva, iterator) {
  553. level = iterator.level;
  554. sptep = iterator.sptep;
  555. sp = page_header(__pa(sptep));
  556. if (is_last_spte(*sptep, level)) {
  557. pt_element_t gpte;
  558. gpa_t pte_gpa;
  559. if (!sp->unsync)
  560. break;
  561. pte_gpa = FNAME(get_level1_sp_gpa)(sp);
  562. pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
  563. if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
  564. kvm_flush_remote_tlbs(vcpu->kvm);
  565. if (!rmap_can_add(vcpu))
  566. break;
  567. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  568. sizeof(pt_element_t)))
  569. break;
  570. FNAME(update_pte)(vcpu, sp, sptep, &gpte);
  571. }
  572. if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
  573. break;
  574. }
  575. spin_unlock(&vcpu->kvm->mmu_lock);
  576. }
  577. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
  578. struct x86_exception *exception)
  579. {
  580. struct guest_walker walker;
  581. gpa_t gpa = UNMAPPED_GVA;
  582. int r;
  583. r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
  584. if (r) {
  585. gpa = gfn_to_gpa(walker.gfn);
  586. gpa |= vaddr & ~PAGE_MASK;
  587. } else if (exception)
  588. *exception = walker.fault;
  589. return gpa;
  590. }
  591. static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
  592. u32 access,
  593. struct x86_exception *exception)
  594. {
  595. struct guest_walker walker;
  596. gpa_t gpa = UNMAPPED_GVA;
  597. int r;
  598. r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
  599. if (r) {
  600. gpa = gfn_to_gpa(walker.gfn);
  601. gpa |= vaddr & ~PAGE_MASK;
  602. } else if (exception)
  603. *exception = walker.fault;
  604. return gpa;
  605. }
  606. /*
  607. * Using the cached information from sp->gfns is safe because:
  608. * - The spte has a reference to the struct page, so the pfn for a given gfn
  609. * can't change unless all sptes pointing to it are nuked first.
  610. *
  611. * Note:
  612. * We should flush all tlbs if spte is dropped even though guest is
  613. * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
  614. * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
  615. * used by guest then tlbs are not flushed, so guest is allowed to access the
  616. * freed pages.
  617. * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
  618. */
  619. static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  620. {
  621. int i, nr_present = 0;
  622. bool host_writable;
  623. gpa_t first_pte_gpa;
  624. /* direct kvm_mmu_page can not be unsync. */
  625. BUG_ON(sp->role.direct);
  626. first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
  627. for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
  628. unsigned pte_access;
  629. pt_element_t gpte;
  630. gpa_t pte_gpa;
  631. gfn_t gfn;
  632. if (!sp->spt[i])
  633. continue;
  634. pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
  635. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  636. sizeof(pt_element_t)))
  637. return -EINVAL;
  638. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
  639. vcpu->kvm->tlbs_dirty++;
  640. continue;
  641. }
  642. gfn = gpte_to_gfn(gpte);
  643. pte_access = sp->role.access;
  644. pte_access &= gpte_access(vcpu, gpte);
  645. protect_clean_gpte(&pte_access, gpte);
  646. if (sync_mmio_spte(&sp->spt[i], gfn, pte_access, &nr_present))
  647. continue;
  648. if (gfn != sp->gfns[i]) {
  649. drop_spte(vcpu->kvm, &sp->spt[i]);
  650. vcpu->kvm->tlbs_dirty++;
  651. continue;
  652. }
  653. nr_present++;
  654. host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
  655. set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
  656. PT_PAGE_TABLE_LEVEL, gfn,
  657. spte_to_pfn(sp->spt[i]), true, false,
  658. host_writable);
  659. }
  660. return !nr_present;
  661. }
  662. #undef pt_element_t
  663. #undef guest_walker
  664. #undef FNAME
  665. #undef PT_BASE_ADDR_MASK
  666. #undef PT_INDEX
  667. #undef PT_LVL_ADDR_MASK
  668. #undef PT_LVL_OFFSET_MASK
  669. #undef PT_LEVEL_BITS
  670. #undef PT_MAX_FULL_LEVELS
  671. #undef gpte_to_gfn
  672. #undef gpte_to_gfn_lvl
  673. #undef CMPXCHG