messenger.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586
  1. #include <linux/ceph/ceph_debug.h>
  2. #include <linux/crc32c.h>
  3. #include <linux/ctype.h>
  4. #include <linux/highmem.h>
  5. #include <linux/inet.h>
  6. #include <linux/kthread.h>
  7. #include <linux/net.h>
  8. #include <linux/slab.h>
  9. #include <linux/socket.h>
  10. #include <linux/string.h>
  11. #include <linux/bio.h>
  12. #include <linux/blkdev.h>
  13. #include <linux/dns_resolver.h>
  14. #include <net/tcp.h>
  15. #include <linux/ceph/libceph.h>
  16. #include <linux/ceph/messenger.h>
  17. #include <linux/ceph/decode.h>
  18. #include <linux/ceph/pagelist.h>
  19. /*
  20. * Ceph uses the messenger to exchange ceph_msg messages with other
  21. * hosts in the system. The messenger provides ordered and reliable
  22. * delivery. We tolerate TCP disconnects by reconnecting (with
  23. * exponential backoff) in the case of a fault (disconnection, bad
  24. * crc, protocol error). Acks allow sent messages to be discarded by
  25. * the sender.
  26. */
  27. /* static tag bytes (protocol control messages) */
  28. static char tag_msg = CEPH_MSGR_TAG_MSG;
  29. static char tag_ack = CEPH_MSGR_TAG_ACK;
  30. static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
  31. #ifdef CONFIG_LOCKDEP
  32. static struct lock_class_key socket_class;
  33. #endif
  34. static void queue_con(struct ceph_connection *con);
  35. static void con_work(struct work_struct *);
  36. static void ceph_fault(struct ceph_connection *con);
  37. /*
  38. * nicely render a sockaddr as a string.
  39. */
  40. #define MAX_ADDR_STR 20
  41. #define MAX_ADDR_STR_LEN 60
  42. static char addr_str[MAX_ADDR_STR][MAX_ADDR_STR_LEN];
  43. static DEFINE_SPINLOCK(addr_str_lock);
  44. static int last_addr_str;
  45. const char *ceph_pr_addr(const struct sockaddr_storage *ss)
  46. {
  47. int i;
  48. char *s;
  49. struct sockaddr_in *in4 = (void *)ss;
  50. struct sockaddr_in6 *in6 = (void *)ss;
  51. spin_lock(&addr_str_lock);
  52. i = last_addr_str++;
  53. if (last_addr_str == MAX_ADDR_STR)
  54. last_addr_str = 0;
  55. spin_unlock(&addr_str_lock);
  56. s = addr_str[i];
  57. switch (ss->ss_family) {
  58. case AF_INET:
  59. snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%u", &in4->sin_addr,
  60. (unsigned int)ntohs(in4->sin_port));
  61. break;
  62. case AF_INET6:
  63. snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%u", &in6->sin6_addr,
  64. (unsigned int)ntohs(in6->sin6_port));
  65. break;
  66. default:
  67. snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %d)",
  68. (int)ss->ss_family);
  69. }
  70. return s;
  71. }
  72. EXPORT_SYMBOL(ceph_pr_addr);
  73. static void encode_my_addr(struct ceph_messenger *msgr)
  74. {
  75. memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
  76. ceph_encode_addr(&msgr->my_enc_addr);
  77. }
  78. /*
  79. * work queue for all reading and writing to/from the socket.
  80. */
  81. struct workqueue_struct *ceph_msgr_wq;
  82. int ceph_msgr_init(void)
  83. {
  84. ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
  85. if (!ceph_msgr_wq) {
  86. pr_err("msgr_init failed to create workqueue\n");
  87. return -ENOMEM;
  88. }
  89. return 0;
  90. }
  91. EXPORT_SYMBOL(ceph_msgr_init);
  92. void ceph_msgr_exit(void)
  93. {
  94. destroy_workqueue(ceph_msgr_wq);
  95. }
  96. EXPORT_SYMBOL(ceph_msgr_exit);
  97. void ceph_msgr_flush(void)
  98. {
  99. flush_workqueue(ceph_msgr_wq);
  100. }
  101. EXPORT_SYMBOL(ceph_msgr_flush);
  102. /*
  103. * socket callback functions
  104. */
  105. /* data available on socket, or listen socket received a connect */
  106. static void ceph_data_ready(struct sock *sk, int count_unused)
  107. {
  108. struct ceph_connection *con =
  109. (struct ceph_connection *)sk->sk_user_data;
  110. if (sk->sk_state != TCP_CLOSE_WAIT) {
  111. dout("ceph_data_ready on %p state = %lu, queueing work\n",
  112. con, con->state);
  113. queue_con(con);
  114. }
  115. }
  116. /* socket has buffer space for writing */
  117. static void ceph_write_space(struct sock *sk)
  118. {
  119. struct ceph_connection *con =
  120. (struct ceph_connection *)sk->sk_user_data;
  121. /* only queue to workqueue if there is data we want to write. */
  122. if (test_bit(WRITE_PENDING, &con->state)) {
  123. dout("ceph_write_space %p queueing write work\n", con);
  124. queue_con(con);
  125. } else {
  126. dout("ceph_write_space %p nothing to write\n", con);
  127. }
  128. /* since we have our own write_space, clear the SOCK_NOSPACE flag */
  129. clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  130. }
  131. /* socket's state has changed */
  132. static void ceph_state_change(struct sock *sk)
  133. {
  134. struct ceph_connection *con =
  135. (struct ceph_connection *)sk->sk_user_data;
  136. dout("ceph_state_change %p state = %lu sk_state = %u\n",
  137. con, con->state, sk->sk_state);
  138. if (test_bit(CLOSED, &con->state))
  139. return;
  140. switch (sk->sk_state) {
  141. case TCP_CLOSE:
  142. dout("ceph_state_change TCP_CLOSE\n");
  143. case TCP_CLOSE_WAIT:
  144. dout("ceph_state_change TCP_CLOSE_WAIT\n");
  145. if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
  146. if (test_bit(CONNECTING, &con->state))
  147. con->error_msg = "connection failed";
  148. else
  149. con->error_msg = "socket closed";
  150. queue_con(con);
  151. }
  152. break;
  153. case TCP_ESTABLISHED:
  154. dout("ceph_state_change TCP_ESTABLISHED\n");
  155. queue_con(con);
  156. break;
  157. }
  158. }
  159. /*
  160. * set up socket callbacks
  161. */
  162. static void set_sock_callbacks(struct socket *sock,
  163. struct ceph_connection *con)
  164. {
  165. struct sock *sk = sock->sk;
  166. sk->sk_user_data = (void *)con;
  167. sk->sk_data_ready = ceph_data_ready;
  168. sk->sk_write_space = ceph_write_space;
  169. sk->sk_state_change = ceph_state_change;
  170. }
  171. /*
  172. * socket helpers
  173. */
  174. /*
  175. * initiate connection to a remote socket.
  176. */
  177. static struct socket *ceph_tcp_connect(struct ceph_connection *con)
  178. {
  179. struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
  180. struct socket *sock;
  181. int ret;
  182. BUG_ON(con->sock);
  183. ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
  184. IPPROTO_TCP, &sock);
  185. if (ret)
  186. return ERR_PTR(ret);
  187. con->sock = sock;
  188. sock->sk->sk_allocation = GFP_NOFS;
  189. #ifdef CONFIG_LOCKDEP
  190. lockdep_set_class(&sock->sk->sk_lock, &socket_class);
  191. #endif
  192. set_sock_callbacks(sock, con);
  193. dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
  194. ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
  195. O_NONBLOCK);
  196. if (ret == -EINPROGRESS) {
  197. dout("connect %s EINPROGRESS sk_state = %u\n",
  198. ceph_pr_addr(&con->peer_addr.in_addr),
  199. sock->sk->sk_state);
  200. ret = 0;
  201. }
  202. if (ret < 0) {
  203. pr_err("connect %s error %d\n",
  204. ceph_pr_addr(&con->peer_addr.in_addr), ret);
  205. sock_release(sock);
  206. con->sock = NULL;
  207. con->error_msg = "connect error";
  208. }
  209. if (ret < 0)
  210. return ERR_PTR(ret);
  211. return sock;
  212. }
  213. static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
  214. {
  215. struct kvec iov = {buf, len};
  216. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  217. int r;
  218. r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
  219. if (r == -EAGAIN)
  220. r = 0;
  221. return r;
  222. }
  223. /*
  224. * write something. @more is true if caller will be sending more data
  225. * shortly.
  226. */
  227. static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
  228. size_t kvlen, size_t len, int more)
  229. {
  230. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  231. int r;
  232. if (more)
  233. msg.msg_flags |= MSG_MORE;
  234. else
  235. msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
  236. r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
  237. if (r == -EAGAIN)
  238. r = 0;
  239. return r;
  240. }
  241. /*
  242. * Shutdown/close the socket for the given connection.
  243. */
  244. static int con_close_socket(struct ceph_connection *con)
  245. {
  246. int rc;
  247. dout("con_close_socket on %p sock %p\n", con, con->sock);
  248. if (!con->sock)
  249. return 0;
  250. set_bit(SOCK_CLOSED, &con->state);
  251. rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
  252. sock_release(con->sock);
  253. con->sock = NULL;
  254. clear_bit(SOCK_CLOSED, &con->state);
  255. return rc;
  256. }
  257. /*
  258. * Reset a connection. Discard all incoming and outgoing messages
  259. * and clear *_seq state.
  260. */
  261. static void ceph_msg_remove(struct ceph_msg *msg)
  262. {
  263. list_del_init(&msg->list_head);
  264. ceph_msg_put(msg);
  265. }
  266. static void ceph_msg_remove_list(struct list_head *head)
  267. {
  268. while (!list_empty(head)) {
  269. struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
  270. list_head);
  271. ceph_msg_remove(msg);
  272. }
  273. }
  274. static void reset_connection(struct ceph_connection *con)
  275. {
  276. /* reset connection, out_queue, msg_ and connect_seq */
  277. /* discard existing out_queue and msg_seq */
  278. ceph_msg_remove_list(&con->out_queue);
  279. ceph_msg_remove_list(&con->out_sent);
  280. if (con->in_msg) {
  281. ceph_msg_put(con->in_msg);
  282. con->in_msg = NULL;
  283. }
  284. con->connect_seq = 0;
  285. con->out_seq = 0;
  286. if (con->out_msg) {
  287. ceph_msg_put(con->out_msg);
  288. con->out_msg = NULL;
  289. }
  290. con->in_seq = 0;
  291. con->in_seq_acked = 0;
  292. }
  293. /*
  294. * mark a peer down. drop any open connections.
  295. */
  296. void ceph_con_close(struct ceph_connection *con)
  297. {
  298. dout("con_close %p peer %s\n", con,
  299. ceph_pr_addr(&con->peer_addr.in_addr));
  300. set_bit(CLOSED, &con->state); /* in case there's queued work */
  301. clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
  302. clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
  303. clear_bit(KEEPALIVE_PENDING, &con->state);
  304. clear_bit(WRITE_PENDING, &con->state);
  305. mutex_lock(&con->mutex);
  306. reset_connection(con);
  307. con->peer_global_seq = 0;
  308. cancel_delayed_work(&con->work);
  309. mutex_unlock(&con->mutex);
  310. queue_con(con);
  311. }
  312. EXPORT_SYMBOL(ceph_con_close);
  313. /*
  314. * Reopen a closed connection, with a new peer address.
  315. */
  316. void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
  317. {
  318. dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
  319. set_bit(OPENING, &con->state);
  320. clear_bit(CLOSED, &con->state);
  321. memcpy(&con->peer_addr, addr, sizeof(*addr));
  322. con->delay = 0; /* reset backoff memory */
  323. queue_con(con);
  324. }
  325. EXPORT_SYMBOL(ceph_con_open);
  326. /*
  327. * return true if this connection ever successfully opened
  328. */
  329. bool ceph_con_opened(struct ceph_connection *con)
  330. {
  331. return con->connect_seq > 0;
  332. }
  333. /*
  334. * generic get/put
  335. */
  336. struct ceph_connection *ceph_con_get(struct ceph_connection *con)
  337. {
  338. dout("con_get %p nref = %d -> %d\n", con,
  339. atomic_read(&con->nref), atomic_read(&con->nref) + 1);
  340. if (atomic_inc_not_zero(&con->nref))
  341. return con;
  342. return NULL;
  343. }
  344. void ceph_con_put(struct ceph_connection *con)
  345. {
  346. dout("con_put %p nref = %d -> %d\n", con,
  347. atomic_read(&con->nref), atomic_read(&con->nref) - 1);
  348. BUG_ON(atomic_read(&con->nref) == 0);
  349. if (atomic_dec_and_test(&con->nref)) {
  350. BUG_ON(con->sock);
  351. kfree(con);
  352. }
  353. }
  354. /*
  355. * initialize a new connection.
  356. */
  357. void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
  358. {
  359. dout("con_init %p\n", con);
  360. memset(con, 0, sizeof(*con));
  361. atomic_set(&con->nref, 1);
  362. con->msgr = msgr;
  363. mutex_init(&con->mutex);
  364. INIT_LIST_HEAD(&con->out_queue);
  365. INIT_LIST_HEAD(&con->out_sent);
  366. INIT_DELAYED_WORK(&con->work, con_work);
  367. }
  368. EXPORT_SYMBOL(ceph_con_init);
  369. /*
  370. * We maintain a global counter to order connection attempts. Get
  371. * a unique seq greater than @gt.
  372. */
  373. static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
  374. {
  375. u32 ret;
  376. spin_lock(&msgr->global_seq_lock);
  377. if (msgr->global_seq < gt)
  378. msgr->global_seq = gt;
  379. ret = ++msgr->global_seq;
  380. spin_unlock(&msgr->global_seq_lock);
  381. return ret;
  382. }
  383. /*
  384. * Prepare footer for currently outgoing message, and finish things
  385. * off. Assumes out_kvec* are already valid.. we just add on to the end.
  386. */
  387. static void prepare_write_message_footer(struct ceph_connection *con, int v)
  388. {
  389. struct ceph_msg *m = con->out_msg;
  390. dout("prepare_write_message_footer %p\n", con);
  391. con->out_kvec_is_msg = true;
  392. con->out_kvec[v].iov_base = &m->footer;
  393. con->out_kvec[v].iov_len = sizeof(m->footer);
  394. con->out_kvec_bytes += sizeof(m->footer);
  395. con->out_kvec_left++;
  396. con->out_more = m->more_to_follow;
  397. con->out_msg_done = true;
  398. }
  399. /*
  400. * Prepare headers for the next outgoing message.
  401. */
  402. static void prepare_write_message(struct ceph_connection *con)
  403. {
  404. struct ceph_msg *m;
  405. int v = 0;
  406. con->out_kvec_bytes = 0;
  407. con->out_kvec_is_msg = true;
  408. con->out_msg_done = false;
  409. /* Sneak an ack in there first? If we can get it into the same
  410. * TCP packet that's a good thing. */
  411. if (con->in_seq > con->in_seq_acked) {
  412. con->in_seq_acked = con->in_seq;
  413. con->out_kvec[v].iov_base = &tag_ack;
  414. con->out_kvec[v++].iov_len = 1;
  415. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  416. con->out_kvec[v].iov_base = &con->out_temp_ack;
  417. con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
  418. con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
  419. }
  420. m = list_first_entry(&con->out_queue,
  421. struct ceph_msg, list_head);
  422. con->out_msg = m;
  423. /* put message on sent list */
  424. ceph_msg_get(m);
  425. list_move_tail(&m->list_head, &con->out_sent);
  426. /*
  427. * only assign outgoing seq # if we haven't sent this message
  428. * yet. if it is requeued, resend with it's original seq.
  429. */
  430. if (m->needs_out_seq) {
  431. m->hdr.seq = cpu_to_le64(++con->out_seq);
  432. m->needs_out_seq = false;
  433. }
  434. dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
  435. m, con->out_seq, le16_to_cpu(m->hdr.type),
  436. le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
  437. le32_to_cpu(m->hdr.data_len),
  438. m->nr_pages);
  439. BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
  440. /* tag + hdr + front + middle */
  441. con->out_kvec[v].iov_base = &tag_msg;
  442. con->out_kvec[v++].iov_len = 1;
  443. con->out_kvec[v].iov_base = &m->hdr;
  444. con->out_kvec[v++].iov_len = sizeof(m->hdr);
  445. con->out_kvec[v++] = m->front;
  446. if (m->middle)
  447. con->out_kvec[v++] = m->middle->vec;
  448. con->out_kvec_left = v;
  449. con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
  450. (m->middle ? m->middle->vec.iov_len : 0);
  451. con->out_kvec_cur = con->out_kvec;
  452. /* fill in crc (except data pages), footer */
  453. con->out_msg->hdr.crc =
  454. cpu_to_le32(crc32c(0, (void *)&m->hdr,
  455. sizeof(m->hdr) - sizeof(m->hdr.crc)));
  456. con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
  457. con->out_msg->footer.front_crc =
  458. cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
  459. if (m->middle)
  460. con->out_msg->footer.middle_crc =
  461. cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
  462. m->middle->vec.iov_len));
  463. else
  464. con->out_msg->footer.middle_crc = 0;
  465. con->out_msg->footer.data_crc = 0;
  466. dout("prepare_write_message front_crc %u data_crc %u\n",
  467. le32_to_cpu(con->out_msg->footer.front_crc),
  468. le32_to_cpu(con->out_msg->footer.middle_crc));
  469. /* is there a data payload? */
  470. if (le32_to_cpu(m->hdr.data_len) > 0) {
  471. /* initialize page iterator */
  472. con->out_msg_pos.page = 0;
  473. if (m->pages)
  474. con->out_msg_pos.page_pos = m->page_alignment;
  475. else
  476. con->out_msg_pos.page_pos = 0;
  477. con->out_msg_pos.data_pos = 0;
  478. con->out_msg_pos.did_page_crc = 0;
  479. con->out_more = 1; /* data + footer will follow */
  480. } else {
  481. /* no, queue up footer too and be done */
  482. prepare_write_message_footer(con, v);
  483. }
  484. set_bit(WRITE_PENDING, &con->state);
  485. }
  486. /*
  487. * Prepare an ack.
  488. */
  489. static void prepare_write_ack(struct ceph_connection *con)
  490. {
  491. dout("prepare_write_ack %p %llu -> %llu\n", con,
  492. con->in_seq_acked, con->in_seq);
  493. con->in_seq_acked = con->in_seq;
  494. con->out_kvec[0].iov_base = &tag_ack;
  495. con->out_kvec[0].iov_len = 1;
  496. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  497. con->out_kvec[1].iov_base = &con->out_temp_ack;
  498. con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
  499. con->out_kvec_left = 2;
  500. con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
  501. con->out_kvec_cur = con->out_kvec;
  502. con->out_more = 1; /* more will follow.. eventually.. */
  503. set_bit(WRITE_PENDING, &con->state);
  504. }
  505. /*
  506. * Prepare to write keepalive byte.
  507. */
  508. static void prepare_write_keepalive(struct ceph_connection *con)
  509. {
  510. dout("prepare_write_keepalive %p\n", con);
  511. con->out_kvec[0].iov_base = &tag_keepalive;
  512. con->out_kvec[0].iov_len = 1;
  513. con->out_kvec_left = 1;
  514. con->out_kvec_bytes = 1;
  515. con->out_kvec_cur = con->out_kvec;
  516. set_bit(WRITE_PENDING, &con->state);
  517. }
  518. /*
  519. * Connection negotiation.
  520. */
  521. static int prepare_connect_authorizer(struct ceph_connection *con)
  522. {
  523. void *auth_buf;
  524. int auth_len = 0;
  525. int auth_protocol = 0;
  526. mutex_unlock(&con->mutex);
  527. if (con->ops->get_authorizer)
  528. con->ops->get_authorizer(con, &auth_buf, &auth_len,
  529. &auth_protocol, &con->auth_reply_buf,
  530. &con->auth_reply_buf_len,
  531. con->auth_retry);
  532. mutex_lock(&con->mutex);
  533. if (test_bit(CLOSED, &con->state) ||
  534. test_bit(OPENING, &con->state))
  535. return -EAGAIN;
  536. con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
  537. con->out_connect.authorizer_len = cpu_to_le32(auth_len);
  538. if (auth_len) {
  539. con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
  540. con->out_kvec[con->out_kvec_left].iov_len = auth_len;
  541. con->out_kvec_left++;
  542. con->out_kvec_bytes += auth_len;
  543. }
  544. return 0;
  545. }
  546. /*
  547. * We connected to a peer and are saying hello.
  548. */
  549. static void prepare_write_banner(struct ceph_messenger *msgr,
  550. struct ceph_connection *con)
  551. {
  552. int len = strlen(CEPH_BANNER);
  553. con->out_kvec[0].iov_base = CEPH_BANNER;
  554. con->out_kvec[0].iov_len = len;
  555. con->out_kvec[1].iov_base = &msgr->my_enc_addr;
  556. con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
  557. con->out_kvec_left = 2;
  558. con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
  559. con->out_kvec_cur = con->out_kvec;
  560. con->out_more = 0;
  561. set_bit(WRITE_PENDING, &con->state);
  562. }
  563. static int prepare_write_connect(struct ceph_messenger *msgr,
  564. struct ceph_connection *con,
  565. int after_banner)
  566. {
  567. unsigned global_seq = get_global_seq(con->msgr, 0);
  568. int proto;
  569. switch (con->peer_name.type) {
  570. case CEPH_ENTITY_TYPE_MON:
  571. proto = CEPH_MONC_PROTOCOL;
  572. break;
  573. case CEPH_ENTITY_TYPE_OSD:
  574. proto = CEPH_OSDC_PROTOCOL;
  575. break;
  576. case CEPH_ENTITY_TYPE_MDS:
  577. proto = CEPH_MDSC_PROTOCOL;
  578. break;
  579. default:
  580. BUG();
  581. }
  582. dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
  583. con->connect_seq, global_seq, proto);
  584. con->out_connect.features = cpu_to_le64(msgr->supported_features);
  585. con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
  586. con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
  587. con->out_connect.global_seq = cpu_to_le32(global_seq);
  588. con->out_connect.protocol_version = cpu_to_le32(proto);
  589. con->out_connect.flags = 0;
  590. if (!after_banner) {
  591. con->out_kvec_left = 0;
  592. con->out_kvec_bytes = 0;
  593. }
  594. con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
  595. con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
  596. con->out_kvec_left++;
  597. con->out_kvec_bytes += sizeof(con->out_connect);
  598. con->out_kvec_cur = con->out_kvec;
  599. con->out_more = 0;
  600. set_bit(WRITE_PENDING, &con->state);
  601. return prepare_connect_authorizer(con);
  602. }
  603. /*
  604. * write as much of pending kvecs to the socket as we can.
  605. * 1 -> done
  606. * 0 -> socket full, but more to do
  607. * <0 -> error
  608. */
  609. static int write_partial_kvec(struct ceph_connection *con)
  610. {
  611. int ret;
  612. dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
  613. while (con->out_kvec_bytes > 0) {
  614. ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
  615. con->out_kvec_left, con->out_kvec_bytes,
  616. con->out_more);
  617. if (ret <= 0)
  618. goto out;
  619. con->out_kvec_bytes -= ret;
  620. if (con->out_kvec_bytes == 0)
  621. break; /* done */
  622. while (ret > 0) {
  623. if (ret >= con->out_kvec_cur->iov_len) {
  624. ret -= con->out_kvec_cur->iov_len;
  625. con->out_kvec_cur++;
  626. con->out_kvec_left--;
  627. } else {
  628. con->out_kvec_cur->iov_len -= ret;
  629. con->out_kvec_cur->iov_base += ret;
  630. ret = 0;
  631. break;
  632. }
  633. }
  634. }
  635. con->out_kvec_left = 0;
  636. con->out_kvec_is_msg = false;
  637. ret = 1;
  638. out:
  639. dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
  640. con->out_kvec_bytes, con->out_kvec_left, ret);
  641. return ret; /* done! */
  642. }
  643. #ifdef CONFIG_BLOCK
  644. static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
  645. {
  646. if (!bio) {
  647. *iter = NULL;
  648. *seg = 0;
  649. return;
  650. }
  651. *iter = bio;
  652. *seg = bio->bi_idx;
  653. }
  654. static void iter_bio_next(struct bio **bio_iter, int *seg)
  655. {
  656. if (*bio_iter == NULL)
  657. return;
  658. BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
  659. (*seg)++;
  660. if (*seg == (*bio_iter)->bi_vcnt)
  661. init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
  662. }
  663. #endif
  664. /*
  665. * Write as much message data payload as we can. If we finish, queue
  666. * up the footer.
  667. * 1 -> done, footer is now queued in out_kvec[].
  668. * 0 -> socket full, but more to do
  669. * <0 -> error
  670. */
  671. static int write_partial_msg_pages(struct ceph_connection *con)
  672. {
  673. struct ceph_msg *msg = con->out_msg;
  674. unsigned data_len = le32_to_cpu(msg->hdr.data_len);
  675. size_t len;
  676. int crc = con->msgr->nocrc;
  677. int ret;
  678. int total_max_write;
  679. int in_trail = 0;
  680. size_t trail_len = (msg->trail ? msg->trail->length : 0);
  681. dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
  682. con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
  683. con->out_msg_pos.page_pos);
  684. #ifdef CONFIG_BLOCK
  685. if (msg->bio && !msg->bio_iter)
  686. init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
  687. #endif
  688. while (data_len > con->out_msg_pos.data_pos) {
  689. struct page *page = NULL;
  690. void *kaddr = NULL;
  691. int max_write = PAGE_SIZE;
  692. int page_shift = 0;
  693. total_max_write = data_len - trail_len -
  694. con->out_msg_pos.data_pos;
  695. /*
  696. * if we are calculating the data crc (the default), we need
  697. * to map the page. if our pages[] has been revoked, use the
  698. * zero page.
  699. */
  700. /* have we reached the trail part of the data? */
  701. if (con->out_msg_pos.data_pos >= data_len - trail_len) {
  702. in_trail = 1;
  703. total_max_write = data_len - con->out_msg_pos.data_pos;
  704. page = list_first_entry(&msg->trail->head,
  705. struct page, lru);
  706. if (crc)
  707. kaddr = kmap(page);
  708. max_write = PAGE_SIZE;
  709. } else if (msg->pages) {
  710. page = msg->pages[con->out_msg_pos.page];
  711. if (crc)
  712. kaddr = kmap(page);
  713. } else if (msg->pagelist) {
  714. page = list_first_entry(&msg->pagelist->head,
  715. struct page, lru);
  716. if (crc)
  717. kaddr = kmap(page);
  718. #ifdef CONFIG_BLOCK
  719. } else if (msg->bio) {
  720. struct bio_vec *bv;
  721. bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
  722. page = bv->bv_page;
  723. page_shift = bv->bv_offset;
  724. if (crc)
  725. kaddr = kmap(page) + page_shift;
  726. max_write = bv->bv_len;
  727. #endif
  728. } else {
  729. page = con->msgr->zero_page;
  730. if (crc)
  731. kaddr = page_address(con->msgr->zero_page);
  732. }
  733. len = min_t(int, max_write - con->out_msg_pos.page_pos,
  734. total_max_write);
  735. if (crc && !con->out_msg_pos.did_page_crc) {
  736. void *base = kaddr + con->out_msg_pos.page_pos;
  737. u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
  738. BUG_ON(kaddr == NULL);
  739. con->out_msg->footer.data_crc =
  740. cpu_to_le32(crc32c(tmpcrc, base, len));
  741. con->out_msg_pos.did_page_crc = 1;
  742. }
  743. ret = kernel_sendpage(con->sock, page,
  744. con->out_msg_pos.page_pos + page_shift,
  745. len,
  746. MSG_DONTWAIT | MSG_NOSIGNAL |
  747. MSG_MORE);
  748. if (crc &&
  749. (msg->pages || msg->pagelist || msg->bio || in_trail))
  750. kunmap(page);
  751. if (ret == -EAGAIN)
  752. ret = 0;
  753. if (ret <= 0)
  754. goto out;
  755. con->out_msg_pos.data_pos += ret;
  756. con->out_msg_pos.page_pos += ret;
  757. if (ret == len) {
  758. con->out_msg_pos.page_pos = 0;
  759. con->out_msg_pos.page++;
  760. con->out_msg_pos.did_page_crc = 0;
  761. if (in_trail)
  762. list_move_tail(&page->lru,
  763. &msg->trail->head);
  764. else if (msg->pagelist)
  765. list_move_tail(&page->lru,
  766. &msg->pagelist->head);
  767. #ifdef CONFIG_BLOCK
  768. else if (msg->bio)
  769. iter_bio_next(&msg->bio_iter, &msg->bio_seg);
  770. #endif
  771. }
  772. }
  773. dout("write_partial_msg_pages %p msg %p done\n", con, msg);
  774. /* prepare and queue up footer, too */
  775. if (!crc)
  776. con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
  777. con->out_kvec_bytes = 0;
  778. con->out_kvec_left = 0;
  779. con->out_kvec_cur = con->out_kvec;
  780. prepare_write_message_footer(con, 0);
  781. ret = 1;
  782. out:
  783. return ret;
  784. }
  785. /*
  786. * write some zeros
  787. */
  788. static int write_partial_skip(struct ceph_connection *con)
  789. {
  790. int ret;
  791. while (con->out_skip > 0) {
  792. struct kvec iov = {
  793. .iov_base = page_address(con->msgr->zero_page),
  794. .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
  795. };
  796. ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
  797. if (ret <= 0)
  798. goto out;
  799. con->out_skip -= ret;
  800. }
  801. ret = 1;
  802. out:
  803. return ret;
  804. }
  805. /*
  806. * Prepare to read connection handshake, or an ack.
  807. */
  808. static void prepare_read_banner(struct ceph_connection *con)
  809. {
  810. dout("prepare_read_banner %p\n", con);
  811. con->in_base_pos = 0;
  812. }
  813. static void prepare_read_connect(struct ceph_connection *con)
  814. {
  815. dout("prepare_read_connect %p\n", con);
  816. con->in_base_pos = 0;
  817. }
  818. static void prepare_read_ack(struct ceph_connection *con)
  819. {
  820. dout("prepare_read_ack %p\n", con);
  821. con->in_base_pos = 0;
  822. }
  823. static void prepare_read_tag(struct ceph_connection *con)
  824. {
  825. dout("prepare_read_tag %p\n", con);
  826. con->in_base_pos = 0;
  827. con->in_tag = CEPH_MSGR_TAG_READY;
  828. }
  829. /*
  830. * Prepare to read a message.
  831. */
  832. static int prepare_read_message(struct ceph_connection *con)
  833. {
  834. dout("prepare_read_message %p\n", con);
  835. BUG_ON(con->in_msg != NULL);
  836. con->in_base_pos = 0;
  837. con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
  838. return 0;
  839. }
  840. static int read_partial(struct ceph_connection *con,
  841. int *to, int size, void *object)
  842. {
  843. *to += size;
  844. while (con->in_base_pos < *to) {
  845. int left = *to - con->in_base_pos;
  846. int have = size - left;
  847. int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
  848. if (ret <= 0)
  849. return ret;
  850. con->in_base_pos += ret;
  851. }
  852. return 1;
  853. }
  854. /*
  855. * Read all or part of the connect-side handshake on a new connection
  856. */
  857. static int read_partial_banner(struct ceph_connection *con)
  858. {
  859. int ret, to = 0;
  860. dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
  861. /* peer's banner */
  862. ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
  863. if (ret <= 0)
  864. goto out;
  865. ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
  866. &con->actual_peer_addr);
  867. if (ret <= 0)
  868. goto out;
  869. ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
  870. &con->peer_addr_for_me);
  871. if (ret <= 0)
  872. goto out;
  873. out:
  874. return ret;
  875. }
  876. static int read_partial_connect(struct ceph_connection *con)
  877. {
  878. int ret, to = 0;
  879. dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
  880. ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
  881. if (ret <= 0)
  882. goto out;
  883. ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
  884. con->auth_reply_buf);
  885. if (ret <= 0)
  886. goto out;
  887. dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
  888. con, (int)con->in_reply.tag,
  889. le32_to_cpu(con->in_reply.connect_seq),
  890. le32_to_cpu(con->in_reply.global_seq));
  891. out:
  892. return ret;
  893. }
  894. /*
  895. * Verify the hello banner looks okay.
  896. */
  897. static int verify_hello(struct ceph_connection *con)
  898. {
  899. if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
  900. pr_err("connect to %s got bad banner\n",
  901. ceph_pr_addr(&con->peer_addr.in_addr));
  902. con->error_msg = "protocol error, bad banner";
  903. return -1;
  904. }
  905. return 0;
  906. }
  907. static bool addr_is_blank(struct sockaddr_storage *ss)
  908. {
  909. switch (ss->ss_family) {
  910. case AF_INET:
  911. return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
  912. case AF_INET6:
  913. return
  914. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
  915. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
  916. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
  917. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
  918. }
  919. return false;
  920. }
  921. static int addr_port(struct sockaddr_storage *ss)
  922. {
  923. switch (ss->ss_family) {
  924. case AF_INET:
  925. return ntohs(((struct sockaddr_in *)ss)->sin_port);
  926. case AF_INET6:
  927. return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
  928. }
  929. return 0;
  930. }
  931. static void addr_set_port(struct sockaddr_storage *ss, int p)
  932. {
  933. switch (ss->ss_family) {
  934. case AF_INET:
  935. ((struct sockaddr_in *)ss)->sin_port = htons(p);
  936. break;
  937. case AF_INET6:
  938. ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
  939. break;
  940. }
  941. }
  942. /*
  943. * Unlike other *_pton function semantics, zero indicates success.
  944. */
  945. static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
  946. char delim, const char **ipend)
  947. {
  948. struct sockaddr_in *in4 = (void *)ss;
  949. struct sockaddr_in6 *in6 = (void *)ss;
  950. memset(ss, 0, sizeof(*ss));
  951. if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
  952. ss->ss_family = AF_INET;
  953. return 0;
  954. }
  955. if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
  956. ss->ss_family = AF_INET6;
  957. return 0;
  958. }
  959. return -EINVAL;
  960. }
  961. /*
  962. * Extract hostname string and resolve using kernel DNS facility.
  963. */
  964. #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
  965. static int ceph_dns_resolve_name(const char *name, size_t namelen,
  966. struct sockaddr_storage *ss, char delim, const char **ipend)
  967. {
  968. const char *end, *delim_p;
  969. char *colon_p, *ip_addr = NULL;
  970. int ip_len, ret;
  971. /*
  972. * The end of the hostname occurs immediately preceding the delimiter or
  973. * the port marker (':') where the delimiter takes precedence.
  974. */
  975. delim_p = memchr(name, delim, namelen);
  976. colon_p = memchr(name, ':', namelen);
  977. if (delim_p && colon_p)
  978. end = delim_p < colon_p ? delim_p : colon_p;
  979. else if (!delim_p && colon_p)
  980. end = colon_p;
  981. else {
  982. end = delim_p;
  983. if (!end) /* case: hostname:/ */
  984. end = name + namelen;
  985. }
  986. if (end <= name)
  987. return -EINVAL;
  988. /* do dns_resolve upcall */
  989. ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
  990. if (ip_len > 0)
  991. ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
  992. else
  993. ret = -ESRCH;
  994. kfree(ip_addr);
  995. *ipend = end;
  996. pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
  997. ret, ret ? "failed" : ceph_pr_addr(ss));
  998. return ret;
  999. }
  1000. #else
  1001. static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
  1002. struct sockaddr_storage *ss, char delim, const char **ipend)
  1003. {
  1004. return -EINVAL;
  1005. }
  1006. #endif
  1007. /*
  1008. * Parse a server name (IP or hostname). If a valid IP address is not found
  1009. * then try to extract a hostname to resolve using userspace DNS upcall.
  1010. */
  1011. static int ceph_parse_server_name(const char *name, size_t namelen,
  1012. struct sockaddr_storage *ss, char delim, const char **ipend)
  1013. {
  1014. int ret;
  1015. ret = ceph_pton(name, namelen, ss, delim, ipend);
  1016. if (ret)
  1017. ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
  1018. return ret;
  1019. }
  1020. /*
  1021. * Parse an ip[:port] list into an addr array. Use the default
  1022. * monitor port if a port isn't specified.
  1023. */
  1024. int ceph_parse_ips(const char *c, const char *end,
  1025. struct ceph_entity_addr *addr,
  1026. int max_count, int *count)
  1027. {
  1028. int i, ret = -EINVAL;
  1029. const char *p = c;
  1030. dout("parse_ips on '%.*s'\n", (int)(end-c), c);
  1031. for (i = 0; i < max_count; i++) {
  1032. const char *ipend;
  1033. struct sockaddr_storage *ss = &addr[i].in_addr;
  1034. int port;
  1035. char delim = ',';
  1036. if (*p == '[') {
  1037. delim = ']';
  1038. p++;
  1039. }
  1040. ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
  1041. if (ret)
  1042. goto bad;
  1043. ret = -EINVAL;
  1044. p = ipend;
  1045. if (delim == ']') {
  1046. if (*p != ']') {
  1047. dout("missing matching ']'\n");
  1048. goto bad;
  1049. }
  1050. p++;
  1051. }
  1052. /* port? */
  1053. if (p < end && *p == ':') {
  1054. port = 0;
  1055. p++;
  1056. while (p < end && *p >= '0' && *p <= '9') {
  1057. port = (port * 10) + (*p - '0');
  1058. p++;
  1059. }
  1060. if (port > 65535 || port == 0)
  1061. goto bad;
  1062. } else {
  1063. port = CEPH_MON_PORT;
  1064. }
  1065. addr_set_port(ss, port);
  1066. dout("parse_ips got %s\n", ceph_pr_addr(ss));
  1067. if (p == end)
  1068. break;
  1069. if (*p != ',')
  1070. goto bad;
  1071. p++;
  1072. }
  1073. if (p != end)
  1074. goto bad;
  1075. if (count)
  1076. *count = i + 1;
  1077. return 0;
  1078. bad:
  1079. pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
  1080. return ret;
  1081. }
  1082. EXPORT_SYMBOL(ceph_parse_ips);
  1083. static int process_banner(struct ceph_connection *con)
  1084. {
  1085. dout("process_banner on %p\n", con);
  1086. if (verify_hello(con) < 0)
  1087. return -1;
  1088. ceph_decode_addr(&con->actual_peer_addr);
  1089. ceph_decode_addr(&con->peer_addr_for_me);
  1090. /*
  1091. * Make sure the other end is who we wanted. note that the other
  1092. * end may not yet know their ip address, so if it's 0.0.0.0, give
  1093. * them the benefit of the doubt.
  1094. */
  1095. if (memcmp(&con->peer_addr, &con->actual_peer_addr,
  1096. sizeof(con->peer_addr)) != 0 &&
  1097. !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
  1098. con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
  1099. pr_warning("wrong peer, want %s/%d, got %s/%d\n",
  1100. ceph_pr_addr(&con->peer_addr.in_addr),
  1101. (int)le32_to_cpu(con->peer_addr.nonce),
  1102. ceph_pr_addr(&con->actual_peer_addr.in_addr),
  1103. (int)le32_to_cpu(con->actual_peer_addr.nonce));
  1104. con->error_msg = "wrong peer at address";
  1105. return -1;
  1106. }
  1107. /*
  1108. * did we learn our address?
  1109. */
  1110. if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
  1111. int port = addr_port(&con->msgr->inst.addr.in_addr);
  1112. memcpy(&con->msgr->inst.addr.in_addr,
  1113. &con->peer_addr_for_me.in_addr,
  1114. sizeof(con->peer_addr_for_me.in_addr));
  1115. addr_set_port(&con->msgr->inst.addr.in_addr, port);
  1116. encode_my_addr(con->msgr);
  1117. dout("process_banner learned my addr is %s\n",
  1118. ceph_pr_addr(&con->msgr->inst.addr.in_addr));
  1119. }
  1120. set_bit(NEGOTIATING, &con->state);
  1121. prepare_read_connect(con);
  1122. return 0;
  1123. }
  1124. static void fail_protocol(struct ceph_connection *con)
  1125. {
  1126. reset_connection(con);
  1127. set_bit(CLOSED, &con->state); /* in case there's queued work */
  1128. mutex_unlock(&con->mutex);
  1129. if (con->ops->bad_proto)
  1130. con->ops->bad_proto(con);
  1131. mutex_lock(&con->mutex);
  1132. }
  1133. static int process_connect(struct ceph_connection *con)
  1134. {
  1135. u64 sup_feat = con->msgr->supported_features;
  1136. u64 req_feat = con->msgr->required_features;
  1137. u64 server_feat = le64_to_cpu(con->in_reply.features);
  1138. int ret;
  1139. dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
  1140. switch (con->in_reply.tag) {
  1141. case CEPH_MSGR_TAG_FEATURES:
  1142. pr_err("%s%lld %s feature set mismatch,"
  1143. " my %llx < server's %llx, missing %llx\n",
  1144. ENTITY_NAME(con->peer_name),
  1145. ceph_pr_addr(&con->peer_addr.in_addr),
  1146. sup_feat, server_feat, server_feat & ~sup_feat);
  1147. con->error_msg = "missing required protocol features";
  1148. fail_protocol(con);
  1149. return -1;
  1150. case CEPH_MSGR_TAG_BADPROTOVER:
  1151. pr_err("%s%lld %s protocol version mismatch,"
  1152. " my %d != server's %d\n",
  1153. ENTITY_NAME(con->peer_name),
  1154. ceph_pr_addr(&con->peer_addr.in_addr),
  1155. le32_to_cpu(con->out_connect.protocol_version),
  1156. le32_to_cpu(con->in_reply.protocol_version));
  1157. con->error_msg = "protocol version mismatch";
  1158. fail_protocol(con);
  1159. return -1;
  1160. case CEPH_MSGR_TAG_BADAUTHORIZER:
  1161. con->auth_retry++;
  1162. dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
  1163. con->auth_retry);
  1164. if (con->auth_retry == 2) {
  1165. con->error_msg = "connect authorization failure";
  1166. return -1;
  1167. }
  1168. con->auth_retry = 1;
  1169. ret = prepare_write_connect(con->msgr, con, 0);
  1170. if (ret < 0)
  1171. return ret;
  1172. prepare_read_connect(con);
  1173. break;
  1174. case CEPH_MSGR_TAG_RESETSESSION:
  1175. /*
  1176. * If we connected with a large connect_seq but the peer
  1177. * has no record of a session with us (no connection, or
  1178. * connect_seq == 0), they will send RESETSESION to indicate
  1179. * that they must have reset their session, and may have
  1180. * dropped messages.
  1181. */
  1182. dout("process_connect got RESET peer seq %u\n",
  1183. le32_to_cpu(con->in_connect.connect_seq));
  1184. pr_err("%s%lld %s connection reset\n",
  1185. ENTITY_NAME(con->peer_name),
  1186. ceph_pr_addr(&con->peer_addr.in_addr));
  1187. reset_connection(con);
  1188. prepare_write_connect(con->msgr, con, 0);
  1189. prepare_read_connect(con);
  1190. /* Tell ceph about it. */
  1191. mutex_unlock(&con->mutex);
  1192. pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
  1193. if (con->ops->peer_reset)
  1194. con->ops->peer_reset(con);
  1195. mutex_lock(&con->mutex);
  1196. if (test_bit(CLOSED, &con->state) ||
  1197. test_bit(OPENING, &con->state))
  1198. return -EAGAIN;
  1199. break;
  1200. case CEPH_MSGR_TAG_RETRY_SESSION:
  1201. /*
  1202. * If we sent a smaller connect_seq than the peer has, try
  1203. * again with a larger value.
  1204. */
  1205. dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
  1206. le32_to_cpu(con->out_connect.connect_seq),
  1207. le32_to_cpu(con->in_connect.connect_seq));
  1208. con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
  1209. prepare_write_connect(con->msgr, con, 0);
  1210. prepare_read_connect(con);
  1211. break;
  1212. case CEPH_MSGR_TAG_RETRY_GLOBAL:
  1213. /*
  1214. * If we sent a smaller global_seq than the peer has, try
  1215. * again with a larger value.
  1216. */
  1217. dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
  1218. con->peer_global_seq,
  1219. le32_to_cpu(con->in_connect.global_seq));
  1220. get_global_seq(con->msgr,
  1221. le32_to_cpu(con->in_connect.global_seq));
  1222. prepare_write_connect(con->msgr, con, 0);
  1223. prepare_read_connect(con);
  1224. break;
  1225. case CEPH_MSGR_TAG_READY:
  1226. if (req_feat & ~server_feat) {
  1227. pr_err("%s%lld %s protocol feature mismatch,"
  1228. " my required %llx > server's %llx, need %llx\n",
  1229. ENTITY_NAME(con->peer_name),
  1230. ceph_pr_addr(&con->peer_addr.in_addr),
  1231. req_feat, server_feat, req_feat & ~server_feat);
  1232. con->error_msg = "missing required protocol features";
  1233. fail_protocol(con);
  1234. return -1;
  1235. }
  1236. clear_bit(CONNECTING, &con->state);
  1237. con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
  1238. con->connect_seq++;
  1239. con->peer_features = server_feat;
  1240. dout("process_connect got READY gseq %d cseq %d (%d)\n",
  1241. con->peer_global_seq,
  1242. le32_to_cpu(con->in_reply.connect_seq),
  1243. con->connect_seq);
  1244. WARN_ON(con->connect_seq !=
  1245. le32_to_cpu(con->in_reply.connect_seq));
  1246. if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
  1247. set_bit(LOSSYTX, &con->state);
  1248. prepare_read_tag(con);
  1249. break;
  1250. case CEPH_MSGR_TAG_WAIT:
  1251. /*
  1252. * If there is a connection race (we are opening
  1253. * connections to each other), one of us may just have
  1254. * to WAIT. This shouldn't happen if we are the
  1255. * client.
  1256. */
  1257. pr_err("process_connect got WAIT as client\n");
  1258. con->error_msg = "protocol error, got WAIT as client";
  1259. return -1;
  1260. default:
  1261. pr_err("connect protocol error, will retry\n");
  1262. con->error_msg = "protocol error, garbage tag during connect";
  1263. return -1;
  1264. }
  1265. return 0;
  1266. }
  1267. /*
  1268. * read (part of) an ack
  1269. */
  1270. static int read_partial_ack(struct ceph_connection *con)
  1271. {
  1272. int to = 0;
  1273. return read_partial(con, &to, sizeof(con->in_temp_ack),
  1274. &con->in_temp_ack);
  1275. }
  1276. /*
  1277. * We can finally discard anything that's been acked.
  1278. */
  1279. static void process_ack(struct ceph_connection *con)
  1280. {
  1281. struct ceph_msg *m;
  1282. u64 ack = le64_to_cpu(con->in_temp_ack);
  1283. u64 seq;
  1284. while (!list_empty(&con->out_sent)) {
  1285. m = list_first_entry(&con->out_sent, struct ceph_msg,
  1286. list_head);
  1287. seq = le64_to_cpu(m->hdr.seq);
  1288. if (seq > ack)
  1289. break;
  1290. dout("got ack for seq %llu type %d at %p\n", seq,
  1291. le16_to_cpu(m->hdr.type), m);
  1292. m->ack_stamp = jiffies;
  1293. ceph_msg_remove(m);
  1294. }
  1295. prepare_read_tag(con);
  1296. }
  1297. static int read_partial_message_section(struct ceph_connection *con,
  1298. struct kvec *section,
  1299. unsigned int sec_len, u32 *crc)
  1300. {
  1301. int ret, left;
  1302. BUG_ON(!section);
  1303. while (section->iov_len < sec_len) {
  1304. BUG_ON(section->iov_base == NULL);
  1305. left = sec_len - section->iov_len;
  1306. ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
  1307. section->iov_len, left);
  1308. if (ret <= 0)
  1309. return ret;
  1310. section->iov_len += ret;
  1311. if (section->iov_len == sec_len)
  1312. *crc = crc32c(0, section->iov_base,
  1313. section->iov_len);
  1314. }
  1315. return 1;
  1316. }
  1317. static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
  1318. struct ceph_msg_header *hdr,
  1319. int *skip);
  1320. static int read_partial_message_pages(struct ceph_connection *con,
  1321. struct page **pages,
  1322. unsigned data_len, int datacrc)
  1323. {
  1324. void *p;
  1325. int ret;
  1326. int left;
  1327. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1328. (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
  1329. /* (page) data */
  1330. BUG_ON(pages == NULL);
  1331. p = kmap(pages[con->in_msg_pos.page]);
  1332. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1333. left);
  1334. if (ret > 0 && datacrc)
  1335. con->in_data_crc =
  1336. crc32c(con->in_data_crc,
  1337. p + con->in_msg_pos.page_pos, ret);
  1338. kunmap(pages[con->in_msg_pos.page]);
  1339. if (ret <= 0)
  1340. return ret;
  1341. con->in_msg_pos.data_pos += ret;
  1342. con->in_msg_pos.page_pos += ret;
  1343. if (con->in_msg_pos.page_pos == PAGE_SIZE) {
  1344. con->in_msg_pos.page_pos = 0;
  1345. con->in_msg_pos.page++;
  1346. }
  1347. return ret;
  1348. }
  1349. #ifdef CONFIG_BLOCK
  1350. static int read_partial_message_bio(struct ceph_connection *con,
  1351. struct bio **bio_iter, int *bio_seg,
  1352. unsigned data_len, int datacrc)
  1353. {
  1354. struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
  1355. void *p;
  1356. int ret, left;
  1357. if (IS_ERR(bv))
  1358. return PTR_ERR(bv);
  1359. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1360. (int)(bv->bv_len - con->in_msg_pos.page_pos));
  1361. p = kmap(bv->bv_page) + bv->bv_offset;
  1362. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1363. left);
  1364. if (ret > 0 && datacrc)
  1365. con->in_data_crc =
  1366. crc32c(con->in_data_crc,
  1367. p + con->in_msg_pos.page_pos, ret);
  1368. kunmap(bv->bv_page);
  1369. if (ret <= 0)
  1370. return ret;
  1371. con->in_msg_pos.data_pos += ret;
  1372. con->in_msg_pos.page_pos += ret;
  1373. if (con->in_msg_pos.page_pos == bv->bv_len) {
  1374. con->in_msg_pos.page_pos = 0;
  1375. iter_bio_next(bio_iter, bio_seg);
  1376. }
  1377. return ret;
  1378. }
  1379. #endif
  1380. /*
  1381. * read (part of) a message.
  1382. */
  1383. static int read_partial_message(struct ceph_connection *con)
  1384. {
  1385. struct ceph_msg *m = con->in_msg;
  1386. int ret;
  1387. int to, left;
  1388. unsigned front_len, middle_len, data_len;
  1389. int datacrc = con->msgr->nocrc;
  1390. int skip;
  1391. u64 seq;
  1392. dout("read_partial_message con %p msg %p\n", con, m);
  1393. /* header */
  1394. while (con->in_base_pos < sizeof(con->in_hdr)) {
  1395. left = sizeof(con->in_hdr) - con->in_base_pos;
  1396. ret = ceph_tcp_recvmsg(con->sock,
  1397. (char *)&con->in_hdr + con->in_base_pos,
  1398. left);
  1399. if (ret <= 0)
  1400. return ret;
  1401. con->in_base_pos += ret;
  1402. if (con->in_base_pos == sizeof(con->in_hdr)) {
  1403. u32 crc = crc32c(0, (void *)&con->in_hdr,
  1404. sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
  1405. if (crc != le32_to_cpu(con->in_hdr.crc)) {
  1406. pr_err("read_partial_message bad hdr "
  1407. " crc %u != expected %u\n",
  1408. crc, con->in_hdr.crc);
  1409. return -EBADMSG;
  1410. }
  1411. }
  1412. }
  1413. front_len = le32_to_cpu(con->in_hdr.front_len);
  1414. if (front_len > CEPH_MSG_MAX_FRONT_LEN)
  1415. return -EIO;
  1416. middle_len = le32_to_cpu(con->in_hdr.middle_len);
  1417. if (middle_len > CEPH_MSG_MAX_DATA_LEN)
  1418. return -EIO;
  1419. data_len = le32_to_cpu(con->in_hdr.data_len);
  1420. if (data_len > CEPH_MSG_MAX_DATA_LEN)
  1421. return -EIO;
  1422. /* verify seq# */
  1423. seq = le64_to_cpu(con->in_hdr.seq);
  1424. if ((s64)seq - (s64)con->in_seq < 1) {
  1425. pr_info("skipping %s%lld %s seq %lld expected %lld\n",
  1426. ENTITY_NAME(con->peer_name),
  1427. ceph_pr_addr(&con->peer_addr.in_addr),
  1428. seq, con->in_seq + 1);
  1429. con->in_base_pos = -front_len - middle_len - data_len -
  1430. sizeof(m->footer);
  1431. con->in_tag = CEPH_MSGR_TAG_READY;
  1432. return 0;
  1433. } else if ((s64)seq - (s64)con->in_seq > 1) {
  1434. pr_err("read_partial_message bad seq %lld expected %lld\n",
  1435. seq, con->in_seq + 1);
  1436. con->error_msg = "bad message sequence # for incoming message";
  1437. return -EBADMSG;
  1438. }
  1439. /* allocate message? */
  1440. if (!con->in_msg) {
  1441. dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
  1442. con->in_hdr.front_len, con->in_hdr.data_len);
  1443. skip = 0;
  1444. con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
  1445. if (skip) {
  1446. /* skip this message */
  1447. dout("alloc_msg said skip message\n");
  1448. BUG_ON(con->in_msg);
  1449. con->in_base_pos = -front_len - middle_len - data_len -
  1450. sizeof(m->footer);
  1451. con->in_tag = CEPH_MSGR_TAG_READY;
  1452. con->in_seq++;
  1453. return 0;
  1454. }
  1455. if (!con->in_msg) {
  1456. con->error_msg =
  1457. "error allocating memory for incoming message";
  1458. return -ENOMEM;
  1459. }
  1460. m = con->in_msg;
  1461. m->front.iov_len = 0; /* haven't read it yet */
  1462. if (m->middle)
  1463. m->middle->vec.iov_len = 0;
  1464. con->in_msg_pos.page = 0;
  1465. if (m->pages)
  1466. con->in_msg_pos.page_pos = m->page_alignment;
  1467. else
  1468. con->in_msg_pos.page_pos = 0;
  1469. con->in_msg_pos.data_pos = 0;
  1470. }
  1471. /* front */
  1472. ret = read_partial_message_section(con, &m->front, front_len,
  1473. &con->in_front_crc);
  1474. if (ret <= 0)
  1475. return ret;
  1476. /* middle */
  1477. if (m->middle) {
  1478. ret = read_partial_message_section(con, &m->middle->vec,
  1479. middle_len,
  1480. &con->in_middle_crc);
  1481. if (ret <= 0)
  1482. return ret;
  1483. }
  1484. #ifdef CONFIG_BLOCK
  1485. if (m->bio && !m->bio_iter)
  1486. init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
  1487. #endif
  1488. /* (page) data */
  1489. while (con->in_msg_pos.data_pos < data_len) {
  1490. if (m->pages) {
  1491. ret = read_partial_message_pages(con, m->pages,
  1492. data_len, datacrc);
  1493. if (ret <= 0)
  1494. return ret;
  1495. #ifdef CONFIG_BLOCK
  1496. } else if (m->bio) {
  1497. ret = read_partial_message_bio(con,
  1498. &m->bio_iter, &m->bio_seg,
  1499. data_len, datacrc);
  1500. if (ret <= 0)
  1501. return ret;
  1502. #endif
  1503. } else {
  1504. BUG_ON(1);
  1505. }
  1506. }
  1507. /* footer */
  1508. to = sizeof(m->hdr) + sizeof(m->footer);
  1509. while (con->in_base_pos < to) {
  1510. left = to - con->in_base_pos;
  1511. ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
  1512. (con->in_base_pos - sizeof(m->hdr)),
  1513. left);
  1514. if (ret <= 0)
  1515. return ret;
  1516. con->in_base_pos += ret;
  1517. }
  1518. dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
  1519. m, front_len, m->footer.front_crc, middle_len,
  1520. m->footer.middle_crc, data_len, m->footer.data_crc);
  1521. /* crc ok? */
  1522. if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
  1523. pr_err("read_partial_message %p front crc %u != exp. %u\n",
  1524. m, con->in_front_crc, m->footer.front_crc);
  1525. return -EBADMSG;
  1526. }
  1527. if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
  1528. pr_err("read_partial_message %p middle crc %u != exp %u\n",
  1529. m, con->in_middle_crc, m->footer.middle_crc);
  1530. return -EBADMSG;
  1531. }
  1532. if (datacrc &&
  1533. (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
  1534. con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
  1535. pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
  1536. con->in_data_crc, le32_to_cpu(m->footer.data_crc));
  1537. return -EBADMSG;
  1538. }
  1539. return 1; /* done! */
  1540. }
  1541. /*
  1542. * Process message. This happens in the worker thread. The callback should
  1543. * be careful not to do anything that waits on other incoming messages or it
  1544. * may deadlock.
  1545. */
  1546. static void process_message(struct ceph_connection *con)
  1547. {
  1548. struct ceph_msg *msg;
  1549. msg = con->in_msg;
  1550. con->in_msg = NULL;
  1551. /* if first message, set peer_name */
  1552. if (con->peer_name.type == 0)
  1553. con->peer_name = msg->hdr.src;
  1554. con->in_seq++;
  1555. mutex_unlock(&con->mutex);
  1556. dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
  1557. msg, le64_to_cpu(msg->hdr.seq),
  1558. ENTITY_NAME(msg->hdr.src),
  1559. le16_to_cpu(msg->hdr.type),
  1560. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  1561. le32_to_cpu(msg->hdr.front_len),
  1562. le32_to_cpu(msg->hdr.data_len),
  1563. con->in_front_crc, con->in_middle_crc, con->in_data_crc);
  1564. con->ops->dispatch(con, msg);
  1565. mutex_lock(&con->mutex);
  1566. prepare_read_tag(con);
  1567. }
  1568. /*
  1569. * Write something to the socket. Called in a worker thread when the
  1570. * socket appears to be writeable and we have something ready to send.
  1571. */
  1572. static int try_write(struct ceph_connection *con)
  1573. {
  1574. struct ceph_messenger *msgr = con->msgr;
  1575. int ret = 1;
  1576. dout("try_write start %p state %lu nref %d\n", con, con->state,
  1577. atomic_read(&con->nref));
  1578. more:
  1579. dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
  1580. /* open the socket first? */
  1581. if (con->sock == NULL) {
  1582. prepare_write_banner(msgr, con);
  1583. prepare_write_connect(msgr, con, 1);
  1584. prepare_read_banner(con);
  1585. set_bit(CONNECTING, &con->state);
  1586. clear_bit(NEGOTIATING, &con->state);
  1587. BUG_ON(con->in_msg);
  1588. con->in_tag = CEPH_MSGR_TAG_READY;
  1589. dout("try_write initiating connect on %p new state %lu\n",
  1590. con, con->state);
  1591. con->sock = ceph_tcp_connect(con);
  1592. if (IS_ERR(con->sock)) {
  1593. con->sock = NULL;
  1594. con->error_msg = "connect error";
  1595. ret = -1;
  1596. goto out;
  1597. }
  1598. }
  1599. more_kvec:
  1600. /* kvec data queued? */
  1601. if (con->out_skip) {
  1602. ret = write_partial_skip(con);
  1603. if (ret <= 0)
  1604. goto out;
  1605. }
  1606. if (con->out_kvec_left) {
  1607. ret = write_partial_kvec(con);
  1608. if (ret <= 0)
  1609. goto out;
  1610. }
  1611. /* msg pages? */
  1612. if (con->out_msg) {
  1613. if (con->out_msg_done) {
  1614. ceph_msg_put(con->out_msg);
  1615. con->out_msg = NULL; /* we're done with this one */
  1616. goto do_next;
  1617. }
  1618. ret = write_partial_msg_pages(con);
  1619. if (ret == 1)
  1620. goto more_kvec; /* we need to send the footer, too! */
  1621. if (ret == 0)
  1622. goto out;
  1623. if (ret < 0) {
  1624. dout("try_write write_partial_msg_pages err %d\n",
  1625. ret);
  1626. goto out;
  1627. }
  1628. }
  1629. do_next:
  1630. if (!test_bit(CONNECTING, &con->state)) {
  1631. /* is anything else pending? */
  1632. if (!list_empty(&con->out_queue)) {
  1633. prepare_write_message(con);
  1634. goto more;
  1635. }
  1636. if (con->in_seq > con->in_seq_acked) {
  1637. prepare_write_ack(con);
  1638. goto more;
  1639. }
  1640. if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
  1641. prepare_write_keepalive(con);
  1642. goto more;
  1643. }
  1644. }
  1645. /* Nothing to do! */
  1646. clear_bit(WRITE_PENDING, &con->state);
  1647. dout("try_write nothing else to write.\n");
  1648. ret = 0;
  1649. out:
  1650. dout("try_write done on %p ret %d\n", con, ret);
  1651. return ret;
  1652. }
  1653. /*
  1654. * Read what we can from the socket.
  1655. */
  1656. static int try_read(struct ceph_connection *con)
  1657. {
  1658. int ret = -1;
  1659. if (!con->sock)
  1660. return 0;
  1661. if (test_bit(STANDBY, &con->state))
  1662. return 0;
  1663. dout("try_read start on %p\n", con);
  1664. more:
  1665. dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
  1666. con->in_base_pos);
  1667. /*
  1668. * process_connect and process_message drop and re-take
  1669. * con->mutex. make sure we handle a racing close or reopen.
  1670. */
  1671. if (test_bit(CLOSED, &con->state) ||
  1672. test_bit(OPENING, &con->state)) {
  1673. ret = -EAGAIN;
  1674. goto out;
  1675. }
  1676. if (test_bit(CONNECTING, &con->state)) {
  1677. if (!test_bit(NEGOTIATING, &con->state)) {
  1678. dout("try_read connecting\n");
  1679. ret = read_partial_banner(con);
  1680. if (ret <= 0)
  1681. goto out;
  1682. ret = process_banner(con);
  1683. if (ret < 0)
  1684. goto out;
  1685. }
  1686. ret = read_partial_connect(con);
  1687. if (ret <= 0)
  1688. goto out;
  1689. ret = process_connect(con);
  1690. if (ret < 0)
  1691. goto out;
  1692. goto more;
  1693. }
  1694. if (con->in_base_pos < 0) {
  1695. /*
  1696. * skipping + discarding content.
  1697. *
  1698. * FIXME: there must be a better way to do this!
  1699. */
  1700. static char buf[1024];
  1701. int skip = min(1024, -con->in_base_pos);
  1702. dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
  1703. ret = ceph_tcp_recvmsg(con->sock, buf, skip);
  1704. if (ret <= 0)
  1705. goto out;
  1706. con->in_base_pos += ret;
  1707. if (con->in_base_pos)
  1708. goto more;
  1709. }
  1710. if (con->in_tag == CEPH_MSGR_TAG_READY) {
  1711. /*
  1712. * what's next?
  1713. */
  1714. ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
  1715. if (ret <= 0)
  1716. goto out;
  1717. dout("try_read got tag %d\n", (int)con->in_tag);
  1718. switch (con->in_tag) {
  1719. case CEPH_MSGR_TAG_MSG:
  1720. prepare_read_message(con);
  1721. break;
  1722. case CEPH_MSGR_TAG_ACK:
  1723. prepare_read_ack(con);
  1724. break;
  1725. case CEPH_MSGR_TAG_CLOSE:
  1726. set_bit(CLOSED, &con->state); /* fixme */
  1727. goto out;
  1728. default:
  1729. goto bad_tag;
  1730. }
  1731. }
  1732. if (con->in_tag == CEPH_MSGR_TAG_MSG) {
  1733. ret = read_partial_message(con);
  1734. if (ret <= 0) {
  1735. switch (ret) {
  1736. case -EBADMSG:
  1737. con->error_msg = "bad crc";
  1738. ret = -EIO;
  1739. break;
  1740. case -EIO:
  1741. con->error_msg = "io error";
  1742. break;
  1743. }
  1744. goto out;
  1745. }
  1746. if (con->in_tag == CEPH_MSGR_TAG_READY)
  1747. goto more;
  1748. process_message(con);
  1749. goto more;
  1750. }
  1751. if (con->in_tag == CEPH_MSGR_TAG_ACK) {
  1752. ret = read_partial_ack(con);
  1753. if (ret <= 0)
  1754. goto out;
  1755. process_ack(con);
  1756. goto more;
  1757. }
  1758. out:
  1759. dout("try_read done on %p ret %d\n", con, ret);
  1760. return ret;
  1761. bad_tag:
  1762. pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
  1763. con->error_msg = "protocol error, garbage tag";
  1764. ret = -1;
  1765. goto out;
  1766. }
  1767. /*
  1768. * Atomically queue work on a connection. Bump @con reference to
  1769. * avoid races with connection teardown.
  1770. */
  1771. static void queue_con(struct ceph_connection *con)
  1772. {
  1773. if (test_bit(DEAD, &con->state)) {
  1774. dout("queue_con %p ignoring: DEAD\n",
  1775. con);
  1776. return;
  1777. }
  1778. if (!con->ops->get(con)) {
  1779. dout("queue_con %p ref count 0\n", con);
  1780. return;
  1781. }
  1782. if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
  1783. dout("queue_con %p - already queued\n", con);
  1784. con->ops->put(con);
  1785. } else {
  1786. dout("queue_con %p\n", con);
  1787. }
  1788. }
  1789. /*
  1790. * Do some work on a connection. Drop a connection ref when we're done.
  1791. */
  1792. static void con_work(struct work_struct *work)
  1793. {
  1794. struct ceph_connection *con = container_of(work, struct ceph_connection,
  1795. work.work);
  1796. int ret;
  1797. mutex_lock(&con->mutex);
  1798. restart:
  1799. if (test_and_clear_bit(BACKOFF, &con->state)) {
  1800. dout("con_work %p backing off\n", con);
  1801. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1802. round_jiffies_relative(con->delay))) {
  1803. dout("con_work %p backoff %lu\n", con, con->delay);
  1804. mutex_unlock(&con->mutex);
  1805. return;
  1806. } else {
  1807. con->ops->put(con);
  1808. dout("con_work %p FAILED to back off %lu\n", con,
  1809. con->delay);
  1810. }
  1811. }
  1812. if (test_bit(STANDBY, &con->state)) {
  1813. dout("con_work %p STANDBY\n", con);
  1814. goto done;
  1815. }
  1816. if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
  1817. dout("con_work CLOSED\n");
  1818. con_close_socket(con);
  1819. goto done;
  1820. }
  1821. if (test_and_clear_bit(OPENING, &con->state)) {
  1822. /* reopen w/ new peer */
  1823. dout("con_work OPENING\n");
  1824. con_close_socket(con);
  1825. }
  1826. if (test_and_clear_bit(SOCK_CLOSED, &con->state))
  1827. goto fault;
  1828. ret = try_read(con);
  1829. if (ret == -EAGAIN)
  1830. goto restart;
  1831. if (ret < 0)
  1832. goto fault;
  1833. ret = try_write(con);
  1834. if (ret == -EAGAIN)
  1835. goto restart;
  1836. if (ret < 0)
  1837. goto fault;
  1838. done:
  1839. mutex_unlock(&con->mutex);
  1840. done_unlocked:
  1841. con->ops->put(con);
  1842. return;
  1843. fault:
  1844. mutex_unlock(&con->mutex);
  1845. ceph_fault(con); /* error/fault path */
  1846. goto done_unlocked;
  1847. }
  1848. /*
  1849. * Generic error/fault handler. A retry mechanism is used with
  1850. * exponential backoff
  1851. */
  1852. static void ceph_fault(struct ceph_connection *con)
  1853. {
  1854. pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
  1855. ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
  1856. dout("fault %p state %lu to peer %s\n",
  1857. con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
  1858. if (test_bit(LOSSYTX, &con->state)) {
  1859. dout("fault on LOSSYTX channel\n");
  1860. goto out;
  1861. }
  1862. mutex_lock(&con->mutex);
  1863. if (test_bit(CLOSED, &con->state))
  1864. goto out_unlock;
  1865. con_close_socket(con);
  1866. if (con->in_msg) {
  1867. ceph_msg_put(con->in_msg);
  1868. con->in_msg = NULL;
  1869. }
  1870. /* Requeue anything that hasn't been acked */
  1871. list_splice_init(&con->out_sent, &con->out_queue);
  1872. /* If there are no messages queued or keepalive pending, place
  1873. * the connection in a STANDBY state */
  1874. if (list_empty(&con->out_queue) &&
  1875. !test_bit(KEEPALIVE_PENDING, &con->state)) {
  1876. dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
  1877. clear_bit(WRITE_PENDING, &con->state);
  1878. set_bit(STANDBY, &con->state);
  1879. } else {
  1880. /* retry after a delay. */
  1881. if (con->delay == 0)
  1882. con->delay = BASE_DELAY_INTERVAL;
  1883. else if (con->delay < MAX_DELAY_INTERVAL)
  1884. con->delay *= 2;
  1885. con->ops->get(con);
  1886. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1887. round_jiffies_relative(con->delay))) {
  1888. dout("fault queued %p delay %lu\n", con, con->delay);
  1889. } else {
  1890. con->ops->put(con);
  1891. dout("fault failed to queue %p delay %lu, backoff\n",
  1892. con, con->delay);
  1893. /*
  1894. * In many cases we see a socket state change
  1895. * while con_work is running and end up
  1896. * queuing (non-delayed) work, such that we
  1897. * can't backoff with a delay. Set a flag so
  1898. * that when con_work restarts we schedule the
  1899. * delay then.
  1900. */
  1901. set_bit(BACKOFF, &con->state);
  1902. }
  1903. }
  1904. out_unlock:
  1905. mutex_unlock(&con->mutex);
  1906. out:
  1907. /*
  1908. * in case we faulted due to authentication, invalidate our
  1909. * current tickets so that we can get new ones.
  1910. */
  1911. if (con->auth_retry && con->ops->invalidate_authorizer) {
  1912. dout("calling invalidate_authorizer()\n");
  1913. con->ops->invalidate_authorizer(con);
  1914. }
  1915. if (con->ops->fault)
  1916. con->ops->fault(con);
  1917. }
  1918. /*
  1919. * create a new messenger instance
  1920. */
  1921. struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
  1922. u32 supported_features,
  1923. u32 required_features)
  1924. {
  1925. struct ceph_messenger *msgr;
  1926. msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
  1927. if (msgr == NULL)
  1928. return ERR_PTR(-ENOMEM);
  1929. msgr->supported_features = supported_features;
  1930. msgr->required_features = required_features;
  1931. spin_lock_init(&msgr->global_seq_lock);
  1932. /* the zero page is needed if a request is "canceled" while the message
  1933. * is being written over the socket */
  1934. msgr->zero_page = __page_cache_alloc(GFP_KERNEL | __GFP_ZERO);
  1935. if (!msgr->zero_page) {
  1936. kfree(msgr);
  1937. return ERR_PTR(-ENOMEM);
  1938. }
  1939. kmap(msgr->zero_page);
  1940. if (myaddr)
  1941. msgr->inst.addr = *myaddr;
  1942. /* select a random nonce */
  1943. msgr->inst.addr.type = 0;
  1944. get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
  1945. encode_my_addr(msgr);
  1946. dout("messenger_create %p\n", msgr);
  1947. return msgr;
  1948. }
  1949. EXPORT_SYMBOL(ceph_messenger_create);
  1950. void ceph_messenger_destroy(struct ceph_messenger *msgr)
  1951. {
  1952. dout("destroy %p\n", msgr);
  1953. kunmap(msgr->zero_page);
  1954. __free_page(msgr->zero_page);
  1955. kfree(msgr);
  1956. dout("destroyed messenger %p\n", msgr);
  1957. }
  1958. EXPORT_SYMBOL(ceph_messenger_destroy);
  1959. static void clear_standby(struct ceph_connection *con)
  1960. {
  1961. /* come back from STANDBY? */
  1962. if (test_and_clear_bit(STANDBY, &con->state)) {
  1963. mutex_lock(&con->mutex);
  1964. dout("clear_standby %p and ++connect_seq\n", con);
  1965. con->connect_seq++;
  1966. WARN_ON(test_bit(WRITE_PENDING, &con->state));
  1967. WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
  1968. mutex_unlock(&con->mutex);
  1969. }
  1970. }
  1971. /*
  1972. * Queue up an outgoing message on the given connection.
  1973. */
  1974. void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
  1975. {
  1976. if (test_bit(CLOSED, &con->state)) {
  1977. dout("con_send %p closed, dropping %p\n", con, msg);
  1978. ceph_msg_put(msg);
  1979. return;
  1980. }
  1981. /* set src+dst */
  1982. msg->hdr.src = con->msgr->inst.name;
  1983. BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
  1984. msg->needs_out_seq = true;
  1985. /* queue */
  1986. mutex_lock(&con->mutex);
  1987. BUG_ON(!list_empty(&msg->list_head));
  1988. list_add_tail(&msg->list_head, &con->out_queue);
  1989. dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
  1990. ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
  1991. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  1992. le32_to_cpu(msg->hdr.front_len),
  1993. le32_to_cpu(msg->hdr.middle_len),
  1994. le32_to_cpu(msg->hdr.data_len));
  1995. mutex_unlock(&con->mutex);
  1996. /* if there wasn't anything waiting to send before, queue
  1997. * new work */
  1998. clear_standby(con);
  1999. if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
  2000. queue_con(con);
  2001. }
  2002. EXPORT_SYMBOL(ceph_con_send);
  2003. /*
  2004. * Revoke a message that was previously queued for send
  2005. */
  2006. void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
  2007. {
  2008. mutex_lock(&con->mutex);
  2009. if (!list_empty(&msg->list_head)) {
  2010. dout("con_revoke %p msg %p - was on queue\n", con, msg);
  2011. list_del_init(&msg->list_head);
  2012. ceph_msg_put(msg);
  2013. msg->hdr.seq = 0;
  2014. }
  2015. if (con->out_msg == msg) {
  2016. dout("con_revoke %p msg %p - was sending\n", con, msg);
  2017. con->out_msg = NULL;
  2018. if (con->out_kvec_is_msg) {
  2019. con->out_skip = con->out_kvec_bytes;
  2020. con->out_kvec_is_msg = false;
  2021. }
  2022. ceph_msg_put(msg);
  2023. msg->hdr.seq = 0;
  2024. }
  2025. mutex_unlock(&con->mutex);
  2026. }
  2027. /*
  2028. * Revoke a message that we may be reading data into
  2029. */
  2030. void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
  2031. {
  2032. mutex_lock(&con->mutex);
  2033. if (con->in_msg && con->in_msg == msg) {
  2034. unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
  2035. unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
  2036. unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
  2037. /* skip rest of message */
  2038. dout("con_revoke_pages %p msg %p revoked\n", con, msg);
  2039. con->in_base_pos = con->in_base_pos -
  2040. sizeof(struct ceph_msg_header) -
  2041. front_len -
  2042. middle_len -
  2043. data_len -
  2044. sizeof(struct ceph_msg_footer);
  2045. ceph_msg_put(con->in_msg);
  2046. con->in_msg = NULL;
  2047. con->in_tag = CEPH_MSGR_TAG_READY;
  2048. con->in_seq++;
  2049. } else {
  2050. dout("con_revoke_pages %p msg %p pages %p no-op\n",
  2051. con, con->in_msg, msg);
  2052. }
  2053. mutex_unlock(&con->mutex);
  2054. }
  2055. /*
  2056. * Queue a keepalive byte to ensure the tcp connection is alive.
  2057. */
  2058. void ceph_con_keepalive(struct ceph_connection *con)
  2059. {
  2060. dout("con_keepalive %p\n", con);
  2061. clear_standby(con);
  2062. if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
  2063. test_and_set_bit(WRITE_PENDING, &con->state) == 0)
  2064. queue_con(con);
  2065. }
  2066. EXPORT_SYMBOL(ceph_con_keepalive);
  2067. /*
  2068. * construct a new message with given type, size
  2069. * the new msg has a ref count of 1.
  2070. */
  2071. struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
  2072. bool can_fail)
  2073. {
  2074. struct ceph_msg *m;
  2075. m = kmalloc(sizeof(*m), flags);
  2076. if (m == NULL)
  2077. goto out;
  2078. kref_init(&m->kref);
  2079. INIT_LIST_HEAD(&m->list_head);
  2080. m->hdr.tid = 0;
  2081. m->hdr.type = cpu_to_le16(type);
  2082. m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
  2083. m->hdr.version = 0;
  2084. m->hdr.front_len = cpu_to_le32(front_len);
  2085. m->hdr.middle_len = 0;
  2086. m->hdr.data_len = 0;
  2087. m->hdr.data_off = 0;
  2088. m->hdr.reserved = 0;
  2089. m->footer.front_crc = 0;
  2090. m->footer.middle_crc = 0;
  2091. m->footer.data_crc = 0;
  2092. m->footer.flags = 0;
  2093. m->front_max = front_len;
  2094. m->front_is_vmalloc = false;
  2095. m->more_to_follow = false;
  2096. m->ack_stamp = 0;
  2097. m->pool = NULL;
  2098. /* middle */
  2099. m->middle = NULL;
  2100. /* data */
  2101. m->nr_pages = 0;
  2102. m->page_alignment = 0;
  2103. m->pages = NULL;
  2104. m->pagelist = NULL;
  2105. m->bio = NULL;
  2106. m->bio_iter = NULL;
  2107. m->bio_seg = 0;
  2108. m->trail = NULL;
  2109. /* front */
  2110. if (front_len) {
  2111. if (front_len > PAGE_CACHE_SIZE) {
  2112. m->front.iov_base = __vmalloc(front_len, flags,
  2113. PAGE_KERNEL);
  2114. m->front_is_vmalloc = true;
  2115. } else {
  2116. m->front.iov_base = kmalloc(front_len, flags);
  2117. }
  2118. if (m->front.iov_base == NULL) {
  2119. dout("ceph_msg_new can't allocate %d bytes\n",
  2120. front_len);
  2121. goto out2;
  2122. }
  2123. } else {
  2124. m->front.iov_base = NULL;
  2125. }
  2126. m->front.iov_len = front_len;
  2127. dout("ceph_msg_new %p front %d\n", m, front_len);
  2128. return m;
  2129. out2:
  2130. ceph_msg_put(m);
  2131. out:
  2132. if (!can_fail) {
  2133. pr_err("msg_new can't create type %d front %d\n", type,
  2134. front_len);
  2135. WARN_ON(1);
  2136. } else {
  2137. dout("msg_new can't create type %d front %d\n", type,
  2138. front_len);
  2139. }
  2140. return NULL;
  2141. }
  2142. EXPORT_SYMBOL(ceph_msg_new);
  2143. /*
  2144. * Allocate "middle" portion of a message, if it is needed and wasn't
  2145. * allocated by alloc_msg. This allows us to read a small fixed-size
  2146. * per-type header in the front and then gracefully fail (i.e.,
  2147. * propagate the error to the caller based on info in the front) when
  2148. * the middle is too large.
  2149. */
  2150. static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
  2151. {
  2152. int type = le16_to_cpu(msg->hdr.type);
  2153. int middle_len = le32_to_cpu(msg->hdr.middle_len);
  2154. dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
  2155. ceph_msg_type_name(type), middle_len);
  2156. BUG_ON(!middle_len);
  2157. BUG_ON(msg->middle);
  2158. msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
  2159. if (!msg->middle)
  2160. return -ENOMEM;
  2161. return 0;
  2162. }
  2163. /*
  2164. * Generic message allocator, for incoming messages.
  2165. */
  2166. static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
  2167. struct ceph_msg_header *hdr,
  2168. int *skip)
  2169. {
  2170. int type = le16_to_cpu(hdr->type);
  2171. int front_len = le32_to_cpu(hdr->front_len);
  2172. int middle_len = le32_to_cpu(hdr->middle_len);
  2173. struct ceph_msg *msg = NULL;
  2174. int ret;
  2175. if (con->ops->alloc_msg) {
  2176. mutex_unlock(&con->mutex);
  2177. msg = con->ops->alloc_msg(con, hdr, skip);
  2178. mutex_lock(&con->mutex);
  2179. if (!msg || *skip)
  2180. return NULL;
  2181. }
  2182. if (!msg) {
  2183. *skip = 0;
  2184. msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
  2185. if (!msg) {
  2186. pr_err("unable to allocate msg type %d len %d\n",
  2187. type, front_len);
  2188. return NULL;
  2189. }
  2190. msg->page_alignment = le16_to_cpu(hdr->data_off);
  2191. }
  2192. memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
  2193. if (middle_len && !msg->middle) {
  2194. ret = ceph_alloc_middle(con, msg);
  2195. if (ret < 0) {
  2196. ceph_msg_put(msg);
  2197. return NULL;
  2198. }
  2199. }
  2200. return msg;
  2201. }
  2202. /*
  2203. * Free a generically kmalloc'd message.
  2204. */
  2205. void ceph_msg_kfree(struct ceph_msg *m)
  2206. {
  2207. dout("msg_kfree %p\n", m);
  2208. if (m->front_is_vmalloc)
  2209. vfree(m->front.iov_base);
  2210. else
  2211. kfree(m->front.iov_base);
  2212. kfree(m);
  2213. }
  2214. /*
  2215. * Drop a msg ref. Destroy as needed.
  2216. */
  2217. void ceph_msg_last_put(struct kref *kref)
  2218. {
  2219. struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
  2220. dout("ceph_msg_put last one on %p\n", m);
  2221. WARN_ON(!list_empty(&m->list_head));
  2222. /* drop middle, data, if any */
  2223. if (m->middle) {
  2224. ceph_buffer_put(m->middle);
  2225. m->middle = NULL;
  2226. }
  2227. m->nr_pages = 0;
  2228. m->pages = NULL;
  2229. if (m->pagelist) {
  2230. ceph_pagelist_release(m->pagelist);
  2231. kfree(m->pagelist);
  2232. m->pagelist = NULL;
  2233. }
  2234. m->trail = NULL;
  2235. if (m->pool)
  2236. ceph_msgpool_put(m->pool, m);
  2237. else
  2238. ceph_msg_kfree(m);
  2239. }
  2240. EXPORT_SYMBOL(ceph_msg_last_put);
  2241. void ceph_msg_dump(struct ceph_msg *msg)
  2242. {
  2243. pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
  2244. msg->front_max, msg->nr_pages);
  2245. print_hex_dump(KERN_DEBUG, "header: ",
  2246. DUMP_PREFIX_OFFSET, 16, 1,
  2247. &msg->hdr, sizeof(msg->hdr), true);
  2248. print_hex_dump(KERN_DEBUG, " front: ",
  2249. DUMP_PREFIX_OFFSET, 16, 1,
  2250. msg->front.iov_base, msg->front.iov_len, true);
  2251. if (msg->middle)
  2252. print_hex_dump(KERN_DEBUG, "middle: ",
  2253. DUMP_PREFIX_OFFSET, 16, 1,
  2254. msg->middle->vec.iov_base,
  2255. msg->middle->vec.iov_len, true);
  2256. print_hex_dump(KERN_DEBUG, "footer: ",
  2257. DUMP_PREFIX_OFFSET, 16, 1,
  2258. &msg->footer, sizeof(msg->footer), true);
  2259. }
  2260. EXPORT_SYMBOL(ceph_msg_dump);