s2io.c 243 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768
  1. /************************************************************************
  2. * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
  3. * Copyright(c) 2002-2007 Neterion Inc.
  4. *
  5. * This software may be used and distributed according to the terms of
  6. * the GNU General Public License (GPL), incorporated herein by reference.
  7. * Drivers based on or derived from this code fall under the GPL and must
  8. * retain the authorship, copyright and license notice. This file is not
  9. * a complete program and may only be used when the entire operating
  10. * system is licensed under the GPL.
  11. * See the file COPYING in this distribution for more information.
  12. *
  13. * Credits:
  14. * Jeff Garzik : For pointing out the improper error condition
  15. * check in the s2io_xmit routine and also some
  16. * issues in the Tx watch dog function. Also for
  17. * patiently answering all those innumerable
  18. * questions regaring the 2.6 porting issues.
  19. * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
  20. * macros available only in 2.6 Kernel.
  21. * Francois Romieu : For pointing out all code part that were
  22. * deprecated and also styling related comments.
  23. * Grant Grundler : For helping me get rid of some Architecture
  24. * dependent code.
  25. * Christopher Hellwig : Some more 2.6 specific issues in the driver.
  26. *
  27. * The module loadable parameters that are supported by the driver and a brief
  28. * explanation of all the variables.
  29. *
  30. * rx_ring_num : This can be used to program the number of receive rings used
  31. * in the driver.
  32. * rx_ring_sz: This defines the number of receive blocks each ring can have.
  33. * This is also an array of size 8.
  34. * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
  35. * values are 1, 2.
  36. * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
  37. * tx_fifo_len: This too is an array of 8. Each element defines the number of
  38. * Tx descriptors that can be associated with each corresponding FIFO.
  39. * intr_type: This defines the type of interrupt. The values can be 0(INTA),
  40. * 2(MSI_X). Default value is '2(MSI_X)'
  41. * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
  42. * Possible values '1' for enable '0' for disable. Default is '0'
  43. * lro_max_pkts: This parameter defines maximum number of packets can be
  44. * aggregated as a single large packet
  45. * napi: This parameter used to enable/disable NAPI (polling Rx)
  46. * Possible values '1' for enable and '0' for disable. Default is '1'
  47. * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
  48. * Possible values '1' for enable and '0' for disable. Default is '0'
  49. * vlan_tag_strip: This can be used to enable or disable vlan stripping.
  50. * Possible values '1' for enable , '0' for disable.
  51. * Default is '2' - which means disable in promisc mode
  52. * and enable in non-promiscuous mode.
  53. * multiq: This parameter used to enable/disable MULTIQUEUE support.
  54. * Possible values '1' for enable and '0' for disable. Default is '0'
  55. ************************************************************************/
  56. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  57. #include <linux/module.h>
  58. #include <linux/types.h>
  59. #include <linux/errno.h>
  60. #include <linux/ioport.h>
  61. #include <linux/pci.h>
  62. #include <linux/dma-mapping.h>
  63. #include <linux/kernel.h>
  64. #include <linux/netdevice.h>
  65. #include <linux/etherdevice.h>
  66. #include <linux/mdio.h>
  67. #include <linux/skbuff.h>
  68. #include <linux/init.h>
  69. #include <linux/delay.h>
  70. #include <linux/stddef.h>
  71. #include <linux/ioctl.h>
  72. #include <linux/timex.h>
  73. #include <linux/ethtool.h>
  74. #include <linux/workqueue.h>
  75. #include <linux/if_vlan.h>
  76. #include <linux/ip.h>
  77. #include <linux/tcp.h>
  78. #include <linux/uaccess.h>
  79. #include <linux/io.h>
  80. #include <linux/slab.h>
  81. #include <net/tcp.h>
  82. #include <asm/system.h>
  83. #include <asm/div64.h>
  84. #include <asm/irq.h>
  85. /* local include */
  86. #include "s2io.h"
  87. #include "s2io-regs.h"
  88. #define DRV_VERSION "2.0.26.26"
  89. /* S2io Driver name & version. */
  90. static char s2io_driver_name[] = "Neterion";
  91. static char s2io_driver_version[] = DRV_VERSION;
  92. static int rxd_size[2] = {32, 48};
  93. static int rxd_count[2] = {127, 85};
  94. static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
  95. {
  96. int ret;
  97. ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
  98. (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
  99. return ret;
  100. }
  101. /*
  102. * Cards with following subsystem_id have a link state indication
  103. * problem, 600B, 600C, 600D, 640B, 640C and 640D.
  104. * macro below identifies these cards given the subsystem_id.
  105. */
  106. #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
  107. (dev_type == XFRAME_I_DEVICE) ? \
  108. ((((subid >= 0x600B) && (subid <= 0x600D)) || \
  109. ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
  110. #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
  111. ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
  112. static inline int is_s2io_card_up(const struct s2io_nic *sp)
  113. {
  114. return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
  115. }
  116. /* Ethtool related variables and Macros. */
  117. static const char s2io_gstrings[][ETH_GSTRING_LEN] = {
  118. "Register test\t(offline)",
  119. "Eeprom test\t(offline)",
  120. "Link test\t(online)",
  121. "RLDRAM test\t(offline)",
  122. "BIST Test\t(offline)"
  123. };
  124. static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
  125. {"tmac_frms"},
  126. {"tmac_data_octets"},
  127. {"tmac_drop_frms"},
  128. {"tmac_mcst_frms"},
  129. {"tmac_bcst_frms"},
  130. {"tmac_pause_ctrl_frms"},
  131. {"tmac_ttl_octets"},
  132. {"tmac_ucst_frms"},
  133. {"tmac_nucst_frms"},
  134. {"tmac_any_err_frms"},
  135. {"tmac_ttl_less_fb_octets"},
  136. {"tmac_vld_ip_octets"},
  137. {"tmac_vld_ip"},
  138. {"tmac_drop_ip"},
  139. {"tmac_icmp"},
  140. {"tmac_rst_tcp"},
  141. {"tmac_tcp"},
  142. {"tmac_udp"},
  143. {"rmac_vld_frms"},
  144. {"rmac_data_octets"},
  145. {"rmac_fcs_err_frms"},
  146. {"rmac_drop_frms"},
  147. {"rmac_vld_mcst_frms"},
  148. {"rmac_vld_bcst_frms"},
  149. {"rmac_in_rng_len_err_frms"},
  150. {"rmac_out_rng_len_err_frms"},
  151. {"rmac_long_frms"},
  152. {"rmac_pause_ctrl_frms"},
  153. {"rmac_unsup_ctrl_frms"},
  154. {"rmac_ttl_octets"},
  155. {"rmac_accepted_ucst_frms"},
  156. {"rmac_accepted_nucst_frms"},
  157. {"rmac_discarded_frms"},
  158. {"rmac_drop_events"},
  159. {"rmac_ttl_less_fb_octets"},
  160. {"rmac_ttl_frms"},
  161. {"rmac_usized_frms"},
  162. {"rmac_osized_frms"},
  163. {"rmac_frag_frms"},
  164. {"rmac_jabber_frms"},
  165. {"rmac_ttl_64_frms"},
  166. {"rmac_ttl_65_127_frms"},
  167. {"rmac_ttl_128_255_frms"},
  168. {"rmac_ttl_256_511_frms"},
  169. {"rmac_ttl_512_1023_frms"},
  170. {"rmac_ttl_1024_1518_frms"},
  171. {"rmac_ip"},
  172. {"rmac_ip_octets"},
  173. {"rmac_hdr_err_ip"},
  174. {"rmac_drop_ip"},
  175. {"rmac_icmp"},
  176. {"rmac_tcp"},
  177. {"rmac_udp"},
  178. {"rmac_err_drp_udp"},
  179. {"rmac_xgmii_err_sym"},
  180. {"rmac_frms_q0"},
  181. {"rmac_frms_q1"},
  182. {"rmac_frms_q2"},
  183. {"rmac_frms_q3"},
  184. {"rmac_frms_q4"},
  185. {"rmac_frms_q5"},
  186. {"rmac_frms_q6"},
  187. {"rmac_frms_q7"},
  188. {"rmac_full_q0"},
  189. {"rmac_full_q1"},
  190. {"rmac_full_q2"},
  191. {"rmac_full_q3"},
  192. {"rmac_full_q4"},
  193. {"rmac_full_q5"},
  194. {"rmac_full_q6"},
  195. {"rmac_full_q7"},
  196. {"rmac_pause_cnt"},
  197. {"rmac_xgmii_data_err_cnt"},
  198. {"rmac_xgmii_ctrl_err_cnt"},
  199. {"rmac_accepted_ip"},
  200. {"rmac_err_tcp"},
  201. {"rd_req_cnt"},
  202. {"new_rd_req_cnt"},
  203. {"new_rd_req_rtry_cnt"},
  204. {"rd_rtry_cnt"},
  205. {"wr_rtry_rd_ack_cnt"},
  206. {"wr_req_cnt"},
  207. {"new_wr_req_cnt"},
  208. {"new_wr_req_rtry_cnt"},
  209. {"wr_rtry_cnt"},
  210. {"wr_disc_cnt"},
  211. {"rd_rtry_wr_ack_cnt"},
  212. {"txp_wr_cnt"},
  213. {"txd_rd_cnt"},
  214. {"txd_wr_cnt"},
  215. {"rxd_rd_cnt"},
  216. {"rxd_wr_cnt"},
  217. {"txf_rd_cnt"},
  218. {"rxf_wr_cnt"}
  219. };
  220. static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
  221. {"rmac_ttl_1519_4095_frms"},
  222. {"rmac_ttl_4096_8191_frms"},
  223. {"rmac_ttl_8192_max_frms"},
  224. {"rmac_ttl_gt_max_frms"},
  225. {"rmac_osized_alt_frms"},
  226. {"rmac_jabber_alt_frms"},
  227. {"rmac_gt_max_alt_frms"},
  228. {"rmac_vlan_frms"},
  229. {"rmac_len_discard"},
  230. {"rmac_fcs_discard"},
  231. {"rmac_pf_discard"},
  232. {"rmac_da_discard"},
  233. {"rmac_red_discard"},
  234. {"rmac_rts_discard"},
  235. {"rmac_ingm_full_discard"},
  236. {"link_fault_cnt"}
  237. };
  238. static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
  239. {"\n DRIVER STATISTICS"},
  240. {"single_bit_ecc_errs"},
  241. {"double_bit_ecc_errs"},
  242. {"parity_err_cnt"},
  243. {"serious_err_cnt"},
  244. {"soft_reset_cnt"},
  245. {"fifo_full_cnt"},
  246. {"ring_0_full_cnt"},
  247. {"ring_1_full_cnt"},
  248. {"ring_2_full_cnt"},
  249. {"ring_3_full_cnt"},
  250. {"ring_4_full_cnt"},
  251. {"ring_5_full_cnt"},
  252. {"ring_6_full_cnt"},
  253. {"ring_7_full_cnt"},
  254. {"alarm_transceiver_temp_high"},
  255. {"alarm_transceiver_temp_low"},
  256. {"alarm_laser_bias_current_high"},
  257. {"alarm_laser_bias_current_low"},
  258. {"alarm_laser_output_power_high"},
  259. {"alarm_laser_output_power_low"},
  260. {"warn_transceiver_temp_high"},
  261. {"warn_transceiver_temp_low"},
  262. {"warn_laser_bias_current_high"},
  263. {"warn_laser_bias_current_low"},
  264. {"warn_laser_output_power_high"},
  265. {"warn_laser_output_power_low"},
  266. {"lro_aggregated_pkts"},
  267. {"lro_flush_both_count"},
  268. {"lro_out_of_sequence_pkts"},
  269. {"lro_flush_due_to_max_pkts"},
  270. {"lro_avg_aggr_pkts"},
  271. {"mem_alloc_fail_cnt"},
  272. {"pci_map_fail_cnt"},
  273. {"watchdog_timer_cnt"},
  274. {"mem_allocated"},
  275. {"mem_freed"},
  276. {"link_up_cnt"},
  277. {"link_down_cnt"},
  278. {"link_up_time"},
  279. {"link_down_time"},
  280. {"tx_tcode_buf_abort_cnt"},
  281. {"tx_tcode_desc_abort_cnt"},
  282. {"tx_tcode_parity_err_cnt"},
  283. {"tx_tcode_link_loss_cnt"},
  284. {"tx_tcode_list_proc_err_cnt"},
  285. {"rx_tcode_parity_err_cnt"},
  286. {"rx_tcode_abort_cnt"},
  287. {"rx_tcode_parity_abort_cnt"},
  288. {"rx_tcode_rda_fail_cnt"},
  289. {"rx_tcode_unkn_prot_cnt"},
  290. {"rx_tcode_fcs_err_cnt"},
  291. {"rx_tcode_buf_size_err_cnt"},
  292. {"rx_tcode_rxd_corrupt_cnt"},
  293. {"rx_tcode_unkn_err_cnt"},
  294. {"tda_err_cnt"},
  295. {"pfc_err_cnt"},
  296. {"pcc_err_cnt"},
  297. {"tti_err_cnt"},
  298. {"tpa_err_cnt"},
  299. {"sm_err_cnt"},
  300. {"lso_err_cnt"},
  301. {"mac_tmac_err_cnt"},
  302. {"mac_rmac_err_cnt"},
  303. {"xgxs_txgxs_err_cnt"},
  304. {"xgxs_rxgxs_err_cnt"},
  305. {"rc_err_cnt"},
  306. {"prc_pcix_err_cnt"},
  307. {"rpa_err_cnt"},
  308. {"rda_err_cnt"},
  309. {"rti_err_cnt"},
  310. {"mc_err_cnt"}
  311. };
  312. #define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys)
  313. #define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys)
  314. #define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys)
  315. #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN)
  316. #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN)
  317. #define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN)
  318. #define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN)
  319. #define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings)
  320. #define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN)
  321. #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
  322. init_timer(&timer); \
  323. timer.function = handle; \
  324. timer.data = (unsigned long)arg; \
  325. mod_timer(&timer, (jiffies + exp)) \
  326. /* copy mac addr to def_mac_addr array */
  327. static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
  328. {
  329. sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
  330. sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
  331. sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
  332. sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
  333. sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
  334. sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
  335. }
  336. /* Add the vlan */
  337. static void s2io_vlan_rx_register(struct net_device *dev,
  338. struct vlan_group *grp)
  339. {
  340. int i;
  341. struct s2io_nic *nic = netdev_priv(dev);
  342. unsigned long flags[MAX_TX_FIFOS];
  343. struct config_param *config = &nic->config;
  344. struct mac_info *mac_control = &nic->mac_control;
  345. for (i = 0; i < config->tx_fifo_num; i++) {
  346. struct fifo_info *fifo = &mac_control->fifos[i];
  347. spin_lock_irqsave(&fifo->tx_lock, flags[i]);
  348. }
  349. nic->vlgrp = grp;
  350. for (i = config->tx_fifo_num - 1; i >= 0; i--) {
  351. struct fifo_info *fifo = &mac_control->fifos[i];
  352. spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
  353. }
  354. }
  355. /* Unregister the vlan */
  356. static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  357. {
  358. int i;
  359. struct s2io_nic *nic = netdev_priv(dev);
  360. unsigned long flags[MAX_TX_FIFOS];
  361. struct config_param *config = &nic->config;
  362. struct mac_info *mac_control = &nic->mac_control;
  363. for (i = 0; i < config->tx_fifo_num; i++) {
  364. struct fifo_info *fifo = &mac_control->fifos[i];
  365. spin_lock_irqsave(&fifo->tx_lock, flags[i]);
  366. }
  367. if (nic->vlgrp)
  368. vlan_group_set_device(nic->vlgrp, vid, NULL);
  369. for (i = config->tx_fifo_num - 1; i >= 0; i--) {
  370. struct fifo_info *fifo = &mac_control->fifos[i];
  371. spin_unlock_irqrestore(&fifo->tx_lock, flags[i]);
  372. }
  373. }
  374. /*
  375. * Constants to be programmed into the Xena's registers, to configure
  376. * the XAUI.
  377. */
  378. #define END_SIGN 0x0
  379. static const u64 herc_act_dtx_cfg[] = {
  380. /* Set address */
  381. 0x8000051536750000ULL, 0x80000515367500E0ULL,
  382. /* Write data */
  383. 0x8000051536750004ULL, 0x80000515367500E4ULL,
  384. /* Set address */
  385. 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
  386. /* Write data */
  387. 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
  388. /* Set address */
  389. 0x801205150D440000ULL, 0x801205150D4400E0ULL,
  390. /* Write data */
  391. 0x801205150D440004ULL, 0x801205150D4400E4ULL,
  392. /* Set address */
  393. 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
  394. /* Write data */
  395. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  396. /* Done */
  397. END_SIGN
  398. };
  399. static const u64 xena_dtx_cfg[] = {
  400. /* Set address */
  401. 0x8000051500000000ULL, 0x80000515000000E0ULL,
  402. /* Write data */
  403. 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
  404. /* Set address */
  405. 0x8001051500000000ULL, 0x80010515000000E0ULL,
  406. /* Write data */
  407. 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
  408. /* Set address */
  409. 0x8002051500000000ULL, 0x80020515000000E0ULL,
  410. /* Write data */
  411. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  412. END_SIGN
  413. };
  414. /*
  415. * Constants for Fixing the MacAddress problem seen mostly on
  416. * Alpha machines.
  417. */
  418. static const u64 fix_mac[] = {
  419. 0x0060000000000000ULL, 0x0060600000000000ULL,
  420. 0x0040600000000000ULL, 0x0000600000000000ULL,
  421. 0x0020600000000000ULL, 0x0060600000000000ULL,
  422. 0x0020600000000000ULL, 0x0060600000000000ULL,
  423. 0x0020600000000000ULL, 0x0060600000000000ULL,
  424. 0x0020600000000000ULL, 0x0060600000000000ULL,
  425. 0x0020600000000000ULL, 0x0060600000000000ULL,
  426. 0x0020600000000000ULL, 0x0060600000000000ULL,
  427. 0x0020600000000000ULL, 0x0060600000000000ULL,
  428. 0x0020600000000000ULL, 0x0060600000000000ULL,
  429. 0x0020600000000000ULL, 0x0060600000000000ULL,
  430. 0x0020600000000000ULL, 0x0060600000000000ULL,
  431. 0x0020600000000000ULL, 0x0000600000000000ULL,
  432. 0x0040600000000000ULL, 0x0060600000000000ULL,
  433. END_SIGN
  434. };
  435. MODULE_LICENSE("GPL");
  436. MODULE_VERSION(DRV_VERSION);
  437. /* Module Loadable parameters. */
  438. S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
  439. S2IO_PARM_INT(rx_ring_num, 1);
  440. S2IO_PARM_INT(multiq, 0);
  441. S2IO_PARM_INT(rx_ring_mode, 1);
  442. S2IO_PARM_INT(use_continuous_tx_intrs, 1);
  443. S2IO_PARM_INT(rmac_pause_time, 0x100);
  444. S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
  445. S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
  446. S2IO_PARM_INT(shared_splits, 0);
  447. S2IO_PARM_INT(tmac_util_period, 5);
  448. S2IO_PARM_INT(rmac_util_period, 5);
  449. S2IO_PARM_INT(l3l4hdr_size, 128);
  450. /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
  451. S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
  452. /* Frequency of Rx desc syncs expressed as power of 2 */
  453. S2IO_PARM_INT(rxsync_frequency, 3);
  454. /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
  455. S2IO_PARM_INT(intr_type, 2);
  456. /* Large receive offload feature */
  457. static unsigned int lro_enable = 1;
  458. module_param_named(lro, lro_enable, uint, 0);
  459. /* Max pkts to be aggregated by LRO at one time. If not specified,
  460. * aggregation happens until we hit max IP pkt size(64K)
  461. */
  462. S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
  463. S2IO_PARM_INT(indicate_max_pkts, 0);
  464. S2IO_PARM_INT(napi, 1);
  465. S2IO_PARM_INT(ufo, 0);
  466. S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
  467. static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
  468. {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
  469. static unsigned int rx_ring_sz[MAX_RX_RINGS] =
  470. {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
  471. static unsigned int rts_frm_len[MAX_RX_RINGS] =
  472. {[0 ...(MAX_RX_RINGS - 1)] = 0 };
  473. module_param_array(tx_fifo_len, uint, NULL, 0);
  474. module_param_array(rx_ring_sz, uint, NULL, 0);
  475. module_param_array(rts_frm_len, uint, NULL, 0);
  476. /*
  477. * S2IO device table.
  478. * This table lists all the devices that this driver supports.
  479. */
  480. static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = {
  481. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
  482. PCI_ANY_ID, PCI_ANY_ID},
  483. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
  484. PCI_ANY_ID, PCI_ANY_ID},
  485. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
  486. PCI_ANY_ID, PCI_ANY_ID},
  487. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
  488. PCI_ANY_ID, PCI_ANY_ID},
  489. {0,}
  490. };
  491. MODULE_DEVICE_TABLE(pci, s2io_tbl);
  492. static struct pci_error_handlers s2io_err_handler = {
  493. .error_detected = s2io_io_error_detected,
  494. .slot_reset = s2io_io_slot_reset,
  495. .resume = s2io_io_resume,
  496. };
  497. static struct pci_driver s2io_driver = {
  498. .name = "S2IO",
  499. .id_table = s2io_tbl,
  500. .probe = s2io_init_nic,
  501. .remove = __devexit_p(s2io_rem_nic),
  502. .err_handler = &s2io_err_handler,
  503. };
  504. /* A simplifier macro used both by init and free shared_mem Fns(). */
  505. #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
  506. /* netqueue manipulation helper functions */
  507. static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
  508. {
  509. if (!sp->config.multiq) {
  510. int i;
  511. for (i = 0; i < sp->config.tx_fifo_num; i++)
  512. sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
  513. }
  514. netif_tx_stop_all_queues(sp->dev);
  515. }
  516. static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
  517. {
  518. if (!sp->config.multiq)
  519. sp->mac_control.fifos[fifo_no].queue_state =
  520. FIFO_QUEUE_STOP;
  521. netif_tx_stop_all_queues(sp->dev);
  522. }
  523. static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
  524. {
  525. if (!sp->config.multiq) {
  526. int i;
  527. for (i = 0; i < sp->config.tx_fifo_num; i++)
  528. sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
  529. }
  530. netif_tx_start_all_queues(sp->dev);
  531. }
  532. static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
  533. {
  534. if (!sp->config.multiq)
  535. sp->mac_control.fifos[fifo_no].queue_state =
  536. FIFO_QUEUE_START;
  537. netif_tx_start_all_queues(sp->dev);
  538. }
  539. static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
  540. {
  541. if (!sp->config.multiq) {
  542. int i;
  543. for (i = 0; i < sp->config.tx_fifo_num; i++)
  544. sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
  545. }
  546. netif_tx_wake_all_queues(sp->dev);
  547. }
  548. static inline void s2io_wake_tx_queue(
  549. struct fifo_info *fifo, int cnt, u8 multiq)
  550. {
  551. if (multiq) {
  552. if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
  553. netif_wake_subqueue(fifo->dev, fifo->fifo_no);
  554. } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
  555. if (netif_queue_stopped(fifo->dev)) {
  556. fifo->queue_state = FIFO_QUEUE_START;
  557. netif_wake_queue(fifo->dev);
  558. }
  559. }
  560. }
  561. /**
  562. * init_shared_mem - Allocation and Initialization of Memory
  563. * @nic: Device private variable.
  564. * Description: The function allocates all the memory areas shared
  565. * between the NIC and the driver. This includes Tx descriptors,
  566. * Rx descriptors and the statistics block.
  567. */
  568. static int init_shared_mem(struct s2io_nic *nic)
  569. {
  570. u32 size;
  571. void *tmp_v_addr, *tmp_v_addr_next;
  572. dma_addr_t tmp_p_addr, tmp_p_addr_next;
  573. struct RxD_block *pre_rxd_blk = NULL;
  574. int i, j, blk_cnt;
  575. int lst_size, lst_per_page;
  576. struct net_device *dev = nic->dev;
  577. unsigned long tmp;
  578. struct buffAdd *ba;
  579. struct config_param *config = &nic->config;
  580. struct mac_info *mac_control = &nic->mac_control;
  581. unsigned long long mem_allocated = 0;
  582. /* Allocation and initialization of TXDLs in FIFOs */
  583. size = 0;
  584. for (i = 0; i < config->tx_fifo_num; i++) {
  585. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  586. size += tx_cfg->fifo_len;
  587. }
  588. if (size > MAX_AVAILABLE_TXDS) {
  589. DBG_PRINT(ERR_DBG,
  590. "Too many TxDs requested: %d, max supported: %d\n",
  591. size, MAX_AVAILABLE_TXDS);
  592. return -EINVAL;
  593. }
  594. size = 0;
  595. for (i = 0; i < config->tx_fifo_num; i++) {
  596. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  597. size = tx_cfg->fifo_len;
  598. /*
  599. * Legal values are from 2 to 8192
  600. */
  601. if (size < 2) {
  602. DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - "
  603. "Valid lengths are 2 through 8192\n",
  604. i, size);
  605. return -EINVAL;
  606. }
  607. }
  608. lst_size = (sizeof(struct TxD) * config->max_txds);
  609. lst_per_page = PAGE_SIZE / lst_size;
  610. for (i = 0; i < config->tx_fifo_num; i++) {
  611. struct fifo_info *fifo = &mac_control->fifos[i];
  612. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  613. int fifo_len = tx_cfg->fifo_len;
  614. int list_holder_size = fifo_len * sizeof(struct list_info_hold);
  615. fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL);
  616. if (!fifo->list_info) {
  617. DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n");
  618. return -ENOMEM;
  619. }
  620. mem_allocated += list_holder_size;
  621. }
  622. for (i = 0; i < config->tx_fifo_num; i++) {
  623. int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  624. lst_per_page);
  625. struct fifo_info *fifo = &mac_control->fifos[i];
  626. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  627. fifo->tx_curr_put_info.offset = 0;
  628. fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1;
  629. fifo->tx_curr_get_info.offset = 0;
  630. fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1;
  631. fifo->fifo_no = i;
  632. fifo->nic = nic;
  633. fifo->max_txds = MAX_SKB_FRAGS + 2;
  634. fifo->dev = dev;
  635. for (j = 0; j < page_num; j++) {
  636. int k = 0;
  637. dma_addr_t tmp_p;
  638. void *tmp_v;
  639. tmp_v = pci_alloc_consistent(nic->pdev,
  640. PAGE_SIZE, &tmp_p);
  641. if (!tmp_v) {
  642. DBG_PRINT(INFO_DBG,
  643. "pci_alloc_consistent failed for TxDL\n");
  644. return -ENOMEM;
  645. }
  646. /* If we got a zero DMA address(can happen on
  647. * certain platforms like PPC), reallocate.
  648. * Store virtual address of page we don't want,
  649. * to be freed later.
  650. */
  651. if (!tmp_p) {
  652. mac_control->zerodma_virt_addr = tmp_v;
  653. DBG_PRINT(INIT_DBG,
  654. "%s: Zero DMA address for TxDL. "
  655. "Virtual address %p\n",
  656. dev->name, tmp_v);
  657. tmp_v = pci_alloc_consistent(nic->pdev,
  658. PAGE_SIZE, &tmp_p);
  659. if (!tmp_v) {
  660. DBG_PRINT(INFO_DBG,
  661. "pci_alloc_consistent failed for TxDL\n");
  662. return -ENOMEM;
  663. }
  664. mem_allocated += PAGE_SIZE;
  665. }
  666. while (k < lst_per_page) {
  667. int l = (j * lst_per_page) + k;
  668. if (l == tx_cfg->fifo_len)
  669. break;
  670. fifo->list_info[l].list_virt_addr =
  671. tmp_v + (k * lst_size);
  672. fifo->list_info[l].list_phy_addr =
  673. tmp_p + (k * lst_size);
  674. k++;
  675. }
  676. }
  677. }
  678. for (i = 0; i < config->tx_fifo_num; i++) {
  679. struct fifo_info *fifo = &mac_control->fifos[i];
  680. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  681. size = tx_cfg->fifo_len;
  682. fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
  683. if (!fifo->ufo_in_band_v)
  684. return -ENOMEM;
  685. mem_allocated += (size * sizeof(u64));
  686. }
  687. /* Allocation and initialization of RXDs in Rings */
  688. size = 0;
  689. for (i = 0; i < config->rx_ring_num; i++) {
  690. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  691. struct ring_info *ring = &mac_control->rings[i];
  692. if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) {
  693. DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a "
  694. "multiple of RxDs per Block\n",
  695. dev->name, i);
  696. return FAILURE;
  697. }
  698. size += rx_cfg->num_rxd;
  699. ring->block_count = rx_cfg->num_rxd /
  700. (rxd_count[nic->rxd_mode] + 1);
  701. ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count;
  702. }
  703. if (nic->rxd_mode == RXD_MODE_1)
  704. size = (size * (sizeof(struct RxD1)));
  705. else
  706. size = (size * (sizeof(struct RxD3)));
  707. for (i = 0; i < config->rx_ring_num; i++) {
  708. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  709. struct ring_info *ring = &mac_control->rings[i];
  710. ring->rx_curr_get_info.block_index = 0;
  711. ring->rx_curr_get_info.offset = 0;
  712. ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1;
  713. ring->rx_curr_put_info.block_index = 0;
  714. ring->rx_curr_put_info.offset = 0;
  715. ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1;
  716. ring->nic = nic;
  717. ring->ring_no = i;
  718. blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1);
  719. /* Allocating all the Rx blocks */
  720. for (j = 0; j < blk_cnt; j++) {
  721. struct rx_block_info *rx_blocks;
  722. int l;
  723. rx_blocks = &ring->rx_blocks[j];
  724. size = SIZE_OF_BLOCK; /* size is always page size */
  725. tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
  726. &tmp_p_addr);
  727. if (tmp_v_addr == NULL) {
  728. /*
  729. * In case of failure, free_shared_mem()
  730. * is called, which should free any
  731. * memory that was alloced till the
  732. * failure happened.
  733. */
  734. rx_blocks->block_virt_addr = tmp_v_addr;
  735. return -ENOMEM;
  736. }
  737. mem_allocated += size;
  738. memset(tmp_v_addr, 0, size);
  739. size = sizeof(struct rxd_info) *
  740. rxd_count[nic->rxd_mode];
  741. rx_blocks->block_virt_addr = tmp_v_addr;
  742. rx_blocks->block_dma_addr = tmp_p_addr;
  743. rx_blocks->rxds = kmalloc(size, GFP_KERNEL);
  744. if (!rx_blocks->rxds)
  745. return -ENOMEM;
  746. mem_allocated += size;
  747. for (l = 0; l < rxd_count[nic->rxd_mode]; l++) {
  748. rx_blocks->rxds[l].virt_addr =
  749. rx_blocks->block_virt_addr +
  750. (rxd_size[nic->rxd_mode] * l);
  751. rx_blocks->rxds[l].dma_addr =
  752. rx_blocks->block_dma_addr +
  753. (rxd_size[nic->rxd_mode] * l);
  754. }
  755. }
  756. /* Interlinking all Rx Blocks */
  757. for (j = 0; j < blk_cnt; j++) {
  758. int next = (j + 1) % blk_cnt;
  759. tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
  760. tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr;
  761. tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
  762. tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr;
  763. pre_rxd_blk = (struct RxD_block *)tmp_v_addr;
  764. pre_rxd_blk->reserved_2_pNext_RxD_block =
  765. (unsigned long)tmp_v_addr_next;
  766. pre_rxd_blk->pNext_RxD_Blk_physical =
  767. (u64)tmp_p_addr_next;
  768. }
  769. }
  770. if (nic->rxd_mode == RXD_MODE_3B) {
  771. /*
  772. * Allocation of Storages for buffer addresses in 2BUFF mode
  773. * and the buffers as well.
  774. */
  775. for (i = 0; i < config->rx_ring_num; i++) {
  776. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  777. struct ring_info *ring = &mac_control->rings[i];
  778. blk_cnt = rx_cfg->num_rxd /
  779. (rxd_count[nic->rxd_mode] + 1);
  780. size = sizeof(struct buffAdd *) * blk_cnt;
  781. ring->ba = kmalloc(size, GFP_KERNEL);
  782. if (!ring->ba)
  783. return -ENOMEM;
  784. mem_allocated += size;
  785. for (j = 0; j < blk_cnt; j++) {
  786. int k = 0;
  787. size = sizeof(struct buffAdd) *
  788. (rxd_count[nic->rxd_mode] + 1);
  789. ring->ba[j] = kmalloc(size, GFP_KERNEL);
  790. if (!ring->ba[j])
  791. return -ENOMEM;
  792. mem_allocated += size;
  793. while (k != rxd_count[nic->rxd_mode]) {
  794. ba = &ring->ba[j][k];
  795. size = BUF0_LEN + ALIGN_SIZE;
  796. ba->ba_0_org = kmalloc(size, GFP_KERNEL);
  797. if (!ba->ba_0_org)
  798. return -ENOMEM;
  799. mem_allocated += size;
  800. tmp = (unsigned long)ba->ba_0_org;
  801. tmp += ALIGN_SIZE;
  802. tmp &= ~((unsigned long)ALIGN_SIZE);
  803. ba->ba_0 = (void *)tmp;
  804. size = BUF1_LEN + ALIGN_SIZE;
  805. ba->ba_1_org = kmalloc(size, GFP_KERNEL);
  806. if (!ba->ba_1_org)
  807. return -ENOMEM;
  808. mem_allocated += size;
  809. tmp = (unsigned long)ba->ba_1_org;
  810. tmp += ALIGN_SIZE;
  811. tmp &= ~((unsigned long)ALIGN_SIZE);
  812. ba->ba_1 = (void *)tmp;
  813. k++;
  814. }
  815. }
  816. }
  817. }
  818. /* Allocation and initialization of Statistics block */
  819. size = sizeof(struct stat_block);
  820. mac_control->stats_mem =
  821. pci_alloc_consistent(nic->pdev, size,
  822. &mac_control->stats_mem_phy);
  823. if (!mac_control->stats_mem) {
  824. /*
  825. * In case of failure, free_shared_mem() is called, which
  826. * should free any memory that was alloced till the
  827. * failure happened.
  828. */
  829. return -ENOMEM;
  830. }
  831. mem_allocated += size;
  832. mac_control->stats_mem_sz = size;
  833. tmp_v_addr = mac_control->stats_mem;
  834. mac_control->stats_info = (struct stat_block *)tmp_v_addr;
  835. memset(tmp_v_addr, 0, size);
  836. DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n",
  837. dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr);
  838. mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
  839. return SUCCESS;
  840. }
  841. /**
  842. * free_shared_mem - Free the allocated Memory
  843. * @nic: Device private variable.
  844. * Description: This function is to free all memory locations allocated by
  845. * the init_shared_mem() function and return it to the kernel.
  846. */
  847. static void free_shared_mem(struct s2io_nic *nic)
  848. {
  849. int i, j, blk_cnt, size;
  850. void *tmp_v_addr;
  851. dma_addr_t tmp_p_addr;
  852. int lst_size, lst_per_page;
  853. struct net_device *dev;
  854. int page_num = 0;
  855. struct config_param *config;
  856. struct mac_info *mac_control;
  857. struct stat_block *stats;
  858. struct swStat *swstats;
  859. if (!nic)
  860. return;
  861. dev = nic->dev;
  862. config = &nic->config;
  863. mac_control = &nic->mac_control;
  864. stats = mac_control->stats_info;
  865. swstats = &stats->sw_stat;
  866. lst_size = sizeof(struct TxD) * config->max_txds;
  867. lst_per_page = PAGE_SIZE / lst_size;
  868. for (i = 0; i < config->tx_fifo_num; i++) {
  869. struct fifo_info *fifo = &mac_control->fifos[i];
  870. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  871. page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page);
  872. for (j = 0; j < page_num; j++) {
  873. int mem_blks = (j * lst_per_page);
  874. struct list_info_hold *fli;
  875. if (!fifo->list_info)
  876. return;
  877. fli = &fifo->list_info[mem_blks];
  878. if (!fli->list_virt_addr)
  879. break;
  880. pci_free_consistent(nic->pdev, PAGE_SIZE,
  881. fli->list_virt_addr,
  882. fli->list_phy_addr);
  883. swstats->mem_freed += PAGE_SIZE;
  884. }
  885. /* If we got a zero DMA address during allocation,
  886. * free the page now
  887. */
  888. if (mac_control->zerodma_virt_addr) {
  889. pci_free_consistent(nic->pdev, PAGE_SIZE,
  890. mac_control->zerodma_virt_addr,
  891. (dma_addr_t)0);
  892. DBG_PRINT(INIT_DBG,
  893. "%s: Freeing TxDL with zero DMA address. "
  894. "Virtual address %p\n",
  895. dev->name, mac_control->zerodma_virt_addr);
  896. swstats->mem_freed += PAGE_SIZE;
  897. }
  898. kfree(fifo->list_info);
  899. swstats->mem_freed += tx_cfg->fifo_len *
  900. sizeof(struct list_info_hold);
  901. }
  902. size = SIZE_OF_BLOCK;
  903. for (i = 0; i < config->rx_ring_num; i++) {
  904. struct ring_info *ring = &mac_control->rings[i];
  905. blk_cnt = ring->block_count;
  906. for (j = 0; j < blk_cnt; j++) {
  907. tmp_v_addr = ring->rx_blocks[j].block_virt_addr;
  908. tmp_p_addr = ring->rx_blocks[j].block_dma_addr;
  909. if (tmp_v_addr == NULL)
  910. break;
  911. pci_free_consistent(nic->pdev, size,
  912. tmp_v_addr, tmp_p_addr);
  913. swstats->mem_freed += size;
  914. kfree(ring->rx_blocks[j].rxds);
  915. swstats->mem_freed += sizeof(struct rxd_info) *
  916. rxd_count[nic->rxd_mode];
  917. }
  918. }
  919. if (nic->rxd_mode == RXD_MODE_3B) {
  920. /* Freeing buffer storage addresses in 2BUFF mode. */
  921. for (i = 0; i < config->rx_ring_num; i++) {
  922. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  923. struct ring_info *ring = &mac_control->rings[i];
  924. blk_cnt = rx_cfg->num_rxd /
  925. (rxd_count[nic->rxd_mode] + 1);
  926. for (j = 0; j < blk_cnt; j++) {
  927. int k = 0;
  928. if (!ring->ba[j])
  929. continue;
  930. while (k != rxd_count[nic->rxd_mode]) {
  931. struct buffAdd *ba = &ring->ba[j][k];
  932. kfree(ba->ba_0_org);
  933. swstats->mem_freed +=
  934. BUF0_LEN + ALIGN_SIZE;
  935. kfree(ba->ba_1_org);
  936. swstats->mem_freed +=
  937. BUF1_LEN + ALIGN_SIZE;
  938. k++;
  939. }
  940. kfree(ring->ba[j]);
  941. swstats->mem_freed += sizeof(struct buffAdd) *
  942. (rxd_count[nic->rxd_mode] + 1);
  943. }
  944. kfree(ring->ba);
  945. swstats->mem_freed += sizeof(struct buffAdd *) *
  946. blk_cnt;
  947. }
  948. }
  949. for (i = 0; i < nic->config.tx_fifo_num; i++) {
  950. struct fifo_info *fifo = &mac_control->fifos[i];
  951. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  952. if (fifo->ufo_in_band_v) {
  953. swstats->mem_freed += tx_cfg->fifo_len *
  954. sizeof(u64);
  955. kfree(fifo->ufo_in_band_v);
  956. }
  957. }
  958. if (mac_control->stats_mem) {
  959. swstats->mem_freed += mac_control->stats_mem_sz;
  960. pci_free_consistent(nic->pdev,
  961. mac_control->stats_mem_sz,
  962. mac_control->stats_mem,
  963. mac_control->stats_mem_phy);
  964. }
  965. }
  966. /**
  967. * s2io_verify_pci_mode -
  968. */
  969. static int s2io_verify_pci_mode(struct s2io_nic *nic)
  970. {
  971. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  972. register u64 val64 = 0;
  973. int mode;
  974. val64 = readq(&bar0->pci_mode);
  975. mode = (u8)GET_PCI_MODE(val64);
  976. if (val64 & PCI_MODE_UNKNOWN_MODE)
  977. return -1; /* Unknown PCI mode */
  978. return mode;
  979. }
  980. #define NEC_VENID 0x1033
  981. #define NEC_DEVID 0x0125
  982. static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
  983. {
  984. struct pci_dev *tdev = NULL;
  985. while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
  986. if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
  987. if (tdev->bus == s2io_pdev->bus->parent) {
  988. pci_dev_put(tdev);
  989. return 1;
  990. }
  991. }
  992. }
  993. return 0;
  994. }
  995. static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
  996. /**
  997. * s2io_print_pci_mode -
  998. */
  999. static int s2io_print_pci_mode(struct s2io_nic *nic)
  1000. {
  1001. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1002. register u64 val64 = 0;
  1003. int mode;
  1004. struct config_param *config = &nic->config;
  1005. const char *pcimode;
  1006. val64 = readq(&bar0->pci_mode);
  1007. mode = (u8)GET_PCI_MODE(val64);
  1008. if (val64 & PCI_MODE_UNKNOWN_MODE)
  1009. return -1; /* Unknown PCI mode */
  1010. config->bus_speed = bus_speed[mode];
  1011. if (s2io_on_nec_bridge(nic->pdev)) {
  1012. DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
  1013. nic->dev->name);
  1014. return mode;
  1015. }
  1016. switch (mode) {
  1017. case PCI_MODE_PCI_33:
  1018. pcimode = "33MHz PCI bus";
  1019. break;
  1020. case PCI_MODE_PCI_66:
  1021. pcimode = "66MHz PCI bus";
  1022. break;
  1023. case PCI_MODE_PCIX_M1_66:
  1024. pcimode = "66MHz PCIX(M1) bus";
  1025. break;
  1026. case PCI_MODE_PCIX_M1_100:
  1027. pcimode = "100MHz PCIX(M1) bus";
  1028. break;
  1029. case PCI_MODE_PCIX_M1_133:
  1030. pcimode = "133MHz PCIX(M1) bus";
  1031. break;
  1032. case PCI_MODE_PCIX_M2_66:
  1033. pcimode = "133MHz PCIX(M2) bus";
  1034. break;
  1035. case PCI_MODE_PCIX_M2_100:
  1036. pcimode = "200MHz PCIX(M2) bus";
  1037. break;
  1038. case PCI_MODE_PCIX_M2_133:
  1039. pcimode = "266MHz PCIX(M2) bus";
  1040. break;
  1041. default:
  1042. pcimode = "unsupported bus!";
  1043. mode = -1;
  1044. }
  1045. DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n",
  1046. nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode);
  1047. return mode;
  1048. }
  1049. /**
  1050. * init_tti - Initialization transmit traffic interrupt scheme
  1051. * @nic: device private variable
  1052. * @link: link status (UP/DOWN) used to enable/disable continuous
  1053. * transmit interrupts
  1054. * Description: The function configures transmit traffic interrupts
  1055. * Return Value: SUCCESS on success and
  1056. * '-1' on failure
  1057. */
  1058. static int init_tti(struct s2io_nic *nic, int link)
  1059. {
  1060. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1061. register u64 val64 = 0;
  1062. int i;
  1063. struct config_param *config = &nic->config;
  1064. for (i = 0; i < config->tx_fifo_num; i++) {
  1065. /*
  1066. * TTI Initialization. Default Tx timer gets us about
  1067. * 250 interrupts per sec. Continuous interrupts are enabled
  1068. * by default.
  1069. */
  1070. if (nic->device_type == XFRAME_II_DEVICE) {
  1071. int count = (nic->config.bus_speed * 125)/2;
  1072. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
  1073. } else
  1074. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
  1075. val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
  1076. TTI_DATA1_MEM_TX_URNG_B(0x10) |
  1077. TTI_DATA1_MEM_TX_URNG_C(0x30) |
  1078. TTI_DATA1_MEM_TX_TIMER_AC_EN;
  1079. if (i == 0)
  1080. if (use_continuous_tx_intrs && (link == LINK_UP))
  1081. val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
  1082. writeq(val64, &bar0->tti_data1_mem);
  1083. if (nic->config.intr_type == MSI_X) {
  1084. val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
  1085. TTI_DATA2_MEM_TX_UFC_B(0x100) |
  1086. TTI_DATA2_MEM_TX_UFC_C(0x200) |
  1087. TTI_DATA2_MEM_TX_UFC_D(0x300);
  1088. } else {
  1089. if ((nic->config.tx_steering_type ==
  1090. TX_DEFAULT_STEERING) &&
  1091. (config->tx_fifo_num > 1) &&
  1092. (i >= nic->udp_fifo_idx) &&
  1093. (i < (nic->udp_fifo_idx +
  1094. nic->total_udp_fifos)))
  1095. val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
  1096. TTI_DATA2_MEM_TX_UFC_B(0x80) |
  1097. TTI_DATA2_MEM_TX_UFC_C(0x100) |
  1098. TTI_DATA2_MEM_TX_UFC_D(0x120);
  1099. else
  1100. val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
  1101. TTI_DATA2_MEM_TX_UFC_B(0x20) |
  1102. TTI_DATA2_MEM_TX_UFC_C(0x40) |
  1103. TTI_DATA2_MEM_TX_UFC_D(0x80);
  1104. }
  1105. writeq(val64, &bar0->tti_data2_mem);
  1106. val64 = TTI_CMD_MEM_WE |
  1107. TTI_CMD_MEM_STROBE_NEW_CMD |
  1108. TTI_CMD_MEM_OFFSET(i);
  1109. writeq(val64, &bar0->tti_command_mem);
  1110. if (wait_for_cmd_complete(&bar0->tti_command_mem,
  1111. TTI_CMD_MEM_STROBE_NEW_CMD,
  1112. S2IO_BIT_RESET) != SUCCESS)
  1113. return FAILURE;
  1114. }
  1115. return SUCCESS;
  1116. }
  1117. /**
  1118. * init_nic - Initialization of hardware
  1119. * @nic: device private variable
  1120. * Description: The function sequentially configures every block
  1121. * of the H/W from their reset values.
  1122. * Return Value: SUCCESS on success and
  1123. * '-1' on failure (endian settings incorrect).
  1124. */
  1125. static int init_nic(struct s2io_nic *nic)
  1126. {
  1127. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1128. struct net_device *dev = nic->dev;
  1129. register u64 val64 = 0;
  1130. void __iomem *add;
  1131. u32 time;
  1132. int i, j;
  1133. int dtx_cnt = 0;
  1134. unsigned long long mem_share;
  1135. int mem_size;
  1136. struct config_param *config = &nic->config;
  1137. struct mac_info *mac_control = &nic->mac_control;
  1138. /* to set the swapper controle on the card */
  1139. if (s2io_set_swapper(nic)) {
  1140. DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n");
  1141. return -EIO;
  1142. }
  1143. /*
  1144. * Herc requires EOI to be removed from reset before XGXS, so..
  1145. */
  1146. if (nic->device_type & XFRAME_II_DEVICE) {
  1147. val64 = 0xA500000000ULL;
  1148. writeq(val64, &bar0->sw_reset);
  1149. msleep(500);
  1150. val64 = readq(&bar0->sw_reset);
  1151. }
  1152. /* Remove XGXS from reset state */
  1153. val64 = 0;
  1154. writeq(val64, &bar0->sw_reset);
  1155. msleep(500);
  1156. val64 = readq(&bar0->sw_reset);
  1157. /* Ensure that it's safe to access registers by checking
  1158. * RIC_RUNNING bit is reset. Check is valid only for XframeII.
  1159. */
  1160. if (nic->device_type == XFRAME_II_DEVICE) {
  1161. for (i = 0; i < 50; i++) {
  1162. val64 = readq(&bar0->adapter_status);
  1163. if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
  1164. break;
  1165. msleep(10);
  1166. }
  1167. if (i == 50)
  1168. return -ENODEV;
  1169. }
  1170. /* Enable Receiving broadcasts */
  1171. add = &bar0->mac_cfg;
  1172. val64 = readq(&bar0->mac_cfg);
  1173. val64 |= MAC_RMAC_BCAST_ENABLE;
  1174. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1175. writel((u32)val64, add);
  1176. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1177. writel((u32) (val64 >> 32), (add + 4));
  1178. /* Read registers in all blocks */
  1179. val64 = readq(&bar0->mac_int_mask);
  1180. val64 = readq(&bar0->mc_int_mask);
  1181. val64 = readq(&bar0->xgxs_int_mask);
  1182. /* Set MTU */
  1183. val64 = dev->mtu;
  1184. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  1185. if (nic->device_type & XFRAME_II_DEVICE) {
  1186. while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
  1187. SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
  1188. &bar0->dtx_control, UF);
  1189. if (dtx_cnt & 0x1)
  1190. msleep(1); /* Necessary!! */
  1191. dtx_cnt++;
  1192. }
  1193. } else {
  1194. while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
  1195. SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
  1196. &bar0->dtx_control, UF);
  1197. val64 = readq(&bar0->dtx_control);
  1198. dtx_cnt++;
  1199. }
  1200. }
  1201. /* Tx DMA Initialization */
  1202. val64 = 0;
  1203. writeq(val64, &bar0->tx_fifo_partition_0);
  1204. writeq(val64, &bar0->tx_fifo_partition_1);
  1205. writeq(val64, &bar0->tx_fifo_partition_2);
  1206. writeq(val64, &bar0->tx_fifo_partition_3);
  1207. for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
  1208. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  1209. val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) |
  1210. vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3);
  1211. if (i == (config->tx_fifo_num - 1)) {
  1212. if (i % 2 == 0)
  1213. i++;
  1214. }
  1215. switch (i) {
  1216. case 1:
  1217. writeq(val64, &bar0->tx_fifo_partition_0);
  1218. val64 = 0;
  1219. j = 0;
  1220. break;
  1221. case 3:
  1222. writeq(val64, &bar0->tx_fifo_partition_1);
  1223. val64 = 0;
  1224. j = 0;
  1225. break;
  1226. case 5:
  1227. writeq(val64, &bar0->tx_fifo_partition_2);
  1228. val64 = 0;
  1229. j = 0;
  1230. break;
  1231. case 7:
  1232. writeq(val64, &bar0->tx_fifo_partition_3);
  1233. val64 = 0;
  1234. j = 0;
  1235. break;
  1236. default:
  1237. j++;
  1238. break;
  1239. }
  1240. }
  1241. /*
  1242. * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
  1243. * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
  1244. */
  1245. if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4))
  1246. writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
  1247. val64 = readq(&bar0->tx_fifo_partition_0);
  1248. DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
  1249. &bar0->tx_fifo_partition_0, (unsigned long long)val64);
  1250. /*
  1251. * Initialization of Tx_PA_CONFIG register to ignore packet
  1252. * integrity checking.
  1253. */
  1254. val64 = readq(&bar0->tx_pa_cfg);
  1255. val64 |= TX_PA_CFG_IGNORE_FRM_ERR |
  1256. TX_PA_CFG_IGNORE_SNAP_OUI |
  1257. TX_PA_CFG_IGNORE_LLC_CTRL |
  1258. TX_PA_CFG_IGNORE_L2_ERR;
  1259. writeq(val64, &bar0->tx_pa_cfg);
  1260. /* Rx DMA intialization. */
  1261. val64 = 0;
  1262. for (i = 0; i < config->rx_ring_num; i++) {
  1263. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  1264. val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3);
  1265. }
  1266. writeq(val64, &bar0->rx_queue_priority);
  1267. /*
  1268. * Allocating equal share of memory to all the
  1269. * configured Rings.
  1270. */
  1271. val64 = 0;
  1272. if (nic->device_type & XFRAME_II_DEVICE)
  1273. mem_size = 32;
  1274. else
  1275. mem_size = 64;
  1276. for (i = 0; i < config->rx_ring_num; i++) {
  1277. switch (i) {
  1278. case 0:
  1279. mem_share = (mem_size / config->rx_ring_num +
  1280. mem_size % config->rx_ring_num);
  1281. val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
  1282. continue;
  1283. case 1:
  1284. mem_share = (mem_size / config->rx_ring_num);
  1285. val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
  1286. continue;
  1287. case 2:
  1288. mem_share = (mem_size / config->rx_ring_num);
  1289. val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
  1290. continue;
  1291. case 3:
  1292. mem_share = (mem_size / config->rx_ring_num);
  1293. val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
  1294. continue;
  1295. case 4:
  1296. mem_share = (mem_size / config->rx_ring_num);
  1297. val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
  1298. continue;
  1299. case 5:
  1300. mem_share = (mem_size / config->rx_ring_num);
  1301. val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
  1302. continue;
  1303. case 6:
  1304. mem_share = (mem_size / config->rx_ring_num);
  1305. val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
  1306. continue;
  1307. case 7:
  1308. mem_share = (mem_size / config->rx_ring_num);
  1309. val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
  1310. continue;
  1311. }
  1312. }
  1313. writeq(val64, &bar0->rx_queue_cfg);
  1314. /*
  1315. * Filling Tx round robin registers
  1316. * as per the number of FIFOs for equal scheduling priority
  1317. */
  1318. switch (config->tx_fifo_num) {
  1319. case 1:
  1320. val64 = 0x0;
  1321. writeq(val64, &bar0->tx_w_round_robin_0);
  1322. writeq(val64, &bar0->tx_w_round_robin_1);
  1323. writeq(val64, &bar0->tx_w_round_robin_2);
  1324. writeq(val64, &bar0->tx_w_round_robin_3);
  1325. writeq(val64, &bar0->tx_w_round_robin_4);
  1326. break;
  1327. case 2:
  1328. val64 = 0x0001000100010001ULL;
  1329. writeq(val64, &bar0->tx_w_round_robin_0);
  1330. writeq(val64, &bar0->tx_w_round_robin_1);
  1331. writeq(val64, &bar0->tx_w_round_robin_2);
  1332. writeq(val64, &bar0->tx_w_round_robin_3);
  1333. val64 = 0x0001000100000000ULL;
  1334. writeq(val64, &bar0->tx_w_round_robin_4);
  1335. break;
  1336. case 3:
  1337. val64 = 0x0001020001020001ULL;
  1338. writeq(val64, &bar0->tx_w_round_robin_0);
  1339. val64 = 0x0200010200010200ULL;
  1340. writeq(val64, &bar0->tx_w_round_robin_1);
  1341. val64 = 0x0102000102000102ULL;
  1342. writeq(val64, &bar0->tx_w_round_robin_2);
  1343. val64 = 0x0001020001020001ULL;
  1344. writeq(val64, &bar0->tx_w_round_robin_3);
  1345. val64 = 0x0200010200000000ULL;
  1346. writeq(val64, &bar0->tx_w_round_robin_4);
  1347. break;
  1348. case 4:
  1349. val64 = 0x0001020300010203ULL;
  1350. writeq(val64, &bar0->tx_w_round_robin_0);
  1351. writeq(val64, &bar0->tx_w_round_robin_1);
  1352. writeq(val64, &bar0->tx_w_round_robin_2);
  1353. writeq(val64, &bar0->tx_w_round_robin_3);
  1354. val64 = 0x0001020300000000ULL;
  1355. writeq(val64, &bar0->tx_w_round_robin_4);
  1356. break;
  1357. case 5:
  1358. val64 = 0x0001020304000102ULL;
  1359. writeq(val64, &bar0->tx_w_round_robin_0);
  1360. val64 = 0x0304000102030400ULL;
  1361. writeq(val64, &bar0->tx_w_round_robin_1);
  1362. val64 = 0x0102030400010203ULL;
  1363. writeq(val64, &bar0->tx_w_round_robin_2);
  1364. val64 = 0x0400010203040001ULL;
  1365. writeq(val64, &bar0->tx_w_round_robin_3);
  1366. val64 = 0x0203040000000000ULL;
  1367. writeq(val64, &bar0->tx_w_round_robin_4);
  1368. break;
  1369. case 6:
  1370. val64 = 0x0001020304050001ULL;
  1371. writeq(val64, &bar0->tx_w_round_robin_0);
  1372. val64 = 0x0203040500010203ULL;
  1373. writeq(val64, &bar0->tx_w_round_robin_1);
  1374. val64 = 0x0405000102030405ULL;
  1375. writeq(val64, &bar0->tx_w_round_robin_2);
  1376. val64 = 0x0001020304050001ULL;
  1377. writeq(val64, &bar0->tx_w_round_robin_3);
  1378. val64 = 0x0203040500000000ULL;
  1379. writeq(val64, &bar0->tx_w_round_robin_4);
  1380. break;
  1381. case 7:
  1382. val64 = 0x0001020304050600ULL;
  1383. writeq(val64, &bar0->tx_w_round_robin_0);
  1384. val64 = 0x0102030405060001ULL;
  1385. writeq(val64, &bar0->tx_w_round_robin_1);
  1386. val64 = 0x0203040506000102ULL;
  1387. writeq(val64, &bar0->tx_w_round_robin_2);
  1388. val64 = 0x0304050600010203ULL;
  1389. writeq(val64, &bar0->tx_w_round_robin_3);
  1390. val64 = 0x0405060000000000ULL;
  1391. writeq(val64, &bar0->tx_w_round_robin_4);
  1392. break;
  1393. case 8:
  1394. val64 = 0x0001020304050607ULL;
  1395. writeq(val64, &bar0->tx_w_round_robin_0);
  1396. writeq(val64, &bar0->tx_w_round_robin_1);
  1397. writeq(val64, &bar0->tx_w_round_robin_2);
  1398. writeq(val64, &bar0->tx_w_round_robin_3);
  1399. val64 = 0x0001020300000000ULL;
  1400. writeq(val64, &bar0->tx_w_round_robin_4);
  1401. break;
  1402. }
  1403. /* Enable all configured Tx FIFO partitions */
  1404. val64 = readq(&bar0->tx_fifo_partition_0);
  1405. val64 |= (TX_FIFO_PARTITION_EN);
  1406. writeq(val64, &bar0->tx_fifo_partition_0);
  1407. /* Filling the Rx round robin registers as per the
  1408. * number of Rings and steering based on QoS with
  1409. * equal priority.
  1410. */
  1411. switch (config->rx_ring_num) {
  1412. case 1:
  1413. val64 = 0x0;
  1414. writeq(val64, &bar0->rx_w_round_robin_0);
  1415. writeq(val64, &bar0->rx_w_round_robin_1);
  1416. writeq(val64, &bar0->rx_w_round_robin_2);
  1417. writeq(val64, &bar0->rx_w_round_robin_3);
  1418. writeq(val64, &bar0->rx_w_round_robin_4);
  1419. val64 = 0x8080808080808080ULL;
  1420. writeq(val64, &bar0->rts_qos_steering);
  1421. break;
  1422. case 2:
  1423. val64 = 0x0001000100010001ULL;
  1424. writeq(val64, &bar0->rx_w_round_robin_0);
  1425. writeq(val64, &bar0->rx_w_round_robin_1);
  1426. writeq(val64, &bar0->rx_w_round_robin_2);
  1427. writeq(val64, &bar0->rx_w_round_robin_3);
  1428. val64 = 0x0001000100000000ULL;
  1429. writeq(val64, &bar0->rx_w_round_robin_4);
  1430. val64 = 0x8080808040404040ULL;
  1431. writeq(val64, &bar0->rts_qos_steering);
  1432. break;
  1433. case 3:
  1434. val64 = 0x0001020001020001ULL;
  1435. writeq(val64, &bar0->rx_w_round_robin_0);
  1436. val64 = 0x0200010200010200ULL;
  1437. writeq(val64, &bar0->rx_w_round_robin_1);
  1438. val64 = 0x0102000102000102ULL;
  1439. writeq(val64, &bar0->rx_w_round_robin_2);
  1440. val64 = 0x0001020001020001ULL;
  1441. writeq(val64, &bar0->rx_w_round_robin_3);
  1442. val64 = 0x0200010200000000ULL;
  1443. writeq(val64, &bar0->rx_w_round_robin_4);
  1444. val64 = 0x8080804040402020ULL;
  1445. writeq(val64, &bar0->rts_qos_steering);
  1446. break;
  1447. case 4:
  1448. val64 = 0x0001020300010203ULL;
  1449. writeq(val64, &bar0->rx_w_round_robin_0);
  1450. writeq(val64, &bar0->rx_w_round_robin_1);
  1451. writeq(val64, &bar0->rx_w_round_robin_2);
  1452. writeq(val64, &bar0->rx_w_round_robin_3);
  1453. val64 = 0x0001020300000000ULL;
  1454. writeq(val64, &bar0->rx_w_round_robin_4);
  1455. val64 = 0x8080404020201010ULL;
  1456. writeq(val64, &bar0->rts_qos_steering);
  1457. break;
  1458. case 5:
  1459. val64 = 0x0001020304000102ULL;
  1460. writeq(val64, &bar0->rx_w_round_robin_0);
  1461. val64 = 0x0304000102030400ULL;
  1462. writeq(val64, &bar0->rx_w_round_robin_1);
  1463. val64 = 0x0102030400010203ULL;
  1464. writeq(val64, &bar0->rx_w_round_robin_2);
  1465. val64 = 0x0400010203040001ULL;
  1466. writeq(val64, &bar0->rx_w_round_robin_3);
  1467. val64 = 0x0203040000000000ULL;
  1468. writeq(val64, &bar0->rx_w_round_robin_4);
  1469. val64 = 0x8080404020201008ULL;
  1470. writeq(val64, &bar0->rts_qos_steering);
  1471. break;
  1472. case 6:
  1473. val64 = 0x0001020304050001ULL;
  1474. writeq(val64, &bar0->rx_w_round_robin_0);
  1475. val64 = 0x0203040500010203ULL;
  1476. writeq(val64, &bar0->rx_w_round_robin_1);
  1477. val64 = 0x0405000102030405ULL;
  1478. writeq(val64, &bar0->rx_w_round_robin_2);
  1479. val64 = 0x0001020304050001ULL;
  1480. writeq(val64, &bar0->rx_w_round_robin_3);
  1481. val64 = 0x0203040500000000ULL;
  1482. writeq(val64, &bar0->rx_w_round_robin_4);
  1483. val64 = 0x8080404020100804ULL;
  1484. writeq(val64, &bar0->rts_qos_steering);
  1485. break;
  1486. case 7:
  1487. val64 = 0x0001020304050600ULL;
  1488. writeq(val64, &bar0->rx_w_round_robin_0);
  1489. val64 = 0x0102030405060001ULL;
  1490. writeq(val64, &bar0->rx_w_round_robin_1);
  1491. val64 = 0x0203040506000102ULL;
  1492. writeq(val64, &bar0->rx_w_round_robin_2);
  1493. val64 = 0x0304050600010203ULL;
  1494. writeq(val64, &bar0->rx_w_round_robin_3);
  1495. val64 = 0x0405060000000000ULL;
  1496. writeq(val64, &bar0->rx_w_round_robin_4);
  1497. val64 = 0x8080402010080402ULL;
  1498. writeq(val64, &bar0->rts_qos_steering);
  1499. break;
  1500. case 8:
  1501. val64 = 0x0001020304050607ULL;
  1502. writeq(val64, &bar0->rx_w_round_robin_0);
  1503. writeq(val64, &bar0->rx_w_round_robin_1);
  1504. writeq(val64, &bar0->rx_w_round_robin_2);
  1505. writeq(val64, &bar0->rx_w_round_robin_3);
  1506. val64 = 0x0001020300000000ULL;
  1507. writeq(val64, &bar0->rx_w_round_robin_4);
  1508. val64 = 0x8040201008040201ULL;
  1509. writeq(val64, &bar0->rts_qos_steering);
  1510. break;
  1511. }
  1512. /* UDP Fix */
  1513. val64 = 0;
  1514. for (i = 0; i < 8; i++)
  1515. writeq(val64, &bar0->rts_frm_len_n[i]);
  1516. /* Set the default rts frame length for the rings configured */
  1517. val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
  1518. for (i = 0 ; i < config->rx_ring_num ; i++)
  1519. writeq(val64, &bar0->rts_frm_len_n[i]);
  1520. /* Set the frame length for the configured rings
  1521. * desired by the user
  1522. */
  1523. for (i = 0; i < config->rx_ring_num; i++) {
  1524. /* If rts_frm_len[i] == 0 then it is assumed that user not
  1525. * specified frame length steering.
  1526. * If the user provides the frame length then program
  1527. * the rts_frm_len register for those values or else
  1528. * leave it as it is.
  1529. */
  1530. if (rts_frm_len[i] != 0) {
  1531. writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
  1532. &bar0->rts_frm_len_n[i]);
  1533. }
  1534. }
  1535. /* Disable differentiated services steering logic */
  1536. for (i = 0; i < 64; i++) {
  1537. if (rts_ds_steer(nic, i, 0) == FAILURE) {
  1538. DBG_PRINT(ERR_DBG,
  1539. "%s: rts_ds_steer failed on codepoint %d\n",
  1540. dev->name, i);
  1541. return -ENODEV;
  1542. }
  1543. }
  1544. /* Program statistics memory */
  1545. writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
  1546. if (nic->device_type == XFRAME_II_DEVICE) {
  1547. val64 = STAT_BC(0x320);
  1548. writeq(val64, &bar0->stat_byte_cnt);
  1549. }
  1550. /*
  1551. * Initializing the sampling rate for the device to calculate the
  1552. * bandwidth utilization.
  1553. */
  1554. val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
  1555. MAC_RX_LINK_UTIL_VAL(rmac_util_period);
  1556. writeq(val64, &bar0->mac_link_util);
  1557. /*
  1558. * Initializing the Transmit and Receive Traffic Interrupt
  1559. * Scheme.
  1560. */
  1561. /* Initialize TTI */
  1562. if (SUCCESS != init_tti(nic, nic->last_link_state))
  1563. return -ENODEV;
  1564. /* RTI Initialization */
  1565. if (nic->device_type == XFRAME_II_DEVICE) {
  1566. /*
  1567. * Programmed to generate Apprx 500 Intrs per
  1568. * second
  1569. */
  1570. int count = (nic->config.bus_speed * 125)/4;
  1571. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
  1572. } else
  1573. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
  1574. val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
  1575. RTI_DATA1_MEM_RX_URNG_B(0x10) |
  1576. RTI_DATA1_MEM_RX_URNG_C(0x30) |
  1577. RTI_DATA1_MEM_RX_TIMER_AC_EN;
  1578. writeq(val64, &bar0->rti_data1_mem);
  1579. val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
  1580. RTI_DATA2_MEM_RX_UFC_B(0x2) ;
  1581. if (nic->config.intr_type == MSI_X)
  1582. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) |
  1583. RTI_DATA2_MEM_RX_UFC_D(0x40));
  1584. else
  1585. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) |
  1586. RTI_DATA2_MEM_RX_UFC_D(0x80));
  1587. writeq(val64, &bar0->rti_data2_mem);
  1588. for (i = 0; i < config->rx_ring_num; i++) {
  1589. val64 = RTI_CMD_MEM_WE |
  1590. RTI_CMD_MEM_STROBE_NEW_CMD |
  1591. RTI_CMD_MEM_OFFSET(i);
  1592. writeq(val64, &bar0->rti_command_mem);
  1593. /*
  1594. * Once the operation completes, the Strobe bit of the
  1595. * command register will be reset. We poll for this
  1596. * particular condition. We wait for a maximum of 500ms
  1597. * for the operation to complete, if it's not complete
  1598. * by then we return error.
  1599. */
  1600. time = 0;
  1601. while (true) {
  1602. val64 = readq(&bar0->rti_command_mem);
  1603. if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
  1604. break;
  1605. if (time > 10) {
  1606. DBG_PRINT(ERR_DBG, "%s: RTI init failed\n",
  1607. dev->name);
  1608. return -ENODEV;
  1609. }
  1610. time++;
  1611. msleep(50);
  1612. }
  1613. }
  1614. /*
  1615. * Initializing proper values as Pause threshold into all
  1616. * the 8 Queues on Rx side.
  1617. */
  1618. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
  1619. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
  1620. /* Disable RMAC PAD STRIPPING */
  1621. add = &bar0->mac_cfg;
  1622. val64 = readq(&bar0->mac_cfg);
  1623. val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
  1624. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1625. writel((u32) (val64), add);
  1626. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1627. writel((u32) (val64 >> 32), (add + 4));
  1628. val64 = readq(&bar0->mac_cfg);
  1629. /* Enable FCS stripping by adapter */
  1630. add = &bar0->mac_cfg;
  1631. val64 = readq(&bar0->mac_cfg);
  1632. val64 |= MAC_CFG_RMAC_STRIP_FCS;
  1633. if (nic->device_type == XFRAME_II_DEVICE)
  1634. writeq(val64, &bar0->mac_cfg);
  1635. else {
  1636. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1637. writel((u32) (val64), add);
  1638. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1639. writel((u32) (val64 >> 32), (add + 4));
  1640. }
  1641. /*
  1642. * Set the time value to be inserted in the pause frame
  1643. * generated by xena.
  1644. */
  1645. val64 = readq(&bar0->rmac_pause_cfg);
  1646. val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
  1647. val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
  1648. writeq(val64, &bar0->rmac_pause_cfg);
  1649. /*
  1650. * Set the Threshold Limit for Generating the pause frame
  1651. * If the amount of data in any Queue exceeds ratio of
  1652. * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
  1653. * pause frame is generated
  1654. */
  1655. val64 = 0;
  1656. for (i = 0; i < 4; i++) {
  1657. val64 |= (((u64)0xFF00 |
  1658. nic->mac_control.mc_pause_threshold_q0q3)
  1659. << (i * 2 * 8));
  1660. }
  1661. writeq(val64, &bar0->mc_pause_thresh_q0q3);
  1662. val64 = 0;
  1663. for (i = 0; i < 4; i++) {
  1664. val64 |= (((u64)0xFF00 |
  1665. nic->mac_control.mc_pause_threshold_q4q7)
  1666. << (i * 2 * 8));
  1667. }
  1668. writeq(val64, &bar0->mc_pause_thresh_q4q7);
  1669. /*
  1670. * TxDMA will stop Read request if the number of read split has
  1671. * exceeded the limit pointed by shared_splits
  1672. */
  1673. val64 = readq(&bar0->pic_control);
  1674. val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
  1675. writeq(val64, &bar0->pic_control);
  1676. if (nic->config.bus_speed == 266) {
  1677. writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
  1678. writeq(0x0, &bar0->read_retry_delay);
  1679. writeq(0x0, &bar0->write_retry_delay);
  1680. }
  1681. /*
  1682. * Programming the Herc to split every write transaction
  1683. * that does not start on an ADB to reduce disconnects.
  1684. */
  1685. if (nic->device_type == XFRAME_II_DEVICE) {
  1686. val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
  1687. MISC_LINK_STABILITY_PRD(3);
  1688. writeq(val64, &bar0->misc_control);
  1689. val64 = readq(&bar0->pic_control2);
  1690. val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
  1691. writeq(val64, &bar0->pic_control2);
  1692. }
  1693. if (strstr(nic->product_name, "CX4")) {
  1694. val64 = TMAC_AVG_IPG(0x17);
  1695. writeq(val64, &bar0->tmac_avg_ipg);
  1696. }
  1697. return SUCCESS;
  1698. }
  1699. #define LINK_UP_DOWN_INTERRUPT 1
  1700. #define MAC_RMAC_ERR_TIMER 2
  1701. static int s2io_link_fault_indication(struct s2io_nic *nic)
  1702. {
  1703. if (nic->device_type == XFRAME_II_DEVICE)
  1704. return LINK_UP_DOWN_INTERRUPT;
  1705. else
  1706. return MAC_RMAC_ERR_TIMER;
  1707. }
  1708. /**
  1709. * do_s2io_write_bits - update alarm bits in alarm register
  1710. * @value: alarm bits
  1711. * @flag: interrupt status
  1712. * @addr: address value
  1713. * Description: update alarm bits in alarm register
  1714. * Return Value:
  1715. * NONE.
  1716. */
  1717. static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
  1718. {
  1719. u64 temp64;
  1720. temp64 = readq(addr);
  1721. if (flag == ENABLE_INTRS)
  1722. temp64 &= ~((u64)value);
  1723. else
  1724. temp64 |= ((u64)value);
  1725. writeq(temp64, addr);
  1726. }
  1727. static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
  1728. {
  1729. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1730. register u64 gen_int_mask = 0;
  1731. u64 interruptible;
  1732. writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
  1733. if (mask & TX_DMA_INTR) {
  1734. gen_int_mask |= TXDMA_INT_M;
  1735. do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
  1736. TXDMA_PCC_INT | TXDMA_TTI_INT |
  1737. TXDMA_LSO_INT | TXDMA_TPA_INT |
  1738. TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
  1739. do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
  1740. PFC_MISC_0_ERR | PFC_MISC_1_ERR |
  1741. PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
  1742. &bar0->pfc_err_mask);
  1743. do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
  1744. TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
  1745. TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
  1746. do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
  1747. PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
  1748. PCC_N_SERR | PCC_6_COF_OV_ERR |
  1749. PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
  1750. PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
  1751. PCC_TXB_ECC_SG_ERR,
  1752. flag, &bar0->pcc_err_mask);
  1753. do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
  1754. TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
  1755. do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
  1756. LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
  1757. LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
  1758. flag, &bar0->lso_err_mask);
  1759. do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
  1760. flag, &bar0->tpa_err_mask);
  1761. do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
  1762. }
  1763. if (mask & TX_MAC_INTR) {
  1764. gen_int_mask |= TXMAC_INT_M;
  1765. do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
  1766. &bar0->mac_int_mask);
  1767. do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
  1768. TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
  1769. TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
  1770. flag, &bar0->mac_tmac_err_mask);
  1771. }
  1772. if (mask & TX_XGXS_INTR) {
  1773. gen_int_mask |= TXXGXS_INT_M;
  1774. do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
  1775. &bar0->xgxs_int_mask);
  1776. do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
  1777. TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
  1778. flag, &bar0->xgxs_txgxs_err_mask);
  1779. }
  1780. if (mask & RX_DMA_INTR) {
  1781. gen_int_mask |= RXDMA_INT_M;
  1782. do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
  1783. RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
  1784. flag, &bar0->rxdma_int_mask);
  1785. do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
  1786. RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
  1787. RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
  1788. RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
  1789. do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
  1790. PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
  1791. PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
  1792. &bar0->prc_pcix_err_mask);
  1793. do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
  1794. RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
  1795. &bar0->rpa_err_mask);
  1796. do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
  1797. RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
  1798. RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
  1799. RDA_FRM_ECC_SG_ERR |
  1800. RDA_MISC_ERR|RDA_PCIX_ERR,
  1801. flag, &bar0->rda_err_mask);
  1802. do_s2io_write_bits(RTI_SM_ERR_ALARM |
  1803. RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
  1804. flag, &bar0->rti_err_mask);
  1805. }
  1806. if (mask & RX_MAC_INTR) {
  1807. gen_int_mask |= RXMAC_INT_M;
  1808. do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
  1809. &bar0->mac_int_mask);
  1810. interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
  1811. RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
  1812. RMAC_DOUBLE_ECC_ERR);
  1813. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
  1814. interruptible |= RMAC_LINK_STATE_CHANGE_INT;
  1815. do_s2io_write_bits(interruptible,
  1816. flag, &bar0->mac_rmac_err_mask);
  1817. }
  1818. if (mask & RX_XGXS_INTR) {
  1819. gen_int_mask |= RXXGXS_INT_M;
  1820. do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
  1821. &bar0->xgxs_int_mask);
  1822. do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
  1823. &bar0->xgxs_rxgxs_err_mask);
  1824. }
  1825. if (mask & MC_INTR) {
  1826. gen_int_mask |= MC_INT_M;
  1827. do_s2io_write_bits(MC_INT_MASK_MC_INT,
  1828. flag, &bar0->mc_int_mask);
  1829. do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
  1830. MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
  1831. &bar0->mc_err_mask);
  1832. }
  1833. nic->general_int_mask = gen_int_mask;
  1834. /* Remove this line when alarm interrupts are enabled */
  1835. nic->general_int_mask = 0;
  1836. }
  1837. /**
  1838. * en_dis_able_nic_intrs - Enable or Disable the interrupts
  1839. * @nic: device private variable,
  1840. * @mask: A mask indicating which Intr block must be modified and,
  1841. * @flag: A flag indicating whether to enable or disable the Intrs.
  1842. * Description: This function will either disable or enable the interrupts
  1843. * depending on the flag argument. The mask argument can be used to
  1844. * enable/disable any Intr block.
  1845. * Return Value: NONE.
  1846. */
  1847. static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
  1848. {
  1849. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1850. register u64 temp64 = 0, intr_mask = 0;
  1851. intr_mask = nic->general_int_mask;
  1852. /* Top level interrupt classification */
  1853. /* PIC Interrupts */
  1854. if (mask & TX_PIC_INTR) {
  1855. /* Enable PIC Intrs in the general intr mask register */
  1856. intr_mask |= TXPIC_INT_M;
  1857. if (flag == ENABLE_INTRS) {
  1858. /*
  1859. * If Hercules adapter enable GPIO otherwise
  1860. * disable all PCIX, Flash, MDIO, IIC and GPIO
  1861. * interrupts for now.
  1862. * TODO
  1863. */
  1864. if (s2io_link_fault_indication(nic) ==
  1865. LINK_UP_DOWN_INTERRUPT) {
  1866. do_s2io_write_bits(PIC_INT_GPIO, flag,
  1867. &bar0->pic_int_mask);
  1868. do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
  1869. &bar0->gpio_int_mask);
  1870. } else
  1871. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1872. } else if (flag == DISABLE_INTRS) {
  1873. /*
  1874. * Disable PIC Intrs in the general
  1875. * intr mask register
  1876. */
  1877. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1878. }
  1879. }
  1880. /* Tx traffic interrupts */
  1881. if (mask & TX_TRAFFIC_INTR) {
  1882. intr_mask |= TXTRAFFIC_INT_M;
  1883. if (flag == ENABLE_INTRS) {
  1884. /*
  1885. * Enable all the Tx side interrupts
  1886. * writing 0 Enables all 64 TX interrupt levels
  1887. */
  1888. writeq(0x0, &bar0->tx_traffic_mask);
  1889. } else if (flag == DISABLE_INTRS) {
  1890. /*
  1891. * Disable Tx Traffic Intrs in the general intr mask
  1892. * register.
  1893. */
  1894. writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
  1895. }
  1896. }
  1897. /* Rx traffic interrupts */
  1898. if (mask & RX_TRAFFIC_INTR) {
  1899. intr_mask |= RXTRAFFIC_INT_M;
  1900. if (flag == ENABLE_INTRS) {
  1901. /* writing 0 Enables all 8 RX interrupt levels */
  1902. writeq(0x0, &bar0->rx_traffic_mask);
  1903. } else if (flag == DISABLE_INTRS) {
  1904. /*
  1905. * Disable Rx Traffic Intrs in the general intr mask
  1906. * register.
  1907. */
  1908. writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
  1909. }
  1910. }
  1911. temp64 = readq(&bar0->general_int_mask);
  1912. if (flag == ENABLE_INTRS)
  1913. temp64 &= ~((u64)intr_mask);
  1914. else
  1915. temp64 = DISABLE_ALL_INTRS;
  1916. writeq(temp64, &bar0->general_int_mask);
  1917. nic->general_int_mask = readq(&bar0->general_int_mask);
  1918. }
  1919. /**
  1920. * verify_pcc_quiescent- Checks for PCC quiescent state
  1921. * Return: 1 If PCC is quiescence
  1922. * 0 If PCC is not quiescence
  1923. */
  1924. static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
  1925. {
  1926. int ret = 0, herc;
  1927. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1928. u64 val64 = readq(&bar0->adapter_status);
  1929. herc = (sp->device_type == XFRAME_II_DEVICE);
  1930. if (flag == false) {
  1931. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1932. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
  1933. ret = 1;
  1934. } else {
  1935. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1936. ret = 1;
  1937. }
  1938. } else {
  1939. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1940. if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
  1941. ADAPTER_STATUS_RMAC_PCC_IDLE))
  1942. ret = 1;
  1943. } else {
  1944. if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
  1945. ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1946. ret = 1;
  1947. }
  1948. }
  1949. return ret;
  1950. }
  1951. /**
  1952. * verify_xena_quiescence - Checks whether the H/W is ready
  1953. * Description: Returns whether the H/W is ready to go or not. Depending
  1954. * on whether adapter enable bit was written or not the comparison
  1955. * differs and the calling function passes the input argument flag to
  1956. * indicate this.
  1957. * Return: 1 If xena is quiescence
  1958. * 0 If Xena is not quiescence
  1959. */
  1960. static int verify_xena_quiescence(struct s2io_nic *sp)
  1961. {
  1962. int mode;
  1963. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1964. u64 val64 = readq(&bar0->adapter_status);
  1965. mode = s2io_verify_pci_mode(sp);
  1966. if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
  1967. DBG_PRINT(ERR_DBG, "TDMA is not ready!\n");
  1968. return 0;
  1969. }
  1970. if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
  1971. DBG_PRINT(ERR_DBG, "RDMA is not ready!\n");
  1972. return 0;
  1973. }
  1974. if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
  1975. DBG_PRINT(ERR_DBG, "PFC is not ready!\n");
  1976. return 0;
  1977. }
  1978. if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
  1979. DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n");
  1980. return 0;
  1981. }
  1982. if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
  1983. DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n");
  1984. return 0;
  1985. }
  1986. if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
  1987. DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n");
  1988. return 0;
  1989. }
  1990. if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
  1991. DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n");
  1992. return 0;
  1993. }
  1994. if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
  1995. DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n");
  1996. return 0;
  1997. }
  1998. /*
  1999. * In PCI 33 mode, the P_PLL is not used, and therefore,
  2000. * the the P_PLL_LOCK bit in the adapter_status register will
  2001. * not be asserted.
  2002. */
  2003. if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
  2004. sp->device_type == XFRAME_II_DEVICE &&
  2005. mode != PCI_MODE_PCI_33) {
  2006. DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n");
  2007. return 0;
  2008. }
  2009. if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
  2010. ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
  2011. DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n");
  2012. return 0;
  2013. }
  2014. return 1;
  2015. }
  2016. /**
  2017. * fix_mac_address - Fix for Mac addr problem on Alpha platforms
  2018. * @sp: Pointer to device specifc structure
  2019. * Description :
  2020. * New procedure to clear mac address reading problems on Alpha platforms
  2021. *
  2022. */
  2023. static void fix_mac_address(struct s2io_nic *sp)
  2024. {
  2025. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2026. u64 val64;
  2027. int i = 0;
  2028. while (fix_mac[i] != END_SIGN) {
  2029. writeq(fix_mac[i++], &bar0->gpio_control);
  2030. udelay(10);
  2031. val64 = readq(&bar0->gpio_control);
  2032. }
  2033. }
  2034. /**
  2035. * start_nic - Turns the device on
  2036. * @nic : device private variable.
  2037. * Description:
  2038. * This function actually turns the device on. Before this function is
  2039. * called,all Registers are configured from their reset states
  2040. * and shared memory is allocated but the NIC is still quiescent. On
  2041. * calling this function, the device interrupts are cleared and the NIC is
  2042. * literally switched on by writing into the adapter control register.
  2043. * Return Value:
  2044. * SUCCESS on success and -1 on failure.
  2045. */
  2046. static int start_nic(struct s2io_nic *nic)
  2047. {
  2048. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2049. struct net_device *dev = nic->dev;
  2050. register u64 val64 = 0;
  2051. u16 subid, i;
  2052. struct config_param *config = &nic->config;
  2053. struct mac_info *mac_control = &nic->mac_control;
  2054. /* PRC Initialization and configuration */
  2055. for (i = 0; i < config->rx_ring_num; i++) {
  2056. struct ring_info *ring = &mac_control->rings[i];
  2057. writeq((u64)ring->rx_blocks[0].block_dma_addr,
  2058. &bar0->prc_rxd0_n[i]);
  2059. val64 = readq(&bar0->prc_ctrl_n[i]);
  2060. if (nic->rxd_mode == RXD_MODE_1)
  2061. val64 |= PRC_CTRL_RC_ENABLED;
  2062. else
  2063. val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
  2064. if (nic->device_type == XFRAME_II_DEVICE)
  2065. val64 |= PRC_CTRL_GROUP_READS;
  2066. val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
  2067. val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
  2068. writeq(val64, &bar0->prc_ctrl_n[i]);
  2069. }
  2070. if (nic->rxd_mode == RXD_MODE_3B) {
  2071. /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
  2072. val64 = readq(&bar0->rx_pa_cfg);
  2073. val64 |= RX_PA_CFG_IGNORE_L2_ERR;
  2074. writeq(val64, &bar0->rx_pa_cfg);
  2075. }
  2076. if (vlan_tag_strip == 0) {
  2077. val64 = readq(&bar0->rx_pa_cfg);
  2078. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  2079. writeq(val64, &bar0->rx_pa_cfg);
  2080. nic->vlan_strip_flag = 0;
  2081. }
  2082. /*
  2083. * Enabling MC-RLDRAM. After enabling the device, we timeout
  2084. * for around 100ms, which is approximately the time required
  2085. * for the device to be ready for operation.
  2086. */
  2087. val64 = readq(&bar0->mc_rldram_mrs);
  2088. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
  2089. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  2090. val64 = readq(&bar0->mc_rldram_mrs);
  2091. msleep(100); /* Delay by around 100 ms. */
  2092. /* Enabling ECC Protection. */
  2093. val64 = readq(&bar0->adapter_control);
  2094. val64 &= ~ADAPTER_ECC_EN;
  2095. writeq(val64, &bar0->adapter_control);
  2096. /*
  2097. * Verify if the device is ready to be enabled, if so enable
  2098. * it.
  2099. */
  2100. val64 = readq(&bar0->adapter_status);
  2101. if (!verify_xena_quiescence(nic)) {
  2102. DBG_PRINT(ERR_DBG, "%s: device is not ready, "
  2103. "Adapter status reads: 0x%llx\n",
  2104. dev->name, (unsigned long long)val64);
  2105. return FAILURE;
  2106. }
  2107. /*
  2108. * With some switches, link might be already up at this point.
  2109. * Because of this weird behavior, when we enable laser,
  2110. * we may not get link. We need to handle this. We cannot
  2111. * figure out which switch is misbehaving. So we are forced to
  2112. * make a global change.
  2113. */
  2114. /* Enabling Laser. */
  2115. val64 = readq(&bar0->adapter_control);
  2116. val64 |= ADAPTER_EOI_TX_ON;
  2117. writeq(val64, &bar0->adapter_control);
  2118. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  2119. /*
  2120. * Dont see link state interrupts initally on some switches,
  2121. * so directly scheduling the link state task here.
  2122. */
  2123. schedule_work(&nic->set_link_task);
  2124. }
  2125. /* SXE-002: Initialize link and activity LED */
  2126. subid = nic->pdev->subsystem_device;
  2127. if (((subid & 0xFF) >= 0x07) &&
  2128. (nic->device_type == XFRAME_I_DEVICE)) {
  2129. val64 = readq(&bar0->gpio_control);
  2130. val64 |= 0x0000800000000000ULL;
  2131. writeq(val64, &bar0->gpio_control);
  2132. val64 = 0x0411040400000000ULL;
  2133. writeq(val64, (void __iomem *)bar0 + 0x2700);
  2134. }
  2135. return SUCCESS;
  2136. }
  2137. /**
  2138. * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
  2139. */
  2140. static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data,
  2141. struct TxD *txdlp, int get_off)
  2142. {
  2143. struct s2io_nic *nic = fifo_data->nic;
  2144. struct sk_buff *skb;
  2145. struct TxD *txds;
  2146. u16 j, frg_cnt;
  2147. txds = txdlp;
  2148. if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
  2149. pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
  2150. sizeof(u64), PCI_DMA_TODEVICE);
  2151. txds++;
  2152. }
  2153. skb = (struct sk_buff *)((unsigned long)txds->Host_Control);
  2154. if (!skb) {
  2155. memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
  2156. return NULL;
  2157. }
  2158. pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer,
  2159. skb_headlen(skb), PCI_DMA_TODEVICE);
  2160. frg_cnt = skb_shinfo(skb)->nr_frags;
  2161. if (frg_cnt) {
  2162. txds++;
  2163. for (j = 0; j < frg_cnt; j++, txds++) {
  2164. skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
  2165. if (!txds->Buffer_Pointer)
  2166. break;
  2167. pci_unmap_page(nic->pdev,
  2168. (dma_addr_t)txds->Buffer_Pointer,
  2169. frag->size, PCI_DMA_TODEVICE);
  2170. }
  2171. }
  2172. memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
  2173. return skb;
  2174. }
  2175. /**
  2176. * free_tx_buffers - Free all queued Tx buffers
  2177. * @nic : device private variable.
  2178. * Description:
  2179. * Free all queued Tx buffers.
  2180. * Return Value: void
  2181. */
  2182. static void free_tx_buffers(struct s2io_nic *nic)
  2183. {
  2184. struct net_device *dev = nic->dev;
  2185. struct sk_buff *skb;
  2186. struct TxD *txdp;
  2187. int i, j;
  2188. int cnt = 0;
  2189. struct config_param *config = &nic->config;
  2190. struct mac_info *mac_control = &nic->mac_control;
  2191. struct stat_block *stats = mac_control->stats_info;
  2192. struct swStat *swstats = &stats->sw_stat;
  2193. for (i = 0; i < config->tx_fifo_num; i++) {
  2194. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  2195. struct fifo_info *fifo = &mac_control->fifos[i];
  2196. unsigned long flags;
  2197. spin_lock_irqsave(&fifo->tx_lock, flags);
  2198. for (j = 0; j < tx_cfg->fifo_len; j++) {
  2199. txdp = (struct TxD *)fifo->list_info[j].list_virt_addr;
  2200. skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
  2201. if (skb) {
  2202. swstats->mem_freed += skb->truesize;
  2203. dev_kfree_skb(skb);
  2204. cnt++;
  2205. }
  2206. }
  2207. DBG_PRINT(INTR_DBG,
  2208. "%s: forcibly freeing %d skbs on FIFO%d\n",
  2209. dev->name, cnt, i);
  2210. fifo->tx_curr_get_info.offset = 0;
  2211. fifo->tx_curr_put_info.offset = 0;
  2212. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  2213. }
  2214. }
  2215. /**
  2216. * stop_nic - To stop the nic
  2217. * @nic ; device private variable.
  2218. * Description:
  2219. * This function does exactly the opposite of what the start_nic()
  2220. * function does. This function is called to stop the device.
  2221. * Return Value:
  2222. * void.
  2223. */
  2224. static void stop_nic(struct s2io_nic *nic)
  2225. {
  2226. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2227. register u64 val64 = 0;
  2228. u16 interruptible;
  2229. /* Disable all interrupts */
  2230. en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
  2231. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  2232. interruptible |= TX_PIC_INTR;
  2233. en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
  2234. /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
  2235. val64 = readq(&bar0->adapter_control);
  2236. val64 &= ~(ADAPTER_CNTL_EN);
  2237. writeq(val64, &bar0->adapter_control);
  2238. }
  2239. /**
  2240. * fill_rx_buffers - Allocates the Rx side skbs
  2241. * @ring_info: per ring structure
  2242. * @from_card_up: If this is true, we will map the buffer to get
  2243. * the dma address for buf0 and buf1 to give it to the card.
  2244. * Else we will sync the already mapped buffer to give it to the card.
  2245. * Description:
  2246. * The function allocates Rx side skbs and puts the physical
  2247. * address of these buffers into the RxD buffer pointers, so that the NIC
  2248. * can DMA the received frame into these locations.
  2249. * The NIC supports 3 receive modes, viz
  2250. * 1. single buffer,
  2251. * 2. three buffer and
  2252. * 3. Five buffer modes.
  2253. * Each mode defines how many fragments the received frame will be split
  2254. * up into by the NIC. The frame is split into L3 header, L4 Header,
  2255. * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
  2256. * is split into 3 fragments. As of now only single buffer mode is
  2257. * supported.
  2258. * Return Value:
  2259. * SUCCESS on success or an appropriate -ve value on failure.
  2260. */
  2261. static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
  2262. int from_card_up)
  2263. {
  2264. struct sk_buff *skb;
  2265. struct RxD_t *rxdp;
  2266. int off, size, block_no, block_no1;
  2267. u32 alloc_tab = 0;
  2268. u32 alloc_cnt;
  2269. u64 tmp;
  2270. struct buffAdd *ba;
  2271. struct RxD_t *first_rxdp = NULL;
  2272. u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
  2273. int rxd_index = 0;
  2274. struct RxD1 *rxdp1;
  2275. struct RxD3 *rxdp3;
  2276. struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat;
  2277. alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
  2278. block_no1 = ring->rx_curr_get_info.block_index;
  2279. while (alloc_tab < alloc_cnt) {
  2280. block_no = ring->rx_curr_put_info.block_index;
  2281. off = ring->rx_curr_put_info.offset;
  2282. rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
  2283. rxd_index = off + 1;
  2284. if (block_no)
  2285. rxd_index += (block_no * ring->rxd_count);
  2286. if ((block_no == block_no1) &&
  2287. (off == ring->rx_curr_get_info.offset) &&
  2288. (rxdp->Host_Control)) {
  2289. DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n",
  2290. ring->dev->name);
  2291. goto end;
  2292. }
  2293. if (off && (off == ring->rxd_count)) {
  2294. ring->rx_curr_put_info.block_index++;
  2295. if (ring->rx_curr_put_info.block_index ==
  2296. ring->block_count)
  2297. ring->rx_curr_put_info.block_index = 0;
  2298. block_no = ring->rx_curr_put_info.block_index;
  2299. off = 0;
  2300. ring->rx_curr_put_info.offset = off;
  2301. rxdp = ring->rx_blocks[block_no].block_virt_addr;
  2302. DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
  2303. ring->dev->name, rxdp);
  2304. }
  2305. if ((rxdp->Control_1 & RXD_OWN_XENA) &&
  2306. ((ring->rxd_mode == RXD_MODE_3B) &&
  2307. (rxdp->Control_2 & s2BIT(0)))) {
  2308. ring->rx_curr_put_info.offset = off;
  2309. goto end;
  2310. }
  2311. /* calculate size of skb based on ring mode */
  2312. size = ring->mtu +
  2313. HEADER_ETHERNET_II_802_3_SIZE +
  2314. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  2315. if (ring->rxd_mode == RXD_MODE_1)
  2316. size += NET_IP_ALIGN;
  2317. else
  2318. size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  2319. /* allocate skb */
  2320. skb = dev_alloc_skb(size);
  2321. if (!skb) {
  2322. DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n",
  2323. ring->dev->name);
  2324. if (first_rxdp) {
  2325. wmb();
  2326. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2327. }
  2328. swstats->mem_alloc_fail_cnt++;
  2329. return -ENOMEM ;
  2330. }
  2331. swstats->mem_allocated += skb->truesize;
  2332. if (ring->rxd_mode == RXD_MODE_1) {
  2333. /* 1 buffer mode - normal operation mode */
  2334. rxdp1 = (struct RxD1 *)rxdp;
  2335. memset(rxdp, 0, sizeof(struct RxD1));
  2336. skb_reserve(skb, NET_IP_ALIGN);
  2337. rxdp1->Buffer0_ptr =
  2338. pci_map_single(ring->pdev, skb->data,
  2339. size - NET_IP_ALIGN,
  2340. PCI_DMA_FROMDEVICE);
  2341. if (pci_dma_mapping_error(nic->pdev,
  2342. rxdp1->Buffer0_ptr))
  2343. goto pci_map_failed;
  2344. rxdp->Control_2 =
  2345. SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
  2346. rxdp->Host_Control = (unsigned long)skb;
  2347. } else if (ring->rxd_mode == RXD_MODE_3B) {
  2348. /*
  2349. * 2 buffer mode -
  2350. * 2 buffer mode provides 128
  2351. * byte aligned receive buffers.
  2352. */
  2353. rxdp3 = (struct RxD3 *)rxdp;
  2354. /* save buffer pointers to avoid frequent dma mapping */
  2355. Buffer0_ptr = rxdp3->Buffer0_ptr;
  2356. Buffer1_ptr = rxdp3->Buffer1_ptr;
  2357. memset(rxdp, 0, sizeof(struct RxD3));
  2358. /* restore the buffer pointers for dma sync*/
  2359. rxdp3->Buffer0_ptr = Buffer0_ptr;
  2360. rxdp3->Buffer1_ptr = Buffer1_ptr;
  2361. ba = &ring->ba[block_no][off];
  2362. skb_reserve(skb, BUF0_LEN);
  2363. tmp = (u64)(unsigned long)skb->data;
  2364. tmp += ALIGN_SIZE;
  2365. tmp &= ~ALIGN_SIZE;
  2366. skb->data = (void *) (unsigned long)tmp;
  2367. skb_reset_tail_pointer(skb);
  2368. if (from_card_up) {
  2369. rxdp3->Buffer0_ptr =
  2370. pci_map_single(ring->pdev, ba->ba_0,
  2371. BUF0_LEN,
  2372. PCI_DMA_FROMDEVICE);
  2373. if (pci_dma_mapping_error(nic->pdev,
  2374. rxdp3->Buffer0_ptr))
  2375. goto pci_map_failed;
  2376. } else
  2377. pci_dma_sync_single_for_device(ring->pdev,
  2378. (dma_addr_t)rxdp3->Buffer0_ptr,
  2379. BUF0_LEN,
  2380. PCI_DMA_FROMDEVICE);
  2381. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  2382. if (ring->rxd_mode == RXD_MODE_3B) {
  2383. /* Two buffer mode */
  2384. /*
  2385. * Buffer2 will have L3/L4 header plus
  2386. * L4 payload
  2387. */
  2388. rxdp3->Buffer2_ptr = pci_map_single(ring->pdev,
  2389. skb->data,
  2390. ring->mtu + 4,
  2391. PCI_DMA_FROMDEVICE);
  2392. if (pci_dma_mapping_error(nic->pdev,
  2393. rxdp3->Buffer2_ptr))
  2394. goto pci_map_failed;
  2395. if (from_card_up) {
  2396. rxdp3->Buffer1_ptr =
  2397. pci_map_single(ring->pdev,
  2398. ba->ba_1,
  2399. BUF1_LEN,
  2400. PCI_DMA_FROMDEVICE);
  2401. if (pci_dma_mapping_error(nic->pdev,
  2402. rxdp3->Buffer1_ptr)) {
  2403. pci_unmap_single(ring->pdev,
  2404. (dma_addr_t)(unsigned long)
  2405. skb->data,
  2406. ring->mtu + 4,
  2407. PCI_DMA_FROMDEVICE);
  2408. goto pci_map_failed;
  2409. }
  2410. }
  2411. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  2412. rxdp->Control_2 |= SET_BUFFER2_SIZE_3
  2413. (ring->mtu + 4);
  2414. }
  2415. rxdp->Control_2 |= s2BIT(0);
  2416. rxdp->Host_Control = (unsigned long) (skb);
  2417. }
  2418. if (alloc_tab & ((1 << rxsync_frequency) - 1))
  2419. rxdp->Control_1 |= RXD_OWN_XENA;
  2420. off++;
  2421. if (off == (ring->rxd_count + 1))
  2422. off = 0;
  2423. ring->rx_curr_put_info.offset = off;
  2424. rxdp->Control_2 |= SET_RXD_MARKER;
  2425. if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
  2426. if (first_rxdp) {
  2427. wmb();
  2428. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2429. }
  2430. first_rxdp = rxdp;
  2431. }
  2432. ring->rx_bufs_left += 1;
  2433. alloc_tab++;
  2434. }
  2435. end:
  2436. /* Transfer ownership of first descriptor to adapter just before
  2437. * exiting. Before that, use memory barrier so that ownership
  2438. * and other fields are seen by adapter correctly.
  2439. */
  2440. if (first_rxdp) {
  2441. wmb();
  2442. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2443. }
  2444. return SUCCESS;
  2445. pci_map_failed:
  2446. swstats->pci_map_fail_cnt++;
  2447. swstats->mem_freed += skb->truesize;
  2448. dev_kfree_skb_irq(skb);
  2449. return -ENOMEM;
  2450. }
  2451. static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
  2452. {
  2453. struct net_device *dev = sp->dev;
  2454. int j;
  2455. struct sk_buff *skb;
  2456. struct RxD_t *rxdp;
  2457. struct buffAdd *ba;
  2458. struct RxD1 *rxdp1;
  2459. struct RxD3 *rxdp3;
  2460. struct mac_info *mac_control = &sp->mac_control;
  2461. struct stat_block *stats = mac_control->stats_info;
  2462. struct swStat *swstats = &stats->sw_stat;
  2463. for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
  2464. rxdp = mac_control->rings[ring_no].
  2465. rx_blocks[blk].rxds[j].virt_addr;
  2466. skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
  2467. if (!skb)
  2468. continue;
  2469. if (sp->rxd_mode == RXD_MODE_1) {
  2470. rxdp1 = (struct RxD1 *)rxdp;
  2471. pci_unmap_single(sp->pdev,
  2472. (dma_addr_t)rxdp1->Buffer0_ptr,
  2473. dev->mtu +
  2474. HEADER_ETHERNET_II_802_3_SIZE +
  2475. HEADER_802_2_SIZE + HEADER_SNAP_SIZE,
  2476. PCI_DMA_FROMDEVICE);
  2477. memset(rxdp, 0, sizeof(struct RxD1));
  2478. } else if (sp->rxd_mode == RXD_MODE_3B) {
  2479. rxdp3 = (struct RxD3 *)rxdp;
  2480. ba = &mac_control->rings[ring_no].ba[blk][j];
  2481. pci_unmap_single(sp->pdev,
  2482. (dma_addr_t)rxdp3->Buffer0_ptr,
  2483. BUF0_LEN,
  2484. PCI_DMA_FROMDEVICE);
  2485. pci_unmap_single(sp->pdev,
  2486. (dma_addr_t)rxdp3->Buffer1_ptr,
  2487. BUF1_LEN,
  2488. PCI_DMA_FROMDEVICE);
  2489. pci_unmap_single(sp->pdev,
  2490. (dma_addr_t)rxdp3->Buffer2_ptr,
  2491. dev->mtu + 4,
  2492. PCI_DMA_FROMDEVICE);
  2493. memset(rxdp, 0, sizeof(struct RxD3));
  2494. }
  2495. swstats->mem_freed += skb->truesize;
  2496. dev_kfree_skb(skb);
  2497. mac_control->rings[ring_no].rx_bufs_left -= 1;
  2498. }
  2499. }
  2500. /**
  2501. * free_rx_buffers - Frees all Rx buffers
  2502. * @sp: device private variable.
  2503. * Description:
  2504. * This function will free all Rx buffers allocated by host.
  2505. * Return Value:
  2506. * NONE.
  2507. */
  2508. static void free_rx_buffers(struct s2io_nic *sp)
  2509. {
  2510. struct net_device *dev = sp->dev;
  2511. int i, blk = 0, buf_cnt = 0;
  2512. struct config_param *config = &sp->config;
  2513. struct mac_info *mac_control = &sp->mac_control;
  2514. for (i = 0; i < config->rx_ring_num; i++) {
  2515. struct ring_info *ring = &mac_control->rings[i];
  2516. for (blk = 0; blk < rx_ring_sz[i]; blk++)
  2517. free_rxd_blk(sp, i, blk);
  2518. ring->rx_curr_put_info.block_index = 0;
  2519. ring->rx_curr_get_info.block_index = 0;
  2520. ring->rx_curr_put_info.offset = 0;
  2521. ring->rx_curr_get_info.offset = 0;
  2522. ring->rx_bufs_left = 0;
  2523. DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n",
  2524. dev->name, buf_cnt, i);
  2525. }
  2526. }
  2527. static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
  2528. {
  2529. if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
  2530. DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n",
  2531. ring->dev->name);
  2532. }
  2533. return 0;
  2534. }
  2535. /**
  2536. * s2io_poll - Rx interrupt handler for NAPI support
  2537. * @napi : pointer to the napi structure.
  2538. * @budget : The number of packets that were budgeted to be processed
  2539. * during one pass through the 'Poll" function.
  2540. * Description:
  2541. * Comes into picture only if NAPI support has been incorporated. It does
  2542. * the same thing that rx_intr_handler does, but not in a interrupt context
  2543. * also It will process only a given number of packets.
  2544. * Return value:
  2545. * 0 on success and 1 if there are No Rx packets to be processed.
  2546. */
  2547. static int s2io_poll_msix(struct napi_struct *napi, int budget)
  2548. {
  2549. struct ring_info *ring = container_of(napi, struct ring_info, napi);
  2550. struct net_device *dev = ring->dev;
  2551. int pkts_processed = 0;
  2552. u8 __iomem *addr = NULL;
  2553. u8 val8 = 0;
  2554. struct s2io_nic *nic = netdev_priv(dev);
  2555. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2556. int budget_org = budget;
  2557. if (unlikely(!is_s2io_card_up(nic)))
  2558. return 0;
  2559. pkts_processed = rx_intr_handler(ring, budget);
  2560. s2io_chk_rx_buffers(nic, ring);
  2561. if (pkts_processed < budget_org) {
  2562. napi_complete(napi);
  2563. /*Re Enable MSI-Rx Vector*/
  2564. addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
  2565. addr += 7 - ring->ring_no;
  2566. val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
  2567. writeb(val8, addr);
  2568. val8 = readb(addr);
  2569. }
  2570. return pkts_processed;
  2571. }
  2572. static int s2io_poll_inta(struct napi_struct *napi, int budget)
  2573. {
  2574. struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
  2575. int pkts_processed = 0;
  2576. int ring_pkts_processed, i;
  2577. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2578. int budget_org = budget;
  2579. struct config_param *config = &nic->config;
  2580. struct mac_info *mac_control = &nic->mac_control;
  2581. if (unlikely(!is_s2io_card_up(nic)))
  2582. return 0;
  2583. for (i = 0; i < config->rx_ring_num; i++) {
  2584. struct ring_info *ring = &mac_control->rings[i];
  2585. ring_pkts_processed = rx_intr_handler(ring, budget);
  2586. s2io_chk_rx_buffers(nic, ring);
  2587. pkts_processed += ring_pkts_processed;
  2588. budget -= ring_pkts_processed;
  2589. if (budget <= 0)
  2590. break;
  2591. }
  2592. if (pkts_processed < budget_org) {
  2593. napi_complete(napi);
  2594. /* Re enable the Rx interrupts for the ring */
  2595. writeq(0, &bar0->rx_traffic_mask);
  2596. readl(&bar0->rx_traffic_mask);
  2597. }
  2598. return pkts_processed;
  2599. }
  2600. #ifdef CONFIG_NET_POLL_CONTROLLER
  2601. /**
  2602. * s2io_netpoll - netpoll event handler entry point
  2603. * @dev : pointer to the device structure.
  2604. * Description:
  2605. * This function will be called by upper layer to check for events on the
  2606. * interface in situations where interrupts are disabled. It is used for
  2607. * specific in-kernel networking tasks, such as remote consoles and kernel
  2608. * debugging over the network (example netdump in RedHat).
  2609. */
  2610. static void s2io_netpoll(struct net_device *dev)
  2611. {
  2612. struct s2io_nic *nic = netdev_priv(dev);
  2613. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2614. u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
  2615. int i;
  2616. struct config_param *config = &nic->config;
  2617. struct mac_info *mac_control = &nic->mac_control;
  2618. if (pci_channel_offline(nic->pdev))
  2619. return;
  2620. disable_irq(dev->irq);
  2621. writeq(val64, &bar0->rx_traffic_int);
  2622. writeq(val64, &bar0->tx_traffic_int);
  2623. /* we need to free up the transmitted skbufs or else netpoll will
  2624. * run out of skbs and will fail and eventually netpoll application such
  2625. * as netdump will fail.
  2626. */
  2627. for (i = 0; i < config->tx_fifo_num; i++)
  2628. tx_intr_handler(&mac_control->fifos[i]);
  2629. /* check for received packet and indicate up to network */
  2630. for (i = 0; i < config->rx_ring_num; i++) {
  2631. struct ring_info *ring = &mac_control->rings[i];
  2632. rx_intr_handler(ring, 0);
  2633. }
  2634. for (i = 0; i < config->rx_ring_num; i++) {
  2635. struct ring_info *ring = &mac_control->rings[i];
  2636. if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
  2637. DBG_PRINT(INFO_DBG,
  2638. "%s: Out of memory in Rx Netpoll!!\n",
  2639. dev->name);
  2640. break;
  2641. }
  2642. }
  2643. enable_irq(dev->irq);
  2644. }
  2645. #endif
  2646. /**
  2647. * rx_intr_handler - Rx interrupt handler
  2648. * @ring_info: per ring structure.
  2649. * @budget: budget for napi processing.
  2650. * Description:
  2651. * If the interrupt is because of a received frame or if the
  2652. * receive ring contains fresh as yet un-processed frames,this function is
  2653. * called. It picks out the RxD at which place the last Rx processing had
  2654. * stopped and sends the skb to the OSM's Rx handler and then increments
  2655. * the offset.
  2656. * Return Value:
  2657. * No. of napi packets processed.
  2658. */
  2659. static int rx_intr_handler(struct ring_info *ring_data, int budget)
  2660. {
  2661. int get_block, put_block;
  2662. struct rx_curr_get_info get_info, put_info;
  2663. struct RxD_t *rxdp;
  2664. struct sk_buff *skb;
  2665. int pkt_cnt = 0, napi_pkts = 0;
  2666. int i;
  2667. struct RxD1 *rxdp1;
  2668. struct RxD3 *rxdp3;
  2669. get_info = ring_data->rx_curr_get_info;
  2670. get_block = get_info.block_index;
  2671. memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
  2672. put_block = put_info.block_index;
  2673. rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
  2674. while (RXD_IS_UP2DT(rxdp)) {
  2675. /*
  2676. * If your are next to put index then it's
  2677. * FIFO full condition
  2678. */
  2679. if ((get_block == put_block) &&
  2680. (get_info.offset + 1) == put_info.offset) {
  2681. DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
  2682. ring_data->dev->name);
  2683. break;
  2684. }
  2685. skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control);
  2686. if (skb == NULL) {
  2687. DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n",
  2688. ring_data->dev->name);
  2689. return 0;
  2690. }
  2691. if (ring_data->rxd_mode == RXD_MODE_1) {
  2692. rxdp1 = (struct RxD1 *)rxdp;
  2693. pci_unmap_single(ring_data->pdev, (dma_addr_t)
  2694. rxdp1->Buffer0_ptr,
  2695. ring_data->mtu +
  2696. HEADER_ETHERNET_II_802_3_SIZE +
  2697. HEADER_802_2_SIZE +
  2698. HEADER_SNAP_SIZE,
  2699. PCI_DMA_FROMDEVICE);
  2700. } else if (ring_data->rxd_mode == RXD_MODE_3B) {
  2701. rxdp3 = (struct RxD3 *)rxdp;
  2702. pci_dma_sync_single_for_cpu(ring_data->pdev,
  2703. (dma_addr_t)rxdp3->Buffer0_ptr,
  2704. BUF0_LEN,
  2705. PCI_DMA_FROMDEVICE);
  2706. pci_unmap_single(ring_data->pdev,
  2707. (dma_addr_t)rxdp3->Buffer2_ptr,
  2708. ring_data->mtu + 4,
  2709. PCI_DMA_FROMDEVICE);
  2710. }
  2711. prefetch(skb->data);
  2712. rx_osm_handler(ring_data, rxdp);
  2713. get_info.offset++;
  2714. ring_data->rx_curr_get_info.offset = get_info.offset;
  2715. rxdp = ring_data->rx_blocks[get_block].
  2716. rxds[get_info.offset].virt_addr;
  2717. if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
  2718. get_info.offset = 0;
  2719. ring_data->rx_curr_get_info.offset = get_info.offset;
  2720. get_block++;
  2721. if (get_block == ring_data->block_count)
  2722. get_block = 0;
  2723. ring_data->rx_curr_get_info.block_index = get_block;
  2724. rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
  2725. }
  2726. if (ring_data->nic->config.napi) {
  2727. budget--;
  2728. napi_pkts++;
  2729. if (!budget)
  2730. break;
  2731. }
  2732. pkt_cnt++;
  2733. if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
  2734. break;
  2735. }
  2736. if (ring_data->lro) {
  2737. /* Clear all LRO sessions before exiting */
  2738. for (i = 0; i < MAX_LRO_SESSIONS; i++) {
  2739. struct lro *lro = &ring_data->lro0_n[i];
  2740. if (lro->in_use) {
  2741. update_L3L4_header(ring_data->nic, lro);
  2742. queue_rx_frame(lro->parent, lro->vlan_tag);
  2743. clear_lro_session(lro);
  2744. }
  2745. }
  2746. }
  2747. return napi_pkts;
  2748. }
  2749. /**
  2750. * tx_intr_handler - Transmit interrupt handler
  2751. * @nic : device private variable
  2752. * Description:
  2753. * If an interrupt was raised to indicate DMA complete of the
  2754. * Tx packet, this function is called. It identifies the last TxD
  2755. * whose buffer was freed and frees all skbs whose data have already
  2756. * DMA'ed into the NICs internal memory.
  2757. * Return Value:
  2758. * NONE
  2759. */
  2760. static void tx_intr_handler(struct fifo_info *fifo_data)
  2761. {
  2762. struct s2io_nic *nic = fifo_data->nic;
  2763. struct tx_curr_get_info get_info, put_info;
  2764. struct sk_buff *skb = NULL;
  2765. struct TxD *txdlp;
  2766. int pkt_cnt = 0;
  2767. unsigned long flags = 0;
  2768. u8 err_mask;
  2769. struct stat_block *stats = nic->mac_control.stats_info;
  2770. struct swStat *swstats = &stats->sw_stat;
  2771. if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
  2772. return;
  2773. get_info = fifo_data->tx_curr_get_info;
  2774. memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
  2775. txdlp = (struct TxD *)
  2776. fifo_data->list_info[get_info.offset].list_virt_addr;
  2777. while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
  2778. (get_info.offset != put_info.offset) &&
  2779. (txdlp->Host_Control)) {
  2780. /* Check for TxD errors */
  2781. if (txdlp->Control_1 & TXD_T_CODE) {
  2782. unsigned long long err;
  2783. err = txdlp->Control_1 & TXD_T_CODE;
  2784. if (err & 0x1) {
  2785. swstats->parity_err_cnt++;
  2786. }
  2787. /* update t_code statistics */
  2788. err_mask = err >> 48;
  2789. switch (err_mask) {
  2790. case 2:
  2791. swstats->tx_buf_abort_cnt++;
  2792. break;
  2793. case 3:
  2794. swstats->tx_desc_abort_cnt++;
  2795. break;
  2796. case 7:
  2797. swstats->tx_parity_err_cnt++;
  2798. break;
  2799. case 10:
  2800. swstats->tx_link_loss_cnt++;
  2801. break;
  2802. case 15:
  2803. swstats->tx_list_proc_err_cnt++;
  2804. break;
  2805. }
  2806. }
  2807. skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
  2808. if (skb == NULL) {
  2809. spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
  2810. DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n",
  2811. __func__);
  2812. return;
  2813. }
  2814. pkt_cnt++;
  2815. /* Updating the statistics block */
  2816. nic->dev->stats.tx_bytes += skb->len;
  2817. swstats->mem_freed += skb->truesize;
  2818. dev_kfree_skb_irq(skb);
  2819. get_info.offset++;
  2820. if (get_info.offset == get_info.fifo_len + 1)
  2821. get_info.offset = 0;
  2822. txdlp = (struct TxD *)
  2823. fifo_data->list_info[get_info.offset].list_virt_addr;
  2824. fifo_data->tx_curr_get_info.offset = get_info.offset;
  2825. }
  2826. s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
  2827. spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
  2828. }
  2829. /**
  2830. * s2io_mdio_write - Function to write in to MDIO registers
  2831. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2832. * @addr : address value
  2833. * @value : data value
  2834. * @dev : pointer to net_device structure
  2835. * Description:
  2836. * This function is used to write values to the MDIO registers
  2837. * NONE
  2838. */
  2839. static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value,
  2840. struct net_device *dev)
  2841. {
  2842. u64 val64;
  2843. struct s2io_nic *sp = netdev_priv(dev);
  2844. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2845. /* address transaction */
  2846. val64 = MDIO_MMD_INDX_ADDR(addr) |
  2847. MDIO_MMD_DEV_ADDR(mmd_type) |
  2848. MDIO_MMS_PRT_ADDR(0x0);
  2849. writeq(val64, &bar0->mdio_control);
  2850. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2851. writeq(val64, &bar0->mdio_control);
  2852. udelay(100);
  2853. /* Data transaction */
  2854. val64 = MDIO_MMD_INDX_ADDR(addr) |
  2855. MDIO_MMD_DEV_ADDR(mmd_type) |
  2856. MDIO_MMS_PRT_ADDR(0x0) |
  2857. MDIO_MDIO_DATA(value) |
  2858. MDIO_OP(MDIO_OP_WRITE_TRANS);
  2859. writeq(val64, &bar0->mdio_control);
  2860. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2861. writeq(val64, &bar0->mdio_control);
  2862. udelay(100);
  2863. val64 = MDIO_MMD_INDX_ADDR(addr) |
  2864. MDIO_MMD_DEV_ADDR(mmd_type) |
  2865. MDIO_MMS_PRT_ADDR(0x0) |
  2866. MDIO_OP(MDIO_OP_READ_TRANS);
  2867. writeq(val64, &bar0->mdio_control);
  2868. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2869. writeq(val64, &bar0->mdio_control);
  2870. udelay(100);
  2871. }
  2872. /**
  2873. * s2io_mdio_read - Function to write in to MDIO registers
  2874. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2875. * @addr : address value
  2876. * @dev : pointer to net_device structure
  2877. * Description:
  2878. * This function is used to read values to the MDIO registers
  2879. * NONE
  2880. */
  2881. static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
  2882. {
  2883. u64 val64 = 0x0;
  2884. u64 rval64 = 0x0;
  2885. struct s2io_nic *sp = netdev_priv(dev);
  2886. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2887. /* address transaction */
  2888. val64 = val64 | (MDIO_MMD_INDX_ADDR(addr)
  2889. | MDIO_MMD_DEV_ADDR(mmd_type)
  2890. | MDIO_MMS_PRT_ADDR(0x0));
  2891. writeq(val64, &bar0->mdio_control);
  2892. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2893. writeq(val64, &bar0->mdio_control);
  2894. udelay(100);
  2895. /* Data transaction */
  2896. val64 = MDIO_MMD_INDX_ADDR(addr) |
  2897. MDIO_MMD_DEV_ADDR(mmd_type) |
  2898. MDIO_MMS_PRT_ADDR(0x0) |
  2899. MDIO_OP(MDIO_OP_READ_TRANS);
  2900. writeq(val64, &bar0->mdio_control);
  2901. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2902. writeq(val64, &bar0->mdio_control);
  2903. udelay(100);
  2904. /* Read the value from regs */
  2905. rval64 = readq(&bar0->mdio_control);
  2906. rval64 = rval64 & 0xFFFF0000;
  2907. rval64 = rval64 >> 16;
  2908. return rval64;
  2909. }
  2910. /**
  2911. * s2io_chk_xpak_counter - Function to check the status of the xpak counters
  2912. * @counter : counter value to be updated
  2913. * @flag : flag to indicate the status
  2914. * @type : counter type
  2915. * Description:
  2916. * This function is to check the status of the xpak counters value
  2917. * NONE
  2918. */
  2919. static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index,
  2920. u16 flag, u16 type)
  2921. {
  2922. u64 mask = 0x3;
  2923. u64 val64;
  2924. int i;
  2925. for (i = 0; i < index; i++)
  2926. mask = mask << 0x2;
  2927. if (flag > 0) {
  2928. *counter = *counter + 1;
  2929. val64 = *regs_stat & mask;
  2930. val64 = val64 >> (index * 0x2);
  2931. val64 = val64 + 1;
  2932. if (val64 == 3) {
  2933. switch (type) {
  2934. case 1:
  2935. DBG_PRINT(ERR_DBG,
  2936. "Take Xframe NIC out of service.\n");
  2937. DBG_PRINT(ERR_DBG,
  2938. "Excessive temperatures may result in premature transceiver failure.\n");
  2939. break;
  2940. case 2:
  2941. DBG_PRINT(ERR_DBG,
  2942. "Take Xframe NIC out of service.\n");
  2943. DBG_PRINT(ERR_DBG,
  2944. "Excessive bias currents may indicate imminent laser diode failure.\n");
  2945. break;
  2946. case 3:
  2947. DBG_PRINT(ERR_DBG,
  2948. "Take Xframe NIC out of service.\n");
  2949. DBG_PRINT(ERR_DBG,
  2950. "Excessive laser output power may saturate far-end receiver.\n");
  2951. break;
  2952. default:
  2953. DBG_PRINT(ERR_DBG,
  2954. "Incorrect XPAK Alarm type\n");
  2955. }
  2956. val64 = 0x0;
  2957. }
  2958. val64 = val64 << (index * 0x2);
  2959. *regs_stat = (*regs_stat & (~mask)) | (val64);
  2960. } else {
  2961. *regs_stat = *regs_stat & (~mask);
  2962. }
  2963. }
  2964. /**
  2965. * s2io_updt_xpak_counter - Function to update the xpak counters
  2966. * @dev : pointer to net_device struct
  2967. * Description:
  2968. * This function is to upate the status of the xpak counters value
  2969. * NONE
  2970. */
  2971. static void s2io_updt_xpak_counter(struct net_device *dev)
  2972. {
  2973. u16 flag = 0x0;
  2974. u16 type = 0x0;
  2975. u16 val16 = 0x0;
  2976. u64 val64 = 0x0;
  2977. u64 addr = 0x0;
  2978. struct s2io_nic *sp = netdev_priv(dev);
  2979. struct stat_block *stats = sp->mac_control.stats_info;
  2980. struct xpakStat *xstats = &stats->xpak_stat;
  2981. /* Check the communication with the MDIO slave */
  2982. addr = MDIO_CTRL1;
  2983. val64 = 0x0;
  2984. val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
  2985. if ((val64 == 0xFFFF) || (val64 == 0x0000)) {
  2986. DBG_PRINT(ERR_DBG,
  2987. "ERR: MDIO slave access failed - Returned %llx\n",
  2988. (unsigned long long)val64);
  2989. return;
  2990. }
  2991. /* Check for the expected value of control reg 1 */
  2992. if (val64 != MDIO_CTRL1_SPEED10G) {
  2993. DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - "
  2994. "Returned: %llx- Expected: 0x%x\n",
  2995. (unsigned long long)val64, MDIO_CTRL1_SPEED10G);
  2996. return;
  2997. }
  2998. /* Loading the DOM register to MDIO register */
  2999. addr = 0xA100;
  3000. s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev);
  3001. val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
  3002. /* Reading the Alarm flags */
  3003. addr = 0xA070;
  3004. val64 = 0x0;
  3005. val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
  3006. flag = CHECKBIT(val64, 0x7);
  3007. type = 1;
  3008. s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high,
  3009. &xstats->xpak_regs_stat,
  3010. 0x0, flag, type);
  3011. if (CHECKBIT(val64, 0x6))
  3012. xstats->alarm_transceiver_temp_low++;
  3013. flag = CHECKBIT(val64, 0x3);
  3014. type = 2;
  3015. s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high,
  3016. &xstats->xpak_regs_stat,
  3017. 0x2, flag, type);
  3018. if (CHECKBIT(val64, 0x2))
  3019. xstats->alarm_laser_bias_current_low++;
  3020. flag = CHECKBIT(val64, 0x1);
  3021. type = 3;
  3022. s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high,
  3023. &xstats->xpak_regs_stat,
  3024. 0x4, flag, type);
  3025. if (CHECKBIT(val64, 0x0))
  3026. xstats->alarm_laser_output_power_low++;
  3027. /* Reading the Warning flags */
  3028. addr = 0xA074;
  3029. val64 = 0x0;
  3030. val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev);
  3031. if (CHECKBIT(val64, 0x7))
  3032. xstats->warn_transceiver_temp_high++;
  3033. if (CHECKBIT(val64, 0x6))
  3034. xstats->warn_transceiver_temp_low++;
  3035. if (CHECKBIT(val64, 0x3))
  3036. xstats->warn_laser_bias_current_high++;
  3037. if (CHECKBIT(val64, 0x2))
  3038. xstats->warn_laser_bias_current_low++;
  3039. if (CHECKBIT(val64, 0x1))
  3040. xstats->warn_laser_output_power_high++;
  3041. if (CHECKBIT(val64, 0x0))
  3042. xstats->warn_laser_output_power_low++;
  3043. }
  3044. /**
  3045. * wait_for_cmd_complete - waits for a command to complete.
  3046. * @sp : private member of the device structure, which is a pointer to the
  3047. * s2io_nic structure.
  3048. * Description: Function that waits for a command to Write into RMAC
  3049. * ADDR DATA registers to be completed and returns either success or
  3050. * error depending on whether the command was complete or not.
  3051. * Return value:
  3052. * SUCCESS on success and FAILURE on failure.
  3053. */
  3054. static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
  3055. int bit_state)
  3056. {
  3057. int ret = FAILURE, cnt = 0, delay = 1;
  3058. u64 val64;
  3059. if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
  3060. return FAILURE;
  3061. do {
  3062. val64 = readq(addr);
  3063. if (bit_state == S2IO_BIT_RESET) {
  3064. if (!(val64 & busy_bit)) {
  3065. ret = SUCCESS;
  3066. break;
  3067. }
  3068. } else {
  3069. if (val64 & busy_bit) {
  3070. ret = SUCCESS;
  3071. break;
  3072. }
  3073. }
  3074. if (in_interrupt())
  3075. mdelay(delay);
  3076. else
  3077. msleep(delay);
  3078. if (++cnt >= 10)
  3079. delay = 50;
  3080. } while (cnt < 20);
  3081. return ret;
  3082. }
  3083. /*
  3084. * check_pci_device_id - Checks if the device id is supported
  3085. * @id : device id
  3086. * Description: Function to check if the pci device id is supported by driver.
  3087. * Return value: Actual device id if supported else PCI_ANY_ID
  3088. */
  3089. static u16 check_pci_device_id(u16 id)
  3090. {
  3091. switch (id) {
  3092. case PCI_DEVICE_ID_HERC_WIN:
  3093. case PCI_DEVICE_ID_HERC_UNI:
  3094. return XFRAME_II_DEVICE;
  3095. case PCI_DEVICE_ID_S2IO_UNI:
  3096. case PCI_DEVICE_ID_S2IO_WIN:
  3097. return XFRAME_I_DEVICE;
  3098. default:
  3099. return PCI_ANY_ID;
  3100. }
  3101. }
  3102. /**
  3103. * s2io_reset - Resets the card.
  3104. * @sp : private member of the device structure.
  3105. * Description: Function to Reset the card. This function then also
  3106. * restores the previously saved PCI configuration space registers as
  3107. * the card reset also resets the configuration space.
  3108. * Return value:
  3109. * void.
  3110. */
  3111. static void s2io_reset(struct s2io_nic *sp)
  3112. {
  3113. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3114. u64 val64;
  3115. u16 subid, pci_cmd;
  3116. int i;
  3117. u16 val16;
  3118. unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
  3119. unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
  3120. struct stat_block *stats;
  3121. struct swStat *swstats;
  3122. DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n",
  3123. __func__, pci_name(sp->pdev));
  3124. /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
  3125. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
  3126. val64 = SW_RESET_ALL;
  3127. writeq(val64, &bar0->sw_reset);
  3128. if (strstr(sp->product_name, "CX4"))
  3129. msleep(750);
  3130. msleep(250);
  3131. for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
  3132. /* Restore the PCI state saved during initialization. */
  3133. pci_restore_state(sp->pdev);
  3134. pci_save_state(sp->pdev);
  3135. pci_read_config_word(sp->pdev, 0x2, &val16);
  3136. if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
  3137. break;
  3138. msleep(200);
  3139. }
  3140. if (check_pci_device_id(val16) == (u16)PCI_ANY_ID)
  3141. DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__);
  3142. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
  3143. s2io_init_pci(sp);
  3144. /* Set swapper to enable I/O register access */
  3145. s2io_set_swapper(sp);
  3146. /* restore mac_addr entries */
  3147. do_s2io_restore_unicast_mc(sp);
  3148. /* Restore the MSIX table entries from local variables */
  3149. restore_xmsi_data(sp);
  3150. /* Clear certain PCI/PCI-X fields after reset */
  3151. if (sp->device_type == XFRAME_II_DEVICE) {
  3152. /* Clear "detected parity error" bit */
  3153. pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
  3154. /* Clearing PCIX Ecc status register */
  3155. pci_write_config_dword(sp->pdev, 0x68, 0x7C);
  3156. /* Clearing PCI_STATUS error reflected here */
  3157. writeq(s2BIT(62), &bar0->txpic_int_reg);
  3158. }
  3159. /* Reset device statistics maintained by OS */
  3160. memset(&sp->stats, 0, sizeof(struct net_device_stats));
  3161. stats = sp->mac_control.stats_info;
  3162. swstats = &stats->sw_stat;
  3163. /* save link up/down time/cnt, reset/memory/watchdog cnt */
  3164. up_cnt = swstats->link_up_cnt;
  3165. down_cnt = swstats->link_down_cnt;
  3166. up_time = swstats->link_up_time;
  3167. down_time = swstats->link_down_time;
  3168. reset_cnt = swstats->soft_reset_cnt;
  3169. mem_alloc_cnt = swstats->mem_allocated;
  3170. mem_free_cnt = swstats->mem_freed;
  3171. watchdog_cnt = swstats->watchdog_timer_cnt;
  3172. memset(stats, 0, sizeof(struct stat_block));
  3173. /* restore link up/down time/cnt, reset/memory/watchdog cnt */
  3174. swstats->link_up_cnt = up_cnt;
  3175. swstats->link_down_cnt = down_cnt;
  3176. swstats->link_up_time = up_time;
  3177. swstats->link_down_time = down_time;
  3178. swstats->soft_reset_cnt = reset_cnt;
  3179. swstats->mem_allocated = mem_alloc_cnt;
  3180. swstats->mem_freed = mem_free_cnt;
  3181. swstats->watchdog_timer_cnt = watchdog_cnt;
  3182. /* SXE-002: Configure link and activity LED to turn it off */
  3183. subid = sp->pdev->subsystem_device;
  3184. if (((subid & 0xFF) >= 0x07) &&
  3185. (sp->device_type == XFRAME_I_DEVICE)) {
  3186. val64 = readq(&bar0->gpio_control);
  3187. val64 |= 0x0000800000000000ULL;
  3188. writeq(val64, &bar0->gpio_control);
  3189. val64 = 0x0411040400000000ULL;
  3190. writeq(val64, (void __iomem *)bar0 + 0x2700);
  3191. }
  3192. /*
  3193. * Clear spurious ECC interrupts that would have occured on
  3194. * XFRAME II cards after reset.
  3195. */
  3196. if (sp->device_type == XFRAME_II_DEVICE) {
  3197. val64 = readq(&bar0->pcc_err_reg);
  3198. writeq(val64, &bar0->pcc_err_reg);
  3199. }
  3200. sp->device_enabled_once = false;
  3201. }
  3202. /**
  3203. * s2io_set_swapper - to set the swapper controle on the card
  3204. * @sp : private member of the device structure,
  3205. * pointer to the s2io_nic structure.
  3206. * Description: Function to set the swapper control on the card
  3207. * correctly depending on the 'endianness' of the system.
  3208. * Return value:
  3209. * SUCCESS on success and FAILURE on failure.
  3210. */
  3211. static int s2io_set_swapper(struct s2io_nic *sp)
  3212. {
  3213. struct net_device *dev = sp->dev;
  3214. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3215. u64 val64, valt, valr;
  3216. /*
  3217. * Set proper endian settings and verify the same by reading
  3218. * the PIF Feed-back register.
  3219. */
  3220. val64 = readq(&bar0->pif_rd_swapper_fb);
  3221. if (val64 != 0x0123456789ABCDEFULL) {
  3222. int i = 0;
  3223. u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
  3224. 0x8100008181000081ULL, /* FE=1, SE=0 */
  3225. 0x4200004242000042ULL, /* FE=0, SE=1 */
  3226. 0}; /* FE=0, SE=0 */
  3227. while (i < 4) {
  3228. writeq(value[i], &bar0->swapper_ctrl);
  3229. val64 = readq(&bar0->pif_rd_swapper_fb);
  3230. if (val64 == 0x0123456789ABCDEFULL)
  3231. break;
  3232. i++;
  3233. }
  3234. if (i == 4) {
  3235. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, "
  3236. "feedback read %llx\n",
  3237. dev->name, (unsigned long long)val64);
  3238. return FAILURE;
  3239. }
  3240. valr = value[i];
  3241. } else {
  3242. valr = readq(&bar0->swapper_ctrl);
  3243. }
  3244. valt = 0x0123456789ABCDEFULL;
  3245. writeq(valt, &bar0->xmsi_address);
  3246. val64 = readq(&bar0->xmsi_address);
  3247. if (val64 != valt) {
  3248. int i = 0;
  3249. u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
  3250. 0x0081810000818100ULL, /* FE=1, SE=0 */
  3251. 0x0042420000424200ULL, /* FE=0, SE=1 */
  3252. 0}; /* FE=0, SE=0 */
  3253. while (i < 4) {
  3254. writeq((value[i] | valr), &bar0->swapper_ctrl);
  3255. writeq(valt, &bar0->xmsi_address);
  3256. val64 = readq(&bar0->xmsi_address);
  3257. if (val64 == valt)
  3258. break;
  3259. i++;
  3260. }
  3261. if (i == 4) {
  3262. unsigned long long x = val64;
  3263. DBG_PRINT(ERR_DBG,
  3264. "Write failed, Xmsi_addr reads:0x%llx\n", x);
  3265. return FAILURE;
  3266. }
  3267. }
  3268. val64 = readq(&bar0->swapper_ctrl);
  3269. val64 &= 0xFFFF000000000000ULL;
  3270. #ifdef __BIG_ENDIAN
  3271. /*
  3272. * The device by default set to a big endian format, so a
  3273. * big endian driver need not set anything.
  3274. */
  3275. val64 |= (SWAPPER_CTRL_TXP_FE |
  3276. SWAPPER_CTRL_TXP_SE |
  3277. SWAPPER_CTRL_TXD_R_FE |
  3278. SWAPPER_CTRL_TXD_W_FE |
  3279. SWAPPER_CTRL_TXF_R_FE |
  3280. SWAPPER_CTRL_RXD_R_FE |
  3281. SWAPPER_CTRL_RXD_W_FE |
  3282. SWAPPER_CTRL_RXF_W_FE |
  3283. SWAPPER_CTRL_XMSI_FE |
  3284. SWAPPER_CTRL_STATS_FE |
  3285. SWAPPER_CTRL_STATS_SE);
  3286. if (sp->config.intr_type == INTA)
  3287. val64 |= SWAPPER_CTRL_XMSI_SE;
  3288. writeq(val64, &bar0->swapper_ctrl);
  3289. #else
  3290. /*
  3291. * Initially we enable all bits to make it accessible by the
  3292. * driver, then we selectively enable only those bits that
  3293. * we want to set.
  3294. */
  3295. val64 |= (SWAPPER_CTRL_TXP_FE |
  3296. SWAPPER_CTRL_TXP_SE |
  3297. SWAPPER_CTRL_TXD_R_FE |
  3298. SWAPPER_CTRL_TXD_R_SE |
  3299. SWAPPER_CTRL_TXD_W_FE |
  3300. SWAPPER_CTRL_TXD_W_SE |
  3301. SWAPPER_CTRL_TXF_R_FE |
  3302. SWAPPER_CTRL_RXD_R_FE |
  3303. SWAPPER_CTRL_RXD_R_SE |
  3304. SWAPPER_CTRL_RXD_W_FE |
  3305. SWAPPER_CTRL_RXD_W_SE |
  3306. SWAPPER_CTRL_RXF_W_FE |
  3307. SWAPPER_CTRL_XMSI_FE |
  3308. SWAPPER_CTRL_STATS_FE |
  3309. SWAPPER_CTRL_STATS_SE);
  3310. if (sp->config.intr_type == INTA)
  3311. val64 |= SWAPPER_CTRL_XMSI_SE;
  3312. writeq(val64, &bar0->swapper_ctrl);
  3313. #endif
  3314. val64 = readq(&bar0->swapper_ctrl);
  3315. /*
  3316. * Verifying if endian settings are accurate by reading a
  3317. * feedback register.
  3318. */
  3319. val64 = readq(&bar0->pif_rd_swapper_fb);
  3320. if (val64 != 0x0123456789ABCDEFULL) {
  3321. /* Endian settings are incorrect, calls for another dekko. */
  3322. DBG_PRINT(ERR_DBG,
  3323. "%s: Endian settings are wrong, feedback read %llx\n",
  3324. dev->name, (unsigned long long)val64);
  3325. return FAILURE;
  3326. }
  3327. return SUCCESS;
  3328. }
  3329. static int wait_for_msix_trans(struct s2io_nic *nic, int i)
  3330. {
  3331. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3332. u64 val64;
  3333. int ret = 0, cnt = 0;
  3334. do {
  3335. val64 = readq(&bar0->xmsi_access);
  3336. if (!(val64 & s2BIT(15)))
  3337. break;
  3338. mdelay(1);
  3339. cnt++;
  3340. } while (cnt < 5);
  3341. if (cnt == 5) {
  3342. DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
  3343. ret = 1;
  3344. }
  3345. return ret;
  3346. }
  3347. static void restore_xmsi_data(struct s2io_nic *nic)
  3348. {
  3349. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3350. u64 val64;
  3351. int i, msix_index;
  3352. if (nic->device_type == XFRAME_I_DEVICE)
  3353. return;
  3354. for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
  3355. msix_index = (i) ? ((i-1) * 8 + 1) : 0;
  3356. writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
  3357. writeq(nic->msix_info[i].data, &bar0->xmsi_data);
  3358. val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
  3359. writeq(val64, &bar0->xmsi_access);
  3360. if (wait_for_msix_trans(nic, msix_index)) {
  3361. DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
  3362. __func__, msix_index);
  3363. continue;
  3364. }
  3365. }
  3366. }
  3367. static void store_xmsi_data(struct s2io_nic *nic)
  3368. {
  3369. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3370. u64 val64, addr, data;
  3371. int i, msix_index;
  3372. if (nic->device_type == XFRAME_I_DEVICE)
  3373. return;
  3374. /* Store and display */
  3375. for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
  3376. msix_index = (i) ? ((i-1) * 8 + 1) : 0;
  3377. val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
  3378. writeq(val64, &bar0->xmsi_access);
  3379. if (wait_for_msix_trans(nic, msix_index)) {
  3380. DBG_PRINT(ERR_DBG, "%s: index: %d failed\n",
  3381. __func__, msix_index);
  3382. continue;
  3383. }
  3384. addr = readq(&bar0->xmsi_address);
  3385. data = readq(&bar0->xmsi_data);
  3386. if (addr && data) {
  3387. nic->msix_info[i].addr = addr;
  3388. nic->msix_info[i].data = data;
  3389. }
  3390. }
  3391. }
  3392. static int s2io_enable_msi_x(struct s2io_nic *nic)
  3393. {
  3394. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3395. u64 rx_mat;
  3396. u16 msi_control; /* Temp variable */
  3397. int ret, i, j, msix_indx = 1;
  3398. int size;
  3399. struct stat_block *stats = nic->mac_control.stats_info;
  3400. struct swStat *swstats = &stats->sw_stat;
  3401. size = nic->num_entries * sizeof(struct msix_entry);
  3402. nic->entries = kzalloc(size, GFP_KERNEL);
  3403. if (!nic->entries) {
  3404. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
  3405. __func__);
  3406. swstats->mem_alloc_fail_cnt++;
  3407. return -ENOMEM;
  3408. }
  3409. swstats->mem_allocated += size;
  3410. size = nic->num_entries * sizeof(struct s2io_msix_entry);
  3411. nic->s2io_entries = kzalloc(size, GFP_KERNEL);
  3412. if (!nic->s2io_entries) {
  3413. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
  3414. __func__);
  3415. swstats->mem_alloc_fail_cnt++;
  3416. kfree(nic->entries);
  3417. swstats->mem_freed
  3418. += (nic->num_entries * sizeof(struct msix_entry));
  3419. return -ENOMEM;
  3420. }
  3421. swstats->mem_allocated += size;
  3422. nic->entries[0].entry = 0;
  3423. nic->s2io_entries[0].entry = 0;
  3424. nic->s2io_entries[0].in_use = MSIX_FLG;
  3425. nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
  3426. nic->s2io_entries[0].arg = &nic->mac_control.fifos;
  3427. for (i = 1; i < nic->num_entries; i++) {
  3428. nic->entries[i].entry = ((i - 1) * 8) + 1;
  3429. nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
  3430. nic->s2io_entries[i].arg = NULL;
  3431. nic->s2io_entries[i].in_use = 0;
  3432. }
  3433. rx_mat = readq(&bar0->rx_mat);
  3434. for (j = 0; j < nic->config.rx_ring_num; j++) {
  3435. rx_mat |= RX_MAT_SET(j, msix_indx);
  3436. nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
  3437. nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
  3438. nic->s2io_entries[j+1].in_use = MSIX_FLG;
  3439. msix_indx += 8;
  3440. }
  3441. writeq(rx_mat, &bar0->rx_mat);
  3442. readq(&bar0->rx_mat);
  3443. ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
  3444. /* We fail init if error or we get less vectors than min required */
  3445. if (ret) {
  3446. DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n");
  3447. kfree(nic->entries);
  3448. swstats->mem_freed += nic->num_entries *
  3449. sizeof(struct msix_entry);
  3450. kfree(nic->s2io_entries);
  3451. swstats->mem_freed += nic->num_entries *
  3452. sizeof(struct s2io_msix_entry);
  3453. nic->entries = NULL;
  3454. nic->s2io_entries = NULL;
  3455. return -ENOMEM;
  3456. }
  3457. /*
  3458. * To enable MSI-X, MSI also needs to be enabled, due to a bug
  3459. * in the herc NIC. (Temp change, needs to be removed later)
  3460. */
  3461. pci_read_config_word(nic->pdev, 0x42, &msi_control);
  3462. msi_control |= 0x1; /* Enable MSI */
  3463. pci_write_config_word(nic->pdev, 0x42, msi_control);
  3464. return 0;
  3465. }
  3466. /* Handle software interrupt used during MSI(X) test */
  3467. static irqreturn_t s2io_test_intr(int irq, void *dev_id)
  3468. {
  3469. struct s2io_nic *sp = dev_id;
  3470. sp->msi_detected = 1;
  3471. wake_up(&sp->msi_wait);
  3472. return IRQ_HANDLED;
  3473. }
  3474. /* Test interrupt path by forcing a a software IRQ */
  3475. static int s2io_test_msi(struct s2io_nic *sp)
  3476. {
  3477. struct pci_dev *pdev = sp->pdev;
  3478. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3479. int err;
  3480. u64 val64, saved64;
  3481. err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
  3482. sp->name, sp);
  3483. if (err) {
  3484. DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
  3485. sp->dev->name, pci_name(pdev), pdev->irq);
  3486. return err;
  3487. }
  3488. init_waitqueue_head(&sp->msi_wait);
  3489. sp->msi_detected = 0;
  3490. saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
  3491. val64 |= SCHED_INT_CTRL_ONE_SHOT;
  3492. val64 |= SCHED_INT_CTRL_TIMER_EN;
  3493. val64 |= SCHED_INT_CTRL_INT2MSI(1);
  3494. writeq(val64, &bar0->scheduled_int_ctrl);
  3495. wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
  3496. if (!sp->msi_detected) {
  3497. /* MSI(X) test failed, go back to INTx mode */
  3498. DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
  3499. "using MSI(X) during test\n",
  3500. sp->dev->name, pci_name(pdev));
  3501. err = -EOPNOTSUPP;
  3502. }
  3503. free_irq(sp->entries[1].vector, sp);
  3504. writeq(saved64, &bar0->scheduled_int_ctrl);
  3505. return err;
  3506. }
  3507. static void remove_msix_isr(struct s2io_nic *sp)
  3508. {
  3509. int i;
  3510. u16 msi_control;
  3511. for (i = 0; i < sp->num_entries; i++) {
  3512. if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) {
  3513. int vector = sp->entries[i].vector;
  3514. void *arg = sp->s2io_entries[i].arg;
  3515. free_irq(vector, arg);
  3516. }
  3517. }
  3518. kfree(sp->entries);
  3519. kfree(sp->s2io_entries);
  3520. sp->entries = NULL;
  3521. sp->s2io_entries = NULL;
  3522. pci_read_config_word(sp->pdev, 0x42, &msi_control);
  3523. msi_control &= 0xFFFE; /* Disable MSI */
  3524. pci_write_config_word(sp->pdev, 0x42, msi_control);
  3525. pci_disable_msix(sp->pdev);
  3526. }
  3527. static void remove_inta_isr(struct s2io_nic *sp)
  3528. {
  3529. struct net_device *dev = sp->dev;
  3530. free_irq(sp->pdev->irq, dev);
  3531. }
  3532. /* ********************************************************* *
  3533. * Functions defined below concern the OS part of the driver *
  3534. * ********************************************************* */
  3535. /**
  3536. * s2io_open - open entry point of the driver
  3537. * @dev : pointer to the device structure.
  3538. * Description:
  3539. * This function is the open entry point of the driver. It mainly calls a
  3540. * function to allocate Rx buffers and inserts them into the buffer
  3541. * descriptors and then enables the Rx part of the NIC.
  3542. * Return value:
  3543. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3544. * file on failure.
  3545. */
  3546. static int s2io_open(struct net_device *dev)
  3547. {
  3548. struct s2io_nic *sp = netdev_priv(dev);
  3549. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  3550. int err = 0;
  3551. /*
  3552. * Make sure you have link off by default every time
  3553. * Nic is initialized
  3554. */
  3555. netif_carrier_off(dev);
  3556. sp->last_link_state = 0;
  3557. /* Initialize H/W and enable interrupts */
  3558. err = s2io_card_up(sp);
  3559. if (err) {
  3560. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  3561. dev->name);
  3562. goto hw_init_failed;
  3563. }
  3564. if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
  3565. DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
  3566. s2io_card_down(sp);
  3567. err = -ENODEV;
  3568. goto hw_init_failed;
  3569. }
  3570. s2io_start_all_tx_queue(sp);
  3571. return 0;
  3572. hw_init_failed:
  3573. if (sp->config.intr_type == MSI_X) {
  3574. if (sp->entries) {
  3575. kfree(sp->entries);
  3576. swstats->mem_freed += sp->num_entries *
  3577. sizeof(struct msix_entry);
  3578. }
  3579. if (sp->s2io_entries) {
  3580. kfree(sp->s2io_entries);
  3581. swstats->mem_freed += sp->num_entries *
  3582. sizeof(struct s2io_msix_entry);
  3583. }
  3584. }
  3585. return err;
  3586. }
  3587. /**
  3588. * s2io_close -close entry point of the driver
  3589. * @dev : device pointer.
  3590. * Description:
  3591. * This is the stop entry point of the driver. It needs to undo exactly
  3592. * whatever was done by the open entry point,thus it's usually referred to
  3593. * as the close function.Among other things this function mainly stops the
  3594. * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
  3595. * Return value:
  3596. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3597. * file on failure.
  3598. */
  3599. static int s2io_close(struct net_device *dev)
  3600. {
  3601. struct s2io_nic *sp = netdev_priv(dev);
  3602. struct config_param *config = &sp->config;
  3603. u64 tmp64;
  3604. int offset;
  3605. /* Return if the device is already closed *
  3606. * Can happen when s2io_card_up failed in change_mtu *
  3607. */
  3608. if (!is_s2io_card_up(sp))
  3609. return 0;
  3610. s2io_stop_all_tx_queue(sp);
  3611. /* delete all populated mac entries */
  3612. for (offset = 1; offset < config->max_mc_addr; offset++) {
  3613. tmp64 = do_s2io_read_unicast_mc(sp, offset);
  3614. if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
  3615. do_s2io_delete_unicast_mc(sp, tmp64);
  3616. }
  3617. s2io_card_down(sp);
  3618. return 0;
  3619. }
  3620. /**
  3621. * s2io_xmit - Tx entry point of te driver
  3622. * @skb : the socket buffer containing the Tx data.
  3623. * @dev : device pointer.
  3624. * Description :
  3625. * This function is the Tx entry point of the driver. S2IO NIC supports
  3626. * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
  3627. * NOTE: when device cant queue the pkt,just the trans_start variable will
  3628. * not be upadted.
  3629. * Return value:
  3630. * 0 on success & 1 on failure.
  3631. */
  3632. static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev)
  3633. {
  3634. struct s2io_nic *sp = netdev_priv(dev);
  3635. u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
  3636. register u64 val64;
  3637. struct TxD *txdp;
  3638. struct TxFIFO_element __iomem *tx_fifo;
  3639. unsigned long flags = 0;
  3640. u16 vlan_tag = 0;
  3641. struct fifo_info *fifo = NULL;
  3642. int do_spin_lock = 1;
  3643. int offload_type;
  3644. int enable_per_list_interrupt = 0;
  3645. struct config_param *config = &sp->config;
  3646. struct mac_info *mac_control = &sp->mac_control;
  3647. struct stat_block *stats = mac_control->stats_info;
  3648. struct swStat *swstats = &stats->sw_stat;
  3649. DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
  3650. if (unlikely(skb->len <= 0)) {
  3651. DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name);
  3652. dev_kfree_skb_any(skb);
  3653. return NETDEV_TX_OK;
  3654. }
  3655. if (!is_s2io_card_up(sp)) {
  3656. DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
  3657. dev->name);
  3658. dev_kfree_skb(skb);
  3659. return NETDEV_TX_OK;
  3660. }
  3661. queue = 0;
  3662. if (sp->vlgrp && vlan_tx_tag_present(skb))
  3663. vlan_tag = vlan_tx_tag_get(skb);
  3664. if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
  3665. if (skb->protocol == htons(ETH_P_IP)) {
  3666. struct iphdr *ip;
  3667. struct tcphdr *th;
  3668. ip = ip_hdr(skb);
  3669. if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
  3670. th = (struct tcphdr *)(((unsigned char *)ip) +
  3671. ip->ihl*4);
  3672. if (ip->protocol == IPPROTO_TCP) {
  3673. queue_len = sp->total_tcp_fifos;
  3674. queue = (ntohs(th->source) +
  3675. ntohs(th->dest)) &
  3676. sp->fifo_selector[queue_len - 1];
  3677. if (queue >= queue_len)
  3678. queue = queue_len - 1;
  3679. } else if (ip->protocol == IPPROTO_UDP) {
  3680. queue_len = sp->total_udp_fifos;
  3681. queue = (ntohs(th->source) +
  3682. ntohs(th->dest)) &
  3683. sp->fifo_selector[queue_len - 1];
  3684. if (queue >= queue_len)
  3685. queue = queue_len - 1;
  3686. queue += sp->udp_fifo_idx;
  3687. if (skb->len > 1024)
  3688. enable_per_list_interrupt = 1;
  3689. do_spin_lock = 0;
  3690. }
  3691. }
  3692. }
  3693. } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
  3694. /* get fifo number based on skb->priority value */
  3695. queue = config->fifo_mapping
  3696. [skb->priority & (MAX_TX_FIFOS - 1)];
  3697. fifo = &mac_control->fifos[queue];
  3698. if (do_spin_lock)
  3699. spin_lock_irqsave(&fifo->tx_lock, flags);
  3700. else {
  3701. if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
  3702. return NETDEV_TX_LOCKED;
  3703. }
  3704. if (sp->config.multiq) {
  3705. if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
  3706. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3707. return NETDEV_TX_BUSY;
  3708. }
  3709. } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
  3710. if (netif_queue_stopped(dev)) {
  3711. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3712. return NETDEV_TX_BUSY;
  3713. }
  3714. }
  3715. put_off = (u16)fifo->tx_curr_put_info.offset;
  3716. get_off = (u16)fifo->tx_curr_get_info.offset;
  3717. txdp = (struct TxD *)fifo->list_info[put_off].list_virt_addr;
  3718. queue_len = fifo->tx_curr_put_info.fifo_len + 1;
  3719. /* Avoid "put" pointer going beyond "get" pointer */
  3720. if (txdp->Host_Control ||
  3721. ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3722. DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
  3723. s2io_stop_tx_queue(sp, fifo->fifo_no);
  3724. dev_kfree_skb(skb);
  3725. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3726. return NETDEV_TX_OK;
  3727. }
  3728. offload_type = s2io_offload_type(skb);
  3729. if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
  3730. txdp->Control_1 |= TXD_TCP_LSO_EN;
  3731. txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
  3732. }
  3733. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  3734. txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN |
  3735. TXD_TX_CKO_TCP_EN |
  3736. TXD_TX_CKO_UDP_EN);
  3737. }
  3738. txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
  3739. txdp->Control_1 |= TXD_LIST_OWN_XENA;
  3740. txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
  3741. if (enable_per_list_interrupt)
  3742. if (put_off & (queue_len >> 5))
  3743. txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
  3744. if (vlan_tag) {
  3745. txdp->Control_2 |= TXD_VLAN_ENABLE;
  3746. txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
  3747. }
  3748. frg_len = skb_headlen(skb);
  3749. if (offload_type == SKB_GSO_UDP) {
  3750. int ufo_size;
  3751. ufo_size = s2io_udp_mss(skb);
  3752. ufo_size &= ~7;
  3753. txdp->Control_1 |= TXD_UFO_EN;
  3754. txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
  3755. txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
  3756. #ifdef __BIG_ENDIAN
  3757. /* both variants do cpu_to_be64(be32_to_cpu(...)) */
  3758. fifo->ufo_in_band_v[put_off] =
  3759. (__force u64)skb_shinfo(skb)->ip6_frag_id;
  3760. #else
  3761. fifo->ufo_in_band_v[put_off] =
  3762. (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
  3763. #endif
  3764. txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
  3765. txdp->Buffer_Pointer = pci_map_single(sp->pdev,
  3766. fifo->ufo_in_band_v,
  3767. sizeof(u64),
  3768. PCI_DMA_TODEVICE);
  3769. if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
  3770. goto pci_map_failed;
  3771. txdp++;
  3772. }
  3773. txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data,
  3774. frg_len, PCI_DMA_TODEVICE);
  3775. if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
  3776. goto pci_map_failed;
  3777. txdp->Host_Control = (unsigned long)skb;
  3778. txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
  3779. if (offload_type == SKB_GSO_UDP)
  3780. txdp->Control_1 |= TXD_UFO_EN;
  3781. frg_cnt = skb_shinfo(skb)->nr_frags;
  3782. /* For fragmented SKB. */
  3783. for (i = 0; i < frg_cnt; i++) {
  3784. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  3785. /* A '0' length fragment will be ignored */
  3786. if (!frag->size)
  3787. continue;
  3788. txdp++;
  3789. txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page,
  3790. frag->page_offset,
  3791. frag->size,
  3792. PCI_DMA_TODEVICE);
  3793. txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
  3794. if (offload_type == SKB_GSO_UDP)
  3795. txdp->Control_1 |= TXD_UFO_EN;
  3796. }
  3797. txdp->Control_1 |= TXD_GATHER_CODE_LAST;
  3798. if (offload_type == SKB_GSO_UDP)
  3799. frg_cnt++; /* as Txd0 was used for inband header */
  3800. tx_fifo = mac_control->tx_FIFO_start[queue];
  3801. val64 = fifo->list_info[put_off].list_phy_addr;
  3802. writeq(val64, &tx_fifo->TxDL_Pointer);
  3803. val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
  3804. TX_FIFO_LAST_LIST);
  3805. if (offload_type)
  3806. val64 |= TX_FIFO_SPECIAL_FUNC;
  3807. writeq(val64, &tx_fifo->List_Control);
  3808. mmiowb();
  3809. put_off++;
  3810. if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
  3811. put_off = 0;
  3812. fifo->tx_curr_put_info.offset = put_off;
  3813. /* Avoid "put" pointer going beyond "get" pointer */
  3814. if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3815. swstats->fifo_full_cnt++;
  3816. DBG_PRINT(TX_DBG,
  3817. "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
  3818. put_off, get_off);
  3819. s2io_stop_tx_queue(sp, fifo->fifo_no);
  3820. }
  3821. swstats->mem_allocated += skb->truesize;
  3822. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3823. if (sp->config.intr_type == MSI_X)
  3824. tx_intr_handler(fifo);
  3825. return NETDEV_TX_OK;
  3826. pci_map_failed:
  3827. swstats->pci_map_fail_cnt++;
  3828. s2io_stop_tx_queue(sp, fifo->fifo_no);
  3829. swstats->mem_freed += skb->truesize;
  3830. dev_kfree_skb(skb);
  3831. spin_unlock_irqrestore(&fifo->tx_lock, flags);
  3832. return NETDEV_TX_OK;
  3833. }
  3834. static void
  3835. s2io_alarm_handle(unsigned long data)
  3836. {
  3837. struct s2io_nic *sp = (struct s2io_nic *)data;
  3838. struct net_device *dev = sp->dev;
  3839. s2io_handle_errors(dev);
  3840. mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
  3841. }
  3842. static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
  3843. {
  3844. struct ring_info *ring = (struct ring_info *)dev_id;
  3845. struct s2io_nic *sp = ring->nic;
  3846. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3847. if (unlikely(!is_s2io_card_up(sp)))
  3848. return IRQ_HANDLED;
  3849. if (sp->config.napi) {
  3850. u8 __iomem *addr = NULL;
  3851. u8 val8 = 0;
  3852. addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
  3853. addr += (7 - ring->ring_no);
  3854. val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
  3855. writeb(val8, addr);
  3856. val8 = readb(addr);
  3857. napi_schedule(&ring->napi);
  3858. } else {
  3859. rx_intr_handler(ring, 0);
  3860. s2io_chk_rx_buffers(sp, ring);
  3861. }
  3862. return IRQ_HANDLED;
  3863. }
  3864. static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
  3865. {
  3866. int i;
  3867. struct fifo_info *fifos = (struct fifo_info *)dev_id;
  3868. struct s2io_nic *sp = fifos->nic;
  3869. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3870. struct config_param *config = &sp->config;
  3871. u64 reason;
  3872. if (unlikely(!is_s2io_card_up(sp)))
  3873. return IRQ_NONE;
  3874. reason = readq(&bar0->general_int_status);
  3875. if (unlikely(reason == S2IO_MINUS_ONE))
  3876. /* Nothing much can be done. Get out */
  3877. return IRQ_HANDLED;
  3878. if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
  3879. writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
  3880. if (reason & GEN_INTR_TXPIC)
  3881. s2io_txpic_intr_handle(sp);
  3882. if (reason & GEN_INTR_TXTRAFFIC)
  3883. writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
  3884. for (i = 0; i < config->tx_fifo_num; i++)
  3885. tx_intr_handler(&fifos[i]);
  3886. writeq(sp->general_int_mask, &bar0->general_int_mask);
  3887. readl(&bar0->general_int_status);
  3888. return IRQ_HANDLED;
  3889. }
  3890. /* The interrupt was not raised by us */
  3891. return IRQ_NONE;
  3892. }
  3893. static void s2io_txpic_intr_handle(struct s2io_nic *sp)
  3894. {
  3895. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3896. u64 val64;
  3897. val64 = readq(&bar0->pic_int_status);
  3898. if (val64 & PIC_INT_GPIO) {
  3899. val64 = readq(&bar0->gpio_int_reg);
  3900. if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
  3901. (val64 & GPIO_INT_REG_LINK_UP)) {
  3902. /*
  3903. * This is unstable state so clear both up/down
  3904. * interrupt and adapter to re-evaluate the link state.
  3905. */
  3906. val64 |= GPIO_INT_REG_LINK_DOWN;
  3907. val64 |= GPIO_INT_REG_LINK_UP;
  3908. writeq(val64, &bar0->gpio_int_reg);
  3909. val64 = readq(&bar0->gpio_int_mask);
  3910. val64 &= ~(GPIO_INT_MASK_LINK_UP |
  3911. GPIO_INT_MASK_LINK_DOWN);
  3912. writeq(val64, &bar0->gpio_int_mask);
  3913. } else if (val64 & GPIO_INT_REG_LINK_UP) {
  3914. val64 = readq(&bar0->adapter_status);
  3915. /* Enable Adapter */
  3916. val64 = readq(&bar0->adapter_control);
  3917. val64 |= ADAPTER_CNTL_EN;
  3918. writeq(val64, &bar0->adapter_control);
  3919. val64 |= ADAPTER_LED_ON;
  3920. writeq(val64, &bar0->adapter_control);
  3921. if (!sp->device_enabled_once)
  3922. sp->device_enabled_once = 1;
  3923. s2io_link(sp, LINK_UP);
  3924. /*
  3925. * unmask link down interrupt and mask link-up
  3926. * intr
  3927. */
  3928. val64 = readq(&bar0->gpio_int_mask);
  3929. val64 &= ~GPIO_INT_MASK_LINK_DOWN;
  3930. val64 |= GPIO_INT_MASK_LINK_UP;
  3931. writeq(val64, &bar0->gpio_int_mask);
  3932. } else if (val64 & GPIO_INT_REG_LINK_DOWN) {
  3933. val64 = readq(&bar0->adapter_status);
  3934. s2io_link(sp, LINK_DOWN);
  3935. /* Link is down so unmaks link up interrupt */
  3936. val64 = readq(&bar0->gpio_int_mask);
  3937. val64 &= ~GPIO_INT_MASK_LINK_UP;
  3938. val64 |= GPIO_INT_MASK_LINK_DOWN;
  3939. writeq(val64, &bar0->gpio_int_mask);
  3940. /* turn off LED */
  3941. val64 = readq(&bar0->adapter_control);
  3942. val64 = val64 & (~ADAPTER_LED_ON);
  3943. writeq(val64, &bar0->adapter_control);
  3944. }
  3945. }
  3946. val64 = readq(&bar0->gpio_int_mask);
  3947. }
  3948. /**
  3949. * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
  3950. * @value: alarm bits
  3951. * @addr: address value
  3952. * @cnt: counter variable
  3953. * Description: Check for alarm and increment the counter
  3954. * Return Value:
  3955. * 1 - if alarm bit set
  3956. * 0 - if alarm bit is not set
  3957. */
  3958. static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr,
  3959. unsigned long long *cnt)
  3960. {
  3961. u64 val64;
  3962. val64 = readq(addr);
  3963. if (val64 & value) {
  3964. writeq(val64, addr);
  3965. (*cnt)++;
  3966. return 1;
  3967. }
  3968. return 0;
  3969. }
  3970. /**
  3971. * s2io_handle_errors - Xframe error indication handler
  3972. * @nic: device private variable
  3973. * Description: Handle alarms such as loss of link, single or
  3974. * double ECC errors, critical and serious errors.
  3975. * Return Value:
  3976. * NONE
  3977. */
  3978. static void s2io_handle_errors(void *dev_id)
  3979. {
  3980. struct net_device *dev = (struct net_device *)dev_id;
  3981. struct s2io_nic *sp = netdev_priv(dev);
  3982. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3983. u64 temp64 = 0, val64 = 0;
  3984. int i = 0;
  3985. struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
  3986. struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
  3987. if (!is_s2io_card_up(sp))
  3988. return;
  3989. if (pci_channel_offline(sp->pdev))
  3990. return;
  3991. memset(&sw_stat->ring_full_cnt, 0,
  3992. sizeof(sw_stat->ring_full_cnt));
  3993. /* Handling the XPAK counters update */
  3994. if (stats->xpak_timer_count < 72000) {
  3995. /* waiting for an hour */
  3996. stats->xpak_timer_count++;
  3997. } else {
  3998. s2io_updt_xpak_counter(dev);
  3999. /* reset the count to zero */
  4000. stats->xpak_timer_count = 0;
  4001. }
  4002. /* Handling link status change error Intr */
  4003. if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
  4004. val64 = readq(&bar0->mac_rmac_err_reg);
  4005. writeq(val64, &bar0->mac_rmac_err_reg);
  4006. if (val64 & RMAC_LINK_STATE_CHANGE_INT)
  4007. schedule_work(&sp->set_link_task);
  4008. }
  4009. /* In case of a serious error, the device will be Reset. */
  4010. if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
  4011. &sw_stat->serious_err_cnt))
  4012. goto reset;
  4013. /* Check for data parity error */
  4014. if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
  4015. &sw_stat->parity_err_cnt))
  4016. goto reset;
  4017. /* Check for ring full counter */
  4018. if (sp->device_type == XFRAME_II_DEVICE) {
  4019. val64 = readq(&bar0->ring_bump_counter1);
  4020. for (i = 0; i < 4; i++) {
  4021. temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
  4022. temp64 >>= 64 - ((i+1)*16);
  4023. sw_stat->ring_full_cnt[i] += temp64;
  4024. }
  4025. val64 = readq(&bar0->ring_bump_counter2);
  4026. for (i = 0; i < 4; i++) {
  4027. temp64 = (val64 & vBIT(0xFFFF, (i*16), 16));
  4028. temp64 >>= 64 - ((i+1)*16);
  4029. sw_stat->ring_full_cnt[i+4] += temp64;
  4030. }
  4031. }
  4032. val64 = readq(&bar0->txdma_int_status);
  4033. /*check for pfc_err*/
  4034. if (val64 & TXDMA_PFC_INT) {
  4035. if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
  4036. PFC_MISC_0_ERR | PFC_MISC_1_ERR |
  4037. PFC_PCIX_ERR,
  4038. &bar0->pfc_err_reg,
  4039. &sw_stat->pfc_err_cnt))
  4040. goto reset;
  4041. do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR,
  4042. &bar0->pfc_err_reg,
  4043. &sw_stat->pfc_err_cnt);
  4044. }
  4045. /*check for tda_err*/
  4046. if (val64 & TXDMA_TDA_INT) {
  4047. if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR |
  4048. TDA_SM0_ERR_ALARM |
  4049. TDA_SM1_ERR_ALARM,
  4050. &bar0->tda_err_reg,
  4051. &sw_stat->tda_err_cnt))
  4052. goto reset;
  4053. do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
  4054. &bar0->tda_err_reg,
  4055. &sw_stat->tda_err_cnt);
  4056. }
  4057. /*check for pcc_err*/
  4058. if (val64 & TXDMA_PCC_INT) {
  4059. if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
  4060. PCC_N_SERR | PCC_6_COF_OV_ERR |
  4061. PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
  4062. PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR |
  4063. PCC_TXB_ECC_DB_ERR,
  4064. &bar0->pcc_err_reg,
  4065. &sw_stat->pcc_err_cnt))
  4066. goto reset;
  4067. do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
  4068. &bar0->pcc_err_reg,
  4069. &sw_stat->pcc_err_cnt);
  4070. }
  4071. /*check for tti_err*/
  4072. if (val64 & TXDMA_TTI_INT) {
  4073. if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM,
  4074. &bar0->tti_err_reg,
  4075. &sw_stat->tti_err_cnt))
  4076. goto reset;
  4077. do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
  4078. &bar0->tti_err_reg,
  4079. &sw_stat->tti_err_cnt);
  4080. }
  4081. /*check for lso_err*/
  4082. if (val64 & TXDMA_LSO_INT) {
  4083. if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT |
  4084. LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
  4085. &bar0->lso_err_reg,
  4086. &sw_stat->lso_err_cnt))
  4087. goto reset;
  4088. do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
  4089. &bar0->lso_err_reg,
  4090. &sw_stat->lso_err_cnt);
  4091. }
  4092. /*check for tpa_err*/
  4093. if (val64 & TXDMA_TPA_INT) {
  4094. if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM,
  4095. &bar0->tpa_err_reg,
  4096. &sw_stat->tpa_err_cnt))
  4097. goto reset;
  4098. do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP,
  4099. &bar0->tpa_err_reg,
  4100. &sw_stat->tpa_err_cnt);
  4101. }
  4102. /*check for sm_err*/
  4103. if (val64 & TXDMA_SM_INT) {
  4104. if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM,
  4105. &bar0->sm_err_reg,
  4106. &sw_stat->sm_err_cnt))
  4107. goto reset;
  4108. }
  4109. val64 = readq(&bar0->mac_int_status);
  4110. if (val64 & MAC_INT_STATUS_TMAC_INT) {
  4111. if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
  4112. &bar0->mac_tmac_err_reg,
  4113. &sw_stat->mac_tmac_err_cnt))
  4114. goto reset;
  4115. do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
  4116. TMAC_DESC_ECC_SG_ERR |
  4117. TMAC_DESC_ECC_DB_ERR,
  4118. &bar0->mac_tmac_err_reg,
  4119. &sw_stat->mac_tmac_err_cnt);
  4120. }
  4121. val64 = readq(&bar0->xgxs_int_status);
  4122. if (val64 & XGXS_INT_STATUS_TXGXS) {
  4123. if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
  4124. &bar0->xgxs_txgxs_err_reg,
  4125. &sw_stat->xgxs_txgxs_err_cnt))
  4126. goto reset;
  4127. do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
  4128. &bar0->xgxs_txgxs_err_reg,
  4129. &sw_stat->xgxs_txgxs_err_cnt);
  4130. }
  4131. val64 = readq(&bar0->rxdma_int_status);
  4132. if (val64 & RXDMA_INT_RC_INT_M) {
  4133. if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR |
  4134. RC_FTC_ECC_DB_ERR |
  4135. RC_PRCn_SM_ERR_ALARM |
  4136. RC_FTC_SM_ERR_ALARM,
  4137. &bar0->rc_err_reg,
  4138. &sw_stat->rc_err_cnt))
  4139. goto reset;
  4140. do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR |
  4141. RC_FTC_ECC_SG_ERR |
  4142. RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
  4143. &sw_stat->rc_err_cnt);
  4144. if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn |
  4145. PRC_PCI_AB_WR_Rn |
  4146. PRC_PCI_AB_F_WR_Rn,
  4147. &bar0->prc_pcix_err_reg,
  4148. &sw_stat->prc_pcix_err_cnt))
  4149. goto reset;
  4150. do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn |
  4151. PRC_PCI_DP_WR_Rn |
  4152. PRC_PCI_DP_F_WR_Rn,
  4153. &bar0->prc_pcix_err_reg,
  4154. &sw_stat->prc_pcix_err_cnt);
  4155. }
  4156. if (val64 & RXDMA_INT_RPA_INT_M) {
  4157. if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
  4158. &bar0->rpa_err_reg,
  4159. &sw_stat->rpa_err_cnt))
  4160. goto reset;
  4161. do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
  4162. &bar0->rpa_err_reg,
  4163. &sw_stat->rpa_err_cnt);
  4164. }
  4165. if (val64 & RXDMA_INT_RDA_INT_M) {
  4166. if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR |
  4167. RDA_FRM_ECC_DB_N_AERR |
  4168. RDA_SM1_ERR_ALARM |
  4169. RDA_SM0_ERR_ALARM |
  4170. RDA_RXD_ECC_DB_SERR,
  4171. &bar0->rda_err_reg,
  4172. &sw_stat->rda_err_cnt))
  4173. goto reset;
  4174. do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR |
  4175. RDA_FRM_ECC_SG_ERR |
  4176. RDA_MISC_ERR |
  4177. RDA_PCIX_ERR,
  4178. &bar0->rda_err_reg,
  4179. &sw_stat->rda_err_cnt);
  4180. }
  4181. if (val64 & RXDMA_INT_RTI_INT_M) {
  4182. if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM,
  4183. &bar0->rti_err_reg,
  4184. &sw_stat->rti_err_cnt))
  4185. goto reset;
  4186. do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
  4187. &bar0->rti_err_reg,
  4188. &sw_stat->rti_err_cnt);
  4189. }
  4190. val64 = readq(&bar0->mac_int_status);
  4191. if (val64 & MAC_INT_STATUS_RMAC_INT) {
  4192. if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
  4193. &bar0->mac_rmac_err_reg,
  4194. &sw_stat->mac_rmac_err_cnt))
  4195. goto reset;
  4196. do_s2io_chk_alarm_bit(RMAC_UNUSED_INT |
  4197. RMAC_SINGLE_ECC_ERR |
  4198. RMAC_DOUBLE_ECC_ERR,
  4199. &bar0->mac_rmac_err_reg,
  4200. &sw_stat->mac_rmac_err_cnt);
  4201. }
  4202. val64 = readq(&bar0->xgxs_int_status);
  4203. if (val64 & XGXS_INT_STATUS_RXGXS) {
  4204. if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
  4205. &bar0->xgxs_rxgxs_err_reg,
  4206. &sw_stat->xgxs_rxgxs_err_cnt))
  4207. goto reset;
  4208. }
  4209. val64 = readq(&bar0->mc_int_status);
  4210. if (val64 & MC_INT_STATUS_MC_INT) {
  4211. if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR,
  4212. &bar0->mc_err_reg,
  4213. &sw_stat->mc_err_cnt))
  4214. goto reset;
  4215. /* Handling Ecc errors */
  4216. if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
  4217. writeq(val64, &bar0->mc_err_reg);
  4218. if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
  4219. sw_stat->double_ecc_errs++;
  4220. if (sp->device_type != XFRAME_II_DEVICE) {
  4221. /*
  4222. * Reset XframeI only if critical error
  4223. */
  4224. if (val64 &
  4225. (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
  4226. MC_ERR_REG_MIRI_ECC_DB_ERR_1))
  4227. goto reset;
  4228. }
  4229. } else
  4230. sw_stat->single_ecc_errs++;
  4231. }
  4232. }
  4233. return;
  4234. reset:
  4235. s2io_stop_all_tx_queue(sp);
  4236. schedule_work(&sp->rst_timer_task);
  4237. sw_stat->soft_reset_cnt++;
  4238. }
  4239. /**
  4240. * s2io_isr - ISR handler of the device .
  4241. * @irq: the irq of the device.
  4242. * @dev_id: a void pointer to the dev structure of the NIC.
  4243. * Description: This function is the ISR handler of the device. It
  4244. * identifies the reason for the interrupt and calls the relevant
  4245. * service routines. As a contongency measure, this ISR allocates the
  4246. * recv buffers, if their numbers are below the panic value which is
  4247. * presently set to 25% of the original number of rcv buffers allocated.
  4248. * Return value:
  4249. * IRQ_HANDLED: will be returned if IRQ was handled by this routine
  4250. * IRQ_NONE: will be returned if interrupt is not from our device
  4251. */
  4252. static irqreturn_t s2io_isr(int irq, void *dev_id)
  4253. {
  4254. struct net_device *dev = (struct net_device *)dev_id;
  4255. struct s2io_nic *sp = netdev_priv(dev);
  4256. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4257. int i;
  4258. u64 reason = 0;
  4259. struct mac_info *mac_control;
  4260. struct config_param *config;
  4261. /* Pretend we handled any irq's from a disconnected card */
  4262. if (pci_channel_offline(sp->pdev))
  4263. return IRQ_NONE;
  4264. if (!is_s2io_card_up(sp))
  4265. return IRQ_NONE;
  4266. config = &sp->config;
  4267. mac_control = &sp->mac_control;
  4268. /*
  4269. * Identify the cause for interrupt and call the appropriate
  4270. * interrupt handler. Causes for the interrupt could be;
  4271. * 1. Rx of packet.
  4272. * 2. Tx complete.
  4273. * 3. Link down.
  4274. */
  4275. reason = readq(&bar0->general_int_status);
  4276. if (unlikely(reason == S2IO_MINUS_ONE))
  4277. return IRQ_HANDLED; /* Nothing much can be done. Get out */
  4278. if (reason &
  4279. (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) {
  4280. writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
  4281. if (config->napi) {
  4282. if (reason & GEN_INTR_RXTRAFFIC) {
  4283. napi_schedule(&sp->napi);
  4284. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
  4285. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  4286. readl(&bar0->rx_traffic_int);
  4287. }
  4288. } else {
  4289. /*
  4290. * rx_traffic_int reg is an R1 register, writing all 1's
  4291. * will ensure that the actual interrupt causing bit
  4292. * get's cleared and hence a read can be avoided.
  4293. */
  4294. if (reason & GEN_INTR_RXTRAFFIC)
  4295. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  4296. for (i = 0; i < config->rx_ring_num; i++) {
  4297. struct ring_info *ring = &mac_control->rings[i];
  4298. rx_intr_handler(ring, 0);
  4299. }
  4300. }
  4301. /*
  4302. * tx_traffic_int reg is an R1 register, writing all 1's
  4303. * will ensure that the actual interrupt causing bit get's
  4304. * cleared and hence a read can be avoided.
  4305. */
  4306. if (reason & GEN_INTR_TXTRAFFIC)
  4307. writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
  4308. for (i = 0; i < config->tx_fifo_num; i++)
  4309. tx_intr_handler(&mac_control->fifos[i]);
  4310. if (reason & GEN_INTR_TXPIC)
  4311. s2io_txpic_intr_handle(sp);
  4312. /*
  4313. * Reallocate the buffers from the interrupt handler itself.
  4314. */
  4315. if (!config->napi) {
  4316. for (i = 0; i < config->rx_ring_num; i++) {
  4317. struct ring_info *ring = &mac_control->rings[i];
  4318. s2io_chk_rx_buffers(sp, ring);
  4319. }
  4320. }
  4321. writeq(sp->general_int_mask, &bar0->general_int_mask);
  4322. readl(&bar0->general_int_status);
  4323. return IRQ_HANDLED;
  4324. } else if (!reason) {
  4325. /* The interrupt was not raised by us */
  4326. return IRQ_NONE;
  4327. }
  4328. return IRQ_HANDLED;
  4329. }
  4330. /**
  4331. * s2io_updt_stats -
  4332. */
  4333. static void s2io_updt_stats(struct s2io_nic *sp)
  4334. {
  4335. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4336. u64 val64;
  4337. int cnt = 0;
  4338. if (is_s2io_card_up(sp)) {
  4339. /* Apprx 30us on a 133 MHz bus */
  4340. val64 = SET_UPDT_CLICKS(10) |
  4341. STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
  4342. writeq(val64, &bar0->stat_cfg);
  4343. do {
  4344. udelay(100);
  4345. val64 = readq(&bar0->stat_cfg);
  4346. if (!(val64 & s2BIT(0)))
  4347. break;
  4348. cnt++;
  4349. if (cnt == 5)
  4350. break; /* Updt failed */
  4351. } while (1);
  4352. }
  4353. }
  4354. /**
  4355. * s2io_get_stats - Updates the device statistics structure.
  4356. * @dev : pointer to the device structure.
  4357. * Description:
  4358. * This function updates the device statistics structure in the s2io_nic
  4359. * structure and returns a pointer to the same.
  4360. * Return value:
  4361. * pointer to the updated net_device_stats structure.
  4362. */
  4363. static struct net_device_stats *s2io_get_stats(struct net_device *dev)
  4364. {
  4365. struct s2io_nic *sp = netdev_priv(dev);
  4366. struct config_param *config = &sp->config;
  4367. struct mac_info *mac_control = &sp->mac_control;
  4368. struct stat_block *stats = mac_control->stats_info;
  4369. int i;
  4370. /* Configure Stats for immediate updt */
  4371. s2io_updt_stats(sp);
  4372. /* Using sp->stats as a staging area, because reset (due to mtu
  4373. change, for example) will clear some hardware counters */
  4374. dev->stats.tx_packets += le32_to_cpu(stats->tmac_frms) -
  4375. sp->stats.tx_packets;
  4376. sp->stats.tx_packets = le32_to_cpu(stats->tmac_frms);
  4377. dev->stats.tx_errors += le32_to_cpu(stats->tmac_any_err_frms) -
  4378. sp->stats.tx_errors;
  4379. sp->stats.tx_errors = le32_to_cpu(stats->tmac_any_err_frms);
  4380. dev->stats.rx_errors += le64_to_cpu(stats->rmac_drop_frms) -
  4381. sp->stats.rx_errors;
  4382. sp->stats.rx_errors = le64_to_cpu(stats->rmac_drop_frms);
  4383. dev->stats.multicast = le32_to_cpu(stats->rmac_vld_mcst_frms) -
  4384. sp->stats.multicast;
  4385. sp->stats.multicast = le32_to_cpu(stats->rmac_vld_mcst_frms);
  4386. dev->stats.rx_length_errors = le64_to_cpu(stats->rmac_long_frms) -
  4387. sp->stats.rx_length_errors;
  4388. sp->stats.rx_length_errors = le64_to_cpu(stats->rmac_long_frms);
  4389. /* collect per-ring rx_packets and rx_bytes */
  4390. dev->stats.rx_packets = dev->stats.rx_bytes = 0;
  4391. for (i = 0; i < config->rx_ring_num; i++) {
  4392. struct ring_info *ring = &mac_control->rings[i];
  4393. dev->stats.rx_packets += ring->rx_packets;
  4394. dev->stats.rx_bytes += ring->rx_bytes;
  4395. }
  4396. return &dev->stats;
  4397. }
  4398. /**
  4399. * s2io_set_multicast - entry point for multicast address enable/disable.
  4400. * @dev : pointer to the device structure
  4401. * Description:
  4402. * This function is a driver entry point which gets called by the kernel
  4403. * whenever multicast addresses must be enabled/disabled. This also gets
  4404. * called to set/reset promiscuous mode. Depending on the deivce flag, we
  4405. * determine, if multicast address must be enabled or if promiscuous mode
  4406. * is to be disabled etc.
  4407. * Return value:
  4408. * void.
  4409. */
  4410. static void s2io_set_multicast(struct net_device *dev)
  4411. {
  4412. int i, j, prev_cnt;
  4413. struct netdev_hw_addr *ha;
  4414. struct s2io_nic *sp = netdev_priv(dev);
  4415. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4416. u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
  4417. 0xfeffffffffffULL;
  4418. u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
  4419. void __iomem *add;
  4420. struct config_param *config = &sp->config;
  4421. if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
  4422. /* Enable all Multicast addresses */
  4423. writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
  4424. &bar0->rmac_addr_data0_mem);
  4425. writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
  4426. &bar0->rmac_addr_data1_mem);
  4427. val64 = RMAC_ADDR_CMD_MEM_WE |
  4428. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4429. RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
  4430. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4431. /* Wait till command completes */
  4432. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4433. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4434. S2IO_BIT_RESET);
  4435. sp->m_cast_flg = 1;
  4436. sp->all_multi_pos = config->max_mc_addr - 1;
  4437. } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
  4438. /* Disable all Multicast addresses */
  4439. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4440. &bar0->rmac_addr_data0_mem);
  4441. writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
  4442. &bar0->rmac_addr_data1_mem);
  4443. val64 = RMAC_ADDR_CMD_MEM_WE |
  4444. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4445. RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
  4446. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4447. /* Wait till command completes */
  4448. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4449. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4450. S2IO_BIT_RESET);
  4451. sp->m_cast_flg = 0;
  4452. sp->all_multi_pos = 0;
  4453. }
  4454. if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
  4455. /* Put the NIC into promiscuous mode */
  4456. add = &bar0->mac_cfg;
  4457. val64 = readq(&bar0->mac_cfg);
  4458. val64 |= MAC_CFG_RMAC_PROM_ENABLE;
  4459. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4460. writel((u32)val64, add);
  4461. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4462. writel((u32) (val64 >> 32), (add + 4));
  4463. if (vlan_tag_strip != 1) {
  4464. val64 = readq(&bar0->rx_pa_cfg);
  4465. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  4466. writeq(val64, &bar0->rx_pa_cfg);
  4467. sp->vlan_strip_flag = 0;
  4468. }
  4469. val64 = readq(&bar0->mac_cfg);
  4470. sp->promisc_flg = 1;
  4471. DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
  4472. dev->name);
  4473. } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
  4474. /* Remove the NIC from promiscuous mode */
  4475. add = &bar0->mac_cfg;
  4476. val64 = readq(&bar0->mac_cfg);
  4477. val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
  4478. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4479. writel((u32)val64, add);
  4480. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4481. writel((u32) (val64 >> 32), (add + 4));
  4482. if (vlan_tag_strip != 0) {
  4483. val64 = readq(&bar0->rx_pa_cfg);
  4484. val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
  4485. writeq(val64, &bar0->rx_pa_cfg);
  4486. sp->vlan_strip_flag = 1;
  4487. }
  4488. val64 = readq(&bar0->mac_cfg);
  4489. sp->promisc_flg = 0;
  4490. DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name);
  4491. }
  4492. /* Update individual M_CAST address list */
  4493. if ((!sp->m_cast_flg) && netdev_mc_count(dev)) {
  4494. if (netdev_mc_count(dev) >
  4495. (config->max_mc_addr - config->max_mac_addr)) {
  4496. DBG_PRINT(ERR_DBG,
  4497. "%s: No more Rx filters can be added - "
  4498. "please enable ALL_MULTI instead\n",
  4499. dev->name);
  4500. return;
  4501. }
  4502. prev_cnt = sp->mc_addr_count;
  4503. sp->mc_addr_count = netdev_mc_count(dev);
  4504. /* Clear out the previous list of Mc in the H/W. */
  4505. for (i = 0; i < prev_cnt; i++) {
  4506. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4507. &bar0->rmac_addr_data0_mem);
  4508. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4509. &bar0->rmac_addr_data1_mem);
  4510. val64 = RMAC_ADDR_CMD_MEM_WE |
  4511. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4512. RMAC_ADDR_CMD_MEM_OFFSET
  4513. (config->mc_start_offset + i);
  4514. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4515. /* Wait for command completes */
  4516. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4517. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4518. S2IO_BIT_RESET)) {
  4519. DBG_PRINT(ERR_DBG,
  4520. "%s: Adding Multicasts failed\n",
  4521. dev->name);
  4522. return;
  4523. }
  4524. }
  4525. /* Create the new Rx filter list and update the same in H/W. */
  4526. i = 0;
  4527. netdev_for_each_mc_addr(ha, dev) {
  4528. memcpy(sp->usr_addrs[i].addr, ha->addr,
  4529. ETH_ALEN);
  4530. mac_addr = 0;
  4531. for (j = 0; j < ETH_ALEN; j++) {
  4532. mac_addr |= ha->addr[j];
  4533. mac_addr <<= 8;
  4534. }
  4535. mac_addr >>= 8;
  4536. writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
  4537. &bar0->rmac_addr_data0_mem);
  4538. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4539. &bar0->rmac_addr_data1_mem);
  4540. val64 = RMAC_ADDR_CMD_MEM_WE |
  4541. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4542. RMAC_ADDR_CMD_MEM_OFFSET
  4543. (i + config->mc_start_offset);
  4544. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4545. /* Wait for command completes */
  4546. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4547. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4548. S2IO_BIT_RESET)) {
  4549. DBG_PRINT(ERR_DBG,
  4550. "%s: Adding Multicasts failed\n",
  4551. dev->name);
  4552. return;
  4553. }
  4554. i++;
  4555. }
  4556. }
  4557. }
  4558. /* read from CAM unicast & multicast addresses and store it in
  4559. * def_mac_addr structure
  4560. */
  4561. static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
  4562. {
  4563. int offset;
  4564. u64 mac_addr = 0x0;
  4565. struct config_param *config = &sp->config;
  4566. /* store unicast & multicast mac addresses */
  4567. for (offset = 0; offset < config->max_mc_addr; offset++) {
  4568. mac_addr = do_s2io_read_unicast_mc(sp, offset);
  4569. /* if read fails disable the entry */
  4570. if (mac_addr == FAILURE)
  4571. mac_addr = S2IO_DISABLE_MAC_ENTRY;
  4572. do_s2io_copy_mac_addr(sp, offset, mac_addr);
  4573. }
  4574. }
  4575. /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
  4576. static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
  4577. {
  4578. int offset;
  4579. struct config_param *config = &sp->config;
  4580. /* restore unicast mac address */
  4581. for (offset = 0; offset < config->max_mac_addr; offset++)
  4582. do_s2io_prog_unicast(sp->dev,
  4583. sp->def_mac_addr[offset].mac_addr);
  4584. /* restore multicast mac address */
  4585. for (offset = config->mc_start_offset;
  4586. offset < config->max_mc_addr; offset++)
  4587. do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
  4588. }
  4589. /* add a multicast MAC address to CAM */
  4590. static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
  4591. {
  4592. int i;
  4593. u64 mac_addr = 0;
  4594. struct config_param *config = &sp->config;
  4595. for (i = 0; i < ETH_ALEN; i++) {
  4596. mac_addr <<= 8;
  4597. mac_addr |= addr[i];
  4598. }
  4599. if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
  4600. return SUCCESS;
  4601. /* check if the multicast mac already preset in CAM */
  4602. for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
  4603. u64 tmp64;
  4604. tmp64 = do_s2io_read_unicast_mc(sp, i);
  4605. if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
  4606. break;
  4607. if (tmp64 == mac_addr)
  4608. return SUCCESS;
  4609. }
  4610. if (i == config->max_mc_addr) {
  4611. DBG_PRINT(ERR_DBG,
  4612. "CAM full no space left for multicast MAC\n");
  4613. return FAILURE;
  4614. }
  4615. /* Update the internal structure with this new mac address */
  4616. do_s2io_copy_mac_addr(sp, i, mac_addr);
  4617. return do_s2io_add_mac(sp, mac_addr, i);
  4618. }
  4619. /* add MAC address to CAM */
  4620. static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
  4621. {
  4622. u64 val64;
  4623. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4624. writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
  4625. &bar0->rmac_addr_data0_mem);
  4626. val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4627. RMAC_ADDR_CMD_MEM_OFFSET(off);
  4628. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4629. /* Wait till command completes */
  4630. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4631. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4632. S2IO_BIT_RESET)) {
  4633. DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
  4634. return FAILURE;
  4635. }
  4636. return SUCCESS;
  4637. }
  4638. /* deletes a specified unicast/multicast mac entry from CAM */
  4639. static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
  4640. {
  4641. int offset;
  4642. u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
  4643. struct config_param *config = &sp->config;
  4644. for (offset = 1;
  4645. offset < config->max_mc_addr; offset++) {
  4646. tmp64 = do_s2io_read_unicast_mc(sp, offset);
  4647. if (tmp64 == addr) {
  4648. /* disable the entry by writing 0xffffffffffffULL */
  4649. if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE)
  4650. return FAILURE;
  4651. /* store the new mac list from CAM */
  4652. do_s2io_store_unicast_mc(sp);
  4653. return SUCCESS;
  4654. }
  4655. }
  4656. DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
  4657. (unsigned long long)addr);
  4658. return FAILURE;
  4659. }
  4660. /* read mac entries from CAM */
  4661. static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
  4662. {
  4663. u64 tmp64 = 0xffffffffffff0000ULL, val64;
  4664. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4665. /* read mac addr */
  4666. val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4667. RMAC_ADDR_CMD_MEM_OFFSET(offset);
  4668. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4669. /* Wait till command completes */
  4670. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4671. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4672. S2IO_BIT_RESET)) {
  4673. DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
  4674. return FAILURE;
  4675. }
  4676. tmp64 = readq(&bar0->rmac_addr_data0_mem);
  4677. return tmp64 >> 16;
  4678. }
  4679. /**
  4680. * s2io_set_mac_addr driver entry point
  4681. */
  4682. static int s2io_set_mac_addr(struct net_device *dev, void *p)
  4683. {
  4684. struct sockaddr *addr = p;
  4685. if (!is_valid_ether_addr(addr->sa_data))
  4686. return -EINVAL;
  4687. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  4688. /* store the MAC address in CAM */
  4689. return do_s2io_prog_unicast(dev, dev->dev_addr);
  4690. }
  4691. /**
  4692. * do_s2io_prog_unicast - Programs the Xframe mac address
  4693. * @dev : pointer to the device structure.
  4694. * @addr: a uchar pointer to the new mac address which is to be set.
  4695. * Description : This procedure will program the Xframe to receive
  4696. * frames with new Mac Address
  4697. * Return value: SUCCESS on success and an appropriate (-)ve integer
  4698. * as defined in errno.h file on failure.
  4699. */
  4700. static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
  4701. {
  4702. struct s2io_nic *sp = netdev_priv(dev);
  4703. register u64 mac_addr = 0, perm_addr = 0;
  4704. int i;
  4705. u64 tmp64;
  4706. struct config_param *config = &sp->config;
  4707. /*
  4708. * Set the new MAC address as the new unicast filter and reflect this
  4709. * change on the device address registered with the OS. It will be
  4710. * at offset 0.
  4711. */
  4712. for (i = 0; i < ETH_ALEN; i++) {
  4713. mac_addr <<= 8;
  4714. mac_addr |= addr[i];
  4715. perm_addr <<= 8;
  4716. perm_addr |= sp->def_mac_addr[0].mac_addr[i];
  4717. }
  4718. /* check if the dev_addr is different than perm_addr */
  4719. if (mac_addr == perm_addr)
  4720. return SUCCESS;
  4721. /* check if the mac already preset in CAM */
  4722. for (i = 1; i < config->max_mac_addr; i++) {
  4723. tmp64 = do_s2io_read_unicast_mc(sp, i);
  4724. if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
  4725. break;
  4726. if (tmp64 == mac_addr) {
  4727. DBG_PRINT(INFO_DBG,
  4728. "MAC addr:0x%llx already present in CAM\n",
  4729. (unsigned long long)mac_addr);
  4730. return SUCCESS;
  4731. }
  4732. }
  4733. if (i == config->max_mac_addr) {
  4734. DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
  4735. return FAILURE;
  4736. }
  4737. /* Update the internal structure with this new mac address */
  4738. do_s2io_copy_mac_addr(sp, i, mac_addr);
  4739. return do_s2io_add_mac(sp, mac_addr, i);
  4740. }
  4741. /**
  4742. * s2io_ethtool_sset - Sets different link parameters.
  4743. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  4744. * @info: pointer to the structure with parameters given by ethtool to set
  4745. * link information.
  4746. * Description:
  4747. * The function sets different link parameters provided by the user onto
  4748. * the NIC.
  4749. * Return value:
  4750. * 0 on success.
  4751. */
  4752. static int s2io_ethtool_sset(struct net_device *dev,
  4753. struct ethtool_cmd *info)
  4754. {
  4755. struct s2io_nic *sp = netdev_priv(dev);
  4756. if ((info->autoneg == AUTONEG_ENABLE) ||
  4757. (info->speed != SPEED_10000) ||
  4758. (info->duplex != DUPLEX_FULL))
  4759. return -EINVAL;
  4760. else {
  4761. s2io_close(sp->dev);
  4762. s2io_open(sp->dev);
  4763. }
  4764. return 0;
  4765. }
  4766. /**
  4767. * s2io_ethtol_gset - Return link specific information.
  4768. * @sp : private member of the device structure, pointer to the
  4769. * s2io_nic structure.
  4770. * @info : pointer to the structure with parameters given by ethtool
  4771. * to return link information.
  4772. * Description:
  4773. * Returns link specific information like speed, duplex etc.. to ethtool.
  4774. * Return value :
  4775. * return 0 on success.
  4776. */
  4777. static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
  4778. {
  4779. struct s2io_nic *sp = netdev_priv(dev);
  4780. info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4781. info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4782. info->port = PORT_FIBRE;
  4783. /* info->transceiver */
  4784. info->transceiver = XCVR_EXTERNAL;
  4785. if (netif_carrier_ok(sp->dev)) {
  4786. info->speed = 10000;
  4787. info->duplex = DUPLEX_FULL;
  4788. } else {
  4789. info->speed = -1;
  4790. info->duplex = -1;
  4791. }
  4792. info->autoneg = AUTONEG_DISABLE;
  4793. return 0;
  4794. }
  4795. /**
  4796. * s2io_ethtool_gdrvinfo - Returns driver specific information.
  4797. * @sp : private member of the device structure, which is a pointer to the
  4798. * s2io_nic structure.
  4799. * @info : pointer to the structure with parameters given by ethtool to
  4800. * return driver information.
  4801. * Description:
  4802. * Returns driver specefic information like name, version etc.. to ethtool.
  4803. * Return value:
  4804. * void
  4805. */
  4806. static void s2io_ethtool_gdrvinfo(struct net_device *dev,
  4807. struct ethtool_drvinfo *info)
  4808. {
  4809. struct s2io_nic *sp = netdev_priv(dev);
  4810. strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
  4811. strncpy(info->version, s2io_driver_version, sizeof(info->version));
  4812. strncpy(info->fw_version, "", sizeof(info->fw_version));
  4813. strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
  4814. info->regdump_len = XENA_REG_SPACE;
  4815. info->eedump_len = XENA_EEPROM_SPACE;
  4816. }
  4817. /**
  4818. * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
  4819. * @sp: private member of the device structure, which is a pointer to the
  4820. * s2io_nic structure.
  4821. * @regs : pointer to the structure with parameters given by ethtool for
  4822. * dumping the registers.
  4823. * @reg_space: The input argumnet into which all the registers are dumped.
  4824. * Description:
  4825. * Dumps the entire register space of xFrame NIC into the user given
  4826. * buffer area.
  4827. * Return value :
  4828. * void .
  4829. */
  4830. static void s2io_ethtool_gregs(struct net_device *dev,
  4831. struct ethtool_regs *regs, void *space)
  4832. {
  4833. int i;
  4834. u64 reg;
  4835. u8 *reg_space = (u8 *)space;
  4836. struct s2io_nic *sp = netdev_priv(dev);
  4837. regs->len = XENA_REG_SPACE;
  4838. regs->version = sp->pdev->subsystem_device;
  4839. for (i = 0; i < regs->len; i += 8) {
  4840. reg = readq(sp->bar0 + i);
  4841. memcpy((reg_space + i), &reg, 8);
  4842. }
  4843. }
  4844. /**
  4845. * s2io_phy_id - timer function that alternates adapter LED.
  4846. * @data : address of the private member of the device structure, which
  4847. * is a pointer to the s2io_nic structure, provided as an u32.
  4848. * Description: This is actually the timer function that alternates the
  4849. * adapter LED bit of the adapter control bit to set/reset every time on
  4850. * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
  4851. * once every second.
  4852. */
  4853. static void s2io_phy_id(unsigned long data)
  4854. {
  4855. struct s2io_nic *sp = (struct s2io_nic *)data;
  4856. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4857. u64 val64 = 0;
  4858. u16 subid;
  4859. subid = sp->pdev->subsystem_device;
  4860. if ((sp->device_type == XFRAME_II_DEVICE) ||
  4861. ((subid & 0xFF) >= 0x07)) {
  4862. val64 = readq(&bar0->gpio_control);
  4863. val64 ^= GPIO_CTRL_GPIO_0;
  4864. writeq(val64, &bar0->gpio_control);
  4865. } else {
  4866. val64 = readq(&bar0->adapter_control);
  4867. val64 ^= ADAPTER_LED_ON;
  4868. writeq(val64, &bar0->adapter_control);
  4869. }
  4870. mod_timer(&sp->id_timer, jiffies + HZ / 2);
  4871. }
  4872. /**
  4873. * s2io_ethtool_idnic - To physically identify the nic on the system.
  4874. * @sp : private member of the device structure, which is a pointer to the
  4875. * s2io_nic structure.
  4876. * @id : pointer to the structure with identification parameters given by
  4877. * ethtool.
  4878. * Description: Used to physically identify the NIC on the system.
  4879. * The Link LED will blink for a time specified by the user for
  4880. * identification.
  4881. * NOTE: The Link has to be Up to be able to blink the LED. Hence
  4882. * identification is possible only if it's link is up.
  4883. * Return value:
  4884. * int , returns 0 on success
  4885. */
  4886. static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
  4887. {
  4888. u64 val64 = 0, last_gpio_ctrl_val;
  4889. struct s2io_nic *sp = netdev_priv(dev);
  4890. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4891. u16 subid;
  4892. subid = sp->pdev->subsystem_device;
  4893. last_gpio_ctrl_val = readq(&bar0->gpio_control);
  4894. if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) {
  4895. val64 = readq(&bar0->adapter_control);
  4896. if (!(val64 & ADAPTER_CNTL_EN)) {
  4897. pr_err("Adapter Link down, cannot blink LED\n");
  4898. return -EFAULT;
  4899. }
  4900. }
  4901. if (sp->id_timer.function == NULL) {
  4902. init_timer(&sp->id_timer);
  4903. sp->id_timer.function = s2io_phy_id;
  4904. sp->id_timer.data = (unsigned long)sp;
  4905. }
  4906. mod_timer(&sp->id_timer, jiffies);
  4907. if (data)
  4908. msleep_interruptible(data * HZ);
  4909. else
  4910. msleep_interruptible(MAX_FLICKER_TIME);
  4911. del_timer_sync(&sp->id_timer);
  4912. if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
  4913. writeq(last_gpio_ctrl_val, &bar0->gpio_control);
  4914. last_gpio_ctrl_val = readq(&bar0->gpio_control);
  4915. }
  4916. return 0;
  4917. }
  4918. static void s2io_ethtool_gringparam(struct net_device *dev,
  4919. struct ethtool_ringparam *ering)
  4920. {
  4921. struct s2io_nic *sp = netdev_priv(dev);
  4922. int i, tx_desc_count = 0, rx_desc_count = 0;
  4923. if (sp->rxd_mode == RXD_MODE_1)
  4924. ering->rx_max_pending = MAX_RX_DESC_1;
  4925. else if (sp->rxd_mode == RXD_MODE_3B)
  4926. ering->rx_max_pending = MAX_RX_DESC_2;
  4927. ering->tx_max_pending = MAX_TX_DESC;
  4928. for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
  4929. tx_desc_count += sp->config.tx_cfg[i].fifo_len;
  4930. DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds);
  4931. ering->tx_pending = tx_desc_count;
  4932. rx_desc_count = 0;
  4933. for (i = 0 ; i < sp->config.rx_ring_num ; i++)
  4934. rx_desc_count += sp->config.rx_cfg[i].num_rxd;
  4935. ering->rx_pending = rx_desc_count;
  4936. ering->rx_mini_max_pending = 0;
  4937. ering->rx_mini_pending = 0;
  4938. if (sp->rxd_mode == RXD_MODE_1)
  4939. ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
  4940. else if (sp->rxd_mode == RXD_MODE_3B)
  4941. ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
  4942. ering->rx_jumbo_pending = rx_desc_count;
  4943. }
  4944. /**
  4945. * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
  4946. * @sp : private member of the device structure, which is a pointer to the
  4947. * s2io_nic structure.
  4948. * @ep : pointer to the structure with pause parameters given by ethtool.
  4949. * Description:
  4950. * Returns the Pause frame generation and reception capability of the NIC.
  4951. * Return value:
  4952. * void
  4953. */
  4954. static void s2io_ethtool_getpause_data(struct net_device *dev,
  4955. struct ethtool_pauseparam *ep)
  4956. {
  4957. u64 val64;
  4958. struct s2io_nic *sp = netdev_priv(dev);
  4959. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4960. val64 = readq(&bar0->rmac_pause_cfg);
  4961. if (val64 & RMAC_PAUSE_GEN_ENABLE)
  4962. ep->tx_pause = true;
  4963. if (val64 & RMAC_PAUSE_RX_ENABLE)
  4964. ep->rx_pause = true;
  4965. ep->autoneg = false;
  4966. }
  4967. /**
  4968. * s2io_ethtool_setpause_data - set/reset pause frame generation.
  4969. * @sp : private member of the device structure, which is a pointer to the
  4970. * s2io_nic structure.
  4971. * @ep : pointer to the structure with pause parameters given by ethtool.
  4972. * Description:
  4973. * It can be used to set or reset Pause frame generation or reception
  4974. * support of the NIC.
  4975. * Return value:
  4976. * int, returns 0 on Success
  4977. */
  4978. static int s2io_ethtool_setpause_data(struct net_device *dev,
  4979. struct ethtool_pauseparam *ep)
  4980. {
  4981. u64 val64;
  4982. struct s2io_nic *sp = netdev_priv(dev);
  4983. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4984. val64 = readq(&bar0->rmac_pause_cfg);
  4985. if (ep->tx_pause)
  4986. val64 |= RMAC_PAUSE_GEN_ENABLE;
  4987. else
  4988. val64 &= ~RMAC_PAUSE_GEN_ENABLE;
  4989. if (ep->rx_pause)
  4990. val64 |= RMAC_PAUSE_RX_ENABLE;
  4991. else
  4992. val64 &= ~RMAC_PAUSE_RX_ENABLE;
  4993. writeq(val64, &bar0->rmac_pause_cfg);
  4994. return 0;
  4995. }
  4996. /**
  4997. * read_eeprom - reads 4 bytes of data from user given offset.
  4998. * @sp : private member of the device structure, which is a pointer to the
  4999. * s2io_nic structure.
  5000. * @off : offset at which the data must be written
  5001. * @data : Its an output parameter where the data read at the given
  5002. * offset is stored.
  5003. * Description:
  5004. * Will read 4 bytes of data from the user given offset and return the
  5005. * read data.
  5006. * NOTE: Will allow to read only part of the EEPROM visible through the
  5007. * I2C bus.
  5008. * Return value:
  5009. * -1 on failure and 0 on success.
  5010. */
  5011. #define S2IO_DEV_ID 5
  5012. static int read_eeprom(struct s2io_nic *sp, int off, u64 *data)
  5013. {
  5014. int ret = -1;
  5015. u32 exit_cnt = 0;
  5016. u64 val64;
  5017. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5018. if (sp->device_type == XFRAME_I_DEVICE) {
  5019. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
  5020. I2C_CONTROL_ADDR(off) |
  5021. I2C_CONTROL_BYTE_CNT(0x3) |
  5022. I2C_CONTROL_READ |
  5023. I2C_CONTROL_CNTL_START;
  5024. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  5025. while (exit_cnt < 5) {
  5026. val64 = readq(&bar0->i2c_control);
  5027. if (I2C_CONTROL_CNTL_END(val64)) {
  5028. *data = I2C_CONTROL_GET_DATA(val64);
  5029. ret = 0;
  5030. break;
  5031. }
  5032. msleep(50);
  5033. exit_cnt++;
  5034. }
  5035. }
  5036. if (sp->device_type == XFRAME_II_DEVICE) {
  5037. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  5038. SPI_CONTROL_BYTECNT(0x3) |
  5039. SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
  5040. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  5041. val64 |= SPI_CONTROL_REQ;
  5042. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  5043. while (exit_cnt < 5) {
  5044. val64 = readq(&bar0->spi_control);
  5045. if (val64 & SPI_CONTROL_NACK) {
  5046. ret = 1;
  5047. break;
  5048. } else if (val64 & SPI_CONTROL_DONE) {
  5049. *data = readq(&bar0->spi_data);
  5050. *data &= 0xffffff;
  5051. ret = 0;
  5052. break;
  5053. }
  5054. msleep(50);
  5055. exit_cnt++;
  5056. }
  5057. }
  5058. return ret;
  5059. }
  5060. /**
  5061. * write_eeprom - actually writes the relevant part of the data value.
  5062. * @sp : private member of the device structure, which is a pointer to the
  5063. * s2io_nic structure.
  5064. * @off : offset at which the data must be written
  5065. * @data : The data that is to be written
  5066. * @cnt : Number of bytes of the data that are actually to be written into
  5067. * the Eeprom. (max of 3)
  5068. * Description:
  5069. * Actually writes the relevant part of the data value into the Eeprom
  5070. * through the I2C bus.
  5071. * Return value:
  5072. * 0 on success, -1 on failure.
  5073. */
  5074. static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt)
  5075. {
  5076. int exit_cnt = 0, ret = -1;
  5077. u64 val64;
  5078. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5079. if (sp->device_type == XFRAME_I_DEVICE) {
  5080. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) |
  5081. I2C_CONTROL_ADDR(off) |
  5082. I2C_CONTROL_BYTE_CNT(cnt) |
  5083. I2C_CONTROL_SET_DATA((u32)data) |
  5084. I2C_CONTROL_CNTL_START;
  5085. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  5086. while (exit_cnt < 5) {
  5087. val64 = readq(&bar0->i2c_control);
  5088. if (I2C_CONTROL_CNTL_END(val64)) {
  5089. if (!(val64 & I2C_CONTROL_NACK))
  5090. ret = 0;
  5091. break;
  5092. }
  5093. msleep(50);
  5094. exit_cnt++;
  5095. }
  5096. }
  5097. if (sp->device_type == XFRAME_II_DEVICE) {
  5098. int write_cnt = (cnt == 8) ? 0 : cnt;
  5099. writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data);
  5100. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  5101. SPI_CONTROL_BYTECNT(write_cnt) |
  5102. SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
  5103. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  5104. val64 |= SPI_CONTROL_REQ;
  5105. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  5106. while (exit_cnt < 5) {
  5107. val64 = readq(&bar0->spi_control);
  5108. if (val64 & SPI_CONTROL_NACK) {
  5109. ret = 1;
  5110. break;
  5111. } else if (val64 & SPI_CONTROL_DONE) {
  5112. ret = 0;
  5113. break;
  5114. }
  5115. msleep(50);
  5116. exit_cnt++;
  5117. }
  5118. }
  5119. return ret;
  5120. }
  5121. static void s2io_vpd_read(struct s2io_nic *nic)
  5122. {
  5123. u8 *vpd_data;
  5124. u8 data;
  5125. int i = 0, cnt, fail = 0;
  5126. int vpd_addr = 0x80;
  5127. struct swStat *swstats = &nic->mac_control.stats_info->sw_stat;
  5128. if (nic->device_type == XFRAME_II_DEVICE) {
  5129. strcpy(nic->product_name, "Xframe II 10GbE network adapter");
  5130. vpd_addr = 0x80;
  5131. } else {
  5132. strcpy(nic->product_name, "Xframe I 10GbE network adapter");
  5133. vpd_addr = 0x50;
  5134. }
  5135. strcpy(nic->serial_num, "NOT AVAILABLE");
  5136. vpd_data = kmalloc(256, GFP_KERNEL);
  5137. if (!vpd_data) {
  5138. swstats->mem_alloc_fail_cnt++;
  5139. return;
  5140. }
  5141. swstats->mem_allocated += 256;
  5142. for (i = 0; i < 256; i += 4) {
  5143. pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
  5144. pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
  5145. pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
  5146. for (cnt = 0; cnt < 5; cnt++) {
  5147. msleep(2);
  5148. pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
  5149. if (data == 0x80)
  5150. break;
  5151. }
  5152. if (cnt >= 5) {
  5153. DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
  5154. fail = 1;
  5155. break;
  5156. }
  5157. pci_read_config_dword(nic->pdev, (vpd_addr + 4),
  5158. (u32 *)&vpd_data[i]);
  5159. }
  5160. if (!fail) {
  5161. /* read serial number of adapter */
  5162. for (cnt = 0; cnt < 256; cnt++) {
  5163. if ((vpd_data[cnt] == 'S') &&
  5164. (vpd_data[cnt+1] == 'N') &&
  5165. (vpd_data[cnt+2] < VPD_STRING_LEN)) {
  5166. memset(nic->serial_num, 0, VPD_STRING_LEN);
  5167. memcpy(nic->serial_num, &vpd_data[cnt + 3],
  5168. vpd_data[cnt+2]);
  5169. break;
  5170. }
  5171. }
  5172. }
  5173. if ((!fail) && (vpd_data[1] < VPD_STRING_LEN))
  5174. memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
  5175. kfree(vpd_data);
  5176. swstats->mem_freed += 256;
  5177. }
  5178. /**
  5179. * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
  5180. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  5181. * @eeprom : pointer to the user level structure provided by ethtool,
  5182. * containing all relevant information.
  5183. * @data_buf : user defined value to be written into Eeprom.
  5184. * Description: Reads the values stored in the Eeprom at given offset
  5185. * for a given length. Stores these values int the input argument data
  5186. * buffer 'data_buf' and returns these to the caller (ethtool.)
  5187. * Return value:
  5188. * int 0 on success
  5189. */
  5190. static int s2io_ethtool_geeprom(struct net_device *dev,
  5191. struct ethtool_eeprom *eeprom, u8 * data_buf)
  5192. {
  5193. u32 i, valid;
  5194. u64 data;
  5195. struct s2io_nic *sp = netdev_priv(dev);
  5196. eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
  5197. if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
  5198. eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
  5199. for (i = 0; i < eeprom->len; i += 4) {
  5200. if (read_eeprom(sp, (eeprom->offset + i), &data)) {
  5201. DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
  5202. return -EFAULT;
  5203. }
  5204. valid = INV(data);
  5205. memcpy((data_buf + i), &valid, 4);
  5206. }
  5207. return 0;
  5208. }
  5209. /**
  5210. * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
  5211. * @sp : private member of the device structure, which is a pointer to the
  5212. * s2io_nic structure.
  5213. * @eeprom : pointer to the user level structure provided by ethtool,
  5214. * containing all relevant information.
  5215. * @data_buf ; user defined value to be written into Eeprom.
  5216. * Description:
  5217. * Tries to write the user provided value in the Eeprom, at the offset
  5218. * given by the user.
  5219. * Return value:
  5220. * 0 on success, -EFAULT on failure.
  5221. */
  5222. static int s2io_ethtool_seeprom(struct net_device *dev,
  5223. struct ethtool_eeprom *eeprom,
  5224. u8 *data_buf)
  5225. {
  5226. int len = eeprom->len, cnt = 0;
  5227. u64 valid = 0, data;
  5228. struct s2io_nic *sp = netdev_priv(dev);
  5229. if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
  5230. DBG_PRINT(ERR_DBG,
  5231. "ETHTOOL_WRITE_EEPROM Err: "
  5232. "Magic value is wrong, it is 0x%x should be 0x%x\n",
  5233. (sp->pdev->vendor | (sp->pdev->device << 16)),
  5234. eeprom->magic);
  5235. return -EFAULT;
  5236. }
  5237. while (len) {
  5238. data = (u32)data_buf[cnt] & 0x000000FF;
  5239. if (data)
  5240. valid = (u32)(data << 24);
  5241. else
  5242. valid = data;
  5243. if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
  5244. DBG_PRINT(ERR_DBG,
  5245. "ETHTOOL_WRITE_EEPROM Err: "
  5246. "Cannot write into the specified offset\n");
  5247. return -EFAULT;
  5248. }
  5249. cnt++;
  5250. len--;
  5251. }
  5252. return 0;
  5253. }
  5254. /**
  5255. * s2io_register_test - reads and writes into all clock domains.
  5256. * @sp : private member of the device structure, which is a pointer to the
  5257. * s2io_nic structure.
  5258. * @data : variable that returns the result of each of the test conducted b
  5259. * by the driver.
  5260. * Description:
  5261. * Read and write into all clock domains. The NIC has 3 clock domains,
  5262. * see that registers in all the three regions are accessible.
  5263. * Return value:
  5264. * 0 on success.
  5265. */
  5266. static int s2io_register_test(struct s2io_nic *sp, uint64_t *data)
  5267. {
  5268. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5269. u64 val64 = 0, exp_val;
  5270. int fail = 0;
  5271. val64 = readq(&bar0->pif_rd_swapper_fb);
  5272. if (val64 != 0x123456789abcdefULL) {
  5273. fail = 1;
  5274. DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1);
  5275. }
  5276. val64 = readq(&bar0->rmac_pause_cfg);
  5277. if (val64 != 0xc000ffff00000000ULL) {
  5278. fail = 1;
  5279. DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2);
  5280. }
  5281. val64 = readq(&bar0->rx_queue_cfg);
  5282. if (sp->device_type == XFRAME_II_DEVICE)
  5283. exp_val = 0x0404040404040404ULL;
  5284. else
  5285. exp_val = 0x0808080808080808ULL;
  5286. if (val64 != exp_val) {
  5287. fail = 1;
  5288. DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3);
  5289. }
  5290. val64 = readq(&bar0->xgxs_efifo_cfg);
  5291. if (val64 != 0x000000001923141EULL) {
  5292. fail = 1;
  5293. DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4);
  5294. }
  5295. val64 = 0x5A5A5A5A5A5A5A5AULL;
  5296. writeq(val64, &bar0->xmsi_data);
  5297. val64 = readq(&bar0->xmsi_data);
  5298. if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
  5299. fail = 1;
  5300. DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1);
  5301. }
  5302. val64 = 0xA5A5A5A5A5A5A5A5ULL;
  5303. writeq(val64, &bar0->xmsi_data);
  5304. val64 = readq(&bar0->xmsi_data);
  5305. if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
  5306. fail = 1;
  5307. DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2);
  5308. }
  5309. *data = fail;
  5310. return fail;
  5311. }
  5312. /**
  5313. * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
  5314. * @sp : private member of the device structure, which is a pointer to the
  5315. * s2io_nic structure.
  5316. * @data:variable that returns the result of each of the test conducted by
  5317. * the driver.
  5318. * Description:
  5319. * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
  5320. * register.
  5321. * Return value:
  5322. * 0 on success.
  5323. */
  5324. static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data)
  5325. {
  5326. int fail = 0;
  5327. u64 ret_data, org_4F0, org_7F0;
  5328. u8 saved_4F0 = 0, saved_7F0 = 0;
  5329. struct net_device *dev = sp->dev;
  5330. /* Test Write Error at offset 0 */
  5331. /* Note that SPI interface allows write access to all areas
  5332. * of EEPROM. Hence doing all negative testing only for Xframe I.
  5333. */
  5334. if (sp->device_type == XFRAME_I_DEVICE)
  5335. if (!write_eeprom(sp, 0, 0, 3))
  5336. fail = 1;
  5337. /* Save current values at offsets 0x4F0 and 0x7F0 */
  5338. if (!read_eeprom(sp, 0x4F0, &org_4F0))
  5339. saved_4F0 = 1;
  5340. if (!read_eeprom(sp, 0x7F0, &org_7F0))
  5341. saved_7F0 = 1;
  5342. /* Test Write at offset 4f0 */
  5343. if (write_eeprom(sp, 0x4F0, 0x012345, 3))
  5344. fail = 1;
  5345. if (read_eeprom(sp, 0x4F0, &ret_data))
  5346. fail = 1;
  5347. if (ret_data != 0x012345) {
  5348. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
  5349. "Data written %llx Data read %llx\n",
  5350. dev->name, (unsigned long long)0x12345,
  5351. (unsigned long long)ret_data);
  5352. fail = 1;
  5353. }
  5354. /* Reset the EEPROM data go FFFF */
  5355. write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
  5356. /* Test Write Request Error at offset 0x7c */
  5357. if (sp->device_type == XFRAME_I_DEVICE)
  5358. if (!write_eeprom(sp, 0x07C, 0, 3))
  5359. fail = 1;
  5360. /* Test Write Request at offset 0x7f0 */
  5361. if (write_eeprom(sp, 0x7F0, 0x012345, 3))
  5362. fail = 1;
  5363. if (read_eeprom(sp, 0x7F0, &ret_data))
  5364. fail = 1;
  5365. if (ret_data != 0x012345) {
  5366. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
  5367. "Data written %llx Data read %llx\n",
  5368. dev->name, (unsigned long long)0x12345,
  5369. (unsigned long long)ret_data);
  5370. fail = 1;
  5371. }
  5372. /* Reset the EEPROM data go FFFF */
  5373. write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
  5374. if (sp->device_type == XFRAME_I_DEVICE) {
  5375. /* Test Write Error at offset 0x80 */
  5376. if (!write_eeprom(sp, 0x080, 0, 3))
  5377. fail = 1;
  5378. /* Test Write Error at offset 0xfc */
  5379. if (!write_eeprom(sp, 0x0FC, 0, 3))
  5380. fail = 1;
  5381. /* Test Write Error at offset 0x100 */
  5382. if (!write_eeprom(sp, 0x100, 0, 3))
  5383. fail = 1;
  5384. /* Test Write Error at offset 4ec */
  5385. if (!write_eeprom(sp, 0x4EC, 0, 3))
  5386. fail = 1;
  5387. }
  5388. /* Restore values at offsets 0x4F0 and 0x7F0 */
  5389. if (saved_4F0)
  5390. write_eeprom(sp, 0x4F0, org_4F0, 3);
  5391. if (saved_7F0)
  5392. write_eeprom(sp, 0x7F0, org_7F0, 3);
  5393. *data = fail;
  5394. return fail;
  5395. }
  5396. /**
  5397. * s2io_bist_test - invokes the MemBist test of the card .
  5398. * @sp : private member of the device structure, which is a pointer to the
  5399. * s2io_nic structure.
  5400. * @data:variable that returns the result of each of the test conducted by
  5401. * the driver.
  5402. * Description:
  5403. * This invokes the MemBist test of the card. We give around
  5404. * 2 secs time for the Test to complete. If it's still not complete
  5405. * within this peiod, we consider that the test failed.
  5406. * Return value:
  5407. * 0 on success and -1 on failure.
  5408. */
  5409. static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data)
  5410. {
  5411. u8 bist = 0;
  5412. int cnt = 0, ret = -1;
  5413. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  5414. bist |= PCI_BIST_START;
  5415. pci_write_config_word(sp->pdev, PCI_BIST, bist);
  5416. while (cnt < 20) {
  5417. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  5418. if (!(bist & PCI_BIST_START)) {
  5419. *data = (bist & PCI_BIST_CODE_MASK);
  5420. ret = 0;
  5421. break;
  5422. }
  5423. msleep(100);
  5424. cnt++;
  5425. }
  5426. return ret;
  5427. }
  5428. /**
  5429. * s2io-link_test - verifies the link state of the nic
  5430. * @sp ; private member of the device structure, which is a pointer to the
  5431. * s2io_nic structure.
  5432. * @data: variable that returns the result of each of the test conducted by
  5433. * the driver.
  5434. * Description:
  5435. * The function verifies the link state of the NIC and updates the input
  5436. * argument 'data' appropriately.
  5437. * Return value:
  5438. * 0 on success.
  5439. */
  5440. static int s2io_link_test(struct s2io_nic *sp, uint64_t *data)
  5441. {
  5442. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5443. u64 val64;
  5444. val64 = readq(&bar0->adapter_status);
  5445. if (!(LINK_IS_UP(val64)))
  5446. *data = 1;
  5447. else
  5448. *data = 0;
  5449. return *data;
  5450. }
  5451. /**
  5452. * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
  5453. * @sp - private member of the device structure, which is a pointer to the
  5454. * s2io_nic structure.
  5455. * @data - variable that returns the result of each of the test
  5456. * conducted by the driver.
  5457. * Description:
  5458. * This is one of the offline test that tests the read and write
  5459. * access to the RldRam chip on the NIC.
  5460. * Return value:
  5461. * 0 on success.
  5462. */
  5463. static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data)
  5464. {
  5465. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5466. u64 val64;
  5467. int cnt, iteration = 0, test_fail = 0;
  5468. val64 = readq(&bar0->adapter_control);
  5469. val64 &= ~ADAPTER_ECC_EN;
  5470. writeq(val64, &bar0->adapter_control);
  5471. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5472. val64 |= MC_RLDRAM_TEST_MODE;
  5473. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5474. val64 = readq(&bar0->mc_rldram_mrs);
  5475. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
  5476. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  5477. val64 |= MC_RLDRAM_MRS_ENABLE;
  5478. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  5479. while (iteration < 2) {
  5480. val64 = 0x55555555aaaa0000ULL;
  5481. if (iteration == 1)
  5482. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5483. writeq(val64, &bar0->mc_rldram_test_d0);
  5484. val64 = 0xaaaa5a5555550000ULL;
  5485. if (iteration == 1)
  5486. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5487. writeq(val64, &bar0->mc_rldram_test_d1);
  5488. val64 = 0x55aaaaaaaa5a0000ULL;
  5489. if (iteration == 1)
  5490. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5491. writeq(val64, &bar0->mc_rldram_test_d2);
  5492. val64 = (u64) (0x0000003ffffe0100ULL);
  5493. writeq(val64, &bar0->mc_rldram_test_add);
  5494. val64 = MC_RLDRAM_TEST_MODE |
  5495. MC_RLDRAM_TEST_WRITE |
  5496. MC_RLDRAM_TEST_GO;
  5497. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5498. for (cnt = 0; cnt < 5; cnt++) {
  5499. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5500. if (val64 & MC_RLDRAM_TEST_DONE)
  5501. break;
  5502. msleep(200);
  5503. }
  5504. if (cnt == 5)
  5505. break;
  5506. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
  5507. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5508. for (cnt = 0; cnt < 5; cnt++) {
  5509. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5510. if (val64 & MC_RLDRAM_TEST_DONE)
  5511. break;
  5512. msleep(500);
  5513. }
  5514. if (cnt == 5)
  5515. break;
  5516. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5517. if (!(val64 & MC_RLDRAM_TEST_PASS))
  5518. test_fail = 1;
  5519. iteration++;
  5520. }
  5521. *data = test_fail;
  5522. /* Bring the adapter out of test mode */
  5523. SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
  5524. return test_fail;
  5525. }
  5526. /**
  5527. * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
  5528. * @sp : private member of the device structure, which is a pointer to the
  5529. * s2io_nic structure.
  5530. * @ethtest : pointer to a ethtool command specific structure that will be
  5531. * returned to the user.
  5532. * @data : variable that returns the result of each of the test
  5533. * conducted by the driver.
  5534. * Description:
  5535. * This function conducts 6 tests ( 4 offline and 2 online) to determine
  5536. * the health of the card.
  5537. * Return value:
  5538. * void
  5539. */
  5540. static void s2io_ethtool_test(struct net_device *dev,
  5541. struct ethtool_test *ethtest,
  5542. uint64_t *data)
  5543. {
  5544. struct s2io_nic *sp = netdev_priv(dev);
  5545. int orig_state = netif_running(sp->dev);
  5546. if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
  5547. /* Offline Tests. */
  5548. if (orig_state)
  5549. s2io_close(sp->dev);
  5550. if (s2io_register_test(sp, &data[0]))
  5551. ethtest->flags |= ETH_TEST_FL_FAILED;
  5552. s2io_reset(sp);
  5553. if (s2io_rldram_test(sp, &data[3]))
  5554. ethtest->flags |= ETH_TEST_FL_FAILED;
  5555. s2io_reset(sp);
  5556. if (s2io_eeprom_test(sp, &data[1]))
  5557. ethtest->flags |= ETH_TEST_FL_FAILED;
  5558. if (s2io_bist_test(sp, &data[4]))
  5559. ethtest->flags |= ETH_TEST_FL_FAILED;
  5560. if (orig_state)
  5561. s2io_open(sp->dev);
  5562. data[2] = 0;
  5563. } else {
  5564. /* Online Tests. */
  5565. if (!orig_state) {
  5566. DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n",
  5567. dev->name);
  5568. data[0] = -1;
  5569. data[1] = -1;
  5570. data[2] = -1;
  5571. data[3] = -1;
  5572. data[4] = -1;
  5573. }
  5574. if (s2io_link_test(sp, &data[2]))
  5575. ethtest->flags |= ETH_TEST_FL_FAILED;
  5576. data[0] = 0;
  5577. data[1] = 0;
  5578. data[3] = 0;
  5579. data[4] = 0;
  5580. }
  5581. }
  5582. static void s2io_get_ethtool_stats(struct net_device *dev,
  5583. struct ethtool_stats *estats,
  5584. u64 *tmp_stats)
  5585. {
  5586. int i = 0, k;
  5587. struct s2io_nic *sp = netdev_priv(dev);
  5588. struct stat_block *stats = sp->mac_control.stats_info;
  5589. struct swStat *swstats = &stats->sw_stat;
  5590. struct xpakStat *xstats = &stats->xpak_stat;
  5591. s2io_updt_stats(sp);
  5592. tmp_stats[i++] =
  5593. (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 |
  5594. le32_to_cpu(stats->tmac_frms);
  5595. tmp_stats[i++] =
  5596. (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 |
  5597. le32_to_cpu(stats->tmac_data_octets);
  5598. tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms);
  5599. tmp_stats[i++] =
  5600. (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 |
  5601. le32_to_cpu(stats->tmac_mcst_frms);
  5602. tmp_stats[i++] =
  5603. (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 |
  5604. le32_to_cpu(stats->tmac_bcst_frms);
  5605. tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms);
  5606. tmp_stats[i++] =
  5607. (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 |
  5608. le32_to_cpu(stats->tmac_ttl_octets);
  5609. tmp_stats[i++] =
  5610. (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 |
  5611. le32_to_cpu(stats->tmac_ucst_frms);
  5612. tmp_stats[i++] =
  5613. (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 |
  5614. le32_to_cpu(stats->tmac_nucst_frms);
  5615. tmp_stats[i++] =
  5616. (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 |
  5617. le32_to_cpu(stats->tmac_any_err_frms);
  5618. tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets);
  5619. tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets);
  5620. tmp_stats[i++] =
  5621. (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 |
  5622. le32_to_cpu(stats->tmac_vld_ip);
  5623. tmp_stats[i++] =
  5624. (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 |
  5625. le32_to_cpu(stats->tmac_drop_ip);
  5626. tmp_stats[i++] =
  5627. (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 |
  5628. le32_to_cpu(stats->tmac_icmp);
  5629. tmp_stats[i++] =
  5630. (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 |
  5631. le32_to_cpu(stats->tmac_rst_tcp);
  5632. tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp);
  5633. tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 |
  5634. le32_to_cpu(stats->tmac_udp);
  5635. tmp_stats[i++] =
  5636. (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 |
  5637. le32_to_cpu(stats->rmac_vld_frms);
  5638. tmp_stats[i++] =
  5639. (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 |
  5640. le32_to_cpu(stats->rmac_data_octets);
  5641. tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms);
  5642. tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms);
  5643. tmp_stats[i++] =
  5644. (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 |
  5645. le32_to_cpu(stats->rmac_vld_mcst_frms);
  5646. tmp_stats[i++] =
  5647. (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 |
  5648. le32_to_cpu(stats->rmac_vld_bcst_frms);
  5649. tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms);
  5650. tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms);
  5651. tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms);
  5652. tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms);
  5653. tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms);
  5654. tmp_stats[i++] =
  5655. (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 |
  5656. le32_to_cpu(stats->rmac_ttl_octets);
  5657. tmp_stats[i++] =
  5658. (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32
  5659. | le32_to_cpu(stats->rmac_accepted_ucst_frms);
  5660. tmp_stats[i++] =
  5661. (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow)
  5662. << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms);
  5663. tmp_stats[i++] =
  5664. (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 |
  5665. le32_to_cpu(stats->rmac_discarded_frms);
  5666. tmp_stats[i++] =
  5667. (u64)le32_to_cpu(stats->rmac_drop_events_oflow)
  5668. << 32 | le32_to_cpu(stats->rmac_drop_events);
  5669. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets);
  5670. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms);
  5671. tmp_stats[i++] =
  5672. (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 |
  5673. le32_to_cpu(stats->rmac_usized_frms);
  5674. tmp_stats[i++] =
  5675. (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 |
  5676. le32_to_cpu(stats->rmac_osized_frms);
  5677. tmp_stats[i++] =
  5678. (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 |
  5679. le32_to_cpu(stats->rmac_frag_frms);
  5680. tmp_stats[i++] =
  5681. (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 |
  5682. le32_to_cpu(stats->rmac_jabber_frms);
  5683. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms);
  5684. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms);
  5685. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms);
  5686. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms);
  5687. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms);
  5688. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms);
  5689. tmp_stats[i++] =
  5690. (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 |
  5691. le32_to_cpu(stats->rmac_ip);
  5692. tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets);
  5693. tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip);
  5694. tmp_stats[i++] =
  5695. (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 |
  5696. le32_to_cpu(stats->rmac_drop_ip);
  5697. tmp_stats[i++] =
  5698. (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 |
  5699. le32_to_cpu(stats->rmac_icmp);
  5700. tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp);
  5701. tmp_stats[i++] =
  5702. (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 |
  5703. le32_to_cpu(stats->rmac_udp);
  5704. tmp_stats[i++] =
  5705. (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 |
  5706. le32_to_cpu(stats->rmac_err_drp_udp);
  5707. tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym);
  5708. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0);
  5709. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1);
  5710. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2);
  5711. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3);
  5712. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4);
  5713. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5);
  5714. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6);
  5715. tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7);
  5716. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0);
  5717. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1);
  5718. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2);
  5719. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3);
  5720. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4);
  5721. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5);
  5722. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6);
  5723. tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7);
  5724. tmp_stats[i++] =
  5725. (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 |
  5726. le32_to_cpu(stats->rmac_pause_cnt);
  5727. tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt);
  5728. tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt);
  5729. tmp_stats[i++] =
  5730. (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 |
  5731. le32_to_cpu(stats->rmac_accepted_ip);
  5732. tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp);
  5733. tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt);
  5734. tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt);
  5735. tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt);
  5736. tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt);
  5737. tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt);
  5738. tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt);
  5739. tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt);
  5740. tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt);
  5741. tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt);
  5742. tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt);
  5743. tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt);
  5744. tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt);
  5745. tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt);
  5746. tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt);
  5747. tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt);
  5748. tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt);
  5749. tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt);
  5750. tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt);
  5751. /* Enhanced statistics exist only for Hercules */
  5752. if (sp->device_type == XFRAME_II_DEVICE) {
  5753. tmp_stats[i++] =
  5754. le64_to_cpu(stats->rmac_ttl_1519_4095_frms);
  5755. tmp_stats[i++] =
  5756. le64_to_cpu(stats->rmac_ttl_4096_8191_frms);
  5757. tmp_stats[i++] =
  5758. le64_to_cpu(stats->rmac_ttl_8192_max_frms);
  5759. tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms);
  5760. tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms);
  5761. tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms);
  5762. tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms);
  5763. tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms);
  5764. tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard);
  5765. tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard);
  5766. tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard);
  5767. tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard);
  5768. tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard);
  5769. tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard);
  5770. tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard);
  5771. tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt);
  5772. }
  5773. tmp_stats[i++] = 0;
  5774. tmp_stats[i++] = swstats->single_ecc_errs;
  5775. tmp_stats[i++] = swstats->double_ecc_errs;
  5776. tmp_stats[i++] = swstats->parity_err_cnt;
  5777. tmp_stats[i++] = swstats->serious_err_cnt;
  5778. tmp_stats[i++] = swstats->soft_reset_cnt;
  5779. tmp_stats[i++] = swstats->fifo_full_cnt;
  5780. for (k = 0; k < MAX_RX_RINGS; k++)
  5781. tmp_stats[i++] = swstats->ring_full_cnt[k];
  5782. tmp_stats[i++] = xstats->alarm_transceiver_temp_high;
  5783. tmp_stats[i++] = xstats->alarm_transceiver_temp_low;
  5784. tmp_stats[i++] = xstats->alarm_laser_bias_current_high;
  5785. tmp_stats[i++] = xstats->alarm_laser_bias_current_low;
  5786. tmp_stats[i++] = xstats->alarm_laser_output_power_high;
  5787. tmp_stats[i++] = xstats->alarm_laser_output_power_low;
  5788. tmp_stats[i++] = xstats->warn_transceiver_temp_high;
  5789. tmp_stats[i++] = xstats->warn_transceiver_temp_low;
  5790. tmp_stats[i++] = xstats->warn_laser_bias_current_high;
  5791. tmp_stats[i++] = xstats->warn_laser_bias_current_low;
  5792. tmp_stats[i++] = xstats->warn_laser_output_power_high;
  5793. tmp_stats[i++] = xstats->warn_laser_output_power_low;
  5794. tmp_stats[i++] = swstats->clubbed_frms_cnt;
  5795. tmp_stats[i++] = swstats->sending_both;
  5796. tmp_stats[i++] = swstats->outof_sequence_pkts;
  5797. tmp_stats[i++] = swstats->flush_max_pkts;
  5798. if (swstats->num_aggregations) {
  5799. u64 tmp = swstats->sum_avg_pkts_aggregated;
  5800. int count = 0;
  5801. /*
  5802. * Since 64-bit divide does not work on all platforms,
  5803. * do repeated subtraction.
  5804. */
  5805. while (tmp >= swstats->num_aggregations) {
  5806. tmp -= swstats->num_aggregations;
  5807. count++;
  5808. }
  5809. tmp_stats[i++] = count;
  5810. } else
  5811. tmp_stats[i++] = 0;
  5812. tmp_stats[i++] = swstats->mem_alloc_fail_cnt;
  5813. tmp_stats[i++] = swstats->pci_map_fail_cnt;
  5814. tmp_stats[i++] = swstats->watchdog_timer_cnt;
  5815. tmp_stats[i++] = swstats->mem_allocated;
  5816. tmp_stats[i++] = swstats->mem_freed;
  5817. tmp_stats[i++] = swstats->link_up_cnt;
  5818. tmp_stats[i++] = swstats->link_down_cnt;
  5819. tmp_stats[i++] = swstats->link_up_time;
  5820. tmp_stats[i++] = swstats->link_down_time;
  5821. tmp_stats[i++] = swstats->tx_buf_abort_cnt;
  5822. tmp_stats[i++] = swstats->tx_desc_abort_cnt;
  5823. tmp_stats[i++] = swstats->tx_parity_err_cnt;
  5824. tmp_stats[i++] = swstats->tx_link_loss_cnt;
  5825. tmp_stats[i++] = swstats->tx_list_proc_err_cnt;
  5826. tmp_stats[i++] = swstats->rx_parity_err_cnt;
  5827. tmp_stats[i++] = swstats->rx_abort_cnt;
  5828. tmp_stats[i++] = swstats->rx_parity_abort_cnt;
  5829. tmp_stats[i++] = swstats->rx_rda_fail_cnt;
  5830. tmp_stats[i++] = swstats->rx_unkn_prot_cnt;
  5831. tmp_stats[i++] = swstats->rx_fcs_err_cnt;
  5832. tmp_stats[i++] = swstats->rx_buf_size_err_cnt;
  5833. tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt;
  5834. tmp_stats[i++] = swstats->rx_unkn_err_cnt;
  5835. tmp_stats[i++] = swstats->tda_err_cnt;
  5836. tmp_stats[i++] = swstats->pfc_err_cnt;
  5837. tmp_stats[i++] = swstats->pcc_err_cnt;
  5838. tmp_stats[i++] = swstats->tti_err_cnt;
  5839. tmp_stats[i++] = swstats->tpa_err_cnt;
  5840. tmp_stats[i++] = swstats->sm_err_cnt;
  5841. tmp_stats[i++] = swstats->lso_err_cnt;
  5842. tmp_stats[i++] = swstats->mac_tmac_err_cnt;
  5843. tmp_stats[i++] = swstats->mac_rmac_err_cnt;
  5844. tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt;
  5845. tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt;
  5846. tmp_stats[i++] = swstats->rc_err_cnt;
  5847. tmp_stats[i++] = swstats->prc_pcix_err_cnt;
  5848. tmp_stats[i++] = swstats->rpa_err_cnt;
  5849. tmp_stats[i++] = swstats->rda_err_cnt;
  5850. tmp_stats[i++] = swstats->rti_err_cnt;
  5851. tmp_stats[i++] = swstats->mc_err_cnt;
  5852. }
  5853. static int s2io_ethtool_get_regs_len(struct net_device *dev)
  5854. {
  5855. return XENA_REG_SPACE;
  5856. }
  5857. static u32 s2io_ethtool_get_rx_csum(struct net_device *dev)
  5858. {
  5859. struct s2io_nic *sp = netdev_priv(dev);
  5860. return sp->rx_csum;
  5861. }
  5862. static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
  5863. {
  5864. struct s2io_nic *sp = netdev_priv(dev);
  5865. if (data)
  5866. sp->rx_csum = 1;
  5867. else
  5868. sp->rx_csum = 0;
  5869. return 0;
  5870. }
  5871. static int s2io_get_eeprom_len(struct net_device *dev)
  5872. {
  5873. return XENA_EEPROM_SPACE;
  5874. }
  5875. static int s2io_get_sset_count(struct net_device *dev, int sset)
  5876. {
  5877. struct s2io_nic *sp = netdev_priv(dev);
  5878. switch (sset) {
  5879. case ETH_SS_TEST:
  5880. return S2IO_TEST_LEN;
  5881. case ETH_SS_STATS:
  5882. switch (sp->device_type) {
  5883. case XFRAME_I_DEVICE:
  5884. return XFRAME_I_STAT_LEN;
  5885. case XFRAME_II_DEVICE:
  5886. return XFRAME_II_STAT_LEN;
  5887. default:
  5888. return 0;
  5889. }
  5890. default:
  5891. return -EOPNOTSUPP;
  5892. }
  5893. }
  5894. static void s2io_ethtool_get_strings(struct net_device *dev,
  5895. u32 stringset, u8 *data)
  5896. {
  5897. int stat_size = 0;
  5898. struct s2io_nic *sp = netdev_priv(dev);
  5899. switch (stringset) {
  5900. case ETH_SS_TEST:
  5901. memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
  5902. break;
  5903. case ETH_SS_STATS:
  5904. stat_size = sizeof(ethtool_xena_stats_keys);
  5905. memcpy(data, &ethtool_xena_stats_keys, stat_size);
  5906. if (sp->device_type == XFRAME_II_DEVICE) {
  5907. memcpy(data + stat_size,
  5908. &ethtool_enhanced_stats_keys,
  5909. sizeof(ethtool_enhanced_stats_keys));
  5910. stat_size += sizeof(ethtool_enhanced_stats_keys);
  5911. }
  5912. memcpy(data + stat_size, &ethtool_driver_stats_keys,
  5913. sizeof(ethtool_driver_stats_keys));
  5914. }
  5915. }
  5916. static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
  5917. {
  5918. if (data)
  5919. dev->features |= NETIF_F_IP_CSUM;
  5920. else
  5921. dev->features &= ~NETIF_F_IP_CSUM;
  5922. return 0;
  5923. }
  5924. static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
  5925. {
  5926. return (dev->features & NETIF_F_TSO) != 0;
  5927. }
  5928. static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
  5929. {
  5930. if (data)
  5931. dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
  5932. else
  5933. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
  5934. return 0;
  5935. }
  5936. static int s2io_ethtool_set_flags(struct net_device *dev, u32 data)
  5937. {
  5938. struct s2io_nic *sp = netdev_priv(dev);
  5939. int rc = 0;
  5940. int changed = 0;
  5941. if (data & ~ETH_FLAG_LRO)
  5942. return -EINVAL;
  5943. if (data & ETH_FLAG_LRO) {
  5944. if (lro_enable) {
  5945. if (!(dev->features & NETIF_F_LRO)) {
  5946. dev->features |= NETIF_F_LRO;
  5947. changed = 1;
  5948. }
  5949. } else
  5950. rc = -EINVAL;
  5951. } else if (dev->features & NETIF_F_LRO) {
  5952. dev->features &= ~NETIF_F_LRO;
  5953. changed = 1;
  5954. }
  5955. if (changed && netif_running(dev)) {
  5956. s2io_stop_all_tx_queue(sp);
  5957. s2io_card_down(sp);
  5958. sp->lro = !!(dev->features & NETIF_F_LRO);
  5959. rc = s2io_card_up(sp);
  5960. if (rc)
  5961. s2io_reset(sp);
  5962. else
  5963. s2io_start_all_tx_queue(sp);
  5964. }
  5965. return rc;
  5966. }
  5967. static const struct ethtool_ops netdev_ethtool_ops = {
  5968. .get_settings = s2io_ethtool_gset,
  5969. .set_settings = s2io_ethtool_sset,
  5970. .get_drvinfo = s2io_ethtool_gdrvinfo,
  5971. .get_regs_len = s2io_ethtool_get_regs_len,
  5972. .get_regs = s2io_ethtool_gregs,
  5973. .get_link = ethtool_op_get_link,
  5974. .get_eeprom_len = s2io_get_eeprom_len,
  5975. .get_eeprom = s2io_ethtool_geeprom,
  5976. .set_eeprom = s2io_ethtool_seeprom,
  5977. .get_ringparam = s2io_ethtool_gringparam,
  5978. .get_pauseparam = s2io_ethtool_getpause_data,
  5979. .set_pauseparam = s2io_ethtool_setpause_data,
  5980. .get_rx_csum = s2io_ethtool_get_rx_csum,
  5981. .set_rx_csum = s2io_ethtool_set_rx_csum,
  5982. .set_tx_csum = s2io_ethtool_op_set_tx_csum,
  5983. .set_flags = s2io_ethtool_set_flags,
  5984. .get_flags = ethtool_op_get_flags,
  5985. .set_sg = ethtool_op_set_sg,
  5986. .get_tso = s2io_ethtool_op_get_tso,
  5987. .set_tso = s2io_ethtool_op_set_tso,
  5988. .set_ufo = ethtool_op_set_ufo,
  5989. .self_test = s2io_ethtool_test,
  5990. .get_strings = s2io_ethtool_get_strings,
  5991. .phys_id = s2io_ethtool_idnic,
  5992. .get_ethtool_stats = s2io_get_ethtool_stats,
  5993. .get_sset_count = s2io_get_sset_count,
  5994. };
  5995. /**
  5996. * s2io_ioctl - Entry point for the Ioctl
  5997. * @dev : Device pointer.
  5998. * @ifr : An IOCTL specefic structure, that can contain a pointer to
  5999. * a proprietary structure used to pass information to the driver.
  6000. * @cmd : This is used to distinguish between the different commands that
  6001. * can be passed to the IOCTL functions.
  6002. * Description:
  6003. * Currently there are no special functionality supported in IOCTL, hence
  6004. * function always return EOPNOTSUPPORTED
  6005. */
  6006. static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  6007. {
  6008. return -EOPNOTSUPP;
  6009. }
  6010. /**
  6011. * s2io_change_mtu - entry point to change MTU size for the device.
  6012. * @dev : device pointer.
  6013. * @new_mtu : the new MTU size for the device.
  6014. * Description: A driver entry point to change MTU size for the device.
  6015. * Before changing the MTU the device must be stopped.
  6016. * Return value:
  6017. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  6018. * file on failure.
  6019. */
  6020. static int s2io_change_mtu(struct net_device *dev, int new_mtu)
  6021. {
  6022. struct s2io_nic *sp = netdev_priv(dev);
  6023. int ret = 0;
  6024. if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
  6025. DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name);
  6026. return -EPERM;
  6027. }
  6028. dev->mtu = new_mtu;
  6029. if (netif_running(dev)) {
  6030. s2io_stop_all_tx_queue(sp);
  6031. s2io_card_down(sp);
  6032. ret = s2io_card_up(sp);
  6033. if (ret) {
  6034. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  6035. __func__);
  6036. return ret;
  6037. }
  6038. s2io_wake_all_tx_queue(sp);
  6039. } else { /* Device is down */
  6040. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  6041. u64 val64 = new_mtu;
  6042. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  6043. }
  6044. return ret;
  6045. }
  6046. /**
  6047. * s2io_set_link - Set the LInk status
  6048. * @data: long pointer to device private structue
  6049. * Description: Sets the link status for the adapter
  6050. */
  6051. static void s2io_set_link(struct work_struct *work)
  6052. {
  6053. struct s2io_nic *nic = container_of(work, struct s2io_nic,
  6054. set_link_task);
  6055. struct net_device *dev = nic->dev;
  6056. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  6057. register u64 val64;
  6058. u16 subid;
  6059. rtnl_lock();
  6060. if (!netif_running(dev))
  6061. goto out_unlock;
  6062. if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
  6063. /* The card is being reset, no point doing anything */
  6064. goto out_unlock;
  6065. }
  6066. subid = nic->pdev->subsystem_device;
  6067. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  6068. /*
  6069. * Allow a small delay for the NICs self initiated
  6070. * cleanup to complete.
  6071. */
  6072. msleep(100);
  6073. }
  6074. val64 = readq(&bar0->adapter_status);
  6075. if (LINK_IS_UP(val64)) {
  6076. if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
  6077. if (verify_xena_quiescence(nic)) {
  6078. val64 = readq(&bar0->adapter_control);
  6079. val64 |= ADAPTER_CNTL_EN;
  6080. writeq(val64, &bar0->adapter_control);
  6081. if (CARDS_WITH_FAULTY_LINK_INDICATORS(
  6082. nic->device_type, subid)) {
  6083. val64 = readq(&bar0->gpio_control);
  6084. val64 |= GPIO_CTRL_GPIO_0;
  6085. writeq(val64, &bar0->gpio_control);
  6086. val64 = readq(&bar0->gpio_control);
  6087. } else {
  6088. val64 |= ADAPTER_LED_ON;
  6089. writeq(val64, &bar0->adapter_control);
  6090. }
  6091. nic->device_enabled_once = true;
  6092. } else {
  6093. DBG_PRINT(ERR_DBG,
  6094. "%s: Error: device is not Quiescent\n",
  6095. dev->name);
  6096. s2io_stop_all_tx_queue(nic);
  6097. }
  6098. }
  6099. val64 = readq(&bar0->adapter_control);
  6100. val64 |= ADAPTER_LED_ON;
  6101. writeq(val64, &bar0->adapter_control);
  6102. s2io_link(nic, LINK_UP);
  6103. } else {
  6104. if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
  6105. subid)) {
  6106. val64 = readq(&bar0->gpio_control);
  6107. val64 &= ~GPIO_CTRL_GPIO_0;
  6108. writeq(val64, &bar0->gpio_control);
  6109. val64 = readq(&bar0->gpio_control);
  6110. }
  6111. /* turn off LED */
  6112. val64 = readq(&bar0->adapter_control);
  6113. val64 = val64 & (~ADAPTER_LED_ON);
  6114. writeq(val64, &bar0->adapter_control);
  6115. s2io_link(nic, LINK_DOWN);
  6116. }
  6117. clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
  6118. out_unlock:
  6119. rtnl_unlock();
  6120. }
  6121. static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
  6122. struct buffAdd *ba,
  6123. struct sk_buff **skb, u64 *temp0, u64 *temp1,
  6124. u64 *temp2, int size)
  6125. {
  6126. struct net_device *dev = sp->dev;
  6127. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  6128. if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
  6129. struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
  6130. /* allocate skb */
  6131. if (*skb) {
  6132. DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
  6133. /*
  6134. * As Rx frame are not going to be processed,
  6135. * using same mapped address for the Rxd
  6136. * buffer pointer
  6137. */
  6138. rxdp1->Buffer0_ptr = *temp0;
  6139. } else {
  6140. *skb = dev_alloc_skb(size);
  6141. if (!(*skb)) {
  6142. DBG_PRINT(INFO_DBG,
  6143. "%s: Out of memory to allocate %s\n",
  6144. dev->name, "1 buf mode SKBs");
  6145. stats->mem_alloc_fail_cnt++;
  6146. return -ENOMEM ;
  6147. }
  6148. stats->mem_allocated += (*skb)->truesize;
  6149. /* storing the mapped addr in a temp variable
  6150. * such it will be used for next rxd whose
  6151. * Host Control is NULL
  6152. */
  6153. rxdp1->Buffer0_ptr = *temp0 =
  6154. pci_map_single(sp->pdev, (*skb)->data,
  6155. size - NET_IP_ALIGN,
  6156. PCI_DMA_FROMDEVICE);
  6157. if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
  6158. goto memalloc_failed;
  6159. rxdp->Host_Control = (unsigned long) (*skb);
  6160. }
  6161. } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
  6162. struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
  6163. /* Two buffer Mode */
  6164. if (*skb) {
  6165. rxdp3->Buffer2_ptr = *temp2;
  6166. rxdp3->Buffer0_ptr = *temp0;
  6167. rxdp3->Buffer1_ptr = *temp1;
  6168. } else {
  6169. *skb = dev_alloc_skb(size);
  6170. if (!(*skb)) {
  6171. DBG_PRINT(INFO_DBG,
  6172. "%s: Out of memory to allocate %s\n",
  6173. dev->name,
  6174. "2 buf mode SKBs");
  6175. stats->mem_alloc_fail_cnt++;
  6176. return -ENOMEM;
  6177. }
  6178. stats->mem_allocated += (*skb)->truesize;
  6179. rxdp3->Buffer2_ptr = *temp2 =
  6180. pci_map_single(sp->pdev, (*skb)->data,
  6181. dev->mtu + 4,
  6182. PCI_DMA_FROMDEVICE);
  6183. if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
  6184. goto memalloc_failed;
  6185. rxdp3->Buffer0_ptr = *temp0 =
  6186. pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN,
  6187. PCI_DMA_FROMDEVICE);
  6188. if (pci_dma_mapping_error(sp->pdev,
  6189. rxdp3->Buffer0_ptr)) {
  6190. pci_unmap_single(sp->pdev,
  6191. (dma_addr_t)rxdp3->Buffer2_ptr,
  6192. dev->mtu + 4,
  6193. PCI_DMA_FROMDEVICE);
  6194. goto memalloc_failed;
  6195. }
  6196. rxdp->Host_Control = (unsigned long) (*skb);
  6197. /* Buffer-1 will be dummy buffer not used */
  6198. rxdp3->Buffer1_ptr = *temp1 =
  6199. pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
  6200. PCI_DMA_FROMDEVICE);
  6201. if (pci_dma_mapping_error(sp->pdev,
  6202. rxdp3->Buffer1_ptr)) {
  6203. pci_unmap_single(sp->pdev,
  6204. (dma_addr_t)rxdp3->Buffer0_ptr,
  6205. BUF0_LEN, PCI_DMA_FROMDEVICE);
  6206. pci_unmap_single(sp->pdev,
  6207. (dma_addr_t)rxdp3->Buffer2_ptr,
  6208. dev->mtu + 4,
  6209. PCI_DMA_FROMDEVICE);
  6210. goto memalloc_failed;
  6211. }
  6212. }
  6213. }
  6214. return 0;
  6215. memalloc_failed:
  6216. stats->pci_map_fail_cnt++;
  6217. stats->mem_freed += (*skb)->truesize;
  6218. dev_kfree_skb(*skb);
  6219. return -ENOMEM;
  6220. }
  6221. static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
  6222. int size)
  6223. {
  6224. struct net_device *dev = sp->dev;
  6225. if (sp->rxd_mode == RXD_MODE_1) {
  6226. rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
  6227. } else if (sp->rxd_mode == RXD_MODE_3B) {
  6228. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  6229. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  6230. rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4);
  6231. }
  6232. }
  6233. static int rxd_owner_bit_reset(struct s2io_nic *sp)
  6234. {
  6235. int i, j, k, blk_cnt = 0, size;
  6236. struct config_param *config = &sp->config;
  6237. struct mac_info *mac_control = &sp->mac_control;
  6238. struct net_device *dev = sp->dev;
  6239. struct RxD_t *rxdp = NULL;
  6240. struct sk_buff *skb = NULL;
  6241. struct buffAdd *ba = NULL;
  6242. u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
  6243. /* Calculate the size based on ring mode */
  6244. size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  6245. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  6246. if (sp->rxd_mode == RXD_MODE_1)
  6247. size += NET_IP_ALIGN;
  6248. else if (sp->rxd_mode == RXD_MODE_3B)
  6249. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  6250. for (i = 0; i < config->rx_ring_num; i++) {
  6251. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  6252. struct ring_info *ring = &mac_control->rings[i];
  6253. blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1);
  6254. for (j = 0; j < blk_cnt; j++) {
  6255. for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
  6256. rxdp = ring->rx_blocks[j].rxds[k].virt_addr;
  6257. if (sp->rxd_mode == RXD_MODE_3B)
  6258. ba = &ring->ba[j][k];
  6259. if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb,
  6260. (u64 *)&temp0_64,
  6261. (u64 *)&temp1_64,
  6262. (u64 *)&temp2_64,
  6263. size) == -ENOMEM) {
  6264. return 0;
  6265. }
  6266. set_rxd_buffer_size(sp, rxdp, size);
  6267. wmb();
  6268. /* flip the Ownership bit to Hardware */
  6269. rxdp->Control_1 |= RXD_OWN_XENA;
  6270. }
  6271. }
  6272. }
  6273. return 0;
  6274. }
  6275. static int s2io_add_isr(struct s2io_nic *sp)
  6276. {
  6277. int ret = 0;
  6278. struct net_device *dev = sp->dev;
  6279. int err = 0;
  6280. if (sp->config.intr_type == MSI_X)
  6281. ret = s2io_enable_msi_x(sp);
  6282. if (ret) {
  6283. DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
  6284. sp->config.intr_type = INTA;
  6285. }
  6286. /*
  6287. * Store the values of the MSIX table in
  6288. * the struct s2io_nic structure
  6289. */
  6290. store_xmsi_data(sp);
  6291. /* After proper initialization of H/W, register ISR */
  6292. if (sp->config.intr_type == MSI_X) {
  6293. int i, msix_rx_cnt = 0;
  6294. for (i = 0; i < sp->num_entries; i++) {
  6295. if (sp->s2io_entries[i].in_use == MSIX_FLG) {
  6296. if (sp->s2io_entries[i].type ==
  6297. MSIX_RING_TYPE) {
  6298. sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
  6299. dev->name, i);
  6300. err = request_irq(sp->entries[i].vector,
  6301. s2io_msix_ring_handle,
  6302. 0,
  6303. sp->desc[i],
  6304. sp->s2io_entries[i].arg);
  6305. } else if (sp->s2io_entries[i].type ==
  6306. MSIX_ALARM_TYPE) {
  6307. sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
  6308. dev->name, i);
  6309. err = request_irq(sp->entries[i].vector,
  6310. s2io_msix_fifo_handle,
  6311. 0,
  6312. sp->desc[i],
  6313. sp->s2io_entries[i].arg);
  6314. }
  6315. /* if either data or addr is zero print it. */
  6316. if (!(sp->msix_info[i].addr &&
  6317. sp->msix_info[i].data)) {
  6318. DBG_PRINT(ERR_DBG,
  6319. "%s @Addr:0x%llx Data:0x%llx\n",
  6320. sp->desc[i],
  6321. (unsigned long long)
  6322. sp->msix_info[i].addr,
  6323. (unsigned long long)
  6324. ntohl(sp->msix_info[i].data));
  6325. } else
  6326. msix_rx_cnt++;
  6327. if (err) {
  6328. remove_msix_isr(sp);
  6329. DBG_PRINT(ERR_DBG,
  6330. "%s:MSI-X-%d registration "
  6331. "failed\n", dev->name, i);
  6332. DBG_PRINT(ERR_DBG,
  6333. "%s: Defaulting to INTA\n",
  6334. dev->name);
  6335. sp->config.intr_type = INTA;
  6336. break;
  6337. }
  6338. sp->s2io_entries[i].in_use =
  6339. MSIX_REGISTERED_SUCCESS;
  6340. }
  6341. }
  6342. if (!err) {
  6343. pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt);
  6344. DBG_PRINT(INFO_DBG,
  6345. "MSI-X-TX entries enabled through alarm vector\n");
  6346. }
  6347. }
  6348. if (sp->config.intr_type == INTA) {
  6349. err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED,
  6350. sp->name, dev);
  6351. if (err) {
  6352. DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
  6353. dev->name);
  6354. return -1;
  6355. }
  6356. }
  6357. return 0;
  6358. }
  6359. static void s2io_rem_isr(struct s2io_nic *sp)
  6360. {
  6361. if (sp->config.intr_type == MSI_X)
  6362. remove_msix_isr(sp);
  6363. else
  6364. remove_inta_isr(sp);
  6365. }
  6366. static void do_s2io_card_down(struct s2io_nic *sp, int do_io)
  6367. {
  6368. int cnt = 0;
  6369. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  6370. register u64 val64 = 0;
  6371. struct config_param *config;
  6372. config = &sp->config;
  6373. if (!is_s2io_card_up(sp))
  6374. return;
  6375. del_timer_sync(&sp->alarm_timer);
  6376. /* If s2io_set_link task is executing, wait till it completes. */
  6377. while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state)))
  6378. msleep(50);
  6379. clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
  6380. /* Disable napi */
  6381. if (sp->config.napi) {
  6382. int off = 0;
  6383. if (config->intr_type == MSI_X) {
  6384. for (; off < sp->config.rx_ring_num; off++)
  6385. napi_disable(&sp->mac_control.rings[off].napi);
  6386. }
  6387. else
  6388. napi_disable(&sp->napi);
  6389. }
  6390. /* disable Tx and Rx traffic on the NIC */
  6391. if (do_io)
  6392. stop_nic(sp);
  6393. s2io_rem_isr(sp);
  6394. /* stop the tx queue, indicate link down */
  6395. s2io_link(sp, LINK_DOWN);
  6396. /* Check if the device is Quiescent and then Reset the NIC */
  6397. while (do_io) {
  6398. /* As per the HW requirement we need to replenish the
  6399. * receive buffer to avoid the ring bump. Since there is
  6400. * no intention of processing the Rx frame at this pointwe are
  6401. * just settting the ownership bit of rxd in Each Rx
  6402. * ring to HW and set the appropriate buffer size
  6403. * based on the ring mode
  6404. */
  6405. rxd_owner_bit_reset(sp);
  6406. val64 = readq(&bar0->adapter_status);
  6407. if (verify_xena_quiescence(sp)) {
  6408. if (verify_pcc_quiescent(sp, sp->device_enabled_once))
  6409. break;
  6410. }
  6411. msleep(50);
  6412. cnt++;
  6413. if (cnt == 10) {
  6414. DBG_PRINT(ERR_DBG, "Device not Quiescent - "
  6415. "adapter status reads 0x%llx\n",
  6416. (unsigned long long)val64);
  6417. break;
  6418. }
  6419. }
  6420. if (do_io)
  6421. s2io_reset(sp);
  6422. /* Free all Tx buffers */
  6423. free_tx_buffers(sp);
  6424. /* Free all Rx buffers */
  6425. free_rx_buffers(sp);
  6426. clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
  6427. }
  6428. static void s2io_card_down(struct s2io_nic *sp)
  6429. {
  6430. do_s2io_card_down(sp, 1);
  6431. }
  6432. static int s2io_card_up(struct s2io_nic *sp)
  6433. {
  6434. int i, ret = 0;
  6435. struct config_param *config;
  6436. struct mac_info *mac_control;
  6437. struct net_device *dev = (struct net_device *)sp->dev;
  6438. u16 interruptible;
  6439. /* Initialize the H/W I/O registers */
  6440. ret = init_nic(sp);
  6441. if (ret != 0) {
  6442. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  6443. dev->name);
  6444. if (ret != -EIO)
  6445. s2io_reset(sp);
  6446. return ret;
  6447. }
  6448. /*
  6449. * Initializing the Rx buffers. For now we are considering only 1
  6450. * Rx ring and initializing buffers into 30 Rx blocks
  6451. */
  6452. config = &sp->config;
  6453. mac_control = &sp->mac_control;
  6454. for (i = 0; i < config->rx_ring_num; i++) {
  6455. struct ring_info *ring = &mac_control->rings[i];
  6456. ring->mtu = dev->mtu;
  6457. ring->lro = sp->lro;
  6458. ret = fill_rx_buffers(sp, ring, 1);
  6459. if (ret) {
  6460. DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
  6461. dev->name);
  6462. s2io_reset(sp);
  6463. free_rx_buffers(sp);
  6464. return -ENOMEM;
  6465. }
  6466. DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
  6467. ring->rx_bufs_left);
  6468. }
  6469. /* Initialise napi */
  6470. if (config->napi) {
  6471. if (config->intr_type == MSI_X) {
  6472. for (i = 0; i < sp->config.rx_ring_num; i++)
  6473. napi_enable(&sp->mac_control.rings[i].napi);
  6474. } else {
  6475. napi_enable(&sp->napi);
  6476. }
  6477. }
  6478. /* Maintain the state prior to the open */
  6479. if (sp->promisc_flg)
  6480. sp->promisc_flg = 0;
  6481. if (sp->m_cast_flg) {
  6482. sp->m_cast_flg = 0;
  6483. sp->all_multi_pos = 0;
  6484. }
  6485. /* Setting its receive mode */
  6486. s2io_set_multicast(dev);
  6487. if (sp->lro) {
  6488. /* Initialize max aggregatable pkts per session based on MTU */
  6489. sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
  6490. /* Check if we can use (if specified) user provided value */
  6491. if (lro_max_pkts < sp->lro_max_aggr_per_sess)
  6492. sp->lro_max_aggr_per_sess = lro_max_pkts;
  6493. }
  6494. /* Enable Rx Traffic and interrupts on the NIC */
  6495. if (start_nic(sp)) {
  6496. DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
  6497. s2io_reset(sp);
  6498. free_rx_buffers(sp);
  6499. return -ENODEV;
  6500. }
  6501. /* Add interrupt service routine */
  6502. if (s2io_add_isr(sp) != 0) {
  6503. if (sp->config.intr_type == MSI_X)
  6504. s2io_rem_isr(sp);
  6505. s2io_reset(sp);
  6506. free_rx_buffers(sp);
  6507. return -ENODEV;
  6508. }
  6509. S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
  6510. set_bit(__S2IO_STATE_CARD_UP, &sp->state);
  6511. /* Enable select interrupts */
  6512. en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
  6513. if (sp->config.intr_type != INTA) {
  6514. interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
  6515. en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
  6516. } else {
  6517. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  6518. interruptible |= TX_PIC_INTR;
  6519. en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
  6520. }
  6521. return 0;
  6522. }
  6523. /**
  6524. * s2io_restart_nic - Resets the NIC.
  6525. * @data : long pointer to the device private structure
  6526. * Description:
  6527. * This function is scheduled to be run by the s2io_tx_watchdog
  6528. * function after 0.5 secs to reset the NIC. The idea is to reduce
  6529. * the run time of the watch dog routine which is run holding a
  6530. * spin lock.
  6531. */
  6532. static void s2io_restart_nic(struct work_struct *work)
  6533. {
  6534. struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
  6535. struct net_device *dev = sp->dev;
  6536. rtnl_lock();
  6537. if (!netif_running(dev))
  6538. goto out_unlock;
  6539. s2io_card_down(sp);
  6540. if (s2io_card_up(sp)) {
  6541. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name);
  6542. }
  6543. s2io_wake_all_tx_queue(sp);
  6544. DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name);
  6545. out_unlock:
  6546. rtnl_unlock();
  6547. }
  6548. /**
  6549. * s2io_tx_watchdog - Watchdog for transmit side.
  6550. * @dev : Pointer to net device structure
  6551. * Description:
  6552. * This function is triggered if the Tx Queue is stopped
  6553. * for a pre-defined amount of time when the Interface is still up.
  6554. * If the Interface is jammed in such a situation, the hardware is
  6555. * reset (by s2io_close) and restarted again (by s2io_open) to
  6556. * overcome any problem that might have been caused in the hardware.
  6557. * Return value:
  6558. * void
  6559. */
  6560. static void s2io_tx_watchdog(struct net_device *dev)
  6561. {
  6562. struct s2io_nic *sp = netdev_priv(dev);
  6563. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  6564. if (netif_carrier_ok(dev)) {
  6565. swstats->watchdog_timer_cnt++;
  6566. schedule_work(&sp->rst_timer_task);
  6567. swstats->soft_reset_cnt++;
  6568. }
  6569. }
  6570. /**
  6571. * rx_osm_handler - To perform some OS related operations on SKB.
  6572. * @sp: private member of the device structure,pointer to s2io_nic structure.
  6573. * @skb : the socket buffer pointer.
  6574. * @len : length of the packet
  6575. * @cksum : FCS checksum of the frame.
  6576. * @ring_no : the ring from which this RxD was extracted.
  6577. * Description:
  6578. * This function is called by the Rx interrupt serivce routine to perform
  6579. * some OS related operations on the SKB before passing it to the upper
  6580. * layers. It mainly checks if the checksum is OK, if so adds it to the
  6581. * SKBs cksum variable, increments the Rx packet count and passes the SKB
  6582. * to the upper layer. If the checksum is wrong, it increments the Rx
  6583. * packet error count, frees the SKB and returns error.
  6584. * Return value:
  6585. * SUCCESS on success and -1 on failure.
  6586. */
  6587. static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
  6588. {
  6589. struct s2io_nic *sp = ring_data->nic;
  6590. struct net_device *dev = (struct net_device *)ring_data->dev;
  6591. struct sk_buff *skb = (struct sk_buff *)
  6592. ((unsigned long)rxdp->Host_Control);
  6593. int ring_no = ring_data->ring_no;
  6594. u16 l3_csum, l4_csum;
  6595. unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
  6596. struct lro *uninitialized_var(lro);
  6597. u8 err_mask;
  6598. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  6599. skb->dev = dev;
  6600. if (err) {
  6601. /* Check for parity error */
  6602. if (err & 0x1)
  6603. swstats->parity_err_cnt++;
  6604. err_mask = err >> 48;
  6605. switch (err_mask) {
  6606. case 1:
  6607. swstats->rx_parity_err_cnt++;
  6608. break;
  6609. case 2:
  6610. swstats->rx_abort_cnt++;
  6611. break;
  6612. case 3:
  6613. swstats->rx_parity_abort_cnt++;
  6614. break;
  6615. case 4:
  6616. swstats->rx_rda_fail_cnt++;
  6617. break;
  6618. case 5:
  6619. swstats->rx_unkn_prot_cnt++;
  6620. break;
  6621. case 6:
  6622. swstats->rx_fcs_err_cnt++;
  6623. break;
  6624. case 7:
  6625. swstats->rx_buf_size_err_cnt++;
  6626. break;
  6627. case 8:
  6628. swstats->rx_rxd_corrupt_cnt++;
  6629. break;
  6630. case 15:
  6631. swstats->rx_unkn_err_cnt++;
  6632. break;
  6633. }
  6634. /*
  6635. * Drop the packet if bad transfer code. Exception being
  6636. * 0x5, which could be due to unsupported IPv6 extension header.
  6637. * In this case, we let stack handle the packet.
  6638. * Note that in this case, since checksum will be incorrect,
  6639. * stack will validate the same.
  6640. */
  6641. if (err_mask != 0x5) {
  6642. DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
  6643. dev->name, err_mask);
  6644. dev->stats.rx_crc_errors++;
  6645. swstats->mem_freed
  6646. += skb->truesize;
  6647. dev_kfree_skb(skb);
  6648. ring_data->rx_bufs_left -= 1;
  6649. rxdp->Host_Control = 0;
  6650. return 0;
  6651. }
  6652. }
  6653. /* Updating statistics */
  6654. ring_data->rx_packets++;
  6655. rxdp->Host_Control = 0;
  6656. if (sp->rxd_mode == RXD_MODE_1) {
  6657. int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
  6658. ring_data->rx_bytes += len;
  6659. skb_put(skb, len);
  6660. } else if (sp->rxd_mode == RXD_MODE_3B) {
  6661. int get_block = ring_data->rx_curr_get_info.block_index;
  6662. int get_off = ring_data->rx_curr_get_info.offset;
  6663. int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
  6664. int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
  6665. unsigned char *buff = skb_push(skb, buf0_len);
  6666. struct buffAdd *ba = &ring_data->ba[get_block][get_off];
  6667. ring_data->rx_bytes += buf0_len + buf2_len;
  6668. memcpy(buff, ba->ba_0, buf0_len);
  6669. skb_put(skb, buf2_len);
  6670. }
  6671. if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
  6672. ((!ring_data->lro) ||
  6673. (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
  6674. (sp->rx_csum)) {
  6675. l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
  6676. l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
  6677. if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
  6678. /*
  6679. * NIC verifies if the Checksum of the received
  6680. * frame is Ok or not and accordingly returns
  6681. * a flag in the RxD.
  6682. */
  6683. skb->ip_summed = CHECKSUM_UNNECESSARY;
  6684. if (ring_data->lro) {
  6685. u32 tcp_len;
  6686. u8 *tcp;
  6687. int ret = 0;
  6688. ret = s2io_club_tcp_session(ring_data,
  6689. skb->data, &tcp,
  6690. &tcp_len, &lro,
  6691. rxdp, sp);
  6692. switch (ret) {
  6693. case 3: /* Begin anew */
  6694. lro->parent = skb;
  6695. goto aggregate;
  6696. case 1: /* Aggregate */
  6697. lro_append_pkt(sp, lro, skb, tcp_len);
  6698. goto aggregate;
  6699. case 4: /* Flush session */
  6700. lro_append_pkt(sp, lro, skb, tcp_len);
  6701. queue_rx_frame(lro->parent,
  6702. lro->vlan_tag);
  6703. clear_lro_session(lro);
  6704. swstats->flush_max_pkts++;
  6705. goto aggregate;
  6706. case 2: /* Flush both */
  6707. lro->parent->data_len = lro->frags_len;
  6708. swstats->sending_both++;
  6709. queue_rx_frame(lro->parent,
  6710. lro->vlan_tag);
  6711. clear_lro_session(lro);
  6712. goto send_up;
  6713. case 0: /* sessions exceeded */
  6714. case -1: /* non-TCP or not L2 aggregatable */
  6715. case 5: /*
  6716. * First pkt in session not
  6717. * L3/L4 aggregatable
  6718. */
  6719. break;
  6720. default:
  6721. DBG_PRINT(ERR_DBG,
  6722. "%s: Samadhana!!\n",
  6723. __func__);
  6724. BUG();
  6725. }
  6726. }
  6727. } else {
  6728. /*
  6729. * Packet with erroneous checksum, let the
  6730. * upper layers deal with it.
  6731. */
  6732. skb->ip_summed = CHECKSUM_NONE;
  6733. }
  6734. } else
  6735. skb->ip_summed = CHECKSUM_NONE;
  6736. swstats->mem_freed += skb->truesize;
  6737. send_up:
  6738. skb_record_rx_queue(skb, ring_no);
  6739. queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
  6740. aggregate:
  6741. sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
  6742. return SUCCESS;
  6743. }
  6744. /**
  6745. * s2io_link - stops/starts the Tx queue.
  6746. * @sp : private member of the device structure, which is a pointer to the
  6747. * s2io_nic structure.
  6748. * @link : inidicates whether link is UP/DOWN.
  6749. * Description:
  6750. * This function stops/starts the Tx queue depending on whether the link
  6751. * status of the NIC is is down or up. This is called by the Alarm
  6752. * interrupt handler whenever a link change interrupt comes up.
  6753. * Return value:
  6754. * void.
  6755. */
  6756. static void s2io_link(struct s2io_nic *sp, int link)
  6757. {
  6758. struct net_device *dev = (struct net_device *)sp->dev;
  6759. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  6760. if (link != sp->last_link_state) {
  6761. init_tti(sp, link);
  6762. if (link == LINK_DOWN) {
  6763. DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
  6764. s2io_stop_all_tx_queue(sp);
  6765. netif_carrier_off(dev);
  6766. if (swstats->link_up_cnt)
  6767. swstats->link_up_time =
  6768. jiffies - sp->start_time;
  6769. swstats->link_down_cnt++;
  6770. } else {
  6771. DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
  6772. if (swstats->link_down_cnt)
  6773. swstats->link_down_time =
  6774. jiffies - sp->start_time;
  6775. swstats->link_up_cnt++;
  6776. netif_carrier_on(dev);
  6777. s2io_wake_all_tx_queue(sp);
  6778. }
  6779. }
  6780. sp->last_link_state = link;
  6781. sp->start_time = jiffies;
  6782. }
  6783. /**
  6784. * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
  6785. * @sp : private member of the device structure, which is a pointer to the
  6786. * s2io_nic structure.
  6787. * Description:
  6788. * This function initializes a few of the PCI and PCI-X configuration registers
  6789. * with recommended values.
  6790. * Return value:
  6791. * void
  6792. */
  6793. static void s2io_init_pci(struct s2io_nic *sp)
  6794. {
  6795. u16 pci_cmd = 0, pcix_cmd = 0;
  6796. /* Enable Data Parity Error Recovery in PCI-X command register. */
  6797. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6798. &(pcix_cmd));
  6799. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6800. (pcix_cmd | 1));
  6801. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6802. &(pcix_cmd));
  6803. /* Set the PErr Response bit in PCI command register. */
  6804. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6805. pci_write_config_word(sp->pdev, PCI_COMMAND,
  6806. (pci_cmd | PCI_COMMAND_PARITY));
  6807. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6808. }
  6809. static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
  6810. u8 *dev_multiq)
  6811. {
  6812. if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) {
  6813. DBG_PRINT(ERR_DBG, "Requested number of tx fifos "
  6814. "(%d) not supported\n", tx_fifo_num);
  6815. if (tx_fifo_num < 1)
  6816. tx_fifo_num = 1;
  6817. else
  6818. tx_fifo_num = MAX_TX_FIFOS;
  6819. DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num);
  6820. }
  6821. if (multiq)
  6822. *dev_multiq = multiq;
  6823. if (tx_steering_type && (1 == tx_fifo_num)) {
  6824. if (tx_steering_type != TX_DEFAULT_STEERING)
  6825. DBG_PRINT(ERR_DBG,
  6826. "Tx steering is not supported with "
  6827. "one fifo. Disabling Tx steering.\n");
  6828. tx_steering_type = NO_STEERING;
  6829. }
  6830. if ((tx_steering_type < NO_STEERING) ||
  6831. (tx_steering_type > TX_DEFAULT_STEERING)) {
  6832. DBG_PRINT(ERR_DBG,
  6833. "Requested transmit steering not supported\n");
  6834. DBG_PRINT(ERR_DBG, "Disabling transmit steering\n");
  6835. tx_steering_type = NO_STEERING;
  6836. }
  6837. if (rx_ring_num > MAX_RX_RINGS) {
  6838. DBG_PRINT(ERR_DBG,
  6839. "Requested number of rx rings not supported\n");
  6840. DBG_PRINT(ERR_DBG, "Default to %d rx rings\n",
  6841. MAX_RX_RINGS);
  6842. rx_ring_num = MAX_RX_RINGS;
  6843. }
  6844. if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
  6845. DBG_PRINT(ERR_DBG, "Wrong intr_type requested. "
  6846. "Defaulting to INTA\n");
  6847. *dev_intr_type = INTA;
  6848. }
  6849. if ((*dev_intr_type == MSI_X) &&
  6850. ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
  6851. (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
  6852. DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. "
  6853. "Defaulting to INTA\n");
  6854. *dev_intr_type = INTA;
  6855. }
  6856. if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
  6857. DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n");
  6858. DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n");
  6859. rx_ring_mode = 1;
  6860. }
  6861. return SUCCESS;
  6862. }
  6863. /**
  6864. * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
  6865. * or Traffic class respectively.
  6866. * @nic: device private variable
  6867. * Description: The function configures the receive steering to
  6868. * desired receive ring.
  6869. * Return Value: SUCCESS on success and
  6870. * '-1' on failure (endian settings incorrect).
  6871. */
  6872. static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
  6873. {
  6874. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  6875. register u64 val64 = 0;
  6876. if (ds_codepoint > 63)
  6877. return FAILURE;
  6878. val64 = RTS_DS_MEM_DATA(ring);
  6879. writeq(val64, &bar0->rts_ds_mem_data);
  6880. val64 = RTS_DS_MEM_CTRL_WE |
  6881. RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
  6882. RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
  6883. writeq(val64, &bar0->rts_ds_mem_ctrl);
  6884. return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
  6885. RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
  6886. S2IO_BIT_RESET);
  6887. }
  6888. static const struct net_device_ops s2io_netdev_ops = {
  6889. .ndo_open = s2io_open,
  6890. .ndo_stop = s2io_close,
  6891. .ndo_get_stats = s2io_get_stats,
  6892. .ndo_start_xmit = s2io_xmit,
  6893. .ndo_validate_addr = eth_validate_addr,
  6894. .ndo_set_multicast_list = s2io_set_multicast,
  6895. .ndo_do_ioctl = s2io_ioctl,
  6896. .ndo_set_mac_address = s2io_set_mac_addr,
  6897. .ndo_change_mtu = s2io_change_mtu,
  6898. .ndo_vlan_rx_register = s2io_vlan_rx_register,
  6899. .ndo_vlan_rx_kill_vid = s2io_vlan_rx_kill_vid,
  6900. .ndo_tx_timeout = s2io_tx_watchdog,
  6901. #ifdef CONFIG_NET_POLL_CONTROLLER
  6902. .ndo_poll_controller = s2io_netpoll,
  6903. #endif
  6904. };
  6905. /**
  6906. * s2io_init_nic - Initialization of the adapter .
  6907. * @pdev : structure containing the PCI related information of the device.
  6908. * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
  6909. * Description:
  6910. * The function initializes an adapter identified by the pci_dec structure.
  6911. * All OS related initialization including memory and device structure and
  6912. * initlaization of the device private variable is done. Also the swapper
  6913. * control register is initialized to enable read and write into the I/O
  6914. * registers of the device.
  6915. * Return value:
  6916. * returns 0 on success and negative on failure.
  6917. */
  6918. static int __devinit
  6919. s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
  6920. {
  6921. struct s2io_nic *sp;
  6922. struct net_device *dev;
  6923. int i, j, ret;
  6924. int dma_flag = false;
  6925. u32 mac_up, mac_down;
  6926. u64 val64 = 0, tmp64 = 0;
  6927. struct XENA_dev_config __iomem *bar0 = NULL;
  6928. u16 subid;
  6929. struct config_param *config;
  6930. struct mac_info *mac_control;
  6931. int mode;
  6932. u8 dev_intr_type = intr_type;
  6933. u8 dev_multiq = 0;
  6934. ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
  6935. if (ret)
  6936. return ret;
  6937. ret = pci_enable_device(pdev);
  6938. if (ret) {
  6939. DBG_PRINT(ERR_DBG,
  6940. "%s: pci_enable_device failed\n", __func__);
  6941. return ret;
  6942. }
  6943. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  6944. DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__);
  6945. dma_flag = true;
  6946. if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
  6947. DBG_PRINT(ERR_DBG,
  6948. "Unable to obtain 64bit DMA "
  6949. "for consistent allocations\n");
  6950. pci_disable_device(pdev);
  6951. return -ENOMEM;
  6952. }
  6953. } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
  6954. DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__);
  6955. } else {
  6956. pci_disable_device(pdev);
  6957. return -ENOMEM;
  6958. }
  6959. ret = pci_request_regions(pdev, s2io_driver_name);
  6960. if (ret) {
  6961. DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n",
  6962. __func__, ret);
  6963. pci_disable_device(pdev);
  6964. return -ENODEV;
  6965. }
  6966. if (dev_multiq)
  6967. dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
  6968. else
  6969. dev = alloc_etherdev(sizeof(struct s2io_nic));
  6970. if (dev == NULL) {
  6971. DBG_PRINT(ERR_DBG, "Device allocation failed\n");
  6972. pci_disable_device(pdev);
  6973. pci_release_regions(pdev);
  6974. return -ENODEV;
  6975. }
  6976. pci_set_master(pdev);
  6977. pci_set_drvdata(pdev, dev);
  6978. SET_NETDEV_DEV(dev, &pdev->dev);
  6979. /* Private member variable initialized to s2io NIC structure */
  6980. sp = netdev_priv(dev);
  6981. memset(sp, 0, sizeof(struct s2io_nic));
  6982. sp->dev = dev;
  6983. sp->pdev = pdev;
  6984. sp->high_dma_flag = dma_flag;
  6985. sp->device_enabled_once = false;
  6986. if (rx_ring_mode == 1)
  6987. sp->rxd_mode = RXD_MODE_1;
  6988. if (rx_ring_mode == 2)
  6989. sp->rxd_mode = RXD_MODE_3B;
  6990. sp->config.intr_type = dev_intr_type;
  6991. if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
  6992. (pdev->device == PCI_DEVICE_ID_HERC_UNI))
  6993. sp->device_type = XFRAME_II_DEVICE;
  6994. else
  6995. sp->device_type = XFRAME_I_DEVICE;
  6996. sp->lro = lro_enable;
  6997. /* Initialize some PCI/PCI-X fields of the NIC. */
  6998. s2io_init_pci(sp);
  6999. /*
  7000. * Setting the device configuration parameters.
  7001. * Most of these parameters can be specified by the user during
  7002. * module insertion as they are module loadable parameters. If
  7003. * these parameters are not not specified during load time, they
  7004. * are initialized with default values.
  7005. */
  7006. config = &sp->config;
  7007. mac_control = &sp->mac_control;
  7008. config->napi = napi;
  7009. config->tx_steering_type = tx_steering_type;
  7010. /* Tx side parameters. */
  7011. if (config->tx_steering_type == TX_PRIORITY_STEERING)
  7012. config->tx_fifo_num = MAX_TX_FIFOS;
  7013. else
  7014. config->tx_fifo_num = tx_fifo_num;
  7015. /* Initialize the fifos used for tx steering */
  7016. if (config->tx_fifo_num < 5) {
  7017. if (config->tx_fifo_num == 1)
  7018. sp->total_tcp_fifos = 1;
  7019. else
  7020. sp->total_tcp_fifos = config->tx_fifo_num - 1;
  7021. sp->udp_fifo_idx = config->tx_fifo_num - 1;
  7022. sp->total_udp_fifos = 1;
  7023. sp->other_fifo_idx = sp->total_tcp_fifos - 1;
  7024. } else {
  7025. sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
  7026. FIFO_OTHER_MAX_NUM);
  7027. sp->udp_fifo_idx = sp->total_tcp_fifos;
  7028. sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
  7029. sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
  7030. }
  7031. config->multiq = dev_multiq;
  7032. for (i = 0; i < config->tx_fifo_num; i++) {
  7033. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  7034. tx_cfg->fifo_len = tx_fifo_len[i];
  7035. tx_cfg->fifo_priority = i;
  7036. }
  7037. /* mapping the QoS priority to the configured fifos */
  7038. for (i = 0; i < MAX_TX_FIFOS; i++)
  7039. config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
  7040. /* map the hashing selector table to the configured fifos */
  7041. for (i = 0; i < config->tx_fifo_num; i++)
  7042. sp->fifo_selector[i] = fifo_selector[i];
  7043. config->tx_intr_type = TXD_INT_TYPE_UTILZ;
  7044. for (i = 0; i < config->tx_fifo_num; i++) {
  7045. struct tx_fifo_config *tx_cfg = &config->tx_cfg[i];
  7046. tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
  7047. if (tx_cfg->fifo_len < 65) {
  7048. config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
  7049. break;
  7050. }
  7051. }
  7052. /* + 2 because one Txd for skb->data and one Txd for UFO */
  7053. config->max_txds = MAX_SKB_FRAGS + 2;
  7054. /* Rx side parameters. */
  7055. config->rx_ring_num = rx_ring_num;
  7056. for (i = 0; i < config->rx_ring_num; i++) {
  7057. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  7058. struct ring_info *ring = &mac_control->rings[i];
  7059. rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1);
  7060. rx_cfg->ring_priority = i;
  7061. ring->rx_bufs_left = 0;
  7062. ring->rxd_mode = sp->rxd_mode;
  7063. ring->rxd_count = rxd_count[sp->rxd_mode];
  7064. ring->pdev = sp->pdev;
  7065. ring->dev = sp->dev;
  7066. }
  7067. for (i = 0; i < rx_ring_num; i++) {
  7068. struct rx_ring_config *rx_cfg = &config->rx_cfg[i];
  7069. rx_cfg->ring_org = RING_ORG_BUFF1;
  7070. rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
  7071. }
  7072. /* Setting Mac Control parameters */
  7073. mac_control->rmac_pause_time = rmac_pause_time;
  7074. mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
  7075. mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
  7076. /* initialize the shared memory used by the NIC and the host */
  7077. if (init_shared_mem(sp)) {
  7078. DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name);
  7079. ret = -ENOMEM;
  7080. goto mem_alloc_failed;
  7081. }
  7082. sp->bar0 = pci_ioremap_bar(pdev, 0);
  7083. if (!sp->bar0) {
  7084. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
  7085. dev->name);
  7086. ret = -ENOMEM;
  7087. goto bar0_remap_failed;
  7088. }
  7089. sp->bar1 = pci_ioremap_bar(pdev, 2);
  7090. if (!sp->bar1) {
  7091. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
  7092. dev->name);
  7093. ret = -ENOMEM;
  7094. goto bar1_remap_failed;
  7095. }
  7096. dev->irq = pdev->irq;
  7097. dev->base_addr = (unsigned long)sp->bar0;
  7098. /* Initializing the BAR1 address as the start of the FIFO pointer. */
  7099. for (j = 0; j < MAX_TX_FIFOS; j++) {
  7100. mac_control->tx_FIFO_start[j] =
  7101. (struct TxFIFO_element __iomem *)
  7102. (sp->bar1 + (j * 0x00020000));
  7103. }
  7104. /* Driver entry points */
  7105. dev->netdev_ops = &s2io_netdev_ops;
  7106. SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
  7107. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  7108. if (lro_enable)
  7109. dev->features |= NETIF_F_LRO;
  7110. dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
  7111. if (sp->high_dma_flag == true)
  7112. dev->features |= NETIF_F_HIGHDMA;
  7113. dev->features |= NETIF_F_TSO;
  7114. dev->features |= NETIF_F_TSO6;
  7115. if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
  7116. dev->features |= NETIF_F_UFO;
  7117. dev->features |= NETIF_F_HW_CSUM;
  7118. }
  7119. dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
  7120. INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
  7121. INIT_WORK(&sp->set_link_task, s2io_set_link);
  7122. pci_save_state(sp->pdev);
  7123. /* Setting swapper control on the NIC, for proper reset operation */
  7124. if (s2io_set_swapper(sp)) {
  7125. DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n",
  7126. dev->name);
  7127. ret = -EAGAIN;
  7128. goto set_swap_failed;
  7129. }
  7130. /* Verify if the Herc works on the slot its placed into */
  7131. if (sp->device_type & XFRAME_II_DEVICE) {
  7132. mode = s2io_verify_pci_mode(sp);
  7133. if (mode < 0) {
  7134. DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n",
  7135. __func__);
  7136. ret = -EBADSLT;
  7137. goto set_swap_failed;
  7138. }
  7139. }
  7140. if (sp->config.intr_type == MSI_X) {
  7141. sp->num_entries = config->rx_ring_num + 1;
  7142. ret = s2io_enable_msi_x(sp);
  7143. if (!ret) {
  7144. ret = s2io_test_msi(sp);
  7145. /* rollback MSI-X, will re-enable during add_isr() */
  7146. remove_msix_isr(sp);
  7147. }
  7148. if (ret) {
  7149. DBG_PRINT(ERR_DBG,
  7150. "MSI-X requested but failed to enable\n");
  7151. sp->config.intr_type = INTA;
  7152. }
  7153. }
  7154. if (config->intr_type == MSI_X) {
  7155. for (i = 0; i < config->rx_ring_num ; i++) {
  7156. struct ring_info *ring = &mac_control->rings[i];
  7157. netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64);
  7158. }
  7159. } else {
  7160. netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
  7161. }
  7162. /* Not needed for Herc */
  7163. if (sp->device_type & XFRAME_I_DEVICE) {
  7164. /*
  7165. * Fix for all "FFs" MAC address problems observed on
  7166. * Alpha platforms
  7167. */
  7168. fix_mac_address(sp);
  7169. s2io_reset(sp);
  7170. }
  7171. /*
  7172. * MAC address initialization.
  7173. * For now only one mac address will be read and used.
  7174. */
  7175. bar0 = sp->bar0;
  7176. val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  7177. RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
  7178. writeq(val64, &bar0->rmac_addr_cmd_mem);
  7179. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  7180. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  7181. S2IO_BIT_RESET);
  7182. tmp64 = readq(&bar0->rmac_addr_data0_mem);
  7183. mac_down = (u32)tmp64;
  7184. mac_up = (u32) (tmp64 >> 32);
  7185. sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
  7186. sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
  7187. sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
  7188. sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
  7189. sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
  7190. sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
  7191. /* Set the factory defined MAC address initially */
  7192. dev->addr_len = ETH_ALEN;
  7193. memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
  7194. memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
  7195. /* initialize number of multicast & unicast MAC entries variables */
  7196. if (sp->device_type == XFRAME_I_DEVICE) {
  7197. config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
  7198. config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
  7199. config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
  7200. } else if (sp->device_type == XFRAME_II_DEVICE) {
  7201. config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
  7202. config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
  7203. config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
  7204. }
  7205. /* store mac addresses from CAM to s2io_nic structure */
  7206. do_s2io_store_unicast_mc(sp);
  7207. /* Configure MSIX vector for number of rings configured plus one */
  7208. if ((sp->device_type == XFRAME_II_DEVICE) &&
  7209. (config->intr_type == MSI_X))
  7210. sp->num_entries = config->rx_ring_num + 1;
  7211. /* Store the values of the MSIX table in the s2io_nic structure */
  7212. store_xmsi_data(sp);
  7213. /* reset Nic and bring it to known state */
  7214. s2io_reset(sp);
  7215. /*
  7216. * Initialize link state flags
  7217. * and the card state parameter
  7218. */
  7219. sp->state = 0;
  7220. /* Initialize spinlocks */
  7221. for (i = 0; i < sp->config.tx_fifo_num; i++) {
  7222. struct fifo_info *fifo = &mac_control->fifos[i];
  7223. spin_lock_init(&fifo->tx_lock);
  7224. }
  7225. /*
  7226. * SXE-002: Configure link and activity LED to init state
  7227. * on driver load.
  7228. */
  7229. subid = sp->pdev->subsystem_device;
  7230. if ((subid & 0xFF) >= 0x07) {
  7231. val64 = readq(&bar0->gpio_control);
  7232. val64 |= 0x0000800000000000ULL;
  7233. writeq(val64, &bar0->gpio_control);
  7234. val64 = 0x0411040400000000ULL;
  7235. writeq(val64, (void __iomem *)bar0 + 0x2700);
  7236. val64 = readq(&bar0->gpio_control);
  7237. }
  7238. sp->rx_csum = 1; /* Rx chksum verify enabled by default */
  7239. if (register_netdev(dev)) {
  7240. DBG_PRINT(ERR_DBG, "Device registration failed\n");
  7241. ret = -ENODEV;
  7242. goto register_failed;
  7243. }
  7244. s2io_vpd_read(sp);
  7245. DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
  7246. DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name,
  7247. sp->product_name, pdev->revision);
  7248. DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
  7249. s2io_driver_version);
  7250. DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr);
  7251. DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num);
  7252. if (sp->device_type & XFRAME_II_DEVICE) {
  7253. mode = s2io_print_pci_mode(sp);
  7254. if (mode < 0) {
  7255. ret = -EBADSLT;
  7256. unregister_netdev(dev);
  7257. goto set_swap_failed;
  7258. }
  7259. }
  7260. switch (sp->rxd_mode) {
  7261. case RXD_MODE_1:
  7262. DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
  7263. dev->name);
  7264. break;
  7265. case RXD_MODE_3B:
  7266. DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
  7267. dev->name);
  7268. break;
  7269. }
  7270. switch (sp->config.napi) {
  7271. case 0:
  7272. DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
  7273. break;
  7274. case 1:
  7275. DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
  7276. break;
  7277. }
  7278. DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
  7279. sp->config.tx_fifo_num);
  7280. DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
  7281. sp->config.rx_ring_num);
  7282. switch (sp->config.intr_type) {
  7283. case INTA:
  7284. DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
  7285. break;
  7286. case MSI_X:
  7287. DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
  7288. break;
  7289. }
  7290. if (sp->config.multiq) {
  7291. for (i = 0; i < sp->config.tx_fifo_num; i++) {
  7292. struct fifo_info *fifo = &mac_control->fifos[i];
  7293. fifo->multiq = config->multiq;
  7294. }
  7295. DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
  7296. dev->name);
  7297. } else
  7298. DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
  7299. dev->name);
  7300. switch (sp->config.tx_steering_type) {
  7301. case NO_STEERING:
  7302. DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n",
  7303. dev->name);
  7304. break;
  7305. case TX_PRIORITY_STEERING:
  7306. DBG_PRINT(ERR_DBG,
  7307. "%s: Priority steering enabled for transmit\n",
  7308. dev->name);
  7309. break;
  7310. case TX_DEFAULT_STEERING:
  7311. DBG_PRINT(ERR_DBG,
  7312. "%s: Default steering enabled for transmit\n",
  7313. dev->name);
  7314. }
  7315. if (sp->lro)
  7316. DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
  7317. dev->name);
  7318. if (ufo)
  7319. DBG_PRINT(ERR_DBG,
  7320. "%s: UDP Fragmentation Offload(UFO) enabled\n",
  7321. dev->name);
  7322. /* Initialize device name */
  7323. sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
  7324. if (vlan_tag_strip)
  7325. sp->vlan_strip_flag = 1;
  7326. else
  7327. sp->vlan_strip_flag = 0;
  7328. /*
  7329. * Make Link state as off at this point, when the Link change
  7330. * interrupt comes the state will be automatically changed to
  7331. * the right state.
  7332. */
  7333. netif_carrier_off(dev);
  7334. return 0;
  7335. register_failed:
  7336. set_swap_failed:
  7337. iounmap(sp->bar1);
  7338. bar1_remap_failed:
  7339. iounmap(sp->bar0);
  7340. bar0_remap_failed:
  7341. mem_alloc_failed:
  7342. free_shared_mem(sp);
  7343. pci_disable_device(pdev);
  7344. pci_release_regions(pdev);
  7345. pci_set_drvdata(pdev, NULL);
  7346. free_netdev(dev);
  7347. return ret;
  7348. }
  7349. /**
  7350. * s2io_rem_nic - Free the PCI device
  7351. * @pdev: structure containing the PCI related information of the device.
  7352. * Description: This function is called by the Pci subsystem to release a
  7353. * PCI device and free up all resource held up by the device. This could
  7354. * be in response to a Hot plug event or when the driver is to be removed
  7355. * from memory.
  7356. */
  7357. static void __devexit s2io_rem_nic(struct pci_dev *pdev)
  7358. {
  7359. struct net_device *dev =
  7360. (struct net_device *)pci_get_drvdata(pdev);
  7361. struct s2io_nic *sp;
  7362. if (dev == NULL) {
  7363. DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
  7364. return;
  7365. }
  7366. flush_scheduled_work();
  7367. sp = netdev_priv(dev);
  7368. unregister_netdev(dev);
  7369. free_shared_mem(sp);
  7370. iounmap(sp->bar0);
  7371. iounmap(sp->bar1);
  7372. pci_release_regions(pdev);
  7373. pci_set_drvdata(pdev, NULL);
  7374. free_netdev(dev);
  7375. pci_disable_device(pdev);
  7376. }
  7377. /**
  7378. * s2io_starter - Entry point for the driver
  7379. * Description: This function is the entry point for the driver. It verifies
  7380. * the module loadable parameters and initializes PCI configuration space.
  7381. */
  7382. static int __init s2io_starter(void)
  7383. {
  7384. return pci_register_driver(&s2io_driver);
  7385. }
  7386. /**
  7387. * s2io_closer - Cleanup routine for the driver
  7388. * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
  7389. */
  7390. static __exit void s2io_closer(void)
  7391. {
  7392. pci_unregister_driver(&s2io_driver);
  7393. DBG_PRINT(INIT_DBG, "cleanup done\n");
  7394. }
  7395. module_init(s2io_starter);
  7396. module_exit(s2io_closer);
  7397. static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
  7398. struct tcphdr **tcp, struct RxD_t *rxdp,
  7399. struct s2io_nic *sp)
  7400. {
  7401. int ip_off;
  7402. u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
  7403. if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
  7404. DBG_PRINT(INIT_DBG,
  7405. "%s: Non-TCP frames not supported for LRO\n",
  7406. __func__);
  7407. return -1;
  7408. }
  7409. /* Checking for DIX type or DIX type with VLAN */
  7410. if ((l2_type == 0) || (l2_type == 4)) {
  7411. ip_off = HEADER_ETHERNET_II_802_3_SIZE;
  7412. /*
  7413. * If vlan stripping is disabled and the frame is VLAN tagged,
  7414. * shift the offset by the VLAN header size bytes.
  7415. */
  7416. if ((!sp->vlan_strip_flag) &&
  7417. (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
  7418. ip_off += HEADER_VLAN_SIZE;
  7419. } else {
  7420. /* LLC, SNAP etc are considered non-mergeable */
  7421. return -1;
  7422. }
  7423. *ip = (struct iphdr *)((u8 *)buffer + ip_off);
  7424. ip_len = (u8)((*ip)->ihl);
  7425. ip_len <<= 2;
  7426. *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
  7427. return 0;
  7428. }
  7429. static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
  7430. struct tcphdr *tcp)
  7431. {
  7432. DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
  7433. if ((lro->iph->saddr != ip->saddr) ||
  7434. (lro->iph->daddr != ip->daddr) ||
  7435. (lro->tcph->source != tcp->source) ||
  7436. (lro->tcph->dest != tcp->dest))
  7437. return -1;
  7438. return 0;
  7439. }
  7440. static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
  7441. {
  7442. return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2);
  7443. }
  7444. static void initiate_new_session(struct lro *lro, u8 *l2h,
  7445. struct iphdr *ip, struct tcphdr *tcp,
  7446. u32 tcp_pyld_len, u16 vlan_tag)
  7447. {
  7448. DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
  7449. lro->l2h = l2h;
  7450. lro->iph = ip;
  7451. lro->tcph = tcp;
  7452. lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
  7453. lro->tcp_ack = tcp->ack_seq;
  7454. lro->sg_num = 1;
  7455. lro->total_len = ntohs(ip->tot_len);
  7456. lro->frags_len = 0;
  7457. lro->vlan_tag = vlan_tag;
  7458. /*
  7459. * Check if we saw TCP timestamp.
  7460. * Other consistency checks have already been done.
  7461. */
  7462. if (tcp->doff == 8) {
  7463. __be32 *ptr;
  7464. ptr = (__be32 *)(tcp+1);
  7465. lro->saw_ts = 1;
  7466. lro->cur_tsval = ntohl(*(ptr+1));
  7467. lro->cur_tsecr = *(ptr+2);
  7468. }
  7469. lro->in_use = 1;
  7470. }
  7471. static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
  7472. {
  7473. struct iphdr *ip = lro->iph;
  7474. struct tcphdr *tcp = lro->tcph;
  7475. __sum16 nchk;
  7476. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  7477. DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
  7478. /* Update L3 header */
  7479. ip->tot_len = htons(lro->total_len);
  7480. ip->check = 0;
  7481. nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
  7482. ip->check = nchk;
  7483. /* Update L4 header */
  7484. tcp->ack_seq = lro->tcp_ack;
  7485. tcp->window = lro->window;
  7486. /* Update tsecr field if this session has timestamps enabled */
  7487. if (lro->saw_ts) {
  7488. __be32 *ptr = (__be32 *)(tcp + 1);
  7489. *(ptr+2) = lro->cur_tsecr;
  7490. }
  7491. /* Update counters required for calculation of
  7492. * average no. of packets aggregated.
  7493. */
  7494. swstats->sum_avg_pkts_aggregated += lro->sg_num;
  7495. swstats->num_aggregations++;
  7496. }
  7497. static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
  7498. struct tcphdr *tcp, u32 l4_pyld)
  7499. {
  7500. DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
  7501. lro->total_len += l4_pyld;
  7502. lro->frags_len += l4_pyld;
  7503. lro->tcp_next_seq += l4_pyld;
  7504. lro->sg_num++;
  7505. /* Update ack seq no. and window ad(from this pkt) in LRO object */
  7506. lro->tcp_ack = tcp->ack_seq;
  7507. lro->window = tcp->window;
  7508. if (lro->saw_ts) {
  7509. __be32 *ptr;
  7510. /* Update tsecr and tsval from this packet */
  7511. ptr = (__be32 *)(tcp+1);
  7512. lro->cur_tsval = ntohl(*(ptr+1));
  7513. lro->cur_tsecr = *(ptr + 2);
  7514. }
  7515. }
  7516. static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
  7517. struct tcphdr *tcp, u32 tcp_pyld_len)
  7518. {
  7519. u8 *ptr;
  7520. DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__);
  7521. if (!tcp_pyld_len) {
  7522. /* Runt frame or a pure ack */
  7523. return -1;
  7524. }
  7525. if (ip->ihl != 5) /* IP has options */
  7526. return -1;
  7527. /* If we see CE codepoint in IP header, packet is not mergeable */
  7528. if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
  7529. return -1;
  7530. /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
  7531. if (tcp->urg || tcp->psh || tcp->rst ||
  7532. tcp->syn || tcp->fin ||
  7533. tcp->ece || tcp->cwr || !tcp->ack) {
  7534. /*
  7535. * Currently recognize only the ack control word and
  7536. * any other control field being set would result in
  7537. * flushing the LRO session
  7538. */
  7539. return -1;
  7540. }
  7541. /*
  7542. * Allow only one TCP timestamp option. Don't aggregate if
  7543. * any other options are detected.
  7544. */
  7545. if (tcp->doff != 5 && tcp->doff != 8)
  7546. return -1;
  7547. if (tcp->doff == 8) {
  7548. ptr = (u8 *)(tcp + 1);
  7549. while (*ptr == TCPOPT_NOP)
  7550. ptr++;
  7551. if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
  7552. return -1;
  7553. /* Ensure timestamp value increases monotonically */
  7554. if (l_lro)
  7555. if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
  7556. return -1;
  7557. /* timestamp echo reply should be non-zero */
  7558. if (*((__be32 *)(ptr+6)) == 0)
  7559. return -1;
  7560. }
  7561. return 0;
  7562. }
  7563. static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer,
  7564. u8 **tcp, u32 *tcp_len, struct lro **lro,
  7565. struct RxD_t *rxdp, struct s2io_nic *sp)
  7566. {
  7567. struct iphdr *ip;
  7568. struct tcphdr *tcph;
  7569. int ret = 0, i;
  7570. u16 vlan_tag = 0;
  7571. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  7572. ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
  7573. rxdp, sp);
  7574. if (ret)
  7575. return ret;
  7576. DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr);
  7577. vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
  7578. tcph = (struct tcphdr *)*tcp;
  7579. *tcp_len = get_l4_pyld_length(ip, tcph);
  7580. for (i = 0; i < MAX_LRO_SESSIONS; i++) {
  7581. struct lro *l_lro = &ring_data->lro0_n[i];
  7582. if (l_lro->in_use) {
  7583. if (check_for_socket_match(l_lro, ip, tcph))
  7584. continue;
  7585. /* Sock pair matched */
  7586. *lro = l_lro;
  7587. if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
  7588. DBG_PRINT(INFO_DBG, "%s: Out of sequence. "
  7589. "expected 0x%x, actual 0x%x\n",
  7590. __func__,
  7591. (*lro)->tcp_next_seq,
  7592. ntohl(tcph->seq));
  7593. swstats->outof_sequence_pkts++;
  7594. ret = 2;
  7595. break;
  7596. }
  7597. if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,
  7598. *tcp_len))
  7599. ret = 1; /* Aggregate */
  7600. else
  7601. ret = 2; /* Flush both */
  7602. break;
  7603. }
  7604. }
  7605. if (ret == 0) {
  7606. /* Before searching for available LRO objects,
  7607. * check if the pkt is L3/L4 aggregatable. If not
  7608. * don't create new LRO session. Just send this
  7609. * packet up.
  7610. */
  7611. if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len))
  7612. return 5;
  7613. for (i = 0; i < MAX_LRO_SESSIONS; i++) {
  7614. struct lro *l_lro = &ring_data->lro0_n[i];
  7615. if (!(l_lro->in_use)) {
  7616. *lro = l_lro;
  7617. ret = 3; /* Begin anew */
  7618. break;
  7619. }
  7620. }
  7621. }
  7622. if (ret == 0) { /* sessions exceeded */
  7623. DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n",
  7624. __func__);
  7625. *lro = NULL;
  7626. return ret;
  7627. }
  7628. switch (ret) {
  7629. case 3:
  7630. initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
  7631. vlan_tag);
  7632. break;
  7633. case 2:
  7634. update_L3L4_header(sp, *lro);
  7635. break;
  7636. case 1:
  7637. aggregate_new_rx(*lro, ip, tcph, *tcp_len);
  7638. if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
  7639. update_L3L4_header(sp, *lro);
  7640. ret = 4; /* Flush the LRO */
  7641. }
  7642. break;
  7643. default:
  7644. DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__);
  7645. break;
  7646. }
  7647. return ret;
  7648. }
  7649. static void clear_lro_session(struct lro *lro)
  7650. {
  7651. static u16 lro_struct_size = sizeof(struct lro);
  7652. memset(lro, 0, lro_struct_size);
  7653. }
  7654. static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
  7655. {
  7656. struct net_device *dev = skb->dev;
  7657. struct s2io_nic *sp = netdev_priv(dev);
  7658. skb->protocol = eth_type_trans(skb, dev);
  7659. if (sp->vlgrp && vlan_tag && (sp->vlan_strip_flag)) {
  7660. /* Queueing the vlan frame to the upper layer */
  7661. if (sp->config.napi)
  7662. vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
  7663. else
  7664. vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
  7665. } else {
  7666. if (sp->config.napi)
  7667. netif_receive_skb(skb);
  7668. else
  7669. netif_rx(skb);
  7670. }
  7671. }
  7672. static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
  7673. struct sk_buff *skb, u32 tcp_len)
  7674. {
  7675. struct sk_buff *first = lro->parent;
  7676. struct swStat *swstats = &sp->mac_control.stats_info->sw_stat;
  7677. first->len += tcp_len;
  7678. first->data_len = lro->frags_len;
  7679. skb_pull(skb, (skb->len - tcp_len));
  7680. if (skb_shinfo(first)->frag_list)
  7681. lro->last_frag->next = skb;
  7682. else
  7683. skb_shinfo(first)->frag_list = skb;
  7684. first->truesize += skb->truesize;
  7685. lro->last_frag = skb;
  7686. swstats->clubbed_frms_cnt++;
  7687. }
  7688. /**
  7689. * s2io_io_error_detected - called when PCI error is detected
  7690. * @pdev: Pointer to PCI device
  7691. * @state: The current pci connection state
  7692. *
  7693. * This function is called after a PCI bus error affecting
  7694. * this device has been detected.
  7695. */
  7696. static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
  7697. pci_channel_state_t state)
  7698. {
  7699. struct net_device *netdev = pci_get_drvdata(pdev);
  7700. struct s2io_nic *sp = netdev_priv(netdev);
  7701. netif_device_detach(netdev);
  7702. if (state == pci_channel_io_perm_failure)
  7703. return PCI_ERS_RESULT_DISCONNECT;
  7704. if (netif_running(netdev)) {
  7705. /* Bring down the card, while avoiding PCI I/O */
  7706. do_s2io_card_down(sp, 0);
  7707. }
  7708. pci_disable_device(pdev);
  7709. return PCI_ERS_RESULT_NEED_RESET;
  7710. }
  7711. /**
  7712. * s2io_io_slot_reset - called after the pci bus has been reset.
  7713. * @pdev: Pointer to PCI device
  7714. *
  7715. * Restart the card from scratch, as if from a cold-boot.
  7716. * At this point, the card has exprienced a hard reset,
  7717. * followed by fixups by BIOS, and has its config space
  7718. * set up identically to what it was at cold boot.
  7719. */
  7720. static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
  7721. {
  7722. struct net_device *netdev = pci_get_drvdata(pdev);
  7723. struct s2io_nic *sp = netdev_priv(netdev);
  7724. if (pci_enable_device(pdev)) {
  7725. pr_err("Cannot re-enable PCI device after reset.\n");
  7726. return PCI_ERS_RESULT_DISCONNECT;
  7727. }
  7728. pci_set_master(pdev);
  7729. s2io_reset(sp);
  7730. return PCI_ERS_RESULT_RECOVERED;
  7731. }
  7732. /**
  7733. * s2io_io_resume - called when traffic can start flowing again.
  7734. * @pdev: Pointer to PCI device
  7735. *
  7736. * This callback is called when the error recovery driver tells
  7737. * us that its OK to resume normal operation.
  7738. */
  7739. static void s2io_io_resume(struct pci_dev *pdev)
  7740. {
  7741. struct net_device *netdev = pci_get_drvdata(pdev);
  7742. struct s2io_nic *sp = netdev_priv(netdev);
  7743. if (netif_running(netdev)) {
  7744. if (s2io_card_up(sp)) {
  7745. pr_err("Can't bring device back up after reset.\n");
  7746. return;
  7747. }
  7748. if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
  7749. s2io_card_down(sp);
  7750. pr_err("Can't restore mac addr after reset.\n");
  7751. return;
  7752. }
  7753. }
  7754. netif_device_attach(netdev);
  7755. netif_tx_wake_all_queues(netdev);
  7756. }