huge_memory.c 62 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <linux/freezer.h>
  18. #include <linux/mman.h>
  19. #include <linux/pagemap.h>
  20. #include <asm/tlb.h>
  21. #include <asm/pgalloc.h>
  22. #include "internal.h"
  23. /*
  24. * By default transparent hugepage support is enabled for all mappings
  25. * and khugepaged scans all mappings. Defrag is only invoked by
  26. * khugepaged hugepage allocations and by page faults inside
  27. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  28. * allocations.
  29. */
  30. unsigned long transparent_hugepage_flags __read_mostly =
  31. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  32. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  33. #endif
  34. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  35. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  36. #endif
  37. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  38. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  39. /* default scan 8*512 pte (or vmas) every 30 second */
  40. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  41. static unsigned int khugepaged_pages_collapsed;
  42. static unsigned int khugepaged_full_scans;
  43. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  44. /* during fragmentation poll the hugepage allocator once every minute */
  45. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  46. static struct task_struct *khugepaged_thread __read_mostly;
  47. static DEFINE_MUTEX(khugepaged_mutex);
  48. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  49. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  50. /*
  51. * default collapse hugepages if there is at least one pte mapped like
  52. * it would have happened if the vma was large enough during page
  53. * fault.
  54. */
  55. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  56. static int khugepaged(void *none);
  57. static int mm_slots_hash_init(void);
  58. static int khugepaged_slab_init(void);
  59. static void khugepaged_slab_free(void);
  60. #define MM_SLOTS_HASH_HEADS 1024
  61. static struct hlist_head *mm_slots_hash __read_mostly;
  62. static struct kmem_cache *mm_slot_cache __read_mostly;
  63. /**
  64. * struct mm_slot - hash lookup from mm to mm_slot
  65. * @hash: hash collision list
  66. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  67. * @mm: the mm that this information is valid for
  68. */
  69. struct mm_slot {
  70. struct hlist_node hash;
  71. struct list_head mm_node;
  72. struct mm_struct *mm;
  73. };
  74. /**
  75. * struct khugepaged_scan - cursor for scanning
  76. * @mm_head: the head of the mm list to scan
  77. * @mm_slot: the current mm_slot we are scanning
  78. * @address: the next address inside that to be scanned
  79. *
  80. * There is only the one khugepaged_scan instance of this cursor structure.
  81. */
  82. struct khugepaged_scan {
  83. struct list_head mm_head;
  84. struct mm_slot *mm_slot;
  85. unsigned long address;
  86. };
  87. static struct khugepaged_scan khugepaged_scan = {
  88. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  89. };
  90. static int set_recommended_min_free_kbytes(void)
  91. {
  92. struct zone *zone;
  93. int nr_zones = 0;
  94. unsigned long recommended_min;
  95. extern int min_free_kbytes;
  96. if (!khugepaged_enabled())
  97. return 0;
  98. for_each_populated_zone(zone)
  99. nr_zones++;
  100. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  101. recommended_min = pageblock_nr_pages * nr_zones * 2;
  102. /*
  103. * Make sure that on average at least two pageblocks are almost free
  104. * of another type, one for a migratetype to fall back to and a
  105. * second to avoid subsequent fallbacks of other types There are 3
  106. * MIGRATE_TYPES we care about.
  107. */
  108. recommended_min += pageblock_nr_pages * nr_zones *
  109. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  110. /* don't ever allow to reserve more than 5% of the lowmem */
  111. recommended_min = min(recommended_min,
  112. (unsigned long) nr_free_buffer_pages() / 20);
  113. recommended_min <<= (PAGE_SHIFT-10);
  114. if (recommended_min > min_free_kbytes)
  115. min_free_kbytes = recommended_min;
  116. setup_per_zone_wmarks();
  117. return 0;
  118. }
  119. late_initcall(set_recommended_min_free_kbytes);
  120. static int start_khugepaged(void)
  121. {
  122. int err = 0;
  123. if (khugepaged_enabled()) {
  124. if (!khugepaged_thread)
  125. khugepaged_thread = kthread_run(khugepaged, NULL,
  126. "khugepaged");
  127. if (unlikely(IS_ERR(khugepaged_thread))) {
  128. printk(KERN_ERR
  129. "khugepaged: kthread_run(khugepaged) failed\n");
  130. err = PTR_ERR(khugepaged_thread);
  131. khugepaged_thread = NULL;
  132. }
  133. if (!list_empty(&khugepaged_scan.mm_head))
  134. wake_up_interruptible(&khugepaged_wait);
  135. set_recommended_min_free_kbytes();
  136. } else if (khugepaged_thread) {
  137. kthread_stop(khugepaged_thread);
  138. khugepaged_thread = NULL;
  139. }
  140. return err;
  141. }
  142. #ifdef CONFIG_SYSFS
  143. static ssize_t double_flag_show(struct kobject *kobj,
  144. struct kobj_attribute *attr, char *buf,
  145. enum transparent_hugepage_flag enabled,
  146. enum transparent_hugepage_flag req_madv)
  147. {
  148. if (test_bit(enabled, &transparent_hugepage_flags)) {
  149. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  150. return sprintf(buf, "[always] madvise never\n");
  151. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  152. return sprintf(buf, "always [madvise] never\n");
  153. else
  154. return sprintf(buf, "always madvise [never]\n");
  155. }
  156. static ssize_t double_flag_store(struct kobject *kobj,
  157. struct kobj_attribute *attr,
  158. const char *buf, size_t count,
  159. enum transparent_hugepage_flag enabled,
  160. enum transparent_hugepage_flag req_madv)
  161. {
  162. if (!memcmp("always", buf,
  163. min(sizeof("always")-1, count))) {
  164. set_bit(enabled, &transparent_hugepage_flags);
  165. clear_bit(req_madv, &transparent_hugepage_flags);
  166. } else if (!memcmp("madvise", buf,
  167. min(sizeof("madvise")-1, count))) {
  168. clear_bit(enabled, &transparent_hugepage_flags);
  169. set_bit(req_madv, &transparent_hugepage_flags);
  170. } else if (!memcmp("never", buf,
  171. min(sizeof("never")-1, count))) {
  172. clear_bit(enabled, &transparent_hugepage_flags);
  173. clear_bit(req_madv, &transparent_hugepage_flags);
  174. } else
  175. return -EINVAL;
  176. return count;
  177. }
  178. static ssize_t enabled_show(struct kobject *kobj,
  179. struct kobj_attribute *attr, char *buf)
  180. {
  181. return double_flag_show(kobj, attr, buf,
  182. TRANSPARENT_HUGEPAGE_FLAG,
  183. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  184. }
  185. static ssize_t enabled_store(struct kobject *kobj,
  186. struct kobj_attribute *attr,
  187. const char *buf, size_t count)
  188. {
  189. ssize_t ret;
  190. ret = double_flag_store(kobj, attr, buf, count,
  191. TRANSPARENT_HUGEPAGE_FLAG,
  192. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  193. if (ret > 0) {
  194. int err;
  195. mutex_lock(&khugepaged_mutex);
  196. err = start_khugepaged();
  197. mutex_unlock(&khugepaged_mutex);
  198. if (err)
  199. ret = err;
  200. }
  201. return ret;
  202. }
  203. static struct kobj_attribute enabled_attr =
  204. __ATTR(enabled, 0644, enabled_show, enabled_store);
  205. static ssize_t single_flag_show(struct kobject *kobj,
  206. struct kobj_attribute *attr, char *buf,
  207. enum transparent_hugepage_flag flag)
  208. {
  209. return sprintf(buf, "%d\n",
  210. !!test_bit(flag, &transparent_hugepage_flags));
  211. }
  212. static ssize_t single_flag_store(struct kobject *kobj,
  213. struct kobj_attribute *attr,
  214. const char *buf, size_t count,
  215. enum transparent_hugepage_flag flag)
  216. {
  217. unsigned long value;
  218. int ret;
  219. ret = kstrtoul(buf, 10, &value);
  220. if (ret < 0)
  221. return ret;
  222. if (value > 1)
  223. return -EINVAL;
  224. if (value)
  225. set_bit(flag, &transparent_hugepage_flags);
  226. else
  227. clear_bit(flag, &transparent_hugepage_flags);
  228. return count;
  229. }
  230. /*
  231. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  232. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  233. * memory just to allocate one more hugepage.
  234. */
  235. static ssize_t defrag_show(struct kobject *kobj,
  236. struct kobj_attribute *attr, char *buf)
  237. {
  238. return double_flag_show(kobj, attr, buf,
  239. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  240. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  241. }
  242. static ssize_t defrag_store(struct kobject *kobj,
  243. struct kobj_attribute *attr,
  244. const char *buf, size_t count)
  245. {
  246. return double_flag_store(kobj, attr, buf, count,
  247. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  248. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  249. }
  250. static struct kobj_attribute defrag_attr =
  251. __ATTR(defrag, 0644, defrag_show, defrag_store);
  252. #ifdef CONFIG_DEBUG_VM
  253. static ssize_t debug_cow_show(struct kobject *kobj,
  254. struct kobj_attribute *attr, char *buf)
  255. {
  256. return single_flag_show(kobj, attr, buf,
  257. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  258. }
  259. static ssize_t debug_cow_store(struct kobject *kobj,
  260. struct kobj_attribute *attr,
  261. const char *buf, size_t count)
  262. {
  263. return single_flag_store(kobj, attr, buf, count,
  264. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  265. }
  266. static struct kobj_attribute debug_cow_attr =
  267. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  268. #endif /* CONFIG_DEBUG_VM */
  269. static struct attribute *hugepage_attr[] = {
  270. &enabled_attr.attr,
  271. &defrag_attr.attr,
  272. #ifdef CONFIG_DEBUG_VM
  273. &debug_cow_attr.attr,
  274. #endif
  275. NULL,
  276. };
  277. static struct attribute_group hugepage_attr_group = {
  278. .attrs = hugepage_attr,
  279. };
  280. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  281. struct kobj_attribute *attr,
  282. char *buf)
  283. {
  284. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  285. }
  286. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  287. struct kobj_attribute *attr,
  288. const char *buf, size_t count)
  289. {
  290. unsigned long msecs;
  291. int err;
  292. err = strict_strtoul(buf, 10, &msecs);
  293. if (err || msecs > UINT_MAX)
  294. return -EINVAL;
  295. khugepaged_scan_sleep_millisecs = msecs;
  296. wake_up_interruptible(&khugepaged_wait);
  297. return count;
  298. }
  299. static struct kobj_attribute scan_sleep_millisecs_attr =
  300. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  301. scan_sleep_millisecs_store);
  302. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  303. struct kobj_attribute *attr,
  304. char *buf)
  305. {
  306. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  307. }
  308. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  309. struct kobj_attribute *attr,
  310. const char *buf, size_t count)
  311. {
  312. unsigned long msecs;
  313. int err;
  314. err = strict_strtoul(buf, 10, &msecs);
  315. if (err || msecs > UINT_MAX)
  316. return -EINVAL;
  317. khugepaged_alloc_sleep_millisecs = msecs;
  318. wake_up_interruptible(&khugepaged_wait);
  319. return count;
  320. }
  321. static struct kobj_attribute alloc_sleep_millisecs_attr =
  322. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  323. alloc_sleep_millisecs_store);
  324. static ssize_t pages_to_scan_show(struct kobject *kobj,
  325. struct kobj_attribute *attr,
  326. char *buf)
  327. {
  328. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  329. }
  330. static ssize_t pages_to_scan_store(struct kobject *kobj,
  331. struct kobj_attribute *attr,
  332. const char *buf, size_t count)
  333. {
  334. int err;
  335. unsigned long pages;
  336. err = strict_strtoul(buf, 10, &pages);
  337. if (err || !pages || pages > UINT_MAX)
  338. return -EINVAL;
  339. khugepaged_pages_to_scan = pages;
  340. return count;
  341. }
  342. static struct kobj_attribute pages_to_scan_attr =
  343. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  344. pages_to_scan_store);
  345. static ssize_t pages_collapsed_show(struct kobject *kobj,
  346. struct kobj_attribute *attr,
  347. char *buf)
  348. {
  349. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  350. }
  351. static struct kobj_attribute pages_collapsed_attr =
  352. __ATTR_RO(pages_collapsed);
  353. static ssize_t full_scans_show(struct kobject *kobj,
  354. struct kobj_attribute *attr,
  355. char *buf)
  356. {
  357. return sprintf(buf, "%u\n", khugepaged_full_scans);
  358. }
  359. static struct kobj_attribute full_scans_attr =
  360. __ATTR_RO(full_scans);
  361. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  362. struct kobj_attribute *attr, char *buf)
  363. {
  364. return single_flag_show(kobj, attr, buf,
  365. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  366. }
  367. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  368. struct kobj_attribute *attr,
  369. const char *buf, size_t count)
  370. {
  371. return single_flag_store(kobj, attr, buf, count,
  372. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  373. }
  374. static struct kobj_attribute khugepaged_defrag_attr =
  375. __ATTR(defrag, 0644, khugepaged_defrag_show,
  376. khugepaged_defrag_store);
  377. /*
  378. * max_ptes_none controls if khugepaged should collapse hugepages over
  379. * any unmapped ptes in turn potentially increasing the memory
  380. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  381. * reduce the available free memory in the system as it
  382. * runs. Increasing max_ptes_none will instead potentially reduce the
  383. * free memory in the system during the khugepaged scan.
  384. */
  385. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  386. struct kobj_attribute *attr,
  387. char *buf)
  388. {
  389. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  390. }
  391. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  392. struct kobj_attribute *attr,
  393. const char *buf, size_t count)
  394. {
  395. int err;
  396. unsigned long max_ptes_none;
  397. err = strict_strtoul(buf, 10, &max_ptes_none);
  398. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  399. return -EINVAL;
  400. khugepaged_max_ptes_none = max_ptes_none;
  401. return count;
  402. }
  403. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  404. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  405. khugepaged_max_ptes_none_store);
  406. static struct attribute *khugepaged_attr[] = {
  407. &khugepaged_defrag_attr.attr,
  408. &khugepaged_max_ptes_none_attr.attr,
  409. &pages_to_scan_attr.attr,
  410. &pages_collapsed_attr.attr,
  411. &full_scans_attr.attr,
  412. &scan_sleep_millisecs_attr.attr,
  413. &alloc_sleep_millisecs_attr.attr,
  414. NULL,
  415. };
  416. static struct attribute_group khugepaged_attr_group = {
  417. .attrs = khugepaged_attr,
  418. .name = "khugepaged",
  419. };
  420. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  421. {
  422. int err;
  423. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  424. if (unlikely(!*hugepage_kobj)) {
  425. printk(KERN_ERR "hugepage: failed kobject create\n");
  426. return -ENOMEM;
  427. }
  428. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  429. if (err) {
  430. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  431. goto delete_obj;
  432. }
  433. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  434. if (err) {
  435. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  436. goto remove_hp_group;
  437. }
  438. return 0;
  439. remove_hp_group:
  440. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  441. delete_obj:
  442. kobject_put(*hugepage_kobj);
  443. return err;
  444. }
  445. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  446. {
  447. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  448. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  449. kobject_put(hugepage_kobj);
  450. }
  451. #else
  452. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  453. {
  454. return 0;
  455. }
  456. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  457. {
  458. }
  459. #endif /* CONFIG_SYSFS */
  460. static int __init hugepage_init(void)
  461. {
  462. int err;
  463. struct kobject *hugepage_kobj;
  464. if (!has_transparent_hugepage()) {
  465. transparent_hugepage_flags = 0;
  466. return -EINVAL;
  467. }
  468. err = hugepage_init_sysfs(&hugepage_kobj);
  469. if (err)
  470. return err;
  471. err = khugepaged_slab_init();
  472. if (err)
  473. goto out;
  474. err = mm_slots_hash_init();
  475. if (err) {
  476. khugepaged_slab_free();
  477. goto out;
  478. }
  479. /*
  480. * By default disable transparent hugepages on smaller systems,
  481. * where the extra memory used could hurt more than TLB overhead
  482. * is likely to save. The admin can still enable it through /sys.
  483. */
  484. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  485. transparent_hugepage_flags = 0;
  486. start_khugepaged();
  487. return 0;
  488. out:
  489. hugepage_exit_sysfs(hugepage_kobj);
  490. return err;
  491. }
  492. module_init(hugepage_init)
  493. static int __init setup_transparent_hugepage(char *str)
  494. {
  495. int ret = 0;
  496. if (!str)
  497. goto out;
  498. if (!strcmp(str, "always")) {
  499. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  500. &transparent_hugepage_flags);
  501. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  502. &transparent_hugepage_flags);
  503. ret = 1;
  504. } else if (!strcmp(str, "madvise")) {
  505. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  506. &transparent_hugepage_flags);
  507. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  508. &transparent_hugepage_flags);
  509. ret = 1;
  510. } else if (!strcmp(str, "never")) {
  511. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  512. &transparent_hugepage_flags);
  513. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  514. &transparent_hugepage_flags);
  515. ret = 1;
  516. }
  517. out:
  518. if (!ret)
  519. printk(KERN_WARNING
  520. "transparent_hugepage= cannot parse, ignored\n");
  521. return ret;
  522. }
  523. __setup("transparent_hugepage=", setup_transparent_hugepage);
  524. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  525. {
  526. if (likely(vma->vm_flags & VM_WRITE))
  527. pmd = pmd_mkwrite(pmd);
  528. return pmd;
  529. }
  530. static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
  531. {
  532. pmd_t entry;
  533. entry = mk_pmd(page, vma->vm_page_prot);
  534. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  535. entry = pmd_mkhuge(entry);
  536. return entry;
  537. }
  538. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  539. struct vm_area_struct *vma,
  540. unsigned long haddr, pmd_t *pmd,
  541. struct page *page)
  542. {
  543. pgtable_t pgtable;
  544. VM_BUG_ON(!PageCompound(page));
  545. pgtable = pte_alloc_one(mm, haddr);
  546. if (unlikely(!pgtable))
  547. return VM_FAULT_OOM;
  548. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  549. __SetPageUptodate(page);
  550. spin_lock(&mm->page_table_lock);
  551. if (unlikely(!pmd_none(*pmd))) {
  552. spin_unlock(&mm->page_table_lock);
  553. mem_cgroup_uncharge_page(page);
  554. put_page(page);
  555. pte_free(mm, pgtable);
  556. } else {
  557. pmd_t entry;
  558. entry = mk_huge_pmd(page, vma);
  559. /*
  560. * The spinlocking to take the lru_lock inside
  561. * page_add_new_anon_rmap() acts as a full memory
  562. * barrier to be sure clear_huge_page writes become
  563. * visible after the set_pmd_at() write.
  564. */
  565. page_add_new_anon_rmap(page, vma, haddr);
  566. set_pmd_at(mm, haddr, pmd, entry);
  567. pgtable_trans_huge_deposit(mm, pgtable);
  568. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  569. mm->nr_ptes++;
  570. spin_unlock(&mm->page_table_lock);
  571. }
  572. return 0;
  573. }
  574. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  575. {
  576. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  577. }
  578. static inline struct page *alloc_hugepage_vma(int defrag,
  579. struct vm_area_struct *vma,
  580. unsigned long haddr, int nd,
  581. gfp_t extra_gfp)
  582. {
  583. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  584. HPAGE_PMD_ORDER, vma, haddr, nd);
  585. }
  586. #ifndef CONFIG_NUMA
  587. static inline struct page *alloc_hugepage(int defrag)
  588. {
  589. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  590. HPAGE_PMD_ORDER);
  591. }
  592. #endif
  593. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  594. unsigned long address, pmd_t *pmd,
  595. unsigned int flags)
  596. {
  597. struct page *page;
  598. unsigned long haddr = address & HPAGE_PMD_MASK;
  599. pte_t *pte;
  600. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  601. if (unlikely(anon_vma_prepare(vma)))
  602. return VM_FAULT_OOM;
  603. if (unlikely(khugepaged_enter(vma)))
  604. return VM_FAULT_OOM;
  605. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  606. vma, haddr, numa_node_id(), 0);
  607. if (unlikely(!page)) {
  608. count_vm_event(THP_FAULT_FALLBACK);
  609. goto out;
  610. }
  611. count_vm_event(THP_FAULT_ALLOC);
  612. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  613. put_page(page);
  614. goto out;
  615. }
  616. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
  617. page))) {
  618. mem_cgroup_uncharge_page(page);
  619. put_page(page);
  620. goto out;
  621. }
  622. return 0;
  623. }
  624. out:
  625. /*
  626. * Use __pte_alloc instead of pte_alloc_map, because we can't
  627. * run pte_offset_map on the pmd, if an huge pmd could
  628. * materialize from under us from a different thread.
  629. */
  630. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  631. return VM_FAULT_OOM;
  632. /* if an huge pmd materialized from under us just retry later */
  633. if (unlikely(pmd_trans_huge(*pmd)))
  634. return 0;
  635. /*
  636. * A regular pmd is established and it can't morph into a huge pmd
  637. * from under us anymore at this point because we hold the mmap_sem
  638. * read mode and khugepaged takes it in write mode. So now it's
  639. * safe to run pte_offset_map().
  640. */
  641. pte = pte_offset_map(pmd, address);
  642. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  643. }
  644. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  645. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  646. struct vm_area_struct *vma)
  647. {
  648. struct page *src_page;
  649. pmd_t pmd;
  650. pgtable_t pgtable;
  651. int ret;
  652. ret = -ENOMEM;
  653. pgtable = pte_alloc_one(dst_mm, addr);
  654. if (unlikely(!pgtable))
  655. goto out;
  656. spin_lock(&dst_mm->page_table_lock);
  657. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  658. ret = -EAGAIN;
  659. pmd = *src_pmd;
  660. if (unlikely(!pmd_trans_huge(pmd))) {
  661. pte_free(dst_mm, pgtable);
  662. goto out_unlock;
  663. }
  664. if (unlikely(pmd_trans_splitting(pmd))) {
  665. /* split huge page running from under us */
  666. spin_unlock(&src_mm->page_table_lock);
  667. spin_unlock(&dst_mm->page_table_lock);
  668. pte_free(dst_mm, pgtable);
  669. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  670. goto out;
  671. }
  672. src_page = pmd_page(pmd);
  673. VM_BUG_ON(!PageHead(src_page));
  674. get_page(src_page);
  675. page_dup_rmap(src_page);
  676. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  677. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  678. pmd = pmd_mkold(pmd_wrprotect(pmd));
  679. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  680. pgtable_trans_huge_deposit(dst_mm, pgtable);
  681. dst_mm->nr_ptes++;
  682. ret = 0;
  683. out_unlock:
  684. spin_unlock(&src_mm->page_table_lock);
  685. spin_unlock(&dst_mm->page_table_lock);
  686. out:
  687. return ret;
  688. }
  689. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  690. struct vm_area_struct *vma,
  691. unsigned long address,
  692. pmd_t *pmd, pmd_t orig_pmd,
  693. struct page *page,
  694. unsigned long haddr)
  695. {
  696. pgtable_t pgtable;
  697. pmd_t _pmd;
  698. int ret = 0, i;
  699. struct page **pages;
  700. unsigned long mmun_start; /* For mmu_notifiers */
  701. unsigned long mmun_end; /* For mmu_notifiers */
  702. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  703. GFP_KERNEL);
  704. if (unlikely(!pages)) {
  705. ret |= VM_FAULT_OOM;
  706. goto out;
  707. }
  708. for (i = 0; i < HPAGE_PMD_NR; i++) {
  709. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  710. __GFP_OTHER_NODE,
  711. vma, address, page_to_nid(page));
  712. if (unlikely(!pages[i] ||
  713. mem_cgroup_newpage_charge(pages[i], mm,
  714. GFP_KERNEL))) {
  715. if (pages[i])
  716. put_page(pages[i]);
  717. mem_cgroup_uncharge_start();
  718. while (--i >= 0) {
  719. mem_cgroup_uncharge_page(pages[i]);
  720. put_page(pages[i]);
  721. }
  722. mem_cgroup_uncharge_end();
  723. kfree(pages);
  724. ret |= VM_FAULT_OOM;
  725. goto out;
  726. }
  727. }
  728. for (i = 0; i < HPAGE_PMD_NR; i++) {
  729. copy_user_highpage(pages[i], page + i,
  730. haddr + PAGE_SIZE * i, vma);
  731. __SetPageUptodate(pages[i]);
  732. cond_resched();
  733. }
  734. mmun_start = haddr;
  735. mmun_end = haddr + HPAGE_PMD_SIZE;
  736. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  737. spin_lock(&mm->page_table_lock);
  738. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  739. goto out_free_pages;
  740. VM_BUG_ON(!PageHead(page));
  741. pmdp_clear_flush(vma, haddr, pmd);
  742. /* leave pmd empty until pte is filled */
  743. pgtable = pgtable_trans_huge_withdraw(mm);
  744. pmd_populate(mm, &_pmd, pgtable);
  745. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  746. pte_t *pte, entry;
  747. entry = mk_pte(pages[i], vma->vm_page_prot);
  748. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  749. page_add_new_anon_rmap(pages[i], vma, haddr);
  750. pte = pte_offset_map(&_pmd, haddr);
  751. VM_BUG_ON(!pte_none(*pte));
  752. set_pte_at(mm, haddr, pte, entry);
  753. pte_unmap(pte);
  754. }
  755. kfree(pages);
  756. smp_wmb(); /* make pte visible before pmd */
  757. pmd_populate(mm, pmd, pgtable);
  758. page_remove_rmap(page);
  759. spin_unlock(&mm->page_table_lock);
  760. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  761. ret |= VM_FAULT_WRITE;
  762. put_page(page);
  763. out:
  764. return ret;
  765. out_free_pages:
  766. spin_unlock(&mm->page_table_lock);
  767. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  768. mem_cgroup_uncharge_start();
  769. for (i = 0; i < HPAGE_PMD_NR; i++) {
  770. mem_cgroup_uncharge_page(pages[i]);
  771. put_page(pages[i]);
  772. }
  773. mem_cgroup_uncharge_end();
  774. kfree(pages);
  775. goto out;
  776. }
  777. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  778. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  779. {
  780. int ret = 0;
  781. struct page *page, *new_page;
  782. unsigned long haddr;
  783. unsigned long mmun_start; /* For mmu_notifiers */
  784. unsigned long mmun_end; /* For mmu_notifiers */
  785. VM_BUG_ON(!vma->anon_vma);
  786. spin_lock(&mm->page_table_lock);
  787. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  788. goto out_unlock;
  789. page = pmd_page(orig_pmd);
  790. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  791. haddr = address & HPAGE_PMD_MASK;
  792. if (page_mapcount(page) == 1) {
  793. pmd_t entry;
  794. entry = pmd_mkyoung(orig_pmd);
  795. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  796. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  797. update_mmu_cache_pmd(vma, address, pmd);
  798. ret |= VM_FAULT_WRITE;
  799. goto out_unlock;
  800. }
  801. get_page(page);
  802. spin_unlock(&mm->page_table_lock);
  803. if (transparent_hugepage_enabled(vma) &&
  804. !transparent_hugepage_debug_cow())
  805. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  806. vma, haddr, numa_node_id(), 0);
  807. else
  808. new_page = NULL;
  809. if (unlikely(!new_page)) {
  810. count_vm_event(THP_FAULT_FALLBACK);
  811. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  812. pmd, orig_pmd, page, haddr);
  813. if (ret & VM_FAULT_OOM)
  814. split_huge_page(page);
  815. put_page(page);
  816. goto out;
  817. }
  818. count_vm_event(THP_FAULT_ALLOC);
  819. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  820. put_page(new_page);
  821. split_huge_page(page);
  822. put_page(page);
  823. ret |= VM_FAULT_OOM;
  824. goto out;
  825. }
  826. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  827. __SetPageUptodate(new_page);
  828. mmun_start = haddr;
  829. mmun_end = haddr + HPAGE_PMD_SIZE;
  830. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  831. spin_lock(&mm->page_table_lock);
  832. put_page(page);
  833. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  834. spin_unlock(&mm->page_table_lock);
  835. mem_cgroup_uncharge_page(new_page);
  836. put_page(new_page);
  837. goto out_mn;
  838. } else {
  839. pmd_t entry;
  840. VM_BUG_ON(!PageHead(page));
  841. entry = mk_huge_pmd(new_page, vma);
  842. pmdp_clear_flush(vma, haddr, pmd);
  843. page_add_new_anon_rmap(new_page, vma, haddr);
  844. set_pmd_at(mm, haddr, pmd, entry);
  845. update_mmu_cache_pmd(vma, address, pmd);
  846. page_remove_rmap(page);
  847. put_page(page);
  848. ret |= VM_FAULT_WRITE;
  849. }
  850. spin_unlock(&mm->page_table_lock);
  851. out_mn:
  852. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  853. out:
  854. return ret;
  855. out_unlock:
  856. spin_unlock(&mm->page_table_lock);
  857. return ret;
  858. }
  859. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  860. unsigned long addr,
  861. pmd_t *pmd,
  862. unsigned int flags)
  863. {
  864. struct mm_struct *mm = vma->vm_mm;
  865. struct page *page = NULL;
  866. assert_spin_locked(&mm->page_table_lock);
  867. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  868. goto out;
  869. page = pmd_page(*pmd);
  870. VM_BUG_ON(!PageHead(page));
  871. if (flags & FOLL_TOUCH) {
  872. pmd_t _pmd;
  873. /*
  874. * We should set the dirty bit only for FOLL_WRITE but
  875. * for now the dirty bit in the pmd is meaningless.
  876. * And if the dirty bit will become meaningful and
  877. * we'll only set it with FOLL_WRITE, an atomic
  878. * set_bit will be required on the pmd to set the
  879. * young bit, instead of the current set_pmd_at.
  880. */
  881. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  882. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  883. }
  884. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  885. if (page->mapping && trylock_page(page)) {
  886. lru_add_drain();
  887. if (page->mapping)
  888. mlock_vma_page(page);
  889. unlock_page(page);
  890. }
  891. }
  892. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  893. VM_BUG_ON(!PageCompound(page));
  894. if (flags & FOLL_GET)
  895. get_page_foll(page);
  896. out:
  897. return page;
  898. }
  899. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  900. pmd_t *pmd, unsigned long addr)
  901. {
  902. int ret = 0;
  903. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  904. struct page *page;
  905. pgtable_t pgtable;
  906. pmd_t orig_pmd;
  907. pgtable = pgtable_trans_huge_withdraw(tlb->mm);
  908. orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
  909. page = pmd_page(orig_pmd);
  910. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  911. page_remove_rmap(page);
  912. VM_BUG_ON(page_mapcount(page) < 0);
  913. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  914. VM_BUG_ON(!PageHead(page));
  915. tlb->mm->nr_ptes--;
  916. spin_unlock(&tlb->mm->page_table_lock);
  917. tlb_remove_page(tlb, page);
  918. pte_free(tlb->mm, pgtable);
  919. ret = 1;
  920. }
  921. return ret;
  922. }
  923. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  924. unsigned long addr, unsigned long end,
  925. unsigned char *vec)
  926. {
  927. int ret = 0;
  928. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  929. /*
  930. * All logical pages in the range are present
  931. * if backed by a huge page.
  932. */
  933. spin_unlock(&vma->vm_mm->page_table_lock);
  934. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  935. ret = 1;
  936. }
  937. return ret;
  938. }
  939. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  940. unsigned long old_addr,
  941. unsigned long new_addr, unsigned long old_end,
  942. pmd_t *old_pmd, pmd_t *new_pmd)
  943. {
  944. int ret = 0;
  945. pmd_t pmd;
  946. struct mm_struct *mm = vma->vm_mm;
  947. if ((old_addr & ~HPAGE_PMD_MASK) ||
  948. (new_addr & ~HPAGE_PMD_MASK) ||
  949. old_end - old_addr < HPAGE_PMD_SIZE ||
  950. (new_vma->vm_flags & VM_NOHUGEPAGE))
  951. goto out;
  952. /*
  953. * The destination pmd shouldn't be established, free_pgtables()
  954. * should have release it.
  955. */
  956. if (WARN_ON(!pmd_none(*new_pmd))) {
  957. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  958. goto out;
  959. }
  960. ret = __pmd_trans_huge_lock(old_pmd, vma);
  961. if (ret == 1) {
  962. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  963. VM_BUG_ON(!pmd_none(*new_pmd));
  964. set_pmd_at(mm, new_addr, new_pmd, pmd);
  965. spin_unlock(&mm->page_table_lock);
  966. }
  967. out:
  968. return ret;
  969. }
  970. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  971. unsigned long addr, pgprot_t newprot)
  972. {
  973. struct mm_struct *mm = vma->vm_mm;
  974. int ret = 0;
  975. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  976. pmd_t entry;
  977. entry = pmdp_get_and_clear(mm, addr, pmd);
  978. entry = pmd_modify(entry, newprot);
  979. set_pmd_at(mm, addr, pmd, entry);
  980. spin_unlock(&vma->vm_mm->page_table_lock);
  981. ret = 1;
  982. }
  983. return ret;
  984. }
  985. /*
  986. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  987. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  988. *
  989. * Note that if it returns 1, this routine returns without unlocking page
  990. * table locks. So callers must unlock them.
  991. */
  992. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  993. {
  994. spin_lock(&vma->vm_mm->page_table_lock);
  995. if (likely(pmd_trans_huge(*pmd))) {
  996. if (unlikely(pmd_trans_splitting(*pmd))) {
  997. spin_unlock(&vma->vm_mm->page_table_lock);
  998. wait_split_huge_page(vma->anon_vma, pmd);
  999. return -1;
  1000. } else {
  1001. /* Thp mapped by 'pmd' is stable, so we can
  1002. * handle it as it is. */
  1003. return 1;
  1004. }
  1005. }
  1006. spin_unlock(&vma->vm_mm->page_table_lock);
  1007. return 0;
  1008. }
  1009. pmd_t *page_check_address_pmd(struct page *page,
  1010. struct mm_struct *mm,
  1011. unsigned long address,
  1012. enum page_check_address_pmd_flag flag)
  1013. {
  1014. pmd_t *pmd, *ret = NULL;
  1015. if (address & ~HPAGE_PMD_MASK)
  1016. goto out;
  1017. pmd = mm_find_pmd(mm, address);
  1018. if (!pmd)
  1019. goto out;
  1020. if (pmd_none(*pmd))
  1021. goto out;
  1022. if (pmd_page(*pmd) != page)
  1023. goto out;
  1024. /*
  1025. * split_vma() may create temporary aliased mappings. There is
  1026. * no risk as long as all huge pmd are found and have their
  1027. * splitting bit set before __split_huge_page_refcount
  1028. * runs. Finding the same huge pmd more than once during the
  1029. * same rmap walk is not a problem.
  1030. */
  1031. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1032. pmd_trans_splitting(*pmd))
  1033. goto out;
  1034. if (pmd_trans_huge(*pmd)) {
  1035. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1036. !pmd_trans_splitting(*pmd));
  1037. ret = pmd;
  1038. }
  1039. out:
  1040. return ret;
  1041. }
  1042. static int __split_huge_page_splitting(struct page *page,
  1043. struct vm_area_struct *vma,
  1044. unsigned long address)
  1045. {
  1046. struct mm_struct *mm = vma->vm_mm;
  1047. pmd_t *pmd;
  1048. int ret = 0;
  1049. /* For mmu_notifiers */
  1050. const unsigned long mmun_start = address;
  1051. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1052. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1053. spin_lock(&mm->page_table_lock);
  1054. pmd = page_check_address_pmd(page, mm, address,
  1055. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1056. if (pmd) {
  1057. /*
  1058. * We can't temporarily set the pmd to null in order
  1059. * to split it, the pmd must remain marked huge at all
  1060. * times or the VM won't take the pmd_trans_huge paths
  1061. * and it won't wait on the anon_vma->root->mutex to
  1062. * serialize against split_huge_page*.
  1063. */
  1064. pmdp_splitting_flush(vma, address, pmd);
  1065. ret = 1;
  1066. }
  1067. spin_unlock(&mm->page_table_lock);
  1068. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1069. return ret;
  1070. }
  1071. static void __split_huge_page_refcount(struct page *page)
  1072. {
  1073. int i;
  1074. struct zone *zone = page_zone(page);
  1075. struct lruvec *lruvec;
  1076. int tail_count = 0;
  1077. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1078. spin_lock_irq(&zone->lru_lock);
  1079. lruvec = mem_cgroup_page_lruvec(page, zone);
  1080. compound_lock(page);
  1081. /* complete memcg works before add pages to LRU */
  1082. mem_cgroup_split_huge_fixup(page);
  1083. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1084. struct page *page_tail = page + i;
  1085. /* tail_page->_mapcount cannot change */
  1086. BUG_ON(page_mapcount(page_tail) < 0);
  1087. tail_count += page_mapcount(page_tail);
  1088. /* check for overflow */
  1089. BUG_ON(tail_count < 0);
  1090. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1091. /*
  1092. * tail_page->_count is zero and not changing from
  1093. * under us. But get_page_unless_zero() may be running
  1094. * from under us on the tail_page. If we used
  1095. * atomic_set() below instead of atomic_add(), we
  1096. * would then run atomic_set() concurrently with
  1097. * get_page_unless_zero(), and atomic_set() is
  1098. * implemented in C not using locked ops. spin_unlock
  1099. * on x86 sometime uses locked ops because of PPro
  1100. * errata 66, 92, so unless somebody can guarantee
  1101. * atomic_set() here would be safe on all archs (and
  1102. * not only on x86), it's safer to use atomic_add().
  1103. */
  1104. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1105. &page_tail->_count);
  1106. /* after clearing PageTail the gup refcount can be released */
  1107. smp_mb();
  1108. /*
  1109. * retain hwpoison flag of the poisoned tail page:
  1110. * fix for the unsuitable process killed on Guest Machine(KVM)
  1111. * by the memory-failure.
  1112. */
  1113. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1114. page_tail->flags |= (page->flags &
  1115. ((1L << PG_referenced) |
  1116. (1L << PG_swapbacked) |
  1117. (1L << PG_mlocked) |
  1118. (1L << PG_uptodate)));
  1119. page_tail->flags |= (1L << PG_dirty);
  1120. /* clear PageTail before overwriting first_page */
  1121. smp_wmb();
  1122. /*
  1123. * __split_huge_page_splitting() already set the
  1124. * splitting bit in all pmd that could map this
  1125. * hugepage, that will ensure no CPU can alter the
  1126. * mapcount on the head page. The mapcount is only
  1127. * accounted in the head page and it has to be
  1128. * transferred to all tail pages in the below code. So
  1129. * for this code to be safe, the split the mapcount
  1130. * can't change. But that doesn't mean userland can't
  1131. * keep changing and reading the page contents while
  1132. * we transfer the mapcount, so the pmd splitting
  1133. * status is achieved setting a reserved bit in the
  1134. * pmd, not by clearing the present bit.
  1135. */
  1136. page_tail->_mapcount = page->_mapcount;
  1137. BUG_ON(page_tail->mapping);
  1138. page_tail->mapping = page->mapping;
  1139. page_tail->index = page->index + i;
  1140. BUG_ON(!PageAnon(page_tail));
  1141. BUG_ON(!PageUptodate(page_tail));
  1142. BUG_ON(!PageDirty(page_tail));
  1143. BUG_ON(!PageSwapBacked(page_tail));
  1144. lru_add_page_tail(page, page_tail, lruvec);
  1145. }
  1146. atomic_sub(tail_count, &page->_count);
  1147. BUG_ON(atomic_read(&page->_count) <= 0);
  1148. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1149. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1150. ClearPageCompound(page);
  1151. compound_unlock(page);
  1152. spin_unlock_irq(&zone->lru_lock);
  1153. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1154. struct page *page_tail = page + i;
  1155. BUG_ON(page_count(page_tail) <= 0);
  1156. /*
  1157. * Tail pages may be freed if there wasn't any mapping
  1158. * like if add_to_swap() is running on a lru page that
  1159. * had its mapping zapped. And freeing these pages
  1160. * requires taking the lru_lock so we do the put_page
  1161. * of the tail pages after the split is complete.
  1162. */
  1163. put_page(page_tail);
  1164. }
  1165. /*
  1166. * Only the head page (now become a regular page) is required
  1167. * to be pinned by the caller.
  1168. */
  1169. BUG_ON(page_count(page) <= 0);
  1170. }
  1171. static int __split_huge_page_map(struct page *page,
  1172. struct vm_area_struct *vma,
  1173. unsigned long address)
  1174. {
  1175. struct mm_struct *mm = vma->vm_mm;
  1176. pmd_t *pmd, _pmd;
  1177. int ret = 0, i;
  1178. pgtable_t pgtable;
  1179. unsigned long haddr;
  1180. spin_lock(&mm->page_table_lock);
  1181. pmd = page_check_address_pmd(page, mm, address,
  1182. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1183. if (pmd) {
  1184. pgtable = pgtable_trans_huge_withdraw(mm);
  1185. pmd_populate(mm, &_pmd, pgtable);
  1186. haddr = address;
  1187. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1188. pte_t *pte, entry;
  1189. BUG_ON(PageCompound(page+i));
  1190. entry = mk_pte(page + i, vma->vm_page_prot);
  1191. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1192. if (!pmd_write(*pmd))
  1193. entry = pte_wrprotect(entry);
  1194. else
  1195. BUG_ON(page_mapcount(page) != 1);
  1196. if (!pmd_young(*pmd))
  1197. entry = pte_mkold(entry);
  1198. pte = pte_offset_map(&_pmd, haddr);
  1199. BUG_ON(!pte_none(*pte));
  1200. set_pte_at(mm, haddr, pte, entry);
  1201. pte_unmap(pte);
  1202. }
  1203. smp_wmb(); /* make pte visible before pmd */
  1204. /*
  1205. * Up to this point the pmd is present and huge and
  1206. * userland has the whole access to the hugepage
  1207. * during the split (which happens in place). If we
  1208. * overwrite the pmd with the not-huge version
  1209. * pointing to the pte here (which of course we could
  1210. * if all CPUs were bug free), userland could trigger
  1211. * a small page size TLB miss on the small sized TLB
  1212. * while the hugepage TLB entry is still established
  1213. * in the huge TLB. Some CPU doesn't like that. See
  1214. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1215. * Erratum 383 on page 93. Intel should be safe but is
  1216. * also warns that it's only safe if the permission
  1217. * and cache attributes of the two entries loaded in
  1218. * the two TLB is identical (which should be the case
  1219. * here). But it is generally safer to never allow
  1220. * small and huge TLB entries for the same virtual
  1221. * address to be loaded simultaneously. So instead of
  1222. * doing "pmd_populate(); flush_tlb_range();" we first
  1223. * mark the current pmd notpresent (atomically because
  1224. * here the pmd_trans_huge and pmd_trans_splitting
  1225. * must remain set at all times on the pmd until the
  1226. * split is complete for this pmd), then we flush the
  1227. * SMP TLB and finally we write the non-huge version
  1228. * of the pmd entry with pmd_populate.
  1229. */
  1230. pmdp_invalidate(vma, address, pmd);
  1231. pmd_populate(mm, pmd, pgtable);
  1232. ret = 1;
  1233. }
  1234. spin_unlock(&mm->page_table_lock);
  1235. return ret;
  1236. }
  1237. /* must be called with anon_vma->root->mutex hold */
  1238. static void __split_huge_page(struct page *page,
  1239. struct anon_vma *anon_vma)
  1240. {
  1241. int mapcount, mapcount2;
  1242. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1243. struct anon_vma_chain *avc;
  1244. BUG_ON(!PageHead(page));
  1245. BUG_ON(PageTail(page));
  1246. mapcount = 0;
  1247. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1248. struct vm_area_struct *vma = avc->vma;
  1249. unsigned long addr = vma_address(page, vma);
  1250. BUG_ON(is_vma_temporary_stack(vma));
  1251. mapcount += __split_huge_page_splitting(page, vma, addr);
  1252. }
  1253. /*
  1254. * It is critical that new vmas are added to the tail of the
  1255. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1256. * and establishes a child pmd before
  1257. * __split_huge_page_splitting() freezes the parent pmd (so if
  1258. * we fail to prevent copy_huge_pmd() from running until the
  1259. * whole __split_huge_page() is complete), we will still see
  1260. * the newly established pmd of the child later during the
  1261. * walk, to be able to set it as pmd_trans_splitting too.
  1262. */
  1263. if (mapcount != page_mapcount(page))
  1264. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1265. mapcount, page_mapcount(page));
  1266. BUG_ON(mapcount != page_mapcount(page));
  1267. __split_huge_page_refcount(page);
  1268. mapcount2 = 0;
  1269. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1270. struct vm_area_struct *vma = avc->vma;
  1271. unsigned long addr = vma_address(page, vma);
  1272. BUG_ON(is_vma_temporary_stack(vma));
  1273. mapcount2 += __split_huge_page_map(page, vma, addr);
  1274. }
  1275. if (mapcount != mapcount2)
  1276. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1277. mapcount, mapcount2, page_mapcount(page));
  1278. BUG_ON(mapcount != mapcount2);
  1279. }
  1280. int split_huge_page(struct page *page)
  1281. {
  1282. struct anon_vma *anon_vma;
  1283. int ret = 1;
  1284. BUG_ON(!PageAnon(page));
  1285. anon_vma = page_lock_anon_vma(page);
  1286. if (!anon_vma)
  1287. goto out;
  1288. ret = 0;
  1289. if (!PageCompound(page))
  1290. goto out_unlock;
  1291. BUG_ON(!PageSwapBacked(page));
  1292. __split_huge_page(page, anon_vma);
  1293. count_vm_event(THP_SPLIT);
  1294. BUG_ON(PageCompound(page));
  1295. out_unlock:
  1296. page_unlock_anon_vma(anon_vma);
  1297. out:
  1298. return ret;
  1299. }
  1300. #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1301. int hugepage_madvise(struct vm_area_struct *vma,
  1302. unsigned long *vm_flags, int advice)
  1303. {
  1304. struct mm_struct *mm = vma->vm_mm;
  1305. switch (advice) {
  1306. case MADV_HUGEPAGE:
  1307. /*
  1308. * Be somewhat over-protective like KSM for now!
  1309. */
  1310. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1311. return -EINVAL;
  1312. if (mm->def_flags & VM_NOHUGEPAGE)
  1313. return -EINVAL;
  1314. *vm_flags &= ~VM_NOHUGEPAGE;
  1315. *vm_flags |= VM_HUGEPAGE;
  1316. /*
  1317. * If the vma become good for khugepaged to scan,
  1318. * register it here without waiting a page fault that
  1319. * may not happen any time soon.
  1320. */
  1321. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1322. return -ENOMEM;
  1323. break;
  1324. case MADV_NOHUGEPAGE:
  1325. /*
  1326. * Be somewhat over-protective like KSM for now!
  1327. */
  1328. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1329. return -EINVAL;
  1330. *vm_flags &= ~VM_HUGEPAGE;
  1331. *vm_flags |= VM_NOHUGEPAGE;
  1332. /*
  1333. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1334. * this vma even if we leave the mm registered in khugepaged if
  1335. * it got registered before VM_NOHUGEPAGE was set.
  1336. */
  1337. break;
  1338. }
  1339. return 0;
  1340. }
  1341. static int __init khugepaged_slab_init(void)
  1342. {
  1343. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1344. sizeof(struct mm_slot),
  1345. __alignof__(struct mm_slot), 0, NULL);
  1346. if (!mm_slot_cache)
  1347. return -ENOMEM;
  1348. return 0;
  1349. }
  1350. static void __init khugepaged_slab_free(void)
  1351. {
  1352. kmem_cache_destroy(mm_slot_cache);
  1353. mm_slot_cache = NULL;
  1354. }
  1355. static inline struct mm_slot *alloc_mm_slot(void)
  1356. {
  1357. if (!mm_slot_cache) /* initialization failed */
  1358. return NULL;
  1359. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1360. }
  1361. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1362. {
  1363. kmem_cache_free(mm_slot_cache, mm_slot);
  1364. }
  1365. static int __init mm_slots_hash_init(void)
  1366. {
  1367. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1368. GFP_KERNEL);
  1369. if (!mm_slots_hash)
  1370. return -ENOMEM;
  1371. return 0;
  1372. }
  1373. #if 0
  1374. static void __init mm_slots_hash_free(void)
  1375. {
  1376. kfree(mm_slots_hash);
  1377. mm_slots_hash = NULL;
  1378. }
  1379. #endif
  1380. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1381. {
  1382. struct mm_slot *mm_slot;
  1383. struct hlist_head *bucket;
  1384. struct hlist_node *node;
  1385. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1386. % MM_SLOTS_HASH_HEADS];
  1387. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1388. if (mm == mm_slot->mm)
  1389. return mm_slot;
  1390. }
  1391. return NULL;
  1392. }
  1393. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1394. struct mm_slot *mm_slot)
  1395. {
  1396. struct hlist_head *bucket;
  1397. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1398. % MM_SLOTS_HASH_HEADS];
  1399. mm_slot->mm = mm;
  1400. hlist_add_head(&mm_slot->hash, bucket);
  1401. }
  1402. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1403. {
  1404. return atomic_read(&mm->mm_users) == 0;
  1405. }
  1406. int __khugepaged_enter(struct mm_struct *mm)
  1407. {
  1408. struct mm_slot *mm_slot;
  1409. int wakeup;
  1410. mm_slot = alloc_mm_slot();
  1411. if (!mm_slot)
  1412. return -ENOMEM;
  1413. /* __khugepaged_exit() must not run from under us */
  1414. VM_BUG_ON(khugepaged_test_exit(mm));
  1415. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1416. free_mm_slot(mm_slot);
  1417. return 0;
  1418. }
  1419. spin_lock(&khugepaged_mm_lock);
  1420. insert_to_mm_slots_hash(mm, mm_slot);
  1421. /*
  1422. * Insert just behind the scanning cursor, to let the area settle
  1423. * down a little.
  1424. */
  1425. wakeup = list_empty(&khugepaged_scan.mm_head);
  1426. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1427. spin_unlock(&khugepaged_mm_lock);
  1428. atomic_inc(&mm->mm_count);
  1429. if (wakeup)
  1430. wake_up_interruptible(&khugepaged_wait);
  1431. return 0;
  1432. }
  1433. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1434. {
  1435. unsigned long hstart, hend;
  1436. if (!vma->anon_vma)
  1437. /*
  1438. * Not yet faulted in so we will register later in the
  1439. * page fault if needed.
  1440. */
  1441. return 0;
  1442. if (vma->vm_ops)
  1443. /* khugepaged not yet working on file or special mappings */
  1444. return 0;
  1445. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1446. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1447. hend = vma->vm_end & HPAGE_PMD_MASK;
  1448. if (hstart < hend)
  1449. return khugepaged_enter(vma);
  1450. return 0;
  1451. }
  1452. void __khugepaged_exit(struct mm_struct *mm)
  1453. {
  1454. struct mm_slot *mm_slot;
  1455. int free = 0;
  1456. spin_lock(&khugepaged_mm_lock);
  1457. mm_slot = get_mm_slot(mm);
  1458. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1459. hlist_del(&mm_slot->hash);
  1460. list_del(&mm_slot->mm_node);
  1461. free = 1;
  1462. }
  1463. spin_unlock(&khugepaged_mm_lock);
  1464. if (free) {
  1465. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1466. free_mm_slot(mm_slot);
  1467. mmdrop(mm);
  1468. } else if (mm_slot) {
  1469. /*
  1470. * This is required to serialize against
  1471. * khugepaged_test_exit() (which is guaranteed to run
  1472. * under mmap sem read mode). Stop here (after we
  1473. * return all pagetables will be destroyed) until
  1474. * khugepaged has finished working on the pagetables
  1475. * under the mmap_sem.
  1476. */
  1477. down_write(&mm->mmap_sem);
  1478. up_write(&mm->mmap_sem);
  1479. }
  1480. }
  1481. static void release_pte_page(struct page *page)
  1482. {
  1483. /* 0 stands for page_is_file_cache(page) == false */
  1484. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1485. unlock_page(page);
  1486. putback_lru_page(page);
  1487. }
  1488. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1489. {
  1490. while (--_pte >= pte) {
  1491. pte_t pteval = *_pte;
  1492. if (!pte_none(pteval))
  1493. release_pte_page(pte_page(pteval));
  1494. }
  1495. }
  1496. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1497. unsigned long address,
  1498. pte_t *pte)
  1499. {
  1500. struct page *page;
  1501. pte_t *_pte;
  1502. int referenced = 0, none = 0;
  1503. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1504. _pte++, address += PAGE_SIZE) {
  1505. pte_t pteval = *_pte;
  1506. if (pte_none(pteval)) {
  1507. if (++none <= khugepaged_max_ptes_none)
  1508. continue;
  1509. else
  1510. goto out;
  1511. }
  1512. if (!pte_present(pteval) || !pte_write(pteval))
  1513. goto out;
  1514. page = vm_normal_page(vma, address, pteval);
  1515. if (unlikely(!page))
  1516. goto out;
  1517. VM_BUG_ON(PageCompound(page));
  1518. BUG_ON(!PageAnon(page));
  1519. VM_BUG_ON(!PageSwapBacked(page));
  1520. /* cannot use mapcount: can't collapse if there's a gup pin */
  1521. if (page_count(page) != 1)
  1522. goto out;
  1523. /*
  1524. * We can do it before isolate_lru_page because the
  1525. * page can't be freed from under us. NOTE: PG_lock
  1526. * is needed to serialize against split_huge_page
  1527. * when invoked from the VM.
  1528. */
  1529. if (!trylock_page(page))
  1530. goto out;
  1531. /*
  1532. * Isolate the page to avoid collapsing an hugepage
  1533. * currently in use by the VM.
  1534. */
  1535. if (isolate_lru_page(page)) {
  1536. unlock_page(page);
  1537. goto out;
  1538. }
  1539. /* 0 stands for page_is_file_cache(page) == false */
  1540. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1541. VM_BUG_ON(!PageLocked(page));
  1542. VM_BUG_ON(PageLRU(page));
  1543. /* If there is no mapped pte young don't collapse the page */
  1544. if (pte_young(pteval) || PageReferenced(page) ||
  1545. mmu_notifier_test_young(vma->vm_mm, address))
  1546. referenced = 1;
  1547. }
  1548. if (likely(referenced))
  1549. return 1;
  1550. out:
  1551. release_pte_pages(pte, _pte);
  1552. return 0;
  1553. }
  1554. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1555. struct vm_area_struct *vma,
  1556. unsigned long address,
  1557. spinlock_t *ptl)
  1558. {
  1559. pte_t *_pte;
  1560. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1561. pte_t pteval = *_pte;
  1562. struct page *src_page;
  1563. if (pte_none(pteval)) {
  1564. clear_user_highpage(page, address);
  1565. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1566. } else {
  1567. src_page = pte_page(pteval);
  1568. copy_user_highpage(page, src_page, address, vma);
  1569. VM_BUG_ON(page_mapcount(src_page) != 1);
  1570. release_pte_page(src_page);
  1571. /*
  1572. * ptl mostly unnecessary, but preempt has to
  1573. * be disabled to update the per-cpu stats
  1574. * inside page_remove_rmap().
  1575. */
  1576. spin_lock(ptl);
  1577. /*
  1578. * paravirt calls inside pte_clear here are
  1579. * superfluous.
  1580. */
  1581. pte_clear(vma->vm_mm, address, _pte);
  1582. page_remove_rmap(src_page);
  1583. spin_unlock(ptl);
  1584. free_page_and_swap_cache(src_page);
  1585. }
  1586. address += PAGE_SIZE;
  1587. page++;
  1588. }
  1589. }
  1590. static void khugepaged_alloc_sleep(void)
  1591. {
  1592. wait_event_freezable_timeout(khugepaged_wait, false,
  1593. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1594. }
  1595. #ifdef CONFIG_NUMA
  1596. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1597. {
  1598. if (IS_ERR(*hpage)) {
  1599. if (!*wait)
  1600. return false;
  1601. *wait = false;
  1602. *hpage = NULL;
  1603. khugepaged_alloc_sleep();
  1604. } else if (*hpage) {
  1605. put_page(*hpage);
  1606. *hpage = NULL;
  1607. }
  1608. return true;
  1609. }
  1610. static struct page
  1611. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1612. struct vm_area_struct *vma, unsigned long address,
  1613. int node)
  1614. {
  1615. VM_BUG_ON(*hpage);
  1616. /*
  1617. * Allocate the page while the vma is still valid and under
  1618. * the mmap_sem read mode so there is no memory allocation
  1619. * later when we take the mmap_sem in write mode. This is more
  1620. * friendly behavior (OTOH it may actually hide bugs) to
  1621. * filesystems in userland with daemons allocating memory in
  1622. * the userland I/O paths. Allocating memory with the
  1623. * mmap_sem in read mode is good idea also to allow greater
  1624. * scalability.
  1625. */
  1626. *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1627. node, __GFP_OTHER_NODE);
  1628. /*
  1629. * After allocating the hugepage, release the mmap_sem read lock in
  1630. * preparation for taking it in write mode.
  1631. */
  1632. up_read(&mm->mmap_sem);
  1633. if (unlikely(!*hpage)) {
  1634. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1635. *hpage = ERR_PTR(-ENOMEM);
  1636. return NULL;
  1637. }
  1638. count_vm_event(THP_COLLAPSE_ALLOC);
  1639. return *hpage;
  1640. }
  1641. #else
  1642. static struct page *khugepaged_alloc_hugepage(bool *wait)
  1643. {
  1644. struct page *hpage;
  1645. do {
  1646. hpage = alloc_hugepage(khugepaged_defrag());
  1647. if (!hpage) {
  1648. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1649. if (!*wait)
  1650. return NULL;
  1651. *wait = false;
  1652. khugepaged_alloc_sleep();
  1653. } else
  1654. count_vm_event(THP_COLLAPSE_ALLOC);
  1655. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  1656. return hpage;
  1657. }
  1658. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1659. {
  1660. if (!*hpage)
  1661. *hpage = khugepaged_alloc_hugepage(wait);
  1662. if (unlikely(!*hpage))
  1663. return false;
  1664. return true;
  1665. }
  1666. static struct page
  1667. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1668. struct vm_area_struct *vma, unsigned long address,
  1669. int node)
  1670. {
  1671. up_read(&mm->mmap_sem);
  1672. VM_BUG_ON(!*hpage);
  1673. return *hpage;
  1674. }
  1675. #endif
  1676. static bool hugepage_vma_check(struct vm_area_struct *vma)
  1677. {
  1678. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1679. (vma->vm_flags & VM_NOHUGEPAGE))
  1680. return false;
  1681. if (!vma->anon_vma || vma->vm_ops)
  1682. return false;
  1683. if (is_vma_temporary_stack(vma))
  1684. return false;
  1685. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1686. return true;
  1687. }
  1688. static void collapse_huge_page(struct mm_struct *mm,
  1689. unsigned long address,
  1690. struct page **hpage,
  1691. struct vm_area_struct *vma,
  1692. int node)
  1693. {
  1694. pmd_t *pmd, _pmd;
  1695. pte_t *pte;
  1696. pgtable_t pgtable;
  1697. struct page *new_page;
  1698. spinlock_t *ptl;
  1699. int isolated;
  1700. unsigned long hstart, hend;
  1701. unsigned long mmun_start; /* For mmu_notifiers */
  1702. unsigned long mmun_end; /* For mmu_notifiers */
  1703. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1704. /* release the mmap_sem read lock. */
  1705. new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
  1706. if (!new_page)
  1707. return;
  1708. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
  1709. return;
  1710. /*
  1711. * Prevent all access to pagetables with the exception of
  1712. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1713. * handled by the anon_vma lock + PG_lock.
  1714. */
  1715. down_write(&mm->mmap_sem);
  1716. if (unlikely(khugepaged_test_exit(mm)))
  1717. goto out;
  1718. vma = find_vma(mm, address);
  1719. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1720. hend = vma->vm_end & HPAGE_PMD_MASK;
  1721. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1722. goto out;
  1723. if (!hugepage_vma_check(vma))
  1724. goto out;
  1725. pmd = mm_find_pmd(mm, address);
  1726. if (!pmd)
  1727. goto out;
  1728. if (pmd_trans_huge(*pmd))
  1729. goto out;
  1730. anon_vma_lock(vma->anon_vma);
  1731. pte = pte_offset_map(pmd, address);
  1732. ptl = pte_lockptr(mm, pmd);
  1733. mmun_start = address;
  1734. mmun_end = address + HPAGE_PMD_SIZE;
  1735. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1736. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1737. /*
  1738. * After this gup_fast can't run anymore. This also removes
  1739. * any huge TLB entry from the CPU so we won't allow
  1740. * huge and small TLB entries for the same virtual address
  1741. * to avoid the risk of CPU bugs in that area.
  1742. */
  1743. _pmd = pmdp_clear_flush(vma, address, pmd);
  1744. spin_unlock(&mm->page_table_lock);
  1745. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1746. spin_lock(ptl);
  1747. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1748. spin_unlock(ptl);
  1749. if (unlikely(!isolated)) {
  1750. pte_unmap(pte);
  1751. spin_lock(&mm->page_table_lock);
  1752. BUG_ON(!pmd_none(*pmd));
  1753. set_pmd_at(mm, address, pmd, _pmd);
  1754. spin_unlock(&mm->page_table_lock);
  1755. anon_vma_unlock(vma->anon_vma);
  1756. goto out;
  1757. }
  1758. /*
  1759. * All pages are isolated and locked so anon_vma rmap
  1760. * can't run anymore.
  1761. */
  1762. anon_vma_unlock(vma->anon_vma);
  1763. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1764. pte_unmap(pte);
  1765. __SetPageUptodate(new_page);
  1766. pgtable = pmd_pgtable(_pmd);
  1767. _pmd = mk_huge_pmd(new_page, vma);
  1768. /*
  1769. * spin_lock() below is not the equivalent of smp_wmb(), so
  1770. * this is needed to avoid the copy_huge_page writes to become
  1771. * visible after the set_pmd_at() write.
  1772. */
  1773. smp_wmb();
  1774. spin_lock(&mm->page_table_lock);
  1775. BUG_ON(!pmd_none(*pmd));
  1776. page_add_new_anon_rmap(new_page, vma, address);
  1777. set_pmd_at(mm, address, pmd, _pmd);
  1778. update_mmu_cache_pmd(vma, address, pmd);
  1779. pgtable_trans_huge_deposit(mm, pgtable);
  1780. spin_unlock(&mm->page_table_lock);
  1781. *hpage = NULL;
  1782. khugepaged_pages_collapsed++;
  1783. out_up_write:
  1784. up_write(&mm->mmap_sem);
  1785. return;
  1786. out:
  1787. mem_cgroup_uncharge_page(new_page);
  1788. goto out_up_write;
  1789. }
  1790. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1791. struct vm_area_struct *vma,
  1792. unsigned long address,
  1793. struct page **hpage)
  1794. {
  1795. pmd_t *pmd;
  1796. pte_t *pte, *_pte;
  1797. int ret = 0, referenced = 0, none = 0;
  1798. struct page *page;
  1799. unsigned long _address;
  1800. spinlock_t *ptl;
  1801. int node = -1;
  1802. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1803. pmd = mm_find_pmd(mm, address);
  1804. if (!pmd)
  1805. goto out;
  1806. if (pmd_trans_huge(*pmd))
  1807. goto out;
  1808. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1809. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1810. _pte++, _address += PAGE_SIZE) {
  1811. pte_t pteval = *_pte;
  1812. if (pte_none(pteval)) {
  1813. if (++none <= khugepaged_max_ptes_none)
  1814. continue;
  1815. else
  1816. goto out_unmap;
  1817. }
  1818. if (!pte_present(pteval) || !pte_write(pteval))
  1819. goto out_unmap;
  1820. page = vm_normal_page(vma, _address, pteval);
  1821. if (unlikely(!page))
  1822. goto out_unmap;
  1823. /*
  1824. * Chose the node of the first page. This could
  1825. * be more sophisticated and look at more pages,
  1826. * but isn't for now.
  1827. */
  1828. if (node == -1)
  1829. node = page_to_nid(page);
  1830. VM_BUG_ON(PageCompound(page));
  1831. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1832. goto out_unmap;
  1833. /* cannot use mapcount: can't collapse if there's a gup pin */
  1834. if (page_count(page) != 1)
  1835. goto out_unmap;
  1836. if (pte_young(pteval) || PageReferenced(page) ||
  1837. mmu_notifier_test_young(vma->vm_mm, address))
  1838. referenced = 1;
  1839. }
  1840. if (referenced)
  1841. ret = 1;
  1842. out_unmap:
  1843. pte_unmap_unlock(pte, ptl);
  1844. if (ret)
  1845. /* collapse_huge_page will return with the mmap_sem released */
  1846. collapse_huge_page(mm, address, hpage, vma, node);
  1847. out:
  1848. return ret;
  1849. }
  1850. static void collect_mm_slot(struct mm_slot *mm_slot)
  1851. {
  1852. struct mm_struct *mm = mm_slot->mm;
  1853. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1854. if (khugepaged_test_exit(mm)) {
  1855. /* free mm_slot */
  1856. hlist_del(&mm_slot->hash);
  1857. list_del(&mm_slot->mm_node);
  1858. /*
  1859. * Not strictly needed because the mm exited already.
  1860. *
  1861. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1862. */
  1863. /* khugepaged_mm_lock actually not necessary for the below */
  1864. free_mm_slot(mm_slot);
  1865. mmdrop(mm);
  1866. }
  1867. }
  1868. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1869. struct page **hpage)
  1870. __releases(&khugepaged_mm_lock)
  1871. __acquires(&khugepaged_mm_lock)
  1872. {
  1873. struct mm_slot *mm_slot;
  1874. struct mm_struct *mm;
  1875. struct vm_area_struct *vma;
  1876. int progress = 0;
  1877. VM_BUG_ON(!pages);
  1878. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  1879. if (khugepaged_scan.mm_slot)
  1880. mm_slot = khugepaged_scan.mm_slot;
  1881. else {
  1882. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1883. struct mm_slot, mm_node);
  1884. khugepaged_scan.address = 0;
  1885. khugepaged_scan.mm_slot = mm_slot;
  1886. }
  1887. spin_unlock(&khugepaged_mm_lock);
  1888. mm = mm_slot->mm;
  1889. down_read(&mm->mmap_sem);
  1890. if (unlikely(khugepaged_test_exit(mm)))
  1891. vma = NULL;
  1892. else
  1893. vma = find_vma(mm, khugepaged_scan.address);
  1894. progress++;
  1895. for (; vma; vma = vma->vm_next) {
  1896. unsigned long hstart, hend;
  1897. cond_resched();
  1898. if (unlikely(khugepaged_test_exit(mm))) {
  1899. progress++;
  1900. break;
  1901. }
  1902. if (!hugepage_vma_check(vma)) {
  1903. skip:
  1904. progress++;
  1905. continue;
  1906. }
  1907. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1908. hend = vma->vm_end & HPAGE_PMD_MASK;
  1909. if (hstart >= hend)
  1910. goto skip;
  1911. if (khugepaged_scan.address > hend)
  1912. goto skip;
  1913. if (khugepaged_scan.address < hstart)
  1914. khugepaged_scan.address = hstart;
  1915. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  1916. while (khugepaged_scan.address < hend) {
  1917. int ret;
  1918. cond_resched();
  1919. if (unlikely(khugepaged_test_exit(mm)))
  1920. goto breakouterloop;
  1921. VM_BUG_ON(khugepaged_scan.address < hstart ||
  1922. khugepaged_scan.address + HPAGE_PMD_SIZE >
  1923. hend);
  1924. ret = khugepaged_scan_pmd(mm, vma,
  1925. khugepaged_scan.address,
  1926. hpage);
  1927. /* move to next address */
  1928. khugepaged_scan.address += HPAGE_PMD_SIZE;
  1929. progress += HPAGE_PMD_NR;
  1930. if (ret)
  1931. /* we released mmap_sem so break loop */
  1932. goto breakouterloop_mmap_sem;
  1933. if (progress >= pages)
  1934. goto breakouterloop;
  1935. }
  1936. }
  1937. breakouterloop:
  1938. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  1939. breakouterloop_mmap_sem:
  1940. spin_lock(&khugepaged_mm_lock);
  1941. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  1942. /*
  1943. * Release the current mm_slot if this mm is about to die, or
  1944. * if we scanned all vmas of this mm.
  1945. */
  1946. if (khugepaged_test_exit(mm) || !vma) {
  1947. /*
  1948. * Make sure that if mm_users is reaching zero while
  1949. * khugepaged runs here, khugepaged_exit will find
  1950. * mm_slot not pointing to the exiting mm.
  1951. */
  1952. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  1953. khugepaged_scan.mm_slot = list_entry(
  1954. mm_slot->mm_node.next,
  1955. struct mm_slot, mm_node);
  1956. khugepaged_scan.address = 0;
  1957. } else {
  1958. khugepaged_scan.mm_slot = NULL;
  1959. khugepaged_full_scans++;
  1960. }
  1961. collect_mm_slot(mm_slot);
  1962. }
  1963. return progress;
  1964. }
  1965. static int khugepaged_has_work(void)
  1966. {
  1967. return !list_empty(&khugepaged_scan.mm_head) &&
  1968. khugepaged_enabled();
  1969. }
  1970. static int khugepaged_wait_event(void)
  1971. {
  1972. return !list_empty(&khugepaged_scan.mm_head) ||
  1973. kthread_should_stop();
  1974. }
  1975. static void khugepaged_do_scan(void)
  1976. {
  1977. struct page *hpage = NULL;
  1978. unsigned int progress = 0, pass_through_head = 0;
  1979. unsigned int pages = khugepaged_pages_to_scan;
  1980. bool wait = true;
  1981. barrier(); /* write khugepaged_pages_to_scan to local stack */
  1982. while (progress < pages) {
  1983. if (!khugepaged_prealloc_page(&hpage, &wait))
  1984. break;
  1985. cond_resched();
  1986. if (unlikely(kthread_should_stop() || freezing(current)))
  1987. break;
  1988. spin_lock(&khugepaged_mm_lock);
  1989. if (!khugepaged_scan.mm_slot)
  1990. pass_through_head++;
  1991. if (khugepaged_has_work() &&
  1992. pass_through_head < 2)
  1993. progress += khugepaged_scan_mm_slot(pages - progress,
  1994. &hpage);
  1995. else
  1996. progress = pages;
  1997. spin_unlock(&khugepaged_mm_lock);
  1998. }
  1999. if (!IS_ERR_OR_NULL(hpage))
  2000. put_page(hpage);
  2001. }
  2002. static void khugepaged_wait_work(void)
  2003. {
  2004. try_to_freeze();
  2005. if (khugepaged_has_work()) {
  2006. if (!khugepaged_scan_sleep_millisecs)
  2007. return;
  2008. wait_event_freezable_timeout(khugepaged_wait,
  2009. kthread_should_stop(),
  2010. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2011. return;
  2012. }
  2013. if (khugepaged_enabled())
  2014. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2015. }
  2016. static int khugepaged(void *none)
  2017. {
  2018. struct mm_slot *mm_slot;
  2019. set_freezable();
  2020. set_user_nice(current, 19);
  2021. while (!kthread_should_stop()) {
  2022. khugepaged_do_scan();
  2023. khugepaged_wait_work();
  2024. }
  2025. spin_lock(&khugepaged_mm_lock);
  2026. mm_slot = khugepaged_scan.mm_slot;
  2027. khugepaged_scan.mm_slot = NULL;
  2028. if (mm_slot)
  2029. collect_mm_slot(mm_slot);
  2030. spin_unlock(&khugepaged_mm_lock);
  2031. return 0;
  2032. }
  2033. void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
  2034. {
  2035. struct page *page;
  2036. spin_lock(&mm->page_table_lock);
  2037. if (unlikely(!pmd_trans_huge(*pmd))) {
  2038. spin_unlock(&mm->page_table_lock);
  2039. return;
  2040. }
  2041. page = pmd_page(*pmd);
  2042. VM_BUG_ON(!page_count(page));
  2043. get_page(page);
  2044. spin_unlock(&mm->page_table_lock);
  2045. split_huge_page(page);
  2046. put_page(page);
  2047. BUG_ON(pmd_trans_huge(*pmd));
  2048. }
  2049. static void split_huge_page_address(struct mm_struct *mm,
  2050. unsigned long address)
  2051. {
  2052. pmd_t *pmd;
  2053. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2054. pmd = mm_find_pmd(mm, address);
  2055. if (!pmd)
  2056. return;
  2057. /*
  2058. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2059. * materialize from under us.
  2060. */
  2061. split_huge_page_pmd(mm, pmd);
  2062. }
  2063. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2064. unsigned long start,
  2065. unsigned long end,
  2066. long adjust_next)
  2067. {
  2068. /*
  2069. * If the new start address isn't hpage aligned and it could
  2070. * previously contain an hugepage: check if we need to split
  2071. * an huge pmd.
  2072. */
  2073. if (start & ~HPAGE_PMD_MASK &&
  2074. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2075. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2076. split_huge_page_address(vma->vm_mm, start);
  2077. /*
  2078. * If the new end address isn't hpage aligned and it could
  2079. * previously contain an hugepage: check if we need to split
  2080. * an huge pmd.
  2081. */
  2082. if (end & ~HPAGE_PMD_MASK &&
  2083. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2084. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2085. split_huge_page_address(vma->vm_mm, end);
  2086. /*
  2087. * If we're also updating the vma->vm_next->vm_start, if the new
  2088. * vm_next->vm_start isn't page aligned and it could previously
  2089. * contain an hugepage: check if we need to split an huge pmd.
  2090. */
  2091. if (adjust_next > 0) {
  2092. struct vm_area_struct *next = vma->vm_next;
  2093. unsigned long nstart = next->vm_start;
  2094. nstart += adjust_next << PAGE_SHIFT;
  2095. if (nstart & ~HPAGE_PMD_MASK &&
  2096. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2097. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2098. split_huge_page_address(next->vm_mm, nstart);
  2099. }
  2100. }