slub.c 129 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include "slab.h"
  19. #include <linux/proc_fs.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/kmemcheck.h>
  22. #include <linux/cpu.h>
  23. #include <linux/cpuset.h>
  24. #include <linux/mempolicy.h>
  25. #include <linux/ctype.h>
  26. #include <linux/debugobjects.h>
  27. #include <linux/kallsyms.h>
  28. #include <linux/memory.h>
  29. #include <linux/math64.h>
  30. #include <linux/fault-inject.h>
  31. #include <linux/stacktrace.h>
  32. #include <linux/prefetch.h>
  33. #include <trace/events/kmem.h>
  34. /*
  35. * Lock order:
  36. * 1. slub_lock (Global Semaphore)
  37. * 2. node->list_lock
  38. * 3. slab_lock(page) (Only on some arches and for debugging)
  39. *
  40. * slub_lock
  41. *
  42. * The role of the slub_lock is to protect the list of all the slabs
  43. * and to synchronize major metadata changes to slab cache structures.
  44. *
  45. * The slab_lock is only used for debugging and on arches that do not
  46. * have the ability to do a cmpxchg_double. It only protects the second
  47. * double word in the page struct. Meaning
  48. * A. page->freelist -> List of object free in a page
  49. * B. page->counters -> Counters of objects
  50. * C. page->frozen -> frozen state
  51. *
  52. * If a slab is frozen then it is exempt from list management. It is not
  53. * on any list. The processor that froze the slab is the one who can
  54. * perform list operations on the page. Other processors may put objects
  55. * onto the freelist but the processor that froze the slab is the only
  56. * one that can retrieve the objects from the page's freelist.
  57. *
  58. * The list_lock protects the partial and full list on each node and
  59. * the partial slab counter. If taken then no new slabs may be added or
  60. * removed from the lists nor make the number of partial slabs be modified.
  61. * (Note that the total number of slabs is an atomic value that may be
  62. * modified without taking the list lock).
  63. *
  64. * The list_lock is a centralized lock and thus we avoid taking it as
  65. * much as possible. As long as SLUB does not have to handle partial
  66. * slabs, operations can continue without any centralized lock. F.e.
  67. * allocating a long series of objects that fill up slabs does not require
  68. * the list lock.
  69. * Interrupts are disabled during allocation and deallocation in order to
  70. * make the slab allocator safe to use in the context of an irq. In addition
  71. * interrupts are disabled to ensure that the processor does not change
  72. * while handling per_cpu slabs, due to kernel preemption.
  73. *
  74. * SLUB assigns one slab for allocation to each processor.
  75. * Allocations only occur from these slabs called cpu slabs.
  76. *
  77. * Slabs with free elements are kept on a partial list and during regular
  78. * operations no list for full slabs is used. If an object in a full slab is
  79. * freed then the slab will show up again on the partial lists.
  80. * We track full slabs for debugging purposes though because otherwise we
  81. * cannot scan all objects.
  82. *
  83. * Slabs are freed when they become empty. Teardown and setup is
  84. * minimal so we rely on the page allocators per cpu caches for
  85. * fast frees and allocs.
  86. *
  87. * Overloading of page flags that are otherwise used for LRU management.
  88. *
  89. * PageActive The slab is frozen and exempt from list processing.
  90. * This means that the slab is dedicated to a purpose
  91. * such as satisfying allocations for a specific
  92. * processor. Objects may be freed in the slab while
  93. * it is frozen but slab_free will then skip the usual
  94. * list operations. It is up to the processor holding
  95. * the slab to integrate the slab into the slab lists
  96. * when the slab is no longer needed.
  97. *
  98. * One use of this flag is to mark slabs that are
  99. * used for allocations. Then such a slab becomes a cpu
  100. * slab. The cpu slab may be equipped with an additional
  101. * freelist that allows lockless access to
  102. * free objects in addition to the regular freelist
  103. * that requires the slab lock.
  104. *
  105. * PageError Slab requires special handling due to debug
  106. * options set. This moves slab handling out of
  107. * the fast path and disables lockless freelists.
  108. */
  109. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  110. SLAB_TRACE | SLAB_DEBUG_FREE)
  111. static inline int kmem_cache_debug(struct kmem_cache *s)
  112. {
  113. #ifdef CONFIG_SLUB_DEBUG
  114. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  115. #else
  116. return 0;
  117. #endif
  118. }
  119. /*
  120. * Issues still to be resolved:
  121. *
  122. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  123. *
  124. * - Variable sizing of the per node arrays
  125. */
  126. /* Enable to test recovery from slab corruption on boot */
  127. #undef SLUB_RESILIENCY_TEST
  128. /* Enable to log cmpxchg failures */
  129. #undef SLUB_DEBUG_CMPXCHG
  130. /*
  131. * Mininum number of partial slabs. These will be left on the partial
  132. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  133. */
  134. #define MIN_PARTIAL 5
  135. /*
  136. * Maximum number of desirable partial slabs.
  137. * The existence of more partial slabs makes kmem_cache_shrink
  138. * sort the partial list by the number of objects in the.
  139. */
  140. #define MAX_PARTIAL 10
  141. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  142. SLAB_POISON | SLAB_STORE_USER)
  143. /*
  144. * Debugging flags that require metadata to be stored in the slab. These get
  145. * disabled when slub_debug=O is used and a cache's min order increases with
  146. * metadata.
  147. */
  148. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  149. /*
  150. * Set of flags that will prevent slab merging
  151. */
  152. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  153. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  154. SLAB_FAILSLAB)
  155. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  156. SLAB_CACHE_DMA | SLAB_NOTRACK)
  157. #define OO_SHIFT 16
  158. #define OO_MASK ((1 << OO_SHIFT) - 1)
  159. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  160. /* Internal SLUB flags */
  161. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  162. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  163. static int kmem_size = sizeof(struct kmem_cache);
  164. #ifdef CONFIG_SMP
  165. static struct notifier_block slab_notifier;
  166. #endif
  167. /* A list of all slab caches on the system */
  168. static DECLARE_RWSEM(slub_lock);
  169. static LIST_HEAD(slab_caches);
  170. /*
  171. * Tracking user of a slab.
  172. */
  173. #define TRACK_ADDRS_COUNT 16
  174. struct track {
  175. unsigned long addr; /* Called from address */
  176. #ifdef CONFIG_STACKTRACE
  177. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  178. #endif
  179. int cpu; /* Was running on cpu */
  180. int pid; /* Pid context */
  181. unsigned long when; /* When did the operation occur */
  182. };
  183. enum track_item { TRACK_ALLOC, TRACK_FREE };
  184. #ifdef CONFIG_SYSFS
  185. static int sysfs_slab_add(struct kmem_cache *);
  186. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  187. static void sysfs_slab_remove(struct kmem_cache *);
  188. #else
  189. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  190. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  191. { return 0; }
  192. static inline void sysfs_slab_remove(struct kmem_cache *s)
  193. {
  194. kfree(s->name);
  195. kfree(s);
  196. }
  197. #endif
  198. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  199. {
  200. #ifdef CONFIG_SLUB_STATS
  201. __this_cpu_inc(s->cpu_slab->stat[si]);
  202. #endif
  203. }
  204. /********************************************************************
  205. * Core slab cache functions
  206. *******************************************************************/
  207. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  208. {
  209. return s->node[node];
  210. }
  211. /* Verify that a pointer has an address that is valid within a slab page */
  212. static inline int check_valid_pointer(struct kmem_cache *s,
  213. struct page *page, const void *object)
  214. {
  215. void *base;
  216. if (!object)
  217. return 1;
  218. base = page_address(page);
  219. if (object < base || object >= base + page->objects * s->size ||
  220. (object - base) % s->size) {
  221. return 0;
  222. }
  223. return 1;
  224. }
  225. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  226. {
  227. return *(void **)(object + s->offset);
  228. }
  229. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  230. {
  231. prefetch(object + s->offset);
  232. }
  233. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  234. {
  235. void *p;
  236. #ifdef CONFIG_DEBUG_PAGEALLOC
  237. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  238. #else
  239. p = get_freepointer(s, object);
  240. #endif
  241. return p;
  242. }
  243. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  244. {
  245. *(void **)(object + s->offset) = fp;
  246. }
  247. /* Loop over all objects in a slab */
  248. #define for_each_object(__p, __s, __addr, __objects) \
  249. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  250. __p += (__s)->size)
  251. /* Determine object index from a given position */
  252. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  253. {
  254. return (p - addr) / s->size;
  255. }
  256. static inline size_t slab_ksize(const struct kmem_cache *s)
  257. {
  258. #ifdef CONFIG_SLUB_DEBUG
  259. /*
  260. * Debugging requires use of the padding between object
  261. * and whatever may come after it.
  262. */
  263. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  264. return s->object_size;
  265. #endif
  266. /*
  267. * If we have the need to store the freelist pointer
  268. * back there or track user information then we can
  269. * only use the space before that information.
  270. */
  271. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  272. return s->inuse;
  273. /*
  274. * Else we can use all the padding etc for the allocation
  275. */
  276. return s->size;
  277. }
  278. static inline int order_objects(int order, unsigned long size, int reserved)
  279. {
  280. return ((PAGE_SIZE << order) - reserved) / size;
  281. }
  282. static inline struct kmem_cache_order_objects oo_make(int order,
  283. unsigned long size, int reserved)
  284. {
  285. struct kmem_cache_order_objects x = {
  286. (order << OO_SHIFT) + order_objects(order, size, reserved)
  287. };
  288. return x;
  289. }
  290. static inline int oo_order(struct kmem_cache_order_objects x)
  291. {
  292. return x.x >> OO_SHIFT;
  293. }
  294. static inline int oo_objects(struct kmem_cache_order_objects x)
  295. {
  296. return x.x & OO_MASK;
  297. }
  298. /*
  299. * Per slab locking using the pagelock
  300. */
  301. static __always_inline void slab_lock(struct page *page)
  302. {
  303. bit_spin_lock(PG_locked, &page->flags);
  304. }
  305. static __always_inline void slab_unlock(struct page *page)
  306. {
  307. __bit_spin_unlock(PG_locked, &page->flags);
  308. }
  309. /* Interrupts must be disabled (for the fallback code to work right) */
  310. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  311. void *freelist_old, unsigned long counters_old,
  312. void *freelist_new, unsigned long counters_new,
  313. const char *n)
  314. {
  315. VM_BUG_ON(!irqs_disabled());
  316. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  317. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  318. if (s->flags & __CMPXCHG_DOUBLE) {
  319. if (cmpxchg_double(&page->freelist, &page->counters,
  320. freelist_old, counters_old,
  321. freelist_new, counters_new))
  322. return 1;
  323. } else
  324. #endif
  325. {
  326. slab_lock(page);
  327. if (page->freelist == freelist_old && page->counters == counters_old) {
  328. page->freelist = freelist_new;
  329. page->counters = counters_new;
  330. slab_unlock(page);
  331. return 1;
  332. }
  333. slab_unlock(page);
  334. }
  335. cpu_relax();
  336. stat(s, CMPXCHG_DOUBLE_FAIL);
  337. #ifdef SLUB_DEBUG_CMPXCHG
  338. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  339. #endif
  340. return 0;
  341. }
  342. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  343. void *freelist_old, unsigned long counters_old,
  344. void *freelist_new, unsigned long counters_new,
  345. const char *n)
  346. {
  347. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  348. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  349. if (s->flags & __CMPXCHG_DOUBLE) {
  350. if (cmpxchg_double(&page->freelist, &page->counters,
  351. freelist_old, counters_old,
  352. freelist_new, counters_new))
  353. return 1;
  354. } else
  355. #endif
  356. {
  357. unsigned long flags;
  358. local_irq_save(flags);
  359. slab_lock(page);
  360. if (page->freelist == freelist_old && page->counters == counters_old) {
  361. page->freelist = freelist_new;
  362. page->counters = counters_new;
  363. slab_unlock(page);
  364. local_irq_restore(flags);
  365. return 1;
  366. }
  367. slab_unlock(page);
  368. local_irq_restore(flags);
  369. }
  370. cpu_relax();
  371. stat(s, CMPXCHG_DOUBLE_FAIL);
  372. #ifdef SLUB_DEBUG_CMPXCHG
  373. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  374. #endif
  375. return 0;
  376. }
  377. #ifdef CONFIG_SLUB_DEBUG
  378. /*
  379. * Determine a map of object in use on a page.
  380. *
  381. * Node listlock must be held to guarantee that the page does
  382. * not vanish from under us.
  383. */
  384. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  385. {
  386. void *p;
  387. void *addr = page_address(page);
  388. for (p = page->freelist; p; p = get_freepointer(s, p))
  389. set_bit(slab_index(p, s, addr), map);
  390. }
  391. /*
  392. * Debug settings:
  393. */
  394. #ifdef CONFIG_SLUB_DEBUG_ON
  395. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  396. #else
  397. static int slub_debug;
  398. #endif
  399. static char *slub_debug_slabs;
  400. static int disable_higher_order_debug;
  401. /*
  402. * Object debugging
  403. */
  404. static void print_section(char *text, u8 *addr, unsigned int length)
  405. {
  406. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  407. length, 1);
  408. }
  409. static struct track *get_track(struct kmem_cache *s, void *object,
  410. enum track_item alloc)
  411. {
  412. struct track *p;
  413. if (s->offset)
  414. p = object + s->offset + sizeof(void *);
  415. else
  416. p = object + s->inuse;
  417. return p + alloc;
  418. }
  419. static void set_track(struct kmem_cache *s, void *object,
  420. enum track_item alloc, unsigned long addr)
  421. {
  422. struct track *p = get_track(s, object, alloc);
  423. if (addr) {
  424. #ifdef CONFIG_STACKTRACE
  425. struct stack_trace trace;
  426. int i;
  427. trace.nr_entries = 0;
  428. trace.max_entries = TRACK_ADDRS_COUNT;
  429. trace.entries = p->addrs;
  430. trace.skip = 3;
  431. save_stack_trace(&trace);
  432. /* See rant in lockdep.c */
  433. if (trace.nr_entries != 0 &&
  434. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  435. trace.nr_entries--;
  436. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  437. p->addrs[i] = 0;
  438. #endif
  439. p->addr = addr;
  440. p->cpu = smp_processor_id();
  441. p->pid = current->pid;
  442. p->when = jiffies;
  443. } else
  444. memset(p, 0, sizeof(struct track));
  445. }
  446. static void init_tracking(struct kmem_cache *s, void *object)
  447. {
  448. if (!(s->flags & SLAB_STORE_USER))
  449. return;
  450. set_track(s, object, TRACK_FREE, 0UL);
  451. set_track(s, object, TRACK_ALLOC, 0UL);
  452. }
  453. static void print_track(const char *s, struct track *t)
  454. {
  455. if (!t->addr)
  456. return;
  457. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  458. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  459. #ifdef CONFIG_STACKTRACE
  460. {
  461. int i;
  462. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  463. if (t->addrs[i])
  464. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  465. else
  466. break;
  467. }
  468. #endif
  469. }
  470. static void print_tracking(struct kmem_cache *s, void *object)
  471. {
  472. if (!(s->flags & SLAB_STORE_USER))
  473. return;
  474. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  475. print_track("Freed", get_track(s, object, TRACK_FREE));
  476. }
  477. static void print_page_info(struct page *page)
  478. {
  479. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  480. page, page->objects, page->inuse, page->freelist, page->flags);
  481. }
  482. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  483. {
  484. va_list args;
  485. char buf[100];
  486. va_start(args, fmt);
  487. vsnprintf(buf, sizeof(buf), fmt, args);
  488. va_end(args);
  489. printk(KERN_ERR "========================================"
  490. "=====================================\n");
  491. printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
  492. printk(KERN_ERR "----------------------------------------"
  493. "-------------------------------------\n\n");
  494. }
  495. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  496. {
  497. va_list args;
  498. char buf[100];
  499. va_start(args, fmt);
  500. vsnprintf(buf, sizeof(buf), fmt, args);
  501. va_end(args);
  502. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  503. }
  504. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  505. {
  506. unsigned int off; /* Offset of last byte */
  507. u8 *addr = page_address(page);
  508. print_tracking(s, p);
  509. print_page_info(page);
  510. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  511. p, p - addr, get_freepointer(s, p));
  512. if (p > addr + 16)
  513. print_section("Bytes b4 ", p - 16, 16);
  514. print_section("Object ", p, min_t(unsigned long, s->object_size,
  515. PAGE_SIZE));
  516. if (s->flags & SLAB_RED_ZONE)
  517. print_section("Redzone ", p + s->object_size,
  518. s->inuse - s->object_size);
  519. if (s->offset)
  520. off = s->offset + sizeof(void *);
  521. else
  522. off = s->inuse;
  523. if (s->flags & SLAB_STORE_USER)
  524. off += 2 * sizeof(struct track);
  525. if (off != s->size)
  526. /* Beginning of the filler is the free pointer */
  527. print_section("Padding ", p + off, s->size - off);
  528. dump_stack();
  529. }
  530. static void object_err(struct kmem_cache *s, struct page *page,
  531. u8 *object, char *reason)
  532. {
  533. slab_bug(s, "%s", reason);
  534. print_trailer(s, page, object);
  535. }
  536. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  537. {
  538. va_list args;
  539. char buf[100];
  540. va_start(args, fmt);
  541. vsnprintf(buf, sizeof(buf), fmt, args);
  542. va_end(args);
  543. slab_bug(s, "%s", buf);
  544. print_page_info(page);
  545. dump_stack();
  546. }
  547. static void init_object(struct kmem_cache *s, void *object, u8 val)
  548. {
  549. u8 *p = object;
  550. if (s->flags & __OBJECT_POISON) {
  551. memset(p, POISON_FREE, s->object_size - 1);
  552. p[s->object_size - 1] = POISON_END;
  553. }
  554. if (s->flags & SLAB_RED_ZONE)
  555. memset(p + s->object_size, val, s->inuse - s->object_size);
  556. }
  557. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  558. void *from, void *to)
  559. {
  560. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  561. memset(from, data, to - from);
  562. }
  563. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  564. u8 *object, char *what,
  565. u8 *start, unsigned int value, unsigned int bytes)
  566. {
  567. u8 *fault;
  568. u8 *end;
  569. fault = memchr_inv(start, value, bytes);
  570. if (!fault)
  571. return 1;
  572. end = start + bytes;
  573. while (end > fault && end[-1] == value)
  574. end--;
  575. slab_bug(s, "%s overwritten", what);
  576. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  577. fault, end - 1, fault[0], value);
  578. print_trailer(s, page, object);
  579. restore_bytes(s, what, value, fault, end);
  580. return 0;
  581. }
  582. /*
  583. * Object layout:
  584. *
  585. * object address
  586. * Bytes of the object to be managed.
  587. * If the freepointer may overlay the object then the free
  588. * pointer is the first word of the object.
  589. *
  590. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  591. * 0xa5 (POISON_END)
  592. *
  593. * object + s->object_size
  594. * Padding to reach word boundary. This is also used for Redzoning.
  595. * Padding is extended by another word if Redzoning is enabled and
  596. * object_size == inuse.
  597. *
  598. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  599. * 0xcc (RED_ACTIVE) for objects in use.
  600. *
  601. * object + s->inuse
  602. * Meta data starts here.
  603. *
  604. * A. Free pointer (if we cannot overwrite object on free)
  605. * B. Tracking data for SLAB_STORE_USER
  606. * C. Padding to reach required alignment boundary or at mininum
  607. * one word if debugging is on to be able to detect writes
  608. * before the word boundary.
  609. *
  610. * Padding is done using 0x5a (POISON_INUSE)
  611. *
  612. * object + s->size
  613. * Nothing is used beyond s->size.
  614. *
  615. * If slabcaches are merged then the object_size and inuse boundaries are mostly
  616. * ignored. And therefore no slab options that rely on these boundaries
  617. * may be used with merged slabcaches.
  618. */
  619. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  620. {
  621. unsigned long off = s->inuse; /* The end of info */
  622. if (s->offset)
  623. /* Freepointer is placed after the object. */
  624. off += sizeof(void *);
  625. if (s->flags & SLAB_STORE_USER)
  626. /* We also have user information there */
  627. off += 2 * sizeof(struct track);
  628. if (s->size == off)
  629. return 1;
  630. return check_bytes_and_report(s, page, p, "Object padding",
  631. p + off, POISON_INUSE, s->size - off);
  632. }
  633. /* Check the pad bytes at the end of a slab page */
  634. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  635. {
  636. u8 *start;
  637. u8 *fault;
  638. u8 *end;
  639. int length;
  640. int remainder;
  641. if (!(s->flags & SLAB_POISON))
  642. return 1;
  643. start = page_address(page);
  644. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  645. end = start + length;
  646. remainder = length % s->size;
  647. if (!remainder)
  648. return 1;
  649. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  650. if (!fault)
  651. return 1;
  652. while (end > fault && end[-1] == POISON_INUSE)
  653. end--;
  654. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  655. print_section("Padding ", end - remainder, remainder);
  656. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  657. return 0;
  658. }
  659. static int check_object(struct kmem_cache *s, struct page *page,
  660. void *object, u8 val)
  661. {
  662. u8 *p = object;
  663. u8 *endobject = object + s->object_size;
  664. if (s->flags & SLAB_RED_ZONE) {
  665. if (!check_bytes_and_report(s, page, object, "Redzone",
  666. endobject, val, s->inuse - s->object_size))
  667. return 0;
  668. } else {
  669. if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
  670. check_bytes_and_report(s, page, p, "Alignment padding",
  671. endobject, POISON_INUSE, s->inuse - s->object_size);
  672. }
  673. }
  674. if (s->flags & SLAB_POISON) {
  675. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  676. (!check_bytes_and_report(s, page, p, "Poison", p,
  677. POISON_FREE, s->object_size - 1) ||
  678. !check_bytes_and_report(s, page, p, "Poison",
  679. p + s->object_size - 1, POISON_END, 1)))
  680. return 0;
  681. /*
  682. * check_pad_bytes cleans up on its own.
  683. */
  684. check_pad_bytes(s, page, p);
  685. }
  686. if (!s->offset && val == SLUB_RED_ACTIVE)
  687. /*
  688. * Object and freepointer overlap. Cannot check
  689. * freepointer while object is allocated.
  690. */
  691. return 1;
  692. /* Check free pointer validity */
  693. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  694. object_err(s, page, p, "Freepointer corrupt");
  695. /*
  696. * No choice but to zap it and thus lose the remainder
  697. * of the free objects in this slab. May cause
  698. * another error because the object count is now wrong.
  699. */
  700. set_freepointer(s, p, NULL);
  701. return 0;
  702. }
  703. return 1;
  704. }
  705. static int check_slab(struct kmem_cache *s, struct page *page)
  706. {
  707. int maxobj;
  708. VM_BUG_ON(!irqs_disabled());
  709. if (!PageSlab(page)) {
  710. slab_err(s, page, "Not a valid slab page");
  711. return 0;
  712. }
  713. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  714. if (page->objects > maxobj) {
  715. slab_err(s, page, "objects %u > max %u",
  716. s->name, page->objects, maxobj);
  717. return 0;
  718. }
  719. if (page->inuse > page->objects) {
  720. slab_err(s, page, "inuse %u > max %u",
  721. s->name, page->inuse, page->objects);
  722. return 0;
  723. }
  724. /* Slab_pad_check fixes things up after itself */
  725. slab_pad_check(s, page);
  726. return 1;
  727. }
  728. /*
  729. * Determine if a certain object on a page is on the freelist. Must hold the
  730. * slab lock to guarantee that the chains are in a consistent state.
  731. */
  732. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  733. {
  734. int nr = 0;
  735. void *fp;
  736. void *object = NULL;
  737. unsigned long max_objects;
  738. fp = page->freelist;
  739. while (fp && nr <= page->objects) {
  740. if (fp == search)
  741. return 1;
  742. if (!check_valid_pointer(s, page, fp)) {
  743. if (object) {
  744. object_err(s, page, object,
  745. "Freechain corrupt");
  746. set_freepointer(s, object, NULL);
  747. break;
  748. } else {
  749. slab_err(s, page, "Freepointer corrupt");
  750. page->freelist = NULL;
  751. page->inuse = page->objects;
  752. slab_fix(s, "Freelist cleared");
  753. return 0;
  754. }
  755. break;
  756. }
  757. object = fp;
  758. fp = get_freepointer(s, object);
  759. nr++;
  760. }
  761. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  762. if (max_objects > MAX_OBJS_PER_PAGE)
  763. max_objects = MAX_OBJS_PER_PAGE;
  764. if (page->objects != max_objects) {
  765. slab_err(s, page, "Wrong number of objects. Found %d but "
  766. "should be %d", page->objects, max_objects);
  767. page->objects = max_objects;
  768. slab_fix(s, "Number of objects adjusted.");
  769. }
  770. if (page->inuse != page->objects - nr) {
  771. slab_err(s, page, "Wrong object count. Counter is %d but "
  772. "counted were %d", page->inuse, page->objects - nr);
  773. page->inuse = page->objects - nr;
  774. slab_fix(s, "Object count adjusted.");
  775. }
  776. return search == NULL;
  777. }
  778. static void trace(struct kmem_cache *s, struct page *page, void *object,
  779. int alloc)
  780. {
  781. if (s->flags & SLAB_TRACE) {
  782. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  783. s->name,
  784. alloc ? "alloc" : "free",
  785. object, page->inuse,
  786. page->freelist);
  787. if (!alloc)
  788. print_section("Object ", (void *)object, s->object_size);
  789. dump_stack();
  790. }
  791. }
  792. /*
  793. * Hooks for other subsystems that check memory allocations. In a typical
  794. * production configuration these hooks all should produce no code at all.
  795. */
  796. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  797. {
  798. flags &= gfp_allowed_mask;
  799. lockdep_trace_alloc(flags);
  800. might_sleep_if(flags & __GFP_WAIT);
  801. return should_failslab(s->object_size, flags, s->flags);
  802. }
  803. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  804. {
  805. flags &= gfp_allowed_mask;
  806. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  807. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
  808. }
  809. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  810. {
  811. kmemleak_free_recursive(x, s->flags);
  812. /*
  813. * Trouble is that we may no longer disable interupts in the fast path
  814. * So in order to make the debug calls that expect irqs to be
  815. * disabled we need to disable interrupts temporarily.
  816. */
  817. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  818. {
  819. unsigned long flags;
  820. local_irq_save(flags);
  821. kmemcheck_slab_free(s, x, s->object_size);
  822. debug_check_no_locks_freed(x, s->object_size);
  823. local_irq_restore(flags);
  824. }
  825. #endif
  826. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  827. debug_check_no_obj_freed(x, s->object_size);
  828. }
  829. /*
  830. * Tracking of fully allocated slabs for debugging purposes.
  831. *
  832. * list_lock must be held.
  833. */
  834. static void add_full(struct kmem_cache *s,
  835. struct kmem_cache_node *n, struct page *page)
  836. {
  837. if (!(s->flags & SLAB_STORE_USER))
  838. return;
  839. list_add(&page->lru, &n->full);
  840. }
  841. /*
  842. * list_lock must be held.
  843. */
  844. static void remove_full(struct kmem_cache *s, struct page *page)
  845. {
  846. if (!(s->flags & SLAB_STORE_USER))
  847. return;
  848. list_del(&page->lru);
  849. }
  850. /* Tracking of the number of slabs for debugging purposes */
  851. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  852. {
  853. struct kmem_cache_node *n = get_node(s, node);
  854. return atomic_long_read(&n->nr_slabs);
  855. }
  856. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  857. {
  858. return atomic_long_read(&n->nr_slabs);
  859. }
  860. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  861. {
  862. struct kmem_cache_node *n = get_node(s, node);
  863. /*
  864. * May be called early in order to allocate a slab for the
  865. * kmem_cache_node structure. Solve the chicken-egg
  866. * dilemma by deferring the increment of the count during
  867. * bootstrap (see early_kmem_cache_node_alloc).
  868. */
  869. if (n) {
  870. atomic_long_inc(&n->nr_slabs);
  871. atomic_long_add(objects, &n->total_objects);
  872. }
  873. }
  874. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  875. {
  876. struct kmem_cache_node *n = get_node(s, node);
  877. atomic_long_dec(&n->nr_slabs);
  878. atomic_long_sub(objects, &n->total_objects);
  879. }
  880. /* Object debug checks for alloc/free paths */
  881. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  882. void *object)
  883. {
  884. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  885. return;
  886. init_object(s, object, SLUB_RED_INACTIVE);
  887. init_tracking(s, object);
  888. }
  889. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  890. void *object, unsigned long addr)
  891. {
  892. if (!check_slab(s, page))
  893. goto bad;
  894. if (!check_valid_pointer(s, page, object)) {
  895. object_err(s, page, object, "Freelist Pointer check fails");
  896. goto bad;
  897. }
  898. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  899. goto bad;
  900. /* Success perform special debug activities for allocs */
  901. if (s->flags & SLAB_STORE_USER)
  902. set_track(s, object, TRACK_ALLOC, addr);
  903. trace(s, page, object, 1);
  904. init_object(s, object, SLUB_RED_ACTIVE);
  905. return 1;
  906. bad:
  907. if (PageSlab(page)) {
  908. /*
  909. * If this is a slab page then lets do the best we can
  910. * to avoid issues in the future. Marking all objects
  911. * as used avoids touching the remaining objects.
  912. */
  913. slab_fix(s, "Marking all objects used");
  914. page->inuse = page->objects;
  915. page->freelist = NULL;
  916. }
  917. return 0;
  918. }
  919. static noinline int free_debug_processing(struct kmem_cache *s,
  920. struct page *page, void *object, unsigned long addr)
  921. {
  922. unsigned long flags;
  923. int rc = 0;
  924. local_irq_save(flags);
  925. slab_lock(page);
  926. if (!check_slab(s, page))
  927. goto fail;
  928. if (!check_valid_pointer(s, page, object)) {
  929. slab_err(s, page, "Invalid object pointer 0x%p", object);
  930. goto fail;
  931. }
  932. if (on_freelist(s, page, object)) {
  933. object_err(s, page, object, "Object already free");
  934. goto fail;
  935. }
  936. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  937. goto out;
  938. if (unlikely(s != page->slab)) {
  939. if (!PageSlab(page)) {
  940. slab_err(s, page, "Attempt to free object(0x%p) "
  941. "outside of slab", object);
  942. } else if (!page->slab) {
  943. printk(KERN_ERR
  944. "SLUB <none>: no slab for object 0x%p.\n",
  945. object);
  946. dump_stack();
  947. } else
  948. object_err(s, page, object,
  949. "page slab pointer corrupt.");
  950. goto fail;
  951. }
  952. if (s->flags & SLAB_STORE_USER)
  953. set_track(s, object, TRACK_FREE, addr);
  954. trace(s, page, object, 0);
  955. init_object(s, object, SLUB_RED_INACTIVE);
  956. rc = 1;
  957. out:
  958. slab_unlock(page);
  959. local_irq_restore(flags);
  960. return rc;
  961. fail:
  962. slab_fix(s, "Object at 0x%p not freed", object);
  963. goto out;
  964. }
  965. static int __init setup_slub_debug(char *str)
  966. {
  967. slub_debug = DEBUG_DEFAULT_FLAGS;
  968. if (*str++ != '=' || !*str)
  969. /*
  970. * No options specified. Switch on full debugging.
  971. */
  972. goto out;
  973. if (*str == ',')
  974. /*
  975. * No options but restriction on slabs. This means full
  976. * debugging for slabs matching a pattern.
  977. */
  978. goto check_slabs;
  979. if (tolower(*str) == 'o') {
  980. /*
  981. * Avoid enabling debugging on caches if its minimum order
  982. * would increase as a result.
  983. */
  984. disable_higher_order_debug = 1;
  985. goto out;
  986. }
  987. slub_debug = 0;
  988. if (*str == '-')
  989. /*
  990. * Switch off all debugging measures.
  991. */
  992. goto out;
  993. /*
  994. * Determine which debug features should be switched on
  995. */
  996. for (; *str && *str != ','; str++) {
  997. switch (tolower(*str)) {
  998. case 'f':
  999. slub_debug |= SLAB_DEBUG_FREE;
  1000. break;
  1001. case 'z':
  1002. slub_debug |= SLAB_RED_ZONE;
  1003. break;
  1004. case 'p':
  1005. slub_debug |= SLAB_POISON;
  1006. break;
  1007. case 'u':
  1008. slub_debug |= SLAB_STORE_USER;
  1009. break;
  1010. case 't':
  1011. slub_debug |= SLAB_TRACE;
  1012. break;
  1013. case 'a':
  1014. slub_debug |= SLAB_FAILSLAB;
  1015. break;
  1016. default:
  1017. printk(KERN_ERR "slub_debug option '%c' "
  1018. "unknown. skipped\n", *str);
  1019. }
  1020. }
  1021. check_slabs:
  1022. if (*str == ',')
  1023. slub_debug_slabs = str + 1;
  1024. out:
  1025. return 1;
  1026. }
  1027. __setup("slub_debug", setup_slub_debug);
  1028. static unsigned long kmem_cache_flags(unsigned long object_size,
  1029. unsigned long flags, const char *name,
  1030. void (*ctor)(void *))
  1031. {
  1032. /*
  1033. * Enable debugging if selected on the kernel commandline.
  1034. */
  1035. if (slub_debug && (!slub_debug_slabs ||
  1036. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  1037. flags |= slub_debug;
  1038. return flags;
  1039. }
  1040. #else
  1041. static inline void setup_object_debug(struct kmem_cache *s,
  1042. struct page *page, void *object) {}
  1043. static inline int alloc_debug_processing(struct kmem_cache *s,
  1044. struct page *page, void *object, unsigned long addr) { return 0; }
  1045. static inline int free_debug_processing(struct kmem_cache *s,
  1046. struct page *page, void *object, unsigned long addr) { return 0; }
  1047. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1048. { return 1; }
  1049. static inline int check_object(struct kmem_cache *s, struct page *page,
  1050. void *object, u8 val) { return 1; }
  1051. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1052. struct page *page) {}
  1053. static inline void remove_full(struct kmem_cache *s, struct page *page) {}
  1054. static inline unsigned long kmem_cache_flags(unsigned long object_size,
  1055. unsigned long flags, const char *name,
  1056. void (*ctor)(void *))
  1057. {
  1058. return flags;
  1059. }
  1060. #define slub_debug 0
  1061. #define disable_higher_order_debug 0
  1062. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1063. { return 0; }
  1064. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1065. { return 0; }
  1066. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1067. int objects) {}
  1068. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1069. int objects) {}
  1070. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1071. { return 0; }
  1072. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1073. void *object) {}
  1074. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  1075. #endif /* CONFIG_SLUB_DEBUG */
  1076. /*
  1077. * Slab allocation and freeing
  1078. */
  1079. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1080. struct kmem_cache_order_objects oo)
  1081. {
  1082. int order = oo_order(oo);
  1083. flags |= __GFP_NOTRACK;
  1084. if (node == NUMA_NO_NODE)
  1085. return alloc_pages(flags, order);
  1086. else
  1087. return alloc_pages_exact_node(node, flags, order);
  1088. }
  1089. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1090. {
  1091. struct page *page;
  1092. struct kmem_cache_order_objects oo = s->oo;
  1093. gfp_t alloc_gfp;
  1094. flags &= gfp_allowed_mask;
  1095. if (flags & __GFP_WAIT)
  1096. local_irq_enable();
  1097. flags |= s->allocflags;
  1098. /*
  1099. * Let the initial higher-order allocation fail under memory pressure
  1100. * so we fall-back to the minimum order allocation.
  1101. */
  1102. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1103. page = alloc_slab_page(alloc_gfp, node, oo);
  1104. if (unlikely(!page)) {
  1105. oo = s->min;
  1106. /*
  1107. * Allocation may have failed due to fragmentation.
  1108. * Try a lower order alloc if possible
  1109. */
  1110. page = alloc_slab_page(flags, node, oo);
  1111. if (page)
  1112. stat(s, ORDER_FALLBACK);
  1113. }
  1114. if (flags & __GFP_WAIT)
  1115. local_irq_disable();
  1116. if (!page)
  1117. return NULL;
  1118. if (kmemcheck_enabled
  1119. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1120. int pages = 1 << oo_order(oo);
  1121. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1122. /*
  1123. * Objects from caches that have a constructor don't get
  1124. * cleared when they're allocated, so we need to do it here.
  1125. */
  1126. if (s->ctor)
  1127. kmemcheck_mark_uninitialized_pages(page, pages);
  1128. else
  1129. kmemcheck_mark_unallocated_pages(page, pages);
  1130. }
  1131. page->objects = oo_objects(oo);
  1132. mod_zone_page_state(page_zone(page),
  1133. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1134. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1135. 1 << oo_order(oo));
  1136. return page;
  1137. }
  1138. static void setup_object(struct kmem_cache *s, struct page *page,
  1139. void *object)
  1140. {
  1141. setup_object_debug(s, page, object);
  1142. if (unlikely(s->ctor))
  1143. s->ctor(object);
  1144. }
  1145. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1146. {
  1147. struct page *page;
  1148. void *start;
  1149. void *last;
  1150. void *p;
  1151. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1152. page = allocate_slab(s,
  1153. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1154. if (!page)
  1155. goto out;
  1156. inc_slabs_node(s, page_to_nid(page), page->objects);
  1157. page->slab = s;
  1158. __SetPageSlab(page);
  1159. start = page_address(page);
  1160. if (unlikely(s->flags & SLAB_POISON))
  1161. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1162. last = start;
  1163. for_each_object(p, s, start, page->objects) {
  1164. setup_object(s, page, last);
  1165. set_freepointer(s, last, p);
  1166. last = p;
  1167. }
  1168. setup_object(s, page, last);
  1169. set_freepointer(s, last, NULL);
  1170. page->freelist = start;
  1171. page->inuse = page->objects;
  1172. page->frozen = 1;
  1173. out:
  1174. return page;
  1175. }
  1176. static void __free_slab(struct kmem_cache *s, struct page *page)
  1177. {
  1178. int order = compound_order(page);
  1179. int pages = 1 << order;
  1180. if (kmem_cache_debug(s)) {
  1181. void *p;
  1182. slab_pad_check(s, page);
  1183. for_each_object(p, s, page_address(page),
  1184. page->objects)
  1185. check_object(s, page, p, SLUB_RED_INACTIVE);
  1186. }
  1187. kmemcheck_free_shadow(page, compound_order(page));
  1188. mod_zone_page_state(page_zone(page),
  1189. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1190. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1191. -pages);
  1192. __ClearPageSlab(page);
  1193. reset_page_mapcount(page);
  1194. if (current->reclaim_state)
  1195. current->reclaim_state->reclaimed_slab += pages;
  1196. __free_pages(page, order);
  1197. }
  1198. #define need_reserve_slab_rcu \
  1199. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1200. static void rcu_free_slab(struct rcu_head *h)
  1201. {
  1202. struct page *page;
  1203. if (need_reserve_slab_rcu)
  1204. page = virt_to_head_page(h);
  1205. else
  1206. page = container_of((struct list_head *)h, struct page, lru);
  1207. __free_slab(page->slab, page);
  1208. }
  1209. static void free_slab(struct kmem_cache *s, struct page *page)
  1210. {
  1211. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1212. struct rcu_head *head;
  1213. if (need_reserve_slab_rcu) {
  1214. int order = compound_order(page);
  1215. int offset = (PAGE_SIZE << order) - s->reserved;
  1216. VM_BUG_ON(s->reserved != sizeof(*head));
  1217. head = page_address(page) + offset;
  1218. } else {
  1219. /*
  1220. * RCU free overloads the RCU head over the LRU
  1221. */
  1222. head = (void *)&page->lru;
  1223. }
  1224. call_rcu(head, rcu_free_slab);
  1225. } else
  1226. __free_slab(s, page);
  1227. }
  1228. static void discard_slab(struct kmem_cache *s, struct page *page)
  1229. {
  1230. dec_slabs_node(s, page_to_nid(page), page->objects);
  1231. free_slab(s, page);
  1232. }
  1233. /*
  1234. * Management of partially allocated slabs.
  1235. *
  1236. * list_lock must be held.
  1237. */
  1238. static inline void add_partial(struct kmem_cache_node *n,
  1239. struct page *page, int tail)
  1240. {
  1241. n->nr_partial++;
  1242. if (tail == DEACTIVATE_TO_TAIL)
  1243. list_add_tail(&page->lru, &n->partial);
  1244. else
  1245. list_add(&page->lru, &n->partial);
  1246. }
  1247. /*
  1248. * list_lock must be held.
  1249. */
  1250. static inline void remove_partial(struct kmem_cache_node *n,
  1251. struct page *page)
  1252. {
  1253. list_del(&page->lru);
  1254. n->nr_partial--;
  1255. }
  1256. /*
  1257. * Remove slab from the partial list, freeze it and
  1258. * return the pointer to the freelist.
  1259. *
  1260. * Returns a list of objects or NULL if it fails.
  1261. *
  1262. * Must hold list_lock since we modify the partial list.
  1263. */
  1264. static inline void *acquire_slab(struct kmem_cache *s,
  1265. struct kmem_cache_node *n, struct page *page,
  1266. int mode)
  1267. {
  1268. void *freelist;
  1269. unsigned long counters;
  1270. struct page new;
  1271. /*
  1272. * Zap the freelist and set the frozen bit.
  1273. * The old freelist is the list of objects for the
  1274. * per cpu allocation list.
  1275. */
  1276. freelist = page->freelist;
  1277. counters = page->counters;
  1278. new.counters = counters;
  1279. if (mode) {
  1280. new.inuse = page->objects;
  1281. new.freelist = NULL;
  1282. } else {
  1283. new.freelist = freelist;
  1284. }
  1285. VM_BUG_ON(new.frozen);
  1286. new.frozen = 1;
  1287. if (!__cmpxchg_double_slab(s, page,
  1288. freelist, counters,
  1289. new.freelist, new.counters,
  1290. "acquire_slab"))
  1291. return NULL;
  1292. remove_partial(n, page);
  1293. WARN_ON(!freelist);
  1294. return freelist;
  1295. }
  1296. static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1297. /*
  1298. * Try to allocate a partial slab from a specific node.
  1299. */
  1300. static void *get_partial_node(struct kmem_cache *s,
  1301. struct kmem_cache_node *n, struct kmem_cache_cpu *c)
  1302. {
  1303. struct page *page, *page2;
  1304. void *object = NULL;
  1305. /*
  1306. * Racy check. If we mistakenly see no partial slabs then we
  1307. * just allocate an empty slab. If we mistakenly try to get a
  1308. * partial slab and there is none available then get_partials()
  1309. * will return NULL.
  1310. */
  1311. if (!n || !n->nr_partial)
  1312. return NULL;
  1313. spin_lock(&n->list_lock);
  1314. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1315. void *t = acquire_slab(s, n, page, object == NULL);
  1316. int available;
  1317. if (!t)
  1318. break;
  1319. if (!object) {
  1320. c->page = page;
  1321. stat(s, ALLOC_FROM_PARTIAL);
  1322. object = t;
  1323. available = page->objects - page->inuse;
  1324. } else {
  1325. available = put_cpu_partial(s, page, 0);
  1326. stat(s, CPU_PARTIAL_NODE);
  1327. }
  1328. if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
  1329. break;
  1330. }
  1331. spin_unlock(&n->list_lock);
  1332. return object;
  1333. }
  1334. /*
  1335. * Get a page from somewhere. Search in increasing NUMA distances.
  1336. */
  1337. static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1338. struct kmem_cache_cpu *c)
  1339. {
  1340. #ifdef CONFIG_NUMA
  1341. struct zonelist *zonelist;
  1342. struct zoneref *z;
  1343. struct zone *zone;
  1344. enum zone_type high_zoneidx = gfp_zone(flags);
  1345. void *object;
  1346. unsigned int cpuset_mems_cookie;
  1347. /*
  1348. * The defrag ratio allows a configuration of the tradeoffs between
  1349. * inter node defragmentation and node local allocations. A lower
  1350. * defrag_ratio increases the tendency to do local allocations
  1351. * instead of attempting to obtain partial slabs from other nodes.
  1352. *
  1353. * If the defrag_ratio is set to 0 then kmalloc() always
  1354. * returns node local objects. If the ratio is higher then kmalloc()
  1355. * may return off node objects because partial slabs are obtained
  1356. * from other nodes and filled up.
  1357. *
  1358. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1359. * defrag_ratio = 1000) then every (well almost) allocation will
  1360. * first attempt to defrag slab caches on other nodes. This means
  1361. * scanning over all nodes to look for partial slabs which may be
  1362. * expensive if we do it every time we are trying to find a slab
  1363. * with available objects.
  1364. */
  1365. if (!s->remote_node_defrag_ratio ||
  1366. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1367. return NULL;
  1368. do {
  1369. cpuset_mems_cookie = get_mems_allowed();
  1370. zonelist = node_zonelist(slab_node(), flags);
  1371. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1372. struct kmem_cache_node *n;
  1373. n = get_node(s, zone_to_nid(zone));
  1374. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1375. n->nr_partial > s->min_partial) {
  1376. object = get_partial_node(s, n, c);
  1377. if (object) {
  1378. /*
  1379. * Return the object even if
  1380. * put_mems_allowed indicated that
  1381. * the cpuset mems_allowed was
  1382. * updated in parallel. It's a
  1383. * harmless race between the alloc
  1384. * and the cpuset update.
  1385. */
  1386. put_mems_allowed(cpuset_mems_cookie);
  1387. return object;
  1388. }
  1389. }
  1390. }
  1391. } while (!put_mems_allowed(cpuset_mems_cookie));
  1392. #endif
  1393. return NULL;
  1394. }
  1395. /*
  1396. * Get a partial page, lock it and return it.
  1397. */
  1398. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1399. struct kmem_cache_cpu *c)
  1400. {
  1401. void *object;
  1402. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1403. object = get_partial_node(s, get_node(s, searchnode), c);
  1404. if (object || node != NUMA_NO_NODE)
  1405. return object;
  1406. return get_any_partial(s, flags, c);
  1407. }
  1408. #ifdef CONFIG_PREEMPT
  1409. /*
  1410. * Calculate the next globally unique transaction for disambiguiation
  1411. * during cmpxchg. The transactions start with the cpu number and are then
  1412. * incremented by CONFIG_NR_CPUS.
  1413. */
  1414. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1415. #else
  1416. /*
  1417. * No preemption supported therefore also no need to check for
  1418. * different cpus.
  1419. */
  1420. #define TID_STEP 1
  1421. #endif
  1422. static inline unsigned long next_tid(unsigned long tid)
  1423. {
  1424. return tid + TID_STEP;
  1425. }
  1426. static inline unsigned int tid_to_cpu(unsigned long tid)
  1427. {
  1428. return tid % TID_STEP;
  1429. }
  1430. static inline unsigned long tid_to_event(unsigned long tid)
  1431. {
  1432. return tid / TID_STEP;
  1433. }
  1434. static inline unsigned int init_tid(int cpu)
  1435. {
  1436. return cpu;
  1437. }
  1438. static inline void note_cmpxchg_failure(const char *n,
  1439. const struct kmem_cache *s, unsigned long tid)
  1440. {
  1441. #ifdef SLUB_DEBUG_CMPXCHG
  1442. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1443. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1444. #ifdef CONFIG_PREEMPT
  1445. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1446. printk("due to cpu change %d -> %d\n",
  1447. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1448. else
  1449. #endif
  1450. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1451. printk("due to cpu running other code. Event %ld->%ld\n",
  1452. tid_to_event(tid), tid_to_event(actual_tid));
  1453. else
  1454. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1455. actual_tid, tid, next_tid(tid));
  1456. #endif
  1457. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1458. }
  1459. void init_kmem_cache_cpus(struct kmem_cache *s)
  1460. {
  1461. int cpu;
  1462. for_each_possible_cpu(cpu)
  1463. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1464. }
  1465. /*
  1466. * Remove the cpu slab
  1467. */
  1468. static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
  1469. {
  1470. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1471. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1472. int lock = 0;
  1473. enum slab_modes l = M_NONE, m = M_NONE;
  1474. void *nextfree;
  1475. int tail = DEACTIVATE_TO_HEAD;
  1476. struct page new;
  1477. struct page old;
  1478. if (page->freelist) {
  1479. stat(s, DEACTIVATE_REMOTE_FREES);
  1480. tail = DEACTIVATE_TO_TAIL;
  1481. }
  1482. /*
  1483. * Stage one: Free all available per cpu objects back
  1484. * to the page freelist while it is still frozen. Leave the
  1485. * last one.
  1486. *
  1487. * There is no need to take the list->lock because the page
  1488. * is still frozen.
  1489. */
  1490. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1491. void *prior;
  1492. unsigned long counters;
  1493. do {
  1494. prior = page->freelist;
  1495. counters = page->counters;
  1496. set_freepointer(s, freelist, prior);
  1497. new.counters = counters;
  1498. new.inuse--;
  1499. VM_BUG_ON(!new.frozen);
  1500. } while (!__cmpxchg_double_slab(s, page,
  1501. prior, counters,
  1502. freelist, new.counters,
  1503. "drain percpu freelist"));
  1504. freelist = nextfree;
  1505. }
  1506. /*
  1507. * Stage two: Ensure that the page is unfrozen while the
  1508. * list presence reflects the actual number of objects
  1509. * during unfreeze.
  1510. *
  1511. * We setup the list membership and then perform a cmpxchg
  1512. * with the count. If there is a mismatch then the page
  1513. * is not unfrozen but the page is on the wrong list.
  1514. *
  1515. * Then we restart the process which may have to remove
  1516. * the page from the list that we just put it on again
  1517. * because the number of objects in the slab may have
  1518. * changed.
  1519. */
  1520. redo:
  1521. old.freelist = page->freelist;
  1522. old.counters = page->counters;
  1523. VM_BUG_ON(!old.frozen);
  1524. /* Determine target state of the slab */
  1525. new.counters = old.counters;
  1526. if (freelist) {
  1527. new.inuse--;
  1528. set_freepointer(s, freelist, old.freelist);
  1529. new.freelist = freelist;
  1530. } else
  1531. new.freelist = old.freelist;
  1532. new.frozen = 0;
  1533. if (!new.inuse && n->nr_partial > s->min_partial)
  1534. m = M_FREE;
  1535. else if (new.freelist) {
  1536. m = M_PARTIAL;
  1537. if (!lock) {
  1538. lock = 1;
  1539. /*
  1540. * Taking the spinlock removes the possiblity
  1541. * that acquire_slab() will see a slab page that
  1542. * is frozen
  1543. */
  1544. spin_lock(&n->list_lock);
  1545. }
  1546. } else {
  1547. m = M_FULL;
  1548. if (kmem_cache_debug(s) && !lock) {
  1549. lock = 1;
  1550. /*
  1551. * This also ensures that the scanning of full
  1552. * slabs from diagnostic functions will not see
  1553. * any frozen slabs.
  1554. */
  1555. spin_lock(&n->list_lock);
  1556. }
  1557. }
  1558. if (l != m) {
  1559. if (l == M_PARTIAL)
  1560. remove_partial(n, page);
  1561. else if (l == M_FULL)
  1562. remove_full(s, page);
  1563. if (m == M_PARTIAL) {
  1564. add_partial(n, page, tail);
  1565. stat(s, tail);
  1566. } else if (m == M_FULL) {
  1567. stat(s, DEACTIVATE_FULL);
  1568. add_full(s, n, page);
  1569. }
  1570. }
  1571. l = m;
  1572. if (!__cmpxchg_double_slab(s, page,
  1573. old.freelist, old.counters,
  1574. new.freelist, new.counters,
  1575. "unfreezing slab"))
  1576. goto redo;
  1577. if (lock)
  1578. spin_unlock(&n->list_lock);
  1579. if (m == M_FREE) {
  1580. stat(s, DEACTIVATE_EMPTY);
  1581. discard_slab(s, page);
  1582. stat(s, FREE_SLAB);
  1583. }
  1584. }
  1585. /*
  1586. * Unfreeze all the cpu partial slabs.
  1587. *
  1588. * This function must be called with interrupt disabled.
  1589. */
  1590. static void unfreeze_partials(struct kmem_cache *s)
  1591. {
  1592. struct kmem_cache_node *n = NULL, *n2 = NULL;
  1593. struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
  1594. struct page *page, *discard_page = NULL;
  1595. while ((page = c->partial)) {
  1596. struct page new;
  1597. struct page old;
  1598. c->partial = page->next;
  1599. n2 = get_node(s, page_to_nid(page));
  1600. if (n != n2) {
  1601. if (n)
  1602. spin_unlock(&n->list_lock);
  1603. n = n2;
  1604. spin_lock(&n->list_lock);
  1605. }
  1606. do {
  1607. old.freelist = page->freelist;
  1608. old.counters = page->counters;
  1609. VM_BUG_ON(!old.frozen);
  1610. new.counters = old.counters;
  1611. new.freelist = old.freelist;
  1612. new.frozen = 0;
  1613. } while (!__cmpxchg_double_slab(s, page,
  1614. old.freelist, old.counters,
  1615. new.freelist, new.counters,
  1616. "unfreezing slab"));
  1617. if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
  1618. page->next = discard_page;
  1619. discard_page = page;
  1620. } else {
  1621. add_partial(n, page, DEACTIVATE_TO_TAIL);
  1622. stat(s, FREE_ADD_PARTIAL);
  1623. }
  1624. }
  1625. if (n)
  1626. spin_unlock(&n->list_lock);
  1627. while (discard_page) {
  1628. page = discard_page;
  1629. discard_page = discard_page->next;
  1630. stat(s, DEACTIVATE_EMPTY);
  1631. discard_slab(s, page);
  1632. stat(s, FREE_SLAB);
  1633. }
  1634. }
  1635. /*
  1636. * Put a page that was just frozen (in __slab_free) into a partial page
  1637. * slot if available. This is done without interrupts disabled and without
  1638. * preemption disabled. The cmpxchg is racy and may put the partial page
  1639. * onto a random cpus partial slot.
  1640. *
  1641. * If we did not find a slot then simply move all the partials to the
  1642. * per node partial list.
  1643. */
  1644. int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1645. {
  1646. struct page *oldpage;
  1647. int pages;
  1648. int pobjects;
  1649. do {
  1650. pages = 0;
  1651. pobjects = 0;
  1652. oldpage = this_cpu_read(s->cpu_slab->partial);
  1653. if (oldpage) {
  1654. pobjects = oldpage->pobjects;
  1655. pages = oldpage->pages;
  1656. if (drain && pobjects > s->cpu_partial) {
  1657. unsigned long flags;
  1658. /*
  1659. * partial array is full. Move the existing
  1660. * set to the per node partial list.
  1661. */
  1662. local_irq_save(flags);
  1663. unfreeze_partials(s);
  1664. local_irq_restore(flags);
  1665. pobjects = 0;
  1666. pages = 0;
  1667. stat(s, CPU_PARTIAL_DRAIN);
  1668. }
  1669. }
  1670. pages++;
  1671. pobjects += page->objects - page->inuse;
  1672. page->pages = pages;
  1673. page->pobjects = pobjects;
  1674. page->next = oldpage;
  1675. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
  1676. return pobjects;
  1677. }
  1678. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1679. {
  1680. stat(s, CPUSLAB_FLUSH);
  1681. deactivate_slab(s, c->page, c->freelist);
  1682. c->tid = next_tid(c->tid);
  1683. c->page = NULL;
  1684. c->freelist = NULL;
  1685. }
  1686. /*
  1687. * Flush cpu slab.
  1688. *
  1689. * Called from IPI handler with interrupts disabled.
  1690. */
  1691. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1692. {
  1693. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1694. if (likely(c)) {
  1695. if (c->page)
  1696. flush_slab(s, c);
  1697. unfreeze_partials(s);
  1698. }
  1699. }
  1700. static void flush_cpu_slab(void *d)
  1701. {
  1702. struct kmem_cache *s = d;
  1703. __flush_cpu_slab(s, smp_processor_id());
  1704. }
  1705. static bool has_cpu_slab(int cpu, void *info)
  1706. {
  1707. struct kmem_cache *s = info;
  1708. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1709. return c->page || c->partial;
  1710. }
  1711. static void flush_all(struct kmem_cache *s)
  1712. {
  1713. on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
  1714. }
  1715. /*
  1716. * Check if the objects in a per cpu structure fit numa
  1717. * locality expectations.
  1718. */
  1719. static inline int node_match(struct page *page, int node)
  1720. {
  1721. #ifdef CONFIG_NUMA
  1722. if (node != NUMA_NO_NODE && page_to_nid(page) != node)
  1723. return 0;
  1724. #endif
  1725. return 1;
  1726. }
  1727. static int count_free(struct page *page)
  1728. {
  1729. return page->objects - page->inuse;
  1730. }
  1731. static unsigned long count_partial(struct kmem_cache_node *n,
  1732. int (*get_count)(struct page *))
  1733. {
  1734. unsigned long flags;
  1735. unsigned long x = 0;
  1736. struct page *page;
  1737. spin_lock_irqsave(&n->list_lock, flags);
  1738. list_for_each_entry(page, &n->partial, lru)
  1739. x += get_count(page);
  1740. spin_unlock_irqrestore(&n->list_lock, flags);
  1741. return x;
  1742. }
  1743. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1744. {
  1745. #ifdef CONFIG_SLUB_DEBUG
  1746. return atomic_long_read(&n->total_objects);
  1747. #else
  1748. return 0;
  1749. #endif
  1750. }
  1751. static noinline void
  1752. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1753. {
  1754. int node;
  1755. printk(KERN_WARNING
  1756. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1757. nid, gfpflags);
  1758. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1759. "default order: %d, min order: %d\n", s->name, s->object_size,
  1760. s->size, oo_order(s->oo), oo_order(s->min));
  1761. if (oo_order(s->min) > get_order(s->object_size))
  1762. printk(KERN_WARNING " %s debugging increased min order, use "
  1763. "slub_debug=O to disable.\n", s->name);
  1764. for_each_online_node(node) {
  1765. struct kmem_cache_node *n = get_node(s, node);
  1766. unsigned long nr_slabs;
  1767. unsigned long nr_objs;
  1768. unsigned long nr_free;
  1769. if (!n)
  1770. continue;
  1771. nr_free = count_partial(n, count_free);
  1772. nr_slabs = node_nr_slabs(n);
  1773. nr_objs = node_nr_objs(n);
  1774. printk(KERN_WARNING
  1775. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1776. node, nr_slabs, nr_objs, nr_free);
  1777. }
  1778. }
  1779. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1780. int node, struct kmem_cache_cpu **pc)
  1781. {
  1782. void *freelist;
  1783. struct kmem_cache_cpu *c = *pc;
  1784. struct page *page;
  1785. freelist = get_partial(s, flags, node, c);
  1786. if (freelist)
  1787. return freelist;
  1788. page = new_slab(s, flags, node);
  1789. if (page) {
  1790. c = __this_cpu_ptr(s->cpu_slab);
  1791. if (c->page)
  1792. flush_slab(s, c);
  1793. /*
  1794. * No other reference to the page yet so we can
  1795. * muck around with it freely without cmpxchg
  1796. */
  1797. freelist = page->freelist;
  1798. page->freelist = NULL;
  1799. stat(s, ALLOC_SLAB);
  1800. c->page = page;
  1801. *pc = c;
  1802. } else
  1803. freelist = NULL;
  1804. return freelist;
  1805. }
  1806. /*
  1807. * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
  1808. * or deactivate the page.
  1809. *
  1810. * The page is still frozen if the return value is not NULL.
  1811. *
  1812. * If this function returns NULL then the page has been unfrozen.
  1813. *
  1814. * This function must be called with interrupt disabled.
  1815. */
  1816. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1817. {
  1818. struct page new;
  1819. unsigned long counters;
  1820. void *freelist;
  1821. do {
  1822. freelist = page->freelist;
  1823. counters = page->counters;
  1824. new.counters = counters;
  1825. VM_BUG_ON(!new.frozen);
  1826. new.inuse = page->objects;
  1827. new.frozen = freelist != NULL;
  1828. } while (!__cmpxchg_double_slab(s, page,
  1829. freelist, counters,
  1830. NULL, new.counters,
  1831. "get_freelist"));
  1832. return freelist;
  1833. }
  1834. /*
  1835. * Slow path. The lockless freelist is empty or we need to perform
  1836. * debugging duties.
  1837. *
  1838. * Processing is still very fast if new objects have been freed to the
  1839. * regular freelist. In that case we simply take over the regular freelist
  1840. * as the lockless freelist and zap the regular freelist.
  1841. *
  1842. * If that is not working then we fall back to the partial lists. We take the
  1843. * first element of the freelist as the object to allocate now and move the
  1844. * rest of the freelist to the lockless freelist.
  1845. *
  1846. * And if we were unable to get a new slab from the partial slab lists then
  1847. * we need to allocate a new slab. This is the slowest path since it involves
  1848. * a call to the page allocator and the setup of a new slab.
  1849. */
  1850. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1851. unsigned long addr, struct kmem_cache_cpu *c)
  1852. {
  1853. void *freelist;
  1854. struct page *page;
  1855. unsigned long flags;
  1856. local_irq_save(flags);
  1857. #ifdef CONFIG_PREEMPT
  1858. /*
  1859. * We may have been preempted and rescheduled on a different
  1860. * cpu before disabling interrupts. Need to reload cpu area
  1861. * pointer.
  1862. */
  1863. c = this_cpu_ptr(s->cpu_slab);
  1864. #endif
  1865. page = c->page;
  1866. if (!page)
  1867. goto new_slab;
  1868. redo:
  1869. if (unlikely(!node_match(page, node))) {
  1870. stat(s, ALLOC_NODE_MISMATCH);
  1871. deactivate_slab(s, page, c->freelist);
  1872. c->page = NULL;
  1873. c->freelist = NULL;
  1874. goto new_slab;
  1875. }
  1876. /* must check again c->freelist in case of cpu migration or IRQ */
  1877. freelist = c->freelist;
  1878. if (freelist)
  1879. goto load_freelist;
  1880. stat(s, ALLOC_SLOWPATH);
  1881. freelist = get_freelist(s, page);
  1882. if (!freelist) {
  1883. c->page = NULL;
  1884. stat(s, DEACTIVATE_BYPASS);
  1885. goto new_slab;
  1886. }
  1887. stat(s, ALLOC_REFILL);
  1888. load_freelist:
  1889. /*
  1890. * freelist is pointing to the list of objects to be used.
  1891. * page is pointing to the page from which the objects are obtained.
  1892. * That page must be frozen for per cpu allocations to work.
  1893. */
  1894. VM_BUG_ON(!c->page->frozen);
  1895. c->freelist = get_freepointer(s, freelist);
  1896. c->tid = next_tid(c->tid);
  1897. local_irq_restore(flags);
  1898. return freelist;
  1899. new_slab:
  1900. if (c->partial) {
  1901. page = c->page = c->partial;
  1902. c->partial = page->next;
  1903. stat(s, CPU_PARTIAL_ALLOC);
  1904. c->freelist = NULL;
  1905. goto redo;
  1906. }
  1907. freelist = new_slab_objects(s, gfpflags, node, &c);
  1908. if (unlikely(!freelist)) {
  1909. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1910. slab_out_of_memory(s, gfpflags, node);
  1911. local_irq_restore(flags);
  1912. return NULL;
  1913. }
  1914. page = c->page;
  1915. if (likely(!kmem_cache_debug(s)))
  1916. goto load_freelist;
  1917. /* Only entered in the debug case */
  1918. if (!alloc_debug_processing(s, page, freelist, addr))
  1919. goto new_slab; /* Slab failed checks. Next slab needed */
  1920. deactivate_slab(s, page, get_freepointer(s, freelist));
  1921. c->page = NULL;
  1922. c->freelist = NULL;
  1923. local_irq_restore(flags);
  1924. return freelist;
  1925. }
  1926. /*
  1927. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1928. * have the fastpath folded into their functions. So no function call
  1929. * overhead for requests that can be satisfied on the fastpath.
  1930. *
  1931. * The fastpath works by first checking if the lockless freelist can be used.
  1932. * If not then __slab_alloc is called for slow processing.
  1933. *
  1934. * Otherwise we can simply pick the next object from the lockless free list.
  1935. */
  1936. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1937. gfp_t gfpflags, int node, unsigned long addr)
  1938. {
  1939. void **object;
  1940. struct kmem_cache_cpu *c;
  1941. struct page *page;
  1942. unsigned long tid;
  1943. if (slab_pre_alloc_hook(s, gfpflags))
  1944. return NULL;
  1945. redo:
  1946. /*
  1947. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  1948. * enabled. We may switch back and forth between cpus while
  1949. * reading from one cpu area. That does not matter as long
  1950. * as we end up on the original cpu again when doing the cmpxchg.
  1951. */
  1952. c = __this_cpu_ptr(s->cpu_slab);
  1953. /*
  1954. * The transaction ids are globally unique per cpu and per operation on
  1955. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  1956. * occurs on the right processor and that there was no operation on the
  1957. * linked list in between.
  1958. */
  1959. tid = c->tid;
  1960. barrier();
  1961. object = c->freelist;
  1962. page = c->page;
  1963. if (unlikely(!object || !node_match(page, node)))
  1964. object = __slab_alloc(s, gfpflags, node, addr, c);
  1965. else {
  1966. void *next_object = get_freepointer_safe(s, object);
  1967. /*
  1968. * The cmpxchg will only match if there was no additional
  1969. * operation and if we are on the right processor.
  1970. *
  1971. * The cmpxchg does the following atomically (without lock semantics!)
  1972. * 1. Relocate first pointer to the current per cpu area.
  1973. * 2. Verify that tid and freelist have not been changed
  1974. * 3. If they were not changed replace tid and freelist
  1975. *
  1976. * Since this is without lock semantics the protection is only against
  1977. * code executing on this cpu *not* from access by other cpus.
  1978. */
  1979. if (unlikely(!this_cpu_cmpxchg_double(
  1980. s->cpu_slab->freelist, s->cpu_slab->tid,
  1981. object, tid,
  1982. next_object, next_tid(tid)))) {
  1983. note_cmpxchg_failure("slab_alloc", s, tid);
  1984. goto redo;
  1985. }
  1986. prefetch_freepointer(s, next_object);
  1987. stat(s, ALLOC_FASTPATH);
  1988. }
  1989. if (unlikely(gfpflags & __GFP_ZERO) && object)
  1990. memset(object, 0, s->object_size);
  1991. slab_post_alloc_hook(s, gfpflags, object);
  1992. return object;
  1993. }
  1994. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1995. {
  1996. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1997. trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
  1998. return ret;
  1999. }
  2000. EXPORT_SYMBOL(kmem_cache_alloc);
  2001. #ifdef CONFIG_TRACING
  2002. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2003. {
  2004. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  2005. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2006. return ret;
  2007. }
  2008. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2009. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  2010. {
  2011. void *ret = kmalloc_order(size, flags, order);
  2012. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  2013. return ret;
  2014. }
  2015. EXPORT_SYMBOL(kmalloc_order_trace);
  2016. #endif
  2017. #ifdef CONFIG_NUMA
  2018. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2019. {
  2020. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  2021. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2022. s->object_size, s->size, gfpflags, node);
  2023. return ret;
  2024. }
  2025. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2026. #ifdef CONFIG_TRACING
  2027. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2028. gfp_t gfpflags,
  2029. int node, size_t size)
  2030. {
  2031. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  2032. trace_kmalloc_node(_RET_IP_, ret,
  2033. size, s->size, gfpflags, node);
  2034. return ret;
  2035. }
  2036. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2037. #endif
  2038. #endif
  2039. /*
  2040. * Slow patch handling. This may still be called frequently since objects
  2041. * have a longer lifetime than the cpu slabs in most processing loads.
  2042. *
  2043. * So we still attempt to reduce cache line usage. Just take the slab
  2044. * lock and free the item. If there is no additional partial page
  2045. * handling required then we can return immediately.
  2046. */
  2047. static void __slab_free(struct kmem_cache *s, struct page *page,
  2048. void *x, unsigned long addr)
  2049. {
  2050. void *prior;
  2051. void **object = (void *)x;
  2052. int was_frozen;
  2053. int inuse;
  2054. struct page new;
  2055. unsigned long counters;
  2056. struct kmem_cache_node *n = NULL;
  2057. unsigned long uninitialized_var(flags);
  2058. stat(s, FREE_SLOWPATH);
  2059. if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
  2060. return;
  2061. do {
  2062. prior = page->freelist;
  2063. counters = page->counters;
  2064. set_freepointer(s, object, prior);
  2065. new.counters = counters;
  2066. was_frozen = new.frozen;
  2067. new.inuse--;
  2068. if ((!new.inuse || !prior) && !was_frozen && !n) {
  2069. if (!kmem_cache_debug(s) && !prior)
  2070. /*
  2071. * Slab was on no list before and will be partially empty
  2072. * We can defer the list move and instead freeze it.
  2073. */
  2074. new.frozen = 1;
  2075. else { /* Needs to be taken off a list */
  2076. n = get_node(s, page_to_nid(page));
  2077. /*
  2078. * Speculatively acquire the list_lock.
  2079. * If the cmpxchg does not succeed then we may
  2080. * drop the list_lock without any processing.
  2081. *
  2082. * Otherwise the list_lock will synchronize with
  2083. * other processors updating the list of slabs.
  2084. */
  2085. spin_lock_irqsave(&n->list_lock, flags);
  2086. }
  2087. }
  2088. inuse = new.inuse;
  2089. } while (!cmpxchg_double_slab(s, page,
  2090. prior, counters,
  2091. object, new.counters,
  2092. "__slab_free"));
  2093. if (likely(!n)) {
  2094. /*
  2095. * If we just froze the page then put it onto the
  2096. * per cpu partial list.
  2097. */
  2098. if (new.frozen && !was_frozen) {
  2099. put_cpu_partial(s, page, 1);
  2100. stat(s, CPU_PARTIAL_FREE);
  2101. }
  2102. /*
  2103. * The list lock was not taken therefore no list
  2104. * activity can be necessary.
  2105. */
  2106. if (was_frozen)
  2107. stat(s, FREE_FROZEN);
  2108. return;
  2109. }
  2110. /*
  2111. * was_frozen may have been set after we acquired the list_lock in
  2112. * an earlier loop. So we need to check it here again.
  2113. */
  2114. if (was_frozen)
  2115. stat(s, FREE_FROZEN);
  2116. else {
  2117. if (unlikely(!inuse && n->nr_partial > s->min_partial))
  2118. goto slab_empty;
  2119. /*
  2120. * Objects left in the slab. If it was not on the partial list before
  2121. * then add it.
  2122. */
  2123. if (unlikely(!prior)) {
  2124. remove_full(s, page);
  2125. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2126. stat(s, FREE_ADD_PARTIAL);
  2127. }
  2128. }
  2129. spin_unlock_irqrestore(&n->list_lock, flags);
  2130. return;
  2131. slab_empty:
  2132. if (prior) {
  2133. /*
  2134. * Slab on the partial list.
  2135. */
  2136. remove_partial(n, page);
  2137. stat(s, FREE_REMOVE_PARTIAL);
  2138. } else
  2139. /* Slab must be on the full list */
  2140. remove_full(s, page);
  2141. spin_unlock_irqrestore(&n->list_lock, flags);
  2142. stat(s, FREE_SLAB);
  2143. discard_slab(s, page);
  2144. }
  2145. /*
  2146. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2147. * can perform fastpath freeing without additional function calls.
  2148. *
  2149. * The fastpath is only possible if we are freeing to the current cpu slab
  2150. * of this processor. This typically the case if we have just allocated
  2151. * the item before.
  2152. *
  2153. * If fastpath is not possible then fall back to __slab_free where we deal
  2154. * with all sorts of special processing.
  2155. */
  2156. static __always_inline void slab_free(struct kmem_cache *s,
  2157. struct page *page, void *x, unsigned long addr)
  2158. {
  2159. void **object = (void *)x;
  2160. struct kmem_cache_cpu *c;
  2161. unsigned long tid;
  2162. slab_free_hook(s, x);
  2163. redo:
  2164. /*
  2165. * Determine the currently cpus per cpu slab.
  2166. * The cpu may change afterward. However that does not matter since
  2167. * data is retrieved via this pointer. If we are on the same cpu
  2168. * during the cmpxchg then the free will succedd.
  2169. */
  2170. c = __this_cpu_ptr(s->cpu_slab);
  2171. tid = c->tid;
  2172. barrier();
  2173. if (likely(page == c->page)) {
  2174. set_freepointer(s, object, c->freelist);
  2175. if (unlikely(!this_cpu_cmpxchg_double(
  2176. s->cpu_slab->freelist, s->cpu_slab->tid,
  2177. c->freelist, tid,
  2178. object, next_tid(tid)))) {
  2179. note_cmpxchg_failure("slab_free", s, tid);
  2180. goto redo;
  2181. }
  2182. stat(s, FREE_FASTPATH);
  2183. } else
  2184. __slab_free(s, page, x, addr);
  2185. }
  2186. void kmem_cache_free(struct kmem_cache *s, void *x)
  2187. {
  2188. struct page *page;
  2189. page = virt_to_head_page(x);
  2190. slab_free(s, page, x, _RET_IP_);
  2191. trace_kmem_cache_free(_RET_IP_, x);
  2192. }
  2193. EXPORT_SYMBOL(kmem_cache_free);
  2194. /*
  2195. * Object placement in a slab is made very easy because we always start at
  2196. * offset 0. If we tune the size of the object to the alignment then we can
  2197. * get the required alignment by putting one properly sized object after
  2198. * another.
  2199. *
  2200. * Notice that the allocation order determines the sizes of the per cpu
  2201. * caches. Each processor has always one slab available for allocations.
  2202. * Increasing the allocation order reduces the number of times that slabs
  2203. * must be moved on and off the partial lists and is therefore a factor in
  2204. * locking overhead.
  2205. */
  2206. /*
  2207. * Mininum / Maximum order of slab pages. This influences locking overhead
  2208. * and slab fragmentation. A higher order reduces the number of partial slabs
  2209. * and increases the number of allocations possible without having to
  2210. * take the list_lock.
  2211. */
  2212. static int slub_min_order;
  2213. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2214. static int slub_min_objects;
  2215. /*
  2216. * Merge control. If this is set then no merging of slab caches will occur.
  2217. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2218. */
  2219. static int slub_nomerge;
  2220. /*
  2221. * Calculate the order of allocation given an slab object size.
  2222. *
  2223. * The order of allocation has significant impact on performance and other
  2224. * system components. Generally order 0 allocations should be preferred since
  2225. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2226. * be problematic to put into order 0 slabs because there may be too much
  2227. * unused space left. We go to a higher order if more than 1/16th of the slab
  2228. * would be wasted.
  2229. *
  2230. * In order to reach satisfactory performance we must ensure that a minimum
  2231. * number of objects is in one slab. Otherwise we may generate too much
  2232. * activity on the partial lists which requires taking the list_lock. This is
  2233. * less a concern for large slabs though which are rarely used.
  2234. *
  2235. * slub_max_order specifies the order where we begin to stop considering the
  2236. * number of objects in a slab as critical. If we reach slub_max_order then
  2237. * we try to keep the page order as low as possible. So we accept more waste
  2238. * of space in favor of a small page order.
  2239. *
  2240. * Higher order allocations also allow the placement of more objects in a
  2241. * slab and thereby reduce object handling overhead. If the user has
  2242. * requested a higher mininum order then we start with that one instead of
  2243. * the smallest order which will fit the object.
  2244. */
  2245. static inline int slab_order(int size, int min_objects,
  2246. int max_order, int fract_leftover, int reserved)
  2247. {
  2248. int order;
  2249. int rem;
  2250. int min_order = slub_min_order;
  2251. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2252. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2253. for (order = max(min_order,
  2254. fls(min_objects * size - 1) - PAGE_SHIFT);
  2255. order <= max_order; order++) {
  2256. unsigned long slab_size = PAGE_SIZE << order;
  2257. if (slab_size < min_objects * size + reserved)
  2258. continue;
  2259. rem = (slab_size - reserved) % size;
  2260. if (rem <= slab_size / fract_leftover)
  2261. break;
  2262. }
  2263. return order;
  2264. }
  2265. static inline int calculate_order(int size, int reserved)
  2266. {
  2267. int order;
  2268. int min_objects;
  2269. int fraction;
  2270. int max_objects;
  2271. /*
  2272. * Attempt to find best configuration for a slab. This
  2273. * works by first attempting to generate a layout with
  2274. * the best configuration and backing off gradually.
  2275. *
  2276. * First we reduce the acceptable waste in a slab. Then
  2277. * we reduce the minimum objects required in a slab.
  2278. */
  2279. min_objects = slub_min_objects;
  2280. if (!min_objects)
  2281. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2282. max_objects = order_objects(slub_max_order, size, reserved);
  2283. min_objects = min(min_objects, max_objects);
  2284. while (min_objects > 1) {
  2285. fraction = 16;
  2286. while (fraction >= 4) {
  2287. order = slab_order(size, min_objects,
  2288. slub_max_order, fraction, reserved);
  2289. if (order <= slub_max_order)
  2290. return order;
  2291. fraction /= 2;
  2292. }
  2293. min_objects--;
  2294. }
  2295. /*
  2296. * We were unable to place multiple objects in a slab. Now
  2297. * lets see if we can place a single object there.
  2298. */
  2299. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2300. if (order <= slub_max_order)
  2301. return order;
  2302. /*
  2303. * Doh this slab cannot be placed using slub_max_order.
  2304. */
  2305. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2306. if (order < MAX_ORDER)
  2307. return order;
  2308. return -ENOSYS;
  2309. }
  2310. /*
  2311. * Figure out what the alignment of the objects will be.
  2312. */
  2313. static unsigned long calculate_alignment(unsigned long flags,
  2314. unsigned long align, unsigned long size)
  2315. {
  2316. /*
  2317. * If the user wants hardware cache aligned objects then follow that
  2318. * suggestion if the object is sufficiently large.
  2319. *
  2320. * The hardware cache alignment cannot override the specified
  2321. * alignment though. If that is greater then use it.
  2322. */
  2323. if (flags & SLAB_HWCACHE_ALIGN) {
  2324. unsigned long ralign = cache_line_size();
  2325. while (size <= ralign / 2)
  2326. ralign /= 2;
  2327. align = max(align, ralign);
  2328. }
  2329. if (align < ARCH_SLAB_MINALIGN)
  2330. align = ARCH_SLAB_MINALIGN;
  2331. return ALIGN(align, sizeof(void *));
  2332. }
  2333. static void
  2334. init_kmem_cache_node(struct kmem_cache_node *n)
  2335. {
  2336. n->nr_partial = 0;
  2337. spin_lock_init(&n->list_lock);
  2338. INIT_LIST_HEAD(&n->partial);
  2339. #ifdef CONFIG_SLUB_DEBUG
  2340. atomic_long_set(&n->nr_slabs, 0);
  2341. atomic_long_set(&n->total_objects, 0);
  2342. INIT_LIST_HEAD(&n->full);
  2343. #endif
  2344. }
  2345. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2346. {
  2347. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2348. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  2349. /*
  2350. * Must align to double word boundary for the double cmpxchg
  2351. * instructions to work; see __pcpu_double_call_return_bool().
  2352. */
  2353. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2354. 2 * sizeof(void *));
  2355. if (!s->cpu_slab)
  2356. return 0;
  2357. init_kmem_cache_cpus(s);
  2358. return 1;
  2359. }
  2360. static struct kmem_cache *kmem_cache_node;
  2361. /*
  2362. * No kmalloc_node yet so do it by hand. We know that this is the first
  2363. * slab on the node for this slabcache. There are no concurrent accesses
  2364. * possible.
  2365. *
  2366. * Note that this function only works on the kmalloc_node_cache
  2367. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  2368. * memory on a fresh node that has no slab structures yet.
  2369. */
  2370. static void early_kmem_cache_node_alloc(int node)
  2371. {
  2372. struct page *page;
  2373. struct kmem_cache_node *n;
  2374. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2375. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2376. BUG_ON(!page);
  2377. if (page_to_nid(page) != node) {
  2378. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2379. "node %d\n", node);
  2380. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2381. "in order to be able to continue\n");
  2382. }
  2383. n = page->freelist;
  2384. BUG_ON(!n);
  2385. page->freelist = get_freepointer(kmem_cache_node, n);
  2386. page->inuse = 1;
  2387. page->frozen = 0;
  2388. kmem_cache_node->node[node] = n;
  2389. #ifdef CONFIG_SLUB_DEBUG
  2390. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2391. init_tracking(kmem_cache_node, n);
  2392. #endif
  2393. init_kmem_cache_node(n);
  2394. inc_slabs_node(kmem_cache_node, node, page->objects);
  2395. add_partial(n, page, DEACTIVATE_TO_HEAD);
  2396. }
  2397. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2398. {
  2399. int node;
  2400. for_each_node_state(node, N_NORMAL_MEMORY) {
  2401. struct kmem_cache_node *n = s->node[node];
  2402. if (n)
  2403. kmem_cache_free(kmem_cache_node, n);
  2404. s->node[node] = NULL;
  2405. }
  2406. }
  2407. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2408. {
  2409. int node;
  2410. for_each_node_state(node, N_NORMAL_MEMORY) {
  2411. struct kmem_cache_node *n;
  2412. if (slab_state == DOWN) {
  2413. early_kmem_cache_node_alloc(node);
  2414. continue;
  2415. }
  2416. n = kmem_cache_alloc_node(kmem_cache_node,
  2417. GFP_KERNEL, node);
  2418. if (!n) {
  2419. free_kmem_cache_nodes(s);
  2420. return 0;
  2421. }
  2422. s->node[node] = n;
  2423. init_kmem_cache_node(n);
  2424. }
  2425. return 1;
  2426. }
  2427. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2428. {
  2429. if (min < MIN_PARTIAL)
  2430. min = MIN_PARTIAL;
  2431. else if (min > MAX_PARTIAL)
  2432. min = MAX_PARTIAL;
  2433. s->min_partial = min;
  2434. }
  2435. /*
  2436. * calculate_sizes() determines the order and the distribution of data within
  2437. * a slab object.
  2438. */
  2439. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2440. {
  2441. unsigned long flags = s->flags;
  2442. unsigned long size = s->object_size;
  2443. unsigned long align = s->align;
  2444. int order;
  2445. /*
  2446. * Round up object size to the next word boundary. We can only
  2447. * place the free pointer at word boundaries and this determines
  2448. * the possible location of the free pointer.
  2449. */
  2450. size = ALIGN(size, sizeof(void *));
  2451. #ifdef CONFIG_SLUB_DEBUG
  2452. /*
  2453. * Determine if we can poison the object itself. If the user of
  2454. * the slab may touch the object after free or before allocation
  2455. * then we should never poison the object itself.
  2456. */
  2457. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2458. !s->ctor)
  2459. s->flags |= __OBJECT_POISON;
  2460. else
  2461. s->flags &= ~__OBJECT_POISON;
  2462. /*
  2463. * If we are Redzoning then check if there is some space between the
  2464. * end of the object and the free pointer. If not then add an
  2465. * additional word to have some bytes to store Redzone information.
  2466. */
  2467. if ((flags & SLAB_RED_ZONE) && size == s->object_size)
  2468. size += sizeof(void *);
  2469. #endif
  2470. /*
  2471. * With that we have determined the number of bytes in actual use
  2472. * by the object. This is the potential offset to the free pointer.
  2473. */
  2474. s->inuse = size;
  2475. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2476. s->ctor)) {
  2477. /*
  2478. * Relocate free pointer after the object if it is not
  2479. * permitted to overwrite the first word of the object on
  2480. * kmem_cache_free.
  2481. *
  2482. * This is the case if we do RCU, have a constructor or
  2483. * destructor or are poisoning the objects.
  2484. */
  2485. s->offset = size;
  2486. size += sizeof(void *);
  2487. }
  2488. #ifdef CONFIG_SLUB_DEBUG
  2489. if (flags & SLAB_STORE_USER)
  2490. /*
  2491. * Need to store information about allocs and frees after
  2492. * the object.
  2493. */
  2494. size += 2 * sizeof(struct track);
  2495. if (flags & SLAB_RED_ZONE)
  2496. /*
  2497. * Add some empty padding so that we can catch
  2498. * overwrites from earlier objects rather than let
  2499. * tracking information or the free pointer be
  2500. * corrupted if a user writes before the start
  2501. * of the object.
  2502. */
  2503. size += sizeof(void *);
  2504. #endif
  2505. /*
  2506. * Determine the alignment based on various parameters that the
  2507. * user specified and the dynamic determination of cache line size
  2508. * on bootup.
  2509. */
  2510. align = calculate_alignment(flags, align, s->object_size);
  2511. s->align = align;
  2512. /*
  2513. * SLUB stores one object immediately after another beginning from
  2514. * offset 0. In order to align the objects we have to simply size
  2515. * each object to conform to the alignment.
  2516. */
  2517. size = ALIGN(size, align);
  2518. s->size = size;
  2519. if (forced_order >= 0)
  2520. order = forced_order;
  2521. else
  2522. order = calculate_order(size, s->reserved);
  2523. if (order < 0)
  2524. return 0;
  2525. s->allocflags = 0;
  2526. if (order)
  2527. s->allocflags |= __GFP_COMP;
  2528. if (s->flags & SLAB_CACHE_DMA)
  2529. s->allocflags |= SLUB_DMA;
  2530. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2531. s->allocflags |= __GFP_RECLAIMABLE;
  2532. /*
  2533. * Determine the number of objects per slab
  2534. */
  2535. s->oo = oo_make(order, size, s->reserved);
  2536. s->min = oo_make(get_order(size), size, s->reserved);
  2537. if (oo_objects(s->oo) > oo_objects(s->max))
  2538. s->max = s->oo;
  2539. return !!oo_objects(s->oo);
  2540. }
  2541. static int kmem_cache_open(struct kmem_cache *s,
  2542. const char *name, size_t size,
  2543. size_t align, unsigned long flags,
  2544. void (*ctor)(void *))
  2545. {
  2546. memset(s, 0, kmem_size);
  2547. s->name = name;
  2548. s->ctor = ctor;
  2549. s->object_size = size;
  2550. s->align = align;
  2551. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2552. s->reserved = 0;
  2553. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2554. s->reserved = sizeof(struct rcu_head);
  2555. if (!calculate_sizes(s, -1))
  2556. goto error;
  2557. if (disable_higher_order_debug) {
  2558. /*
  2559. * Disable debugging flags that store metadata if the min slab
  2560. * order increased.
  2561. */
  2562. if (get_order(s->size) > get_order(s->object_size)) {
  2563. s->flags &= ~DEBUG_METADATA_FLAGS;
  2564. s->offset = 0;
  2565. if (!calculate_sizes(s, -1))
  2566. goto error;
  2567. }
  2568. }
  2569. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2570. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2571. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2572. /* Enable fast mode */
  2573. s->flags |= __CMPXCHG_DOUBLE;
  2574. #endif
  2575. /*
  2576. * The larger the object size is, the more pages we want on the partial
  2577. * list to avoid pounding the page allocator excessively.
  2578. */
  2579. set_min_partial(s, ilog2(s->size) / 2);
  2580. /*
  2581. * cpu_partial determined the maximum number of objects kept in the
  2582. * per cpu partial lists of a processor.
  2583. *
  2584. * Per cpu partial lists mainly contain slabs that just have one
  2585. * object freed. If they are used for allocation then they can be
  2586. * filled up again with minimal effort. The slab will never hit the
  2587. * per node partial lists and therefore no locking will be required.
  2588. *
  2589. * This setting also determines
  2590. *
  2591. * A) The number of objects from per cpu partial slabs dumped to the
  2592. * per node list when we reach the limit.
  2593. * B) The number of objects in cpu partial slabs to extract from the
  2594. * per node list when we run out of per cpu objects. We only fetch 50%
  2595. * to keep some capacity around for frees.
  2596. */
  2597. if (kmem_cache_debug(s))
  2598. s->cpu_partial = 0;
  2599. else if (s->size >= PAGE_SIZE)
  2600. s->cpu_partial = 2;
  2601. else if (s->size >= 1024)
  2602. s->cpu_partial = 6;
  2603. else if (s->size >= 256)
  2604. s->cpu_partial = 13;
  2605. else
  2606. s->cpu_partial = 30;
  2607. s->refcount = 1;
  2608. #ifdef CONFIG_NUMA
  2609. s->remote_node_defrag_ratio = 1000;
  2610. #endif
  2611. if (!init_kmem_cache_nodes(s))
  2612. goto error;
  2613. if (alloc_kmem_cache_cpus(s))
  2614. return 1;
  2615. free_kmem_cache_nodes(s);
  2616. error:
  2617. if (flags & SLAB_PANIC)
  2618. panic("Cannot create slab %s size=%lu realsize=%u "
  2619. "order=%u offset=%u flags=%lx\n",
  2620. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2621. s->offset, flags);
  2622. return 0;
  2623. }
  2624. /*
  2625. * Determine the size of a slab object
  2626. */
  2627. unsigned int kmem_cache_size(struct kmem_cache *s)
  2628. {
  2629. return s->object_size;
  2630. }
  2631. EXPORT_SYMBOL(kmem_cache_size);
  2632. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2633. const char *text)
  2634. {
  2635. #ifdef CONFIG_SLUB_DEBUG
  2636. void *addr = page_address(page);
  2637. void *p;
  2638. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2639. sizeof(long), GFP_ATOMIC);
  2640. if (!map)
  2641. return;
  2642. slab_err(s, page, "%s", text);
  2643. slab_lock(page);
  2644. get_map(s, page, map);
  2645. for_each_object(p, s, addr, page->objects) {
  2646. if (!test_bit(slab_index(p, s, addr), map)) {
  2647. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2648. p, p - addr);
  2649. print_tracking(s, p);
  2650. }
  2651. }
  2652. slab_unlock(page);
  2653. kfree(map);
  2654. #endif
  2655. }
  2656. /*
  2657. * Attempt to free all partial slabs on a node.
  2658. * This is called from kmem_cache_close(). We must be the last thread
  2659. * using the cache and therefore we do not need to lock anymore.
  2660. */
  2661. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2662. {
  2663. struct page *page, *h;
  2664. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2665. if (!page->inuse) {
  2666. remove_partial(n, page);
  2667. discard_slab(s, page);
  2668. } else {
  2669. list_slab_objects(s, page,
  2670. "Objects remaining on kmem_cache_close()");
  2671. }
  2672. }
  2673. }
  2674. /*
  2675. * Release all resources used by a slab cache.
  2676. */
  2677. static inline int kmem_cache_close(struct kmem_cache *s)
  2678. {
  2679. int node;
  2680. flush_all(s);
  2681. free_percpu(s->cpu_slab);
  2682. /* Attempt to free all objects */
  2683. for_each_node_state(node, N_NORMAL_MEMORY) {
  2684. struct kmem_cache_node *n = get_node(s, node);
  2685. free_partial(s, n);
  2686. if (n->nr_partial || slabs_node(s, node))
  2687. return 1;
  2688. }
  2689. free_kmem_cache_nodes(s);
  2690. return 0;
  2691. }
  2692. /*
  2693. * Close a cache and release the kmem_cache structure
  2694. * (must be used for caches created using kmem_cache_create)
  2695. */
  2696. void kmem_cache_destroy(struct kmem_cache *s)
  2697. {
  2698. down_write(&slub_lock);
  2699. s->refcount--;
  2700. if (!s->refcount) {
  2701. list_del(&s->list);
  2702. up_write(&slub_lock);
  2703. if (kmem_cache_close(s)) {
  2704. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2705. "still has objects.\n", s->name, __func__);
  2706. dump_stack();
  2707. }
  2708. if (s->flags & SLAB_DESTROY_BY_RCU)
  2709. rcu_barrier();
  2710. sysfs_slab_remove(s);
  2711. } else
  2712. up_write(&slub_lock);
  2713. }
  2714. EXPORT_SYMBOL(kmem_cache_destroy);
  2715. /********************************************************************
  2716. * Kmalloc subsystem
  2717. *******************************************************************/
  2718. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2719. EXPORT_SYMBOL(kmalloc_caches);
  2720. static struct kmem_cache *kmem_cache;
  2721. #ifdef CONFIG_ZONE_DMA
  2722. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2723. #endif
  2724. static int __init setup_slub_min_order(char *str)
  2725. {
  2726. get_option(&str, &slub_min_order);
  2727. return 1;
  2728. }
  2729. __setup("slub_min_order=", setup_slub_min_order);
  2730. static int __init setup_slub_max_order(char *str)
  2731. {
  2732. get_option(&str, &slub_max_order);
  2733. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2734. return 1;
  2735. }
  2736. __setup("slub_max_order=", setup_slub_max_order);
  2737. static int __init setup_slub_min_objects(char *str)
  2738. {
  2739. get_option(&str, &slub_min_objects);
  2740. return 1;
  2741. }
  2742. __setup("slub_min_objects=", setup_slub_min_objects);
  2743. static int __init setup_slub_nomerge(char *str)
  2744. {
  2745. slub_nomerge = 1;
  2746. return 1;
  2747. }
  2748. __setup("slub_nomerge", setup_slub_nomerge);
  2749. static struct kmem_cache *__init create_kmalloc_cache(const char *name,
  2750. int size, unsigned int flags)
  2751. {
  2752. struct kmem_cache *s;
  2753. s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2754. /*
  2755. * This function is called with IRQs disabled during early-boot on
  2756. * single CPU so there's no need to take slub_lock here.
  2757. */
  2758. if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
  2759. flags, NULL))
  2760. goto panic;
  2761. list_add(&s->list, &slab_caches);
  2762. return s;
  2763. panic:
  2764. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2765. return NULL;
  2766. }
  2767. /*
  2768. * Conversion table for small slabs sizes / 8 to the index in the
  2769. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2770. * of two cache sizes there. The size of larger slabs can be determined using
  2771. * fls.
  2772. */
  2773. static s8 size_index[24] = {
  2774. 3, /* 8 */
  2775. 4, /* 16 */
  2776. 5, /* 24 */
  2777. 5, /* 32 */
  2778. 6, /* 40 */
  2779. 6, /* 48 */
  2780. 6, /* 56 */
  2781. 6, /* 64 */
  2782. 1, /* 72 */
  2783. 1, /* 80 */
  2784. 1, /* 88 */
  2785. 1, /* 96 */
  2786. 7, /* 104 */
  2787. 7, /* 112 */
  2788. 7, /* 120 */
  2789. 7, /* 128 */
  2790. 2, /* 136 */
  2791. 2, /* 144 */
  2792. 2, /* 152 */
  2793. 2, /* 160 */
  2794. 2, /* 168 */
  2795. 2, /* 176 */
  2796. 2, /* 184 */
  2797. 2 /* 192 */
  2798. };
  2799. static inline int size_index_elem(size_t bytes)
  2800. {
  2801. return (bytes - 1) / 8;
  2802. }
  2803. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2804. {
  2805. int index;
  2806. if (size <= 192) {
  2807. if (!size)
  2808. return ZERO_SIZE_PTR;
  2809. index = size_index[size_index_elem(size)];
  2810. } else
  2811. index = fls(size - 1);
  2812. #ifdef CONFIG_ZONE_DMA
  2813. if (unlikely((flags & SLUB_DMA)))
  2814. return kmalloc_dma_caches[index];
  2815. #endif
  2816. return kmalloc_caches[index];
  2817. }
  2818. void *__kmalloc(size_t size, gfp_t flags)
  2819. {
  2820. struct kmem_cache *s;
  2821. void *ret;
  2822. if (unlikely(size > SLUB_MAX_SIZE))
  2823. return kmalloc_large(size, flags);
  2824. s = get_slab(size, flags);
  2825. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2826. return s;
  2827. ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
  2828. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2829. return ret;
  2830. }
  2831. EXPORT_SYMBOL(__kmalloc);
  2832. #ifdef CONFIG_NUMA
  2833. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2834. {
  2835. struct page *page;
  2836. void *ptr = NULL;
  2837. flags |= __GFP_COMP | __GFP_NOTRACK;
  2838. page = alloc_pages_node(node, flags, get_order(size));
  2839. if (page)
  2840. ptr = page_address(page);
  2841. kmemleak_alloc(ptr, size, 1, flags);
  2842. return ptr;
  2843. }
  2844. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2845. {
  2846. struct kmem_cache *s;
  2847. void *ret;
  2848. if (unlikely(size > SLUB_MAX_SIZE)) {
  2849. ret = kmalloc_large_node(size, flags, node);
  2850. trace_kmalloc_node(_RET_IP_, ret,
  2851. size, PAGE_SIZE << get_order(size),
  2852. flags, node);
  2853. return ret;
  2854. }
  2855. s = get_slab(size, flags);
  2856. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2857. return s;
  2858. ret = slab_alloc(s, flags, node, _RET_IP_);
  2859. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2860. return ret;
  2861. }
  2862. EXPORT_SYMBOL(__kmalloc_node);
  2863. #endif
  2864. size_t ksize(const void *object)
  2865. {
  2866. struct page *page;
  2867. if (unlikely(object == ZERO_SIZE_PTR))
  2868. return 0;
  2869. page = virt_to_head_page(object);
  2870. if (unlikely(!PageSlab(page))) {
  2871. WARN_ON(!PageCompound(page));
  2872. return PAGE_SIZE << compound_order(page);
  2873. }
  2874. return slab_ksize(page->slab);
  2875. }
  2876. EXPORT_SYMBOL(ksize);
  2877. #ifdef CONFIG_SLUB_DEBUG
  2878. bool verify_mem_not_deleted(const void *x)
  2879. {
  2880. struct page *page;
  2881. void *object = (void *)x;
  2882. unsigned long flags;
  2883. bool rv;
  2884. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2885. return false;
  2886. local_irq_save(flags);
  2887. page = virt_to_head_page(x);
  2888. if (unlikely(!PageSlab(page))) {
  2889. /* maybe it was from stack? */
  2890. rv = true;
  2891. goto out_unlock;
  2892. }
  2893. slab_lock(page);
  2894. if (on_freelist(page->slab, page, object)) {
  2895. object_err(page->slab, page, object, "Object is on free-list");
  2896. rv = false;
  2897. } else {
  2898. rv = true;
  2899. }
  2900. slab_unlock(page);
  2901. out_unlock:
  2902. local_irq_restore(flags);
  2903. return rv;
  2904. }
  2905. EXPORT_SYMBOL(verify_mem_not_deleted);
  2906. #endif
  2907. void kfree(const void *x)
  2908. {
  2909. struct page *page;
  2910. void *object = (void *)x;
  2911. trace_kfree(_RET_IP_, x);
  2912. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2913. return;
  2914. page = virt_to_head_page(x);
  2915. if (unlikely(!PageSlab(page))) {
  2916. BUG_ON(!PageCompound(page));
  2917. kmemleak_free(x);
  2918. put_page(page);
  2919. return;
  2920. }
  2921. slab_free(page->slab, page, object, _RET_IP_);
  2922. }
  2923. EXPORT_SYMBOL(kfree);
  2924. /*
  2925. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2926. * the remaining slabs by the number of items in use. The slabs with the
  2927. * most items in use come first. New allocations will then fill those up
  2928. * and thus they can be removed from the partial lists.
  2929. *
  2930. * The slabs with the least items are placed last. This results in them
  2931. * being allocated from last increasing the chance that the last objects
  2932. * are freed in them.
  2933. */
  2934. int kmem_cache_shrink(struct kmem_cache *s)
  2935. {
  2936. int node;
  2937. int i;
  2938. struct kmem_cache_node *n;
  2939. struct page *page;
  2940. struct page *t;
  2941. int objects = oo_objects(s->max);
  2942. struct list_head *slabs_by_inuse =
  2943. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2944. unsigned long flags;
  2945. if (!slabs_by_inuse)
  2946. return -ENOMEM;
  2947. flush_all(s);
  2948. for_each_node_state(node, N_NORMAL_MEMORY) {
  2949. n = get_node(s, node);
  2950. if (!n->nr_partial)
  2951. continue;
  2952. for (i = 0; i < objects; i++)
  2953. INIT_LIST_HEAD(slabs_by_inuse + i);
  2954. spin_lock_irqsave(&n->list_lock, flags);
  2955. /*
  2956. * Build lists indexed by the items in use in each slab.
  2957. *
  2958. * Note that concurrent frees may occur while we hold the
  2959. * list_lock. page->inuse here is the upper limit.
  2960. */
  2961. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2962. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2963. if (!page->inuse)
  2964. n->nr_partial--;
  2965. }
  2966. /*
  2967. * Rebuild the partial list with the slabs filled up most
  2968. * first and the least used slabs at the end.
  2969. */
  2970. for (i = objects - 1; i > 0; i--)
  2971. list_splice(slabs_by_inuse + i, n->partial.prev);
  2972. spin_unlock_irqrestore(&n->list_lock, flags);
  2973. /* Release empty slabs */
  2974. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2975. discard_slab(s, page);
  2976. }
  2977. kfree(slabs_by_inuse);
  2978. return 0;
  2979. }
  2980. EXPORT_SYMBOL(kmem_cache_shrink);
  2981. #if defined(CONFIG_MEMORY_HOTPLUG)
  2982. static int slab_mem_going_offline_callback(void *arg)
  2983. {
  2984. struct kmem_cache *s;
  2985. down_read(&slub_lock);
  2986. list_for_each_entry(s, &slab_caches, list)
  2987. kmem_cache_shrink(s);
  2988. up_read(&slub_lock);
  2989. return 0;
  2990. }
  2991. static void slab_mem_offline_callback(void *arg)
  2992. {
  2993. struct kmem_cache_node *n;
  2994. struct kmem_cache *s;
  2995. struct memory_notify *marg = arg;
  2996. int offline_node;
  2997. offline_node = marg->status_change_nid;
  2998. /*
  2999. * If the node still has available memory. we need kmem_cache_node
  3000. * for it yet.
  3001. */
  3002. if (offline_node < 0)
  3003. return;
  3004. down_read(&slub_lock);
  3005. list_for_each_entry(s, &slab_caches, list) {
  3006. n = get_node(s, offline_node);
  3007. if (n) {
  3008. /*
  3009. * if n->nr_slabs > 0, slabs still exist on the node
  3010. * that is going down. We were unable to free them,
  3011. * and offline_pages() function shouldn't call this
  3012. * callback. So, we must fail.
  3013. */
  3014. BUG_ON(slabs_node(s, offline_node));
  3015. s->node[offline_node] = NULL;
  3016. kmem_cache_free(kmem_cache_node, n);
  3017. }
  3018. }
  3019. up_read(&slub_lock);
  3020. }
  3021. static int slab_mem_going_online_callback(void *arg)
  3022. {
  3023. struct kmem_cache_node *n;
  3024. struct kmem_cache *s;
  3025. struct memory_notify *marg = arg;
  3026. int nid = marg->status_change_nid;
  3027. int ret = 0;
  3028. /*
  3029. * If the node's memory is already available, then kmem_cache_node is
  3030. * already created. Nothing to do.
  3031. */
  3032. if (nid < 0)
  3033. return 0;
  3034. /*
  3035. * We are bringing a node online. No memory is available yet. We must
  3036. * allocate a kmem_cache_node structure in order to bring the node
  3037. * online.
  3038. */
  3039. down_read(&slub_lock);
  3040. list_for_each_entry(s, &slab_caches, list) {
  3041. /*
  3042. * XXX: kmem_cache_alloc_node will fallback to other nodes
  3043. * since memory is not yet available from the node that
  3044. * is brought up.
  3045. */
  3046. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  3047. if (!n) {
  3048. ret = -ENOMEM;
  3049. goto out;
  3050. }
  3051. init_kmem_cache_node(n);
  3052. s->node[nid] = n;
  3053. }
  3054. out:
  3055. up_read(&slub_lock);
  3056. return ret;
  3057. }
  3058. static int slab_memory_callback(struct notifier_block *self,
  3059. unsigned long action, void *arg)
  3060. {
  3061. int ret = 0;
  3062. switch (action) {
  3063. case MEM_GOING_ONLINE:
  3064. ret = slab_mem_going_online_callback(arg);
  3065. break;
  3066. case MEM_GOING_OFFLINE:
  3067. ret = slab_mem_going_offline_callback(arg);
  3068. break;
  3069. case MEM_OFFLINE:
  3070. case MEM_CANCEL_ONLINE:
  3071. slab_mem_offline_callback(arg);
  3072. break;
  3073. case MEM_ONLINE:
  3074. case MEM_CANCEL_OFFLINE:
  3075. break;
  3076. }
  3077. if (ret)
  3078. ret = notifier_from_errno(ret);
  3079. else
  3080. ret = NOTIFY_OK;
  3081. return ret;
  3082. }
  3083. #endif /* CONFIG_MEMORY_HOTPLUG */
  3084. /********************************************************************
  3085. * Basic setup of slabs
  3086. *******************************************************************/
  3087. /*
  3088. * Used for early kmem_cache structures that were allocated using
  3089. * the page allocator
  3090. */
  3091. static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
  3092. {
  3093. int node;
  3094. list_add(&s->list, &slab_caches);
  3095. s->refcount = -1;
  3096. for_each_node_state(node, N_NORMAL_MEMORY) {
  3097. struct kmem_cache_node *n = get_node(s, node);
  3098. struct page *p;
  3099. if (n) {
  3100. list_for_each_entry(p, &n->partial, lru)
  3101. p->slab = s;
  3102. #ifdef CONFIG_SLUB_DEBUG
  3103. list_for_each_entry(p, &n->full, lru)
  3104. p->slab = s;
  3105. #endif
  3106. }
  3107. }
  3108. }
  3109. void __init kmem_cache_init(void)
  3110. {
  3111. int i;
  3112. int caches = 0;
  3113. struct kmem_cache *temp_kmem_cache;
  3114. int order;
  3115. struct kmem_cache *temp_kmem_cache_node;
  3116. unsigned long kmalloc_size;
  3117. if (debug_guardpage_minorder())
  3118. slub_max_order = 0;
  3119. kmem_size = offsetof(struct kmem_cache, node) +
  3120. nr_node_ids * sizeof(struct kmem_cache_node *);
  3121. /* Allocate two kmem_caches from the page allocator */
  3122. kmalloc_size = ALIGN(kmem_size, cache_line_size());
  3123. order = get_order(2 * kmalloc_size);
  3124. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  3125. /*
  3126. * Must first have the slab cache available for the allocations of the
  3127. * struct kmem_cache_node's. There is special bootstrap code in
  3128. * kmem_cache_open for slab_state == DOWN.
  3129. */
  3130. kmem_cache_node = (void *)kmem_cache + kmalloc_size;
  3131. kmem_cache_open(kmem_cache_node, "kmem_cache_node",
  3132. sizeof(struct kmem_cache_node),
  3133. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3134. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  3135. /* Able to allocate the per node structures */
  3136. slab_state = PARTIAL;
  3137. temp_kmem_cache = kmem_cache;
  3138. kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
  3139. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3140. kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3141. memcpy(kmem_cache, temp_kmem_cache, kmem_size);
  3142. /*
  3143. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3144. * kmem_cache_node is separately allocated so no need to
  3145. * update any list pointers.
  3146. */
  3147. temp_kmem_cache_node = kmem_cache_node;
  3148. kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3149. memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
  3150. kmem_cache_bootstrap_fixup(kmem_cache_node);
  3151. caches++;
  3152. kmem_cache_bootstrap_fixup(kmem_cache);
  3153. caches++;
  3154. /* Free temporary boot structure */
  3155. free_pages((unsigned long)temp_kmem_cache, order);
  3156. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3157. /*
  3158. * Patch up the size_index table if we have strange large alignment
  3159. * requirements for the kmalloc array. This is only the case for
  3160. * MIPS it seems. The standard arches will not generate any code here.
  3161. *
  3162. * Largest permitted alignment is 256 bytes due to the way we
  3163. * handle the index determination for the smaller caches.
  3164. *
  3165. * Make sure that nothing crazy happens if someone starts tinkering
  3166. * around with ARCH_KMALLOC_MINALIGN
  3167. */
  3168. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  3169. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  3170. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  3171. int elem = size_index_elem(i);
  3172. if (elem >= ARRAY_SIZE(size_index))
  3173. break;
  3174. size_index[elem] = KMALLOC_SHIFT_LOW;
  3175. }
  3176. if (KMALLOC_MIN_SIZE == 64) {
  3177. /*
  3178. * The 96 byte size cache is not used if the alignment
  3179. * is 64 byte.
  3180. */
  3181. for (i = 64 + 8; i <= 96; i += 8)
  3182. size_index[size_index_elem(i)] = 7;
  3183. } else if (KMALLOC_MIN_SIZE == 128) {
  3184. /*
  3185. * The 192 byte sized cache is not used if the alignment
  3186. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  3187. * instead.
  3188. */
  3189. for (i = 128 + 8; i <= 192; i += 8)
  3190. size_index[size_index_elem(i)] = 8;
  3191. }
  3192. /* Caches that are not of the two-to-the-power-of size */
  3193. if (KMALLOC_MIN_SIZE <= 32) {
  3194. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  3195. caches++;
  3196. }
  3197. if (KMALLOC_MIN_SIZE <= 64) {
  3198. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  3199. caches++;
  3200. }
  3201. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3202. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  3203. caches++;
  3204. }
  3205. slab_state = UP;
  3206. /* Provide the correct kmalloc names now that the caches are up */
  3207. if (KMALLOC_MIN_SIZE <= 32) {
  3208. kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
  3209. BUG_ON(!kmalloc_caches[1]->name);
  3210. }
  3211. if (KMALLOC_MIN_SIZE <= 64) {
  3212. kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
  3213. BUG_ON(!kmalloc_caches[2]->name);
  3214. }
  3215. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3216. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  3217. BUG_ON(!s);
  3218. kmalloc_caches[i]->name = s;
  3219. }
  3220. #ifdef CONFIG_SMP
  3221. register_cpu_notifier(&slab_notifier);
  3222. #endif
  3223. #ifdef CONFIG_ZONE_DMA
  3224. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  3225. struct kmem_cache *s = kmalloc_caches[i];
  3226. if (s && s->size) {
  3227. char *name = kasprintf(GFP_NOWAIT,
  3228. "dma-kmalloc-%d", s->object_size);
  3229. BUG_ON(!name);
  3230. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  3231. s->object_size, SLAB_CACHE_DMA);
  3232. }
  3233. }
  3234. #endif
  3235. printk(KERN_INFO
  3236. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3237. " CPUs=%d, Nodes=%d\n",
  3238. caches, cache_line_size(),
  3239. slub_min_order, slub_max_order, slub_min_objects,
  3240. nr_cpu_ids, nr_node_ids);
  3241. }
  3242. void __init kmem_cache_init_late(void)
  3243. {
  3244. }
  3245. /*
  3246. * Find a mergeable slab cache
  3247. */
  3248. static int slab_unmergeable(struct kmem_cache *s)
  3249. {
  3250. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3251. return 1;
  3252. if (s->ctor)
  3253. return 1;
  3254. /*
  3255. * We may have set a slab to be unmergeable during bootstrap.
  3256. */
  3257. if (s->refcount < 0)
  3258. return 1;
  3259. return 0;
  3260. }
  3261. static struct kmem_cache *find_mergeable(size_t size,
  3262. size_t align, unsigned long flags, const char *name,
  3263. void (*ctor)(void *))
  3264. {
  3265. struct kmem_cache *s;
  3266. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3267. return NULL;
  3268. if (ctor)
  3269. return NULL;
  3270. size = ALIGN(size, sizeof(void *));
  3271. align = calculate_alignment(flags, align, size);
  3272. size = ALIGN(size, align);
  3273. flags = kmem_cache_flags(size, flags, name, NULL);
  3274. list_for_each_entry(s, &slab_caches, list) {
  3275. if (slab_unmergeable(s))
  3276. continue;
  3277. if (size > s->size)
  3278. continue;
  3279. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3280. continue;
  3281. /*
  3282. * Check if alignment is compatible.
  3283. * Courtesy of Adrian Drzewiecki
  3284. */
  3285. if ((s->size & ~(align - 1)) != s->size)
  3286. continue;
  3287. if (s->size - size >= sizeof(void *))
  3288. continue;
  3289. return s;
  3290. }
  3291. return NULL;
  3292. }
  3293. struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
  3294. size_t align, unsigned long flags, void (*ctor)(void *))
  3295. {
  3296. struct kmem_cache *s;
  3297. char *n;
  3298. down_write(&slub_lock);
  3299. s = find_mergeable(size, align, flags, name, ctor);
  3300. if (s) {
  3301. s->refcount++;
  3302. /*
  3303. * Adjust the object sizes so that we clear
  3304. * the complete object on kzalloc.
  3305. */
  3306. s->object_size = max(s->object_size, (int)size);
  3307. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3308. if (sysfs_slab_alias(s, name)) {
  3309. s->refcount--;
  3310. goto err;
  3311. }
  3312. up_write(&slub_lock);
  3313. return s;
  3314. }
  3315. n = kstrdup(name, GFP_KERNEL);
  3316. if (!n)
  3317. goto err;
  3318. s = kmalloc(kmem_size, GFP_KERNEL);
  3319. if (s) {
  3320. if (kmem_cache_open(s, n,
  3321. size, align, flags, ctor)) {
  3322. list_add(&s->list, &slab_caches);
  3323. up_write(&slub_lock);
  3324. if (sysfs_slab_add(s)) {
  3325. down_write(&slub_lock);
  3326. list_del(&s->list);
  3327. kfree(n);
  3328. kfree(s);
  3329. goto err;
  3330. }
  3331. return s;
  3332. }
  3333. kfree(s);
  3334. }
  3335. kfree(n);
  3336. err:
  3337. up_write(&slub_lock);
  3338. return s;
  3339. }
  3340. #ifdef CONFIG_SMP
  3341. /*
  3342. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3343. * necessary.
  3344. */
  3345. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  3346. unsigned long action, void *hcpu)
  3347. {
  3348. long cpu = (long)hcpu;
  3349. struct kmem_cache *s;
  3350. unsigned long flags;
  3351. switch (action) {
  3352. case CPU_UP_CANCELED:
  3353. case CPU_UP_CANCELED_FROZEN:
  3354. case CPU_DEAD:
  3355. case CPU_DEAD_FROZEN:
  3356. down_read(&slub_lock);
  3357. list_for_each_entry(s, &slab_caches, list) {
  3358. local_irq_save(flags);
  3359. __flush_cpu_slab(s, cpu);
  3360. local_irq_restore(flags);
  3361. }
  3362. up_read(&slub_lock);
  3363. break;
  3364. default:
  3365. break;
  3366. }
  3367. return NOTIFY_OK;
  3368. }
  3369. static struct notifier_block __cpuinitdata slab_notifier = {
  3370. .notifier_call = slab_cpuup_callback
  3371. };
  3372. #endif
  3373. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3374. {
  3375. struct kmem_cache *s;
  3376. void *ret;
  3377. if (unlikely(size > SLUB_MAX_SIZE))
  3378. return kmalloc_large(size, gfpflags);
  3379. s = get_slab(size, gfpflags);
  3380. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3381. return s;
  3382. ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
  3383. /* Honor the call site pointer we received. */
  3384. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3385. return ret;
  3386. }
  3387. #ifdef CONFIG_NUMA
  3388. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3389. int node, unsigned long caller)
  3390. {
  3391. struct kmem_cache *s;
  3392. void *ret;
  3393. if (unlikely(size > SLUB_MAX_SIZE)) {
  3394. ret = kmalloc_large_node(size, gfpflags, node);
  3395. trace_kmalloc_node(caller, ret,
  3396. size, PAGE_SIZE << get_order(size),
  3397. gfpflags, node);
  3398. return ret;
  3399. }
  3400. s = get_slab(size, gfpflags);
  3401. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3402. return s;
  3403. ret = slab_alloc(s, gfpflags, node, caller);
  3404. /* Honor the call site pointer we received. */
  3405. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3406. return ret;
  3407. }
  3408. #endif
  3409. #ifdef CONFIG_SYSFS
  3410. static int count_inuse(struct page *page)
  3411. {
  3412. return page->inuse;
  3413. }
  3414. static int count_total(struct page *page)
  3415. {
  3416. return page->objects;
  3417. }
  3418. #endif
  3419. #ifdef CONFIG_SLUB_DEBUG
  3420. static int validate_slab(struct kmem_cache *s, struct page *page,
  3421. unsigned long *map)
  3422. {
  3423. void *p;
  3424. void *addr = page_address(page);
  3425. if (!check_slab(s, page) ||
  3426. !on_freelist(s, page, NULL))
  3427. return 0;
  3428. /* Now we know that a valid freelist exists */
  3429. bitmap_zero(map, page->objects);
  3430. get_map(s, page, map);
  3431. for_each_object(p, s, addr, page->objects) {
  3432. if (test_bit(slab_index(p, s, addr), map))
  3433. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3434. return 0;
  3435. }
  3436. for_each_object(p, s, addr, page->objects)
  3437. if (!test_bit(slab_index(p, s, addr), map))
  3438. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3439. return 0;
  3440. return 1;
  3441. }
  3442. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3443. unsigned long *map)
  3444. {
  3445. slab_lock(page);
  3446. validate_slab(s, page, map);
  3447. slab_unlock(page);
  3448. }
  3449. static int validate_slab_node(struct kmem_cache *s,
  3450. struct kmem_cache_node *n, unsigned long *map)
  3451. {
  3452. unsigned long count = 0;
  3453. struct page *page;
  3454. unsigned long flags;
  3455. spin_lock_irqsave(&n->list_lock, flags);
  3456. list_for_each_entry(page, &n->partial, lru) {
  3457. validate_slab_slab(s, page, map);
  3458. count++;
  3459. }
  3460. if (count != n->nr_partial)
  3461. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3462. "counter=%ld\n", s->name, count, n->nr_partial);
  3463. if (!(s->flags & SLAB_STORE_USER))
  3464. goto out;
  3465. list_for_each_entry(page, &n->full, lru) {
  3466. validate_slab_slab(s, page, map);
  3467. count++;
  3468. }
  3469. if (count != atomic_long_read(&n->nr_slabs))
  3470. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3471. "counter=%ld\n", s->name, count,
  3472. atomic_long_read(&n->nr_slabs));
  3473. out:
  3474. spin_unlock_irqrestore(&n->list_lock, flags);
  3475. return count;
  3476. }
  3477. static long validate_slab_cache(struct kmem_cache *s)
  3478. {
  3479. int node;
  3480. unsigned long count = 0;
  3481. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3482. sizeof(unsigned long), GFP_KERNEL);
  3483. if (!map)
  3484. return -ENOMEM;
  3485. flush_all(s);
  3486. for_each_node_state(node, N_NORMAL_MEMORY) {
  3487. struct kmem_cache_node *n = get_node(s, node);
  3488. count += validate_slab_node(s, n, map);
  3489. }
  3490. kfree(map);
  3491. return count;
  3492. }
  3493. /*
  3494. * Generate lists of code addresses where slabcache objects are allocated
  3495. * and freed.
  3496. */
  3497. struct location {
  3498. unsigned long count;
  3499. unsigned long addr;
  3500. long long sum_time;
  3501. long min_time;
  3502. long max_time;
  3503. long min_pid;
  3504. long max_pid;
  3505. DECLARE_BITMAP(cpus, NR_CPUS);
  3506. nodemask_t nodes;
  3507. };
  3508. struct loc_track {
  3509. unsigned long max;
  3510. unsigned long count;
  3511. struct location *loc;
  3512. };
  3513. static void free_loc_track(struct loc_track *t)
  3514. {
  3515. if (t->max)
  3516. free_pages((unsigned long)t->loc,
  3517. get_order(sizeof(struct location) * t->max));
  3518. }
  3519. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3520. {
  3521. struct location *l;
  3522. int order;
  3523. order = get_order(sizeof(struct location) * max);
  3524. l = (void *)__get_free_pages(flags, order);
  3525. if (!l)
  3526. return 0;
  3527. if (t->count) {
  3528. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3529. free_loc_track(t);
  3530. }
  3531. t->max = max;
  3532. t->loc = l;
  3533. return 1;
  3534. }
  3535. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3536. const struct track *track)
  3537. {
  3538. long start, end, pos;
  3539. struct location *l;
  3540. unsigned long caddr;
  3541. unsigned long age = jiffies - track->when;
  3542. start = -1;
  3543. end = t->count;
  3544. for ( ; ; ) {
  3545. pos = start + (end - start + 1) / 2;
  3546. /*
  3547. * There is nothing at "end". If we end up there
  3548. * we need to add something to before end.
  3549. */
  3550. if (pos == end)
  3551. break;
  3552. caddr = t->loc[pos].addr;
  3553. if (track->addr == caddr) {
  3554. l = &t->loc[pos];
  3555. l->count++;
  3556. if (track->when) {
  3557. l->sum_time += age;
  3558. if (age < l->min_time)
  3559. l->min_time = age;
  3560. if (age > l->max_time)
  3561. l->max_time = age;
  3562. if (track->pid < l->min_pid)
  3563. l->min_pid = track->pid;
  3564. if (track->pid > l->max_pid)
  3565. l->max_pid = track->pid;
  3566. cpumask_set_cpu(track->cpu,
  3567. to_cpumask(l->cpus));
  3568. }
  3569. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3570. return 1;
  3571. }
  3572. if (track->addr < caddr)
  3573. end = pos;
  3574. else
  3575. start = pos;
  3576. }
  3577. /*
  3578. * Not found. Insert new tracking element.
  3579. */
  3580. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3581. return 0;
  3582. l = t->loc + pos;
  3583. if (pos < t->count)
  3584. memmove(l + 1, l,
  3585. (t->count - pos) * sizeof(struct location));
  3586. t->count++;
  3587. l->count = 1;
  3588. l->addr = track->addr;
  3589. l->sum_time = age;
  3590. l->min_time = age;
  3591. l->max_time = age;
  3592. l->min_pid = track->pid;
  3593. l->max_pid = track->pid;
  3594. cpumask_clear(to_cpumask(l->cpus));
  3595. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3596. nodes_clear(l->nodes);
  3597. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3598. return 1;
  3599. }
  3600. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3601. struct page *page, enum track_item alloc,
  3602. unsigned long *map)
  3603. {
  3604. void *addr = page_address(page);
  3605. void *p;
  3606. bitmap_zero(map, page->objects);
  3607. get_map(s, page, map);
  3608. for_each_object(p, s, addr, page->objects)
  3609. if (!test_bit(slab_index(p, s, addr), map))
  3610. add_location(t, s, get_track(s, p, alloc));
  3611. }
  3612. static int list_locations(struct kmem_cache *s, char *buf,
  3613. enum track_item alloc)
  3614. {
  3615. int len = 0;
  3616. unsigned long i;
  3617. struct loc_track t = { 0, 0, NULL };
  3618. int node;
  3619. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3620. sizeof(unsigned long), GFP_KERNEL);
  3621. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3622. GFP_TEMPORARY)) {
  3623. kfree(map);
  3624. return sprintf(buf, "Out of memory\n");
  3625. }
  3626. /* Push back cpu slabs */
  3627. flush_all(s);
  3628. for_each_node_state(node, N_NORMAL_MEMORY) {
  3629. struct kmem_cache_node *n = get_node(s, node);
  3630. unsigned long flags;
  3631. struct page *page;
  3632. if (!atomic_long_read(&n->nr_slabs))
  3633. continue;
  3634. spin_lock_irqsave(&n->list_lock, flags);
  3635. list_for_each_entry(page, &n->partial, lru)
  3636. process_slab(&t, s, page, alloc, map);
  3637. list_for_each_entry(page, &n->full, lru)
  3638. process_slab(&t, s, page, alloc, map);
  3639. spin_unlock_irqrestore(&n->list_lock, flags);
  3640. }
  3641. for (i = 0; i < t.count; i++) {
  3642. struct location *l = &t.loc[i];
  3643. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3644. break;
  3645. len += sprintf(buf + len, "%7ld ", l->count);
  3646. if (l->addr)
  3647. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3648. else
  3649. len += sprintf(buf + len, "<not-available>");
  3650. if (l->sum_time != l->min_time) {
  3651. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3652. l->min_time,
  3653. (long)div_u64(l->sum_time, l->count),
  3654. l->max_time);
  3655. } else
  3656. len += sprintf(buf + len, " age=%ld",
  3657. l->min_time);
  3658. if (l->min_pid != l->max_pid)
  3659. len += sprintf(buf + len, " pid=%ld-%ld",
  3660. l->min_pid, l->max_pid);
  3661. else
  3662. len += sprintf(buf + len, " pid=%ld",
  3663. l->min_pid);
  3664. if (num_online_cpus() > 1 &&
  3665. !cpumask_empty(to_cpumask(l->cpus)) &&
  3666. len < PAGE_SIZE - 60) {
  3667. len += sprintf(buf + len, " cpus=");
  3668. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3669. to_cpumask(l->cpus));
  3670. }
  3671. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3672. len < PAGE_SIZE - 60) {
  3673. len += sprintf(buf + len, " nodes=");
  3674. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3675. l->nodes);
  3676. }
  3677. len += sprintf(buf + len, "\n");
  3678. }
  3679. free_loc_track(&t);
  3680. kfree(map);
  3681. if (!t.count)
  3682. len += sprintf(buf, "No data\n");
  3683. return len;
  3684. }
  3685. #endif
  3686. #ifdef SLUB_RESILIENCY_TEST
  3687. static void resiliency_test(void)
  3688. {
  3689. u8 *p;
  3690. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
  3691. printk(KERN_ERR "SLUB resiliency testing\n");
  3692. printk(KERN_ERR "-----------------------\n");
  3693. printk(KERN_ERR "A. Corruption after allocation\n");
  3694. p = kzalloc(16, GFP_KERNEL);
  3695. p[16] = 0x12;
  3696. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3697. " 0x12->0x%p\n\n", p + 16);
  3698. validate_slab_cache(kmalloc_caches[4]);
  3699. /* Hmmm... The next two are dangerous */
  3700. p = kzalloc(32, GFP_KERNEL);
  3701. p[32 + sizeof(void *)] = 0x34;
  3702. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3703. " 0x34 -> -0x%p\n", p);
  3704. printk(KERN_ERR
  3705. "If allocated object is overwritten then not detectable\n\n");
  3706. validate_slab_cache(kmalloc_caches[5]);
  3707. p = kzalloc(64, GFP_KERNEL);
  3708. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3709. *p = 0x56;
  3710. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3711. p);
  3712. printk(KERN_ERR
  3713. "If allocated object is overwritten then not detectable\n\n");
  3714. validate_slab_cache(kmalloc_caches[6]);
  3715. printk(KERN_ERR "\nB. Corruption after free\n");
  3716. p = kzalloc(128, GFP_KERNEL);
  3717. kfree(p);
  3718. *p = 0x78;
  3719. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3720. validate_slab_cache(kmalloc_caches[7]);
  3721. p = kzalloc(256, GFP_KERNEL);
  3722. kfree(p);
  3723. p[50] = 0x9a;
  3724. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3725. p);
  3726. validate_slab_cache(kmalloc_caches[8]);
  3727. p = kzalloc(512, GFP_KERNEL);
  3728. kfree(p);
  3729. p[512] = 0xab;
  3730. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3731. validate_slab_cache(kmalloc_caches[9]);
  3732. }
  3733. #else
  3734. #ifdef CONFIG_SYSFS
  3735. static void resiliency_test(void) {};
  3736. #endif
  3737. #endif
  3738. #ifdef CONFIG_SYSFS
  3739. enum slab_stat_type {
  3740. SL_ALL, /* All slabs */
  3741. SL_PARTIAL, /* Only partially allocated slabs */
  3742. SL_CPU, /* Only slabs used for cpu caches */
  3743. SL_OBJECTS, /* Determine allocated objects not slabs */
  3744. SL_TOTAL /* Determine object capacity not slabs */
  3745. };
  3746. #define SO_ALL (1 << SL_ALL)
  3747. #define SO_PARTIAL (1 << SL_PARTIAL)
  3748. #define SO_CPU (1 << SL_CPU)
  3749. #define SO_OBJECTS (1 << SL_OBJECTS)
  3750. #define SO_TOTAL (1 << SL_TOTAL)
  3751. static ssize_t show_slab_objects(struct kmem_cache *s,
  3752. char *buf, unsigned long flags)
  3753. {
  3754. unsigned long total = 0;
  3755. int node;
  3756. int x;
  3757. unsigned long *nodes;
  3758. unsigned long *per_cpu;
  3759. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3760. if (!nodes)
  3761. return -ENOMEM;
  3762. per_cpu = nodes + nr_node_ids;
  3763. if (flags & SO_CPU) {
  3764. int cpu;
  3765. for_each_possible_cpu(cpu) {
  3766. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3767. int node;
  3768. struct page *page;
  3769. page = ACCESS_ONCE(c->page);
  3770. if (!page)
  3771. continue;
  3772. node = page_to_nid(page);
  3773. if (flags & SO_TOTAL)
  3774. x = page->objects;
  3775. else if (flags & SO_OBJECTS)
  3776. x = page->inuse;
  3777. else
  3778. x = 1;
  3779. total += x;
  3780. nodes[node] += x;
  3781. page = ACCESS_ONCE(c->partial);
  3782. if (page) {
  3783. x = page->pobjects;
  3784. total += x;
  3785. nodes[node] += x;
  3786. }
  3787. per_cpu[node]++;
  3788. }
  3789. }
  3790. lock_memory_hotplug();
  3791. #ifdef CONFIG_SLUB_DEBUG
  3792. if (flags & SO_ALL) {
  3793. for_each_node_state(node, N_NORMAL_MEMORY) {
  3794. struct kmem_cache_node *n = get_node(s, node);
  3795. if (flags & SO_TOTAL)
  3796. x = atomic_long_read(&n->total_objects);
  3797. else if (flags & SO_OBJECTS)
  3798. x = atomic_long_read(&n->total_objects) -
  3799. count_partial(n, count_free);
  3800. else
  3801. x = atomic_long_read(&n->nr_slabs);
  3802. total += x;
  3803. nodes[node] += x;
  3804. }
  3805. } else
  3806. #endif
  3807. if (flags & SO_PARTIAL) {
  3808. for_each_node_state(node, N_NORMAL_MEMORY) {
  3809. struct kmem_cache_node *n = get_node(s, node);
  3810. if (flags & SO_TOTAL)
  3811. x = count_partial(n, count_total);
  3812. else if (flags & SO_OBJECTS)
  3813. x = count_partial(n, count_inuse);
  3814. else
  3815. x = n->nr_partial;
  3816. total += x;
  3817. nodes[node] += x;
  3818. }
  3819. }
  3820. x = sprintf(buf, "%lu", total);
  3821. #ifdef CONFIG_NUMA
  3822. for_each_node_state(node, N_NORMAL_MEMORY)
  3823. if (nodes[node])
  3824. x += sprintf(buf + x, " N%d=%lu",
  3825. node, nodes[node]);
  3826. #endif
  3827. unlock_memory_hotplug();
  3828. kfree(nodes);
  3829. return x + sprintf(buf + x, "\n");
  3830. }
  3831. #ifdef CONFIG_SLUB_DEBUG
  3832. static int any_slab_objects(struct kmem_cache *s)
  3833. {
  3834. int node;
  3835. for_each_online_node(node) {
  3836. struct kmem_cache_node *n = get_node(s, node);
  3837. if (!n)
  3838. continue;
  3839. if (atomic_long_read(&n->total_objects))
  3840. return 1;
  3841. }
  3842. return 0;
  3843. }
  3844. #endif
  3845. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3846. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3847. struct slab_attribute {
  3848. struct attribute attr;
  3849. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3850. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3851. };
  3852. #define SLAB_ATTR_RO(_name) \
  3853. static struct slab_attribute _name##_attr = \
  3854. __ATTR(_name, 0400, _name##_show, NULL)
  3855. #define SLAB_ATTR(_name) \
  3856. static struct slab_attribute _name##_attr = \
  3857. __ATTR(_name, 0600, _name##_show, _name##_store)
  3858. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3859. {
  3860. return sprintf(buf, "%d\n", s->size);
  3861. }
  3862. SLAB_ATTR_RO(slab_size);
  3863. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3864. {
  3865. return sprintf(buf, "%d\n", s->align);
  3866. }
  3867. SLAB_ATTR_RO(align);
  3868. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3869. {
  3870. return sprintf(buf, "%d\n", s->object_size);
  3871. }
  3872. SLAB_ATTR_RO(object_size);
  3873. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3874. {
  3875. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3876. }
  3877. SLAB_ATTR_RO(objs_per_slab);
  3878. static ssize_t order_store(struct kmem_cache *s,
  3879. const char *buf, size_t length)
  3880. {
  3881. unsigned long order;
  3882. int err;
  3883. err = strict_strtoul(buf, 10, &order);
  3884. if (err)
  3885. return err;
  3886. if (order > slub_max_order || order < slub_min_order)
  3887. return -EINVAL;
  3888. calculate_sizes(s, order);
  3889. return length;
  3890. }
  3891. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3892. {
  3893. return sprintf(buf, "%d\n", oo_order(s->oo));
  3894. }
  3895. SLAB_ATTR(order);
  3896. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3897. {
  3898. return sprintf(buf, "%lu\n", s->min_partial);
  3899. }
  3900. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3901. size_t length)
  3902. {
  3903. unsigned long min;
  3904. int err;
  3905. err = strict_strtoul(buf, 10, &min);
  3906. if (err)
  3907. return err;
  3908. set_min_partial(s, min);
  3909. return length;
  3910. }
  3911. SLAB_ATTR(min_partial);
  3912. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3913. {
  3914. return sprintf(buf, "%u\n", s->cpu_partial);
  3915. }
  3916. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3917. size_t length)
  3918. {
  3919. unsigned long objects;
  3920. int err;
  3921. err = strict_strtoul(buf, 10, &objects);
  3922. if (err)
  3923. return err;
  3924. if (objects && kmem_cache_debug(s))
  3925. return -EINVAL;
  3926. s->cpu_partial = objects;
  3927. flush_all(s);
  3928. return length;
  3929. }
  3930. SLAB_ATTR(cpu_partial);
  3931. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3932. {
  3933. if (!s->ctor)
  3934. return 0;
  3935. return sprintf(buf, "%pS\n", s->ctor);
  3936. }
  3937. SLAB_ATTR_RO(ctor);
  3938. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3939. {
  3940. return sprintf(buf, "%d\n", s->refcount - 1);
  3941. }
  3942. SLAB_ATTR_RO(aliases);
  3943. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3944. {
  3945. return show_slab_objects(s, buf, SO_PARTIAL);
  3946. }
  3947. SLAB_ATTR_RO(partial);
  3948. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3949. {
  3950. return show_slab_objects(s, buf, SO_CPU);
  3951. }
  3952. SLAB_ATTR_RO(cpu_slabs);
  3953. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3954. {
  3955. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3956. }
  3957. SLAB_ATTR_RO(objects);
  3958. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3959. {
  3960. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3961. }
  3962. SLAB_ATTR_RO(objects_partial);
  3963. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3964. {
  3965. int objects = 0;
  3966. int pages = 0;
  3967. int cpu;
  3968. int len;
  3969. for_each_online_cpu(cpu) {
  3970. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3971. if (page) {
  3972. pages += page->pages;
  3973. objects += page->pobjects;
  3974. }
  3975. }
  3976. len = sprintf(buf, "%d(%d)", objects, pages);
  3977. #ifdef CONFIG_SMP
  3978. for_each_online_cpu(cpu) {
  3979. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3980. if (page && len < PAGE_SIZE - 20)
  3981. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3982. page->pobjects, page->pages);
  3983. }
  3984. #endif
  3985. return len + sprintf(buf + len, "\n");
  3986. }
  3987. SLAB_ATTR_RO(slabs_cpu_partial);
  3988. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3989. {
  3990. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3991. }
  3992. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3993. const char *buf, size_t length)
  3994. {
  3995. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3996. if (buf[0] == '1')
  3997. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3998. return length;
  3999. }
  4000. SLAB_ATTR(reclaim_account);
  4001. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  4002. {
  4003. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  4004. }
  4005. SLAB_ATTR_RO(hwcache_align);
  4006. #ifdef CONFIG_ZONE_DMA
  4007. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  4008. {
  4009. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  4010. }
  4011. SLAB_ATTR_RO(cache_dma);
  4012. #endif
  4013. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  4014. {
  4015. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  4016. }
  4017. SLAB_ATTR_RO(destroy_by_rcu);
  4018. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  4019. {
  4020. return sprintf(buf, "%d\n", s->reserved);
  4021. }
  4022. SLAB_ATTR_RO(reserved);
  4023. #ifdef CONFIG_SLUB_DEBUG
  4024. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  4025. {
  4026. return show_slab_objects(s, buf, SO_ALL);
  4027. }
  4028. SLAB_ATTR_RO(slabs);
  4029. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  4030. {
  4031. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  4032. }
  4033. SLAB_ATTR_RO(total_objects);
  4034. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  4035. {
  4036. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  4037. }
  4038. static ssize_t sanity_checks_store(struct kmem_cache *s,
  4039. const char *buf, size_t length)
  4040. {
  4041. s->flags &= ~SLAB_DEBUG_FREE;
  4042. if (buf[0] == '1') {
  4043. s->flags &= ~__CMPXCHG_DOUBLE;
  4044. s->flags |= SLAB_DEBUG_FREE;
  4045. }
  4046. return length;
  4047. }
  4048. SLAB_ATTR(sanity_checks);
  4049. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  4050. {
  4051. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  4052. }
  4053. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  4054. size_t length)
  4055. {
  4056. s->flags &= ~SLAB_TRACE;
  4057. if (buf[0] == '1') {
  4058. s->flags &= ~__CMPXCHG_DOUBLE;
  4059. s->flags |= SLAB_TRACE;
  4060. }
  4061. return length;
  4062. }
  4063. SLAB_ATTR(trace);
  4064. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  4065. {
  4066. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  4067. }
  4068. static ssize_t red_zone_store(struct kmem_cache *s,
  4069. const char *buf, size_t length)
  4070. {
  4071. if (any_slab_objects(s))
  4072. return -EBUSY;
  4073. s->flags &= ~SLAB_RED_ZONE;
  4074. if (buf[0] == '1') {
  4075. s->flags &= ~__CMPXCHG_DOUBLE;
  4076. s->flags |= SLAB_RED_ZONE;
  4077. }
  4078. calculate_sizes(s, -1);
  4079. return length;
  4080. }
  4081. SLAB_ATTR(red_zone);
  4082. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  4083. {
  4084. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  4085. }
  4086. static ssize_t poison_store(struct kmem_cache *s,
  4087. const char *buf, size_t length)
  4088. {
  4089. if (any_slab_objects(s))
  4090. return -EBUSY;
  4091. s->flags &= ~SLAB_POISON;
  4092. if (buf[0] == '1') {
  4093. s->flags &= ~__CMPXCHG_DOUBLE;
  4094. s->flags |= SLAB_POISON;
  4095. }
  4096. calculate_sizes(s, -1);
  4097. return length;
  4098. }
  4099. SLAB_ATTR(poison);
  4100. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  4101. {
  4102. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  4103. }
  4104. static ssize_t store_user_store(struct kmem_cache *s,
  4105. const char *buf, size_t length)
  4106. {
  4107. if (any_slab_objects(s))
  4108. return -EBUSY;
  4109. s->flags &= ~SLAB_STORE_USER;
  4110. if (buf[0] == '1') {
  4111. s->flags &= ~__CMPXCHG_DOUBLE;
  4112. s->flags |= SLAB_STORE_USER;
  4113. }
  4114. calculate_sizes(s, -1);
  4115. return length;
  4116. }
  4117. SLAB_ATTR(store_user);
  4118. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  4119. {
  4120. return 0;
  4121. }
  4122. static ssize_t validate_store(struct kmem_cache *s,
  4123. const char *buf, size_t length)
  4124. {
  4125. int ret = -EINVAL;
  4126. if (buf[0] == '1') {
  4127. ret = validate_slab_cache(s);
  4128. if (ret >= 0)
  4129. ret = length;
  4130. }
  4131. return ret;
  4132. }
  4133. SLAB_ATTR(validate);
  4134. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  4135. {
  4136. if (!(s->flags & SLAB_STORE_USER))
  4137. return -ENOSYS;
  4138. return list_locations(s, buf, TRACK_ALLOC);
  4139. }
  4140. SLAB_ATTR_RO(alloc_calls);
  4141. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  4142. {
  4143. if (!(s->flags & SLAB_STORE_USER))
  4144. return -ENOSYS;
  4145. return list_locations(s, buf, TRACK_FREE);
  4146. }
  4147. SLAB_ATTR_RO(free_calls);
  4148. #endif /* CONFIG_SLUB_DEBUG */
  4149. #ifdef CONFIG_FAILSLAB
  4150. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  4151. {
  4152. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  4153. }
  4154. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  4155. size_t length)
  4156. {
  4157. s->flags &= ~SLAB_FAILSLAB;
  4158. if (buf[0] == '1')
  4159. s->flags |= SLAB_FAILSLAB;
  4160. return length;
  4161. }
  4162. SLAB_ATTR(failslab);
  4163. #endif
  4164. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  4165. {
  4166. return 0;
  4167. }
  4168. static ssize_t shrink_store(struct kmem_cache *s,
  4169. const char *buf, size_t length)
  4170. {
  4171. if (buf[0] == '1') {
  4172. int rc = kmem_cache_shrink(s);
  4173. if (rc)
  4174. return rc;
  4175. } else
  4176. return -EINVAL;
  4177. return length;
  4178. }
  4179. SLAB_ATTR(shrink);
  4180. #ifdef CONFIG_NUMA
  4181. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4182. {
  4183. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4184. }
  4185. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4186. const char *buf, size_t length)
  4187. {
  4188. unsigned long ratio;
  4189. int err;
  4190. err = strict_strtoul(buf, 10, &ratio);
  4191. if (err)
  4192. return err;
  4193. if (ratio <= 100)
  4194. s->remote_node_defrag_ratio = ratio * 10;
  4195. return length;
  4196. }
  4197. SLAB_ATTR(remote_node_defrag_ratio);
  4198. #endif
  4199. #ifdef CONFIG_SLUB_STATS
  4200. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4201. {
  4202. unsigned long sum = 0;
  4203. int cpu;
  4204. int len;
  4205. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4206. if (!data)
  4207. return -ENOMEM;
  4208. for_each_online_cpu(cpu) {
  4209. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4210. data[cpu] = x;
  4211. sum += x;
  4212. }
  4213. len = sprintf(buf, "%lu", sum);
  4214. #ifdef CONFIG_SMP
  4215. for_each_online_cpu(cpu) {
  4216. if (data[cpu] && len < PAGE_SIZE - 20)
  4217. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4218. }
  4219. #endif
  4220. kfree(data);
  4221. return len + sprintf(buf + len, "\n");
  4222. }
  4223. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4224. {
  4225. int cpu;
  4226. for_each_online_cpu(cpu)
  4227. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4228. }
  4229. #define STAT_ATTR(si, text) \
  4230. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4231. { \
  4232. return show_stat(s, buf, si); \
  4233. } \
  4234. static ssize_t text##_store(struct kmem_cache *s, \
  4235. const char *buf, size_t length) \
  4236. { \
  4237. if (buf[0] != '0') \
  4238. return -EINVAL; \
  4239. clear_stat(s, si); \
  4240. return length; \
  4241. } \
  4242. SLAB_ATTR(text); \
  4243. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4244. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4245. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4246. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4247. STAT_ATTR(FREE_FROZEN, free_frozen);
  4248. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4249. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4250. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4251. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4252. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4253. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4254. STAT_ATTR(FREE_SLAB, free_slab);
  4255. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4256. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4257. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4258. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4259. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4260. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4261. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4262. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4263. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4264. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4265. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4266. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4267. STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
  4268. STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
  4269. #endif
  4270. static struct attribute *slab_attrs[] = {
  4271. &slab_size_attr.attr,
  4272. &object_size_attr.attr,
  4273. &objs_per_slab_attr.attr,
  4274. &order_attr.attr,
  4275. &min_partial_attr.attr,
  4276. &cpu_partial_attr.attr,
  4277. &objects_attr.attr,
  4278. &objects_partial_attr.attr,
  4279. &partial_attr.attr,
  4280. &cpu_slabs_attr.attr,
  4281. &ctor_attr.attr,
  4282. &aliases_attr.attr,
  4283. &align_attr.attr,
  4284. &hwcache_align_attr.attr,
  4285. &reclaim_account_attr.attr,
  4286. &destroy_by_rcu_attr.attr,
  4287. &shrink_attr.attr,
  4288. &reserved_attr.attr,
  4289. &slabs_cpu_partial_attr.attr,
  4290. #ifdef CONFIG_SLUB_DEBUG
  4291. &total_objects_attr.attr,
  4292. &slabs_attr.attr,
  4293. &sanity_checks_attr.attr,
  4294. &trace_attr.attr,
  4295. &red_zone_attr.attr,
  4296. &poison_attr.attr,
  4297. &store_user_attr.attr,
  4298. &validate_attr.attr,
  4299. &alloc_calls_attr.attr,
  4300. &free_calls_attr.attr,
  4301. #endif
  4302. #ifdef CONFIG_ZONE_DMA
  4303. &cache_dma_attr.attr,
  4304. #endif
  4305. #ifdef CONFIG_NUMA
  4306. &remote_node_defrag_ratio_attr.attr,
  4307. #endif
  4308. #ifdef CONFIG_SLUB_STATS
  4309. &alloc_fastpath_attr.attr,
  4310. &alloc_slowpath_attr.attr,
  4311. &free_fastpath_attr.attr,
  4312. &free_slowpath_attr.attr,
  4313. &free_frozen_attr.attr,
  4314. &free_add_partial_attr.attr,
  4315. &free_remove_partial_attr.attr,
  4316. &alloc_from_partial_attr.attr,
  4317. &alloc_slab_attr.attr,
  4318. &alloc_refill_attr.attr,
  4319. &alloc_node_mismatch_attr.attr,
  4320. &free_slab_attr.attr,
  4321. &cpuslab_flush_attr.attr,
  4322. &deactivate_full_attr.attr,
  4323. &deactivate_empty_attr.attr,
  4324. &deactivate_to_head_attr.attr,
  4325. &deactivate_to_tail_attr.attr,
  4326. &deactivate_remote_frees_attr.attr,
  4327. &deactivate_bypass_attr.attr,
  4328. &order_fallback_attr.attr,
  4329. &cmpxchg_double_fail_attr.attr,
  4330. &cmpxchg_double_cpu_fail_attr.attr,
  4331. &cpu_partial_alloc_attr.attr,
  4332. &cpu_partial_free_attr.attr,
  4333. &cpu_partial_node_attr.attr,
  4334. &cpu_partial_drain_attr.attr,
  4335. #endif
  4336. #ifdef CONFIG_FAILSLAB
  4337. &failslab_attr.attr,
  4338. #endif
  4339. NULL
  4340. };
  4341. static struct attribute_group slab_attr_group = {
  4342. .attrs = slab_attrs,
  4343. };
  4344. static ssize_t slab_attr_show(struct kobject *kobj,
  4345. struct attribute *attr,
  4346. char *buf)
  4347. {
  4348. struct slab_attribute *attribute;
  4349. struct kmem_cache *s;
  4350. int err;
  4351. attribute = to_slab_attr(attr);
  4352. s = to_slab(kobj);
  4353. if (!attribute->show)
  4354. return -EIO;
  4355. err = attribute->show(s, buf);
  4356. return err;
  4357. }
  4358. static ssize_t slab_attr_store(struct kobject *kobj,
  4359. struct attribute *attr,
  4360. const char *buf, size_t len)
  4361. {
  4362. struct slab_attribute *attribute;
  4363. struct kmem_cache *s;
  4364. int err;
  4365. attribute = to_slab_attr(attr);
  4366. s = to_slab(kobj);
  4367. if (!attribute->store)
  4368. return -EIO;
  4369. err = attribute->store(s, buf, len);
  4370. return err;
  4371. }
  4372. static void kmem_cache_release(struct kobject *kobj)
  4373. {
  4374. struct kmem_cache *s = to_slab(kobj);
  4375. kfree(s->name);
  4376. kfree(s);
  4377. }
  4378. static const struct sysfs_ops slab_sysfs_ops = {
  4379. .show = slab_attr_show,
  4380. .store = slab_attr_store,
  4381. };
  4382. static struct kobj_type slab_ktype = {
  4383. .sysfs_ops = &slab_sysfs_ops,
  4384. .release = kmem_cache_release
  4385. };
  4386. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4387. {
  4388. struct kobj_type *ktype = get_ktype(kobj);
  4389. if (ktype == &slab_ktype)
  4390. return 1;
  4391. return 0;
  4392. }
  4393. static const struct kset_uevent_ops slab_uevent_ops = {
  4394. .filter = uevent_filter,
  4395. };
  4396. static struct kset *slab_kset;
  4397. #define ID_STR_LENGTH 64
  4398. /* Create a unique string id for a slab cache:
  4399. *
  4400. * Format :[flags-]size
  4401. */
  4402. static char *create_unique_id(struct kmem_cache *s)
  4403. {
  4404. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4405. char *p = name;
  4406. BUG_ON(!name);
  4407. *p++ = ':';
  4408. /*
  4409. * First flags affecting slabcache operations. We will only
  4410. * get here for aliasable slabs so we do not need to support
  4411. * too many flags. The flags here must cover all flags that
  4412. * are matched during merging to guarantee that the id is
  4413. * unique.
  4414. */
  4415. if (s->flags & SLAB_CACHE_DMA)
  4416. *p++ = 'd';
  4417. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4418. *p++ = 'a';
  4419. if (s->flags & SLAB_DEBUG_FREE)
  4420. *p++ = 'F';
  4421. if (!(s->flags & SLAB_NOTRACK))
  4422. *p++ = 't';
  4423. if (p != name + 1)
  4424. *p++ = '-';
  4425. p += sprintf(p, "%07d", s->size);
  4426. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4427. return name;
  4428. }
  4429. static int sysfs_slab_add(struct kmem_cache *s)
  4430. {
  4431. int err;
  4432. const char *name;
  4433. int unmergeable;
  4434. if (slab_state < FULL)
  4435. /* Defer until later */
  4436. return 0;
  4437. unmergeable = slab_unmergeable(s);
  4438. if (unmergeable) {
  4439. /*
  4440. * Slabcache can never be merged so we can use the name proper.
  4441. * This is typically the case for debug situations. In that
  4442. * case we can catch duplicate names easily.
  4443. */
  4444. sysfs_remove_link(&slab_kset->kobj, s->name);
  4445. name = s->name;
  4446. } else {
  4447. /*
  4448. * Create a unique name for the slab as a target
  4449. * for the symlinks.
  4450. */
  4451. name = create_unique_id(s);
  4452. }
  4453. s->kobj.kset = slab_kset;
  4454. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4455. if (err) {
  4456. kobject_put(&s->kobj);
  4457. return err;
  4458. }
  4459. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4460. if (err) {
  4461. kobject_del(&s->kobj);
  4462. kobject_put(&s->kobj);
  4463. return err;
  4464. }
  4465. kobject_uevent(&s->kobj, KOBJ_ADD);
  4466. if (!unmergeable) {
  4467. /* Setup first alias */
  4468. sysfs_slab_alias(s, s->name);
  4469. kfree(name);
  4470. }
  4471. return 0;
  4472. }
  4473. static void sysfs_slab_remove(struct kmem_cache *s)
  4474. {
  4475. if (slab_state < FULL)
  4476. /*
  4477. * Sysfs has not been setup yet so no need to remove the
  4478. * cache from sysfs.
  4479. */
  4480. return;
  4481. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4482. kobject_del(&s->kobj);
  4483. kobject_put(&s->kobj);
  4484. }
  4485. /*
  4486. * Need to buffer aliases during bootup until sysfs becomes
  4487. * available lest we lose that information.
  4488. */
  4489. struct saved_alias {
  4490. struct kmem_cache *s;
  4491. const char *name;
  4492. struct saved_alias *next;
  4493. };
  4494. static struct saved_alias *alias_list;
  4495. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4496. {
  4497. struct saved_alias *al;
  4498. if (slab_state == FULL) {
  4499. /*
  4500. * If we have a leftover link then remove it.
  4501. */
  4502. sysfs_remove_link(&slab_kset->kobj, name);
  4503. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4504. }
  4505. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4506. if (!al)
  4507. return -ENOMEM;
  4508. al->s = s;
  4509. al->name = name;
  4510. al->next = alias_list;
  4511. alias_list = al;
  4512. return 0;
  4513. }
  4514. static int __init slab_sysfs_init(void)
  4515. {
  4516. struct kmem_cache *s;
  4517. int err;
  4518. down_write(&slub_lock);
  4519. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4520. if (!slab_kset) {
  4521. up_write(&slub_lock);
  4522. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4523. return -ENOSYS;
  4524. }
  4525. slab_state = FULL;
  4526. list_for_each_entry(s, &slab_caches, list) {
  4527. err = sysfs_slab_add(s);
  4528. if (err)
  4529. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4530. " to sysfs\n", s->name);
  4531. }
  4532. while (alias_list) {
  4533. struct saved_alias *al = alias_list;
  4534. alias_list = alias_list->next;
  4535. err = sysfs_slab_alias(al->s, al->name);
  4536. if (err)
  4537. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4538. " %s to sysfs\n", al->name);
  4539. kfree(al);
  4540. }
  4541. up_write(&slub_lock);
  4542. resiliency_test();
  4543. return 0;
  4544. }
  4545. __initcall(slab_sysfs_init);
  4546. #endif /* CONFIG_SYSFS */
  4547. /*
  4548. * The /proc/slabinfo ABI
  4549. */
  4550. #ifdef CONFIG_SLABINFO
  4551. static void print_slabinfo_header(struct seq_file *m)
  4552. {
  4553. seq_puts(m, "slabinfo - version: 2.1\n");
  4554. seq_puts(m, "# name <active_objs> <num_objs> <object_size> "
  4555. "<objperslab> <pagesperslab>");
  4556. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  4557. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  4558. seq_putc(m, '\n');
  4559. }
  4560. static void *s_start(struct seq_file *m, loff_t *pos)
  4561. {
  4562. loff_t n = *pos;
  4563. down_read(&slub_lock);
  4564. if (!n)
  4565. print_slabinfo_header(m);
  4566. return seq_list_start(&slab_caches, *pos);
  4567. }
  4568. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  4569. {
  4570. return seq_list_next(p, &slab_caches, pos);
  4571. }
  4572. static void s_stop(struct seq_file *m, void *p)
  4573. {
  4574. up_read(&slub_lock);
  4575. }
  4576. static int s_show(struct seq_file *m, void *p)
  4577. {
  4578. unsigned long nr_partials = 0;
  4579. unsigned long nr_slabs = 0;
  4580. unsigned long nr_inuse = 0;
  4581. unsigned long nr_objs = 0;
  4582. unsigned long nr_free = 0;
  4583. struct kmem_cache *s;
  4584. int node;
  4585. s = list_entry(p, struct kmem_cache, list);
  4586. for_each_online_node(node) {
  4587. struct kmem_cache_node *n = get_node(s, node);
  4588. if (!n)
  4589. continue;
  4590. nr_partials += n->nr_partial;
  4591. nr_slabs += atomic_long_read(&n->nr_slabs);
  4592. nr_objs += atomic_long_read(&n->total_objects);
  4593. nr_free += count_partial(n, count_free);
  4594. }
  4595. nr_inuse = nr_objs - nr_free;
  4596. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  4597. nr_objs, s->size, oo_objects(s->oo),
  4598. (1 << oo_order(s->oo)));
  4599. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  4600. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  4601. 0UL);
  4602. seq_putc(m, '\n');
  4603. return 0;
  4604. }
  4605. static const struct seq_operations slabinfo_op = {
  4606. .start = s_start,
  4607. .next = s_next,
  4608. .stop = s_stop,
  4609. .show = s_show,
  4610. };
  4611. static int slabinfo_open(struct inode *inode, struct file *file)
  4612. {
  4613. return seq_open(file, &slabinfo_op);
  4614. }
  4615. static const struct file_operations proc_slabinfo_operations = {
  4616. .open = slabinfo_open,
  4617. .read = seq_read,
  4618. .llseek = seq_lseek,
  4619. .release = seq_release,
  4620. };
  4621. static int __init slab_proc_init(void)
  4622. {
  4623. proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
  4624. return 0;
  4625. }
  4626. module_init(slab_proc_init);
  4627. #endif /* CONFIG_SLABINFO */