korina.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232
  1. /*
  2. * Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
  3. *
  4. * Copyright 2004 IDT Inc. (rischelp@idt.com)
  5. * Copyright 2006 Felix Fietkau <nbd@openwrt.org>
  6. * Copyright 2008 Florian Fainelli <florian@openwrt.org>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the
  10. * Free Software Foundation; either version 2 of the License, or (at your
  11. * option) any later version.
  12. *
  13. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  14. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  15. * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
  16. * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  17. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  18. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
  19. * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
  20. * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  21. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  22. * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  23. *
  24. * You should have received a copy of the GNU General Public License along
  25. * with this program; if not, write to the Free Software Foundation, Inc.,
  26. * 675 Mass Ave, Cambridge, MA 02139, USA.
  27. *
  28. * Writing to a DMA status register:
  29. *
  30. * When writing to the status register, you should mask the bit you have
  31. * been testing the status register with. Both Tx and Rx DMA registers
  32. * should stick to this procedure.
  33. */
  34. #include <linux/module.h>
  35. #include <linux/kernel.h>
  36. #include <linux/moduleparam.h>
  37. #include <linux/sched.h>
  38. #include <linux/ctype.h>
  39. #include <linux/types.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/init.h>
  42. #include <linux/ioport.h>
  43. #include <linux/in.h>
  44. #include <linux/slab.h>
  45. #include <linux/string.h>
  46. #include <linux/delay.h>
  47. #include <linux/netdevice.h>
  48. #include <linux/etherdevice.h>
  49. #include <linux/skbuff.h>
  50. #include <linux/errno.h>
  51. #include <linux/platform_device.h>
  52. #include <linux/mii.h>
  53. #include <linux/ethtool.h>
  54. #include <linux/crc32.h>
  55. #include <asm/bootinfo.h>
  56. #include <asm/system.h>
  57. #include <asm/bitops.h>
  58. #include <asm/pgtable.h>
  59. #include <asm/segment.h>
  60. #include <asm/io.h>
  61. #include <asm/dma.h>
  62. #include <asm/mach-rc32434/rb.h>
  63. #include <asm/mach-rc32434/rc32434.h>
  64. #include <asm/mach-rc32434/eth.h>
  65. #include <asm/mach-rc32434/dma_v.h>
  66. #define DRV_NAME "korina"
  67. #define DRV_VERSION "0.10"
  68. #define DRV_RELDATE "04Mar2008"
  69. #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
  70. ((dev)->dev_addr[1]))
  71. #define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \
  72. ((dev)->dev_addr[3] << 16) | \
  73. ((dev)->dev_addr[4] << 8) | \
  74. ((dev)->dev_addr[5]))
  75. #define MII_CLOCK 1250000 /* no more than 2.5MHz */
  76. /* the following must be powers of two */
  77. #define KORINA_NUM_RDS 64 /* number of receive descriptors */
  78. #define KORINA_NUM_TDS 64 /* number of transmit descriptors */
  79. /* KORINA_RBSIZE is the hardware's default maximum receive
  80. * frame size in bytes. Having this hardcoded means that there
  81. * is no support for MTU sizes greater than 1500. */
  82. #define KORINA_RBSIZE 1536 /* size of one resource buffer = Ether MTU */
  83. #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1)
  84. #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1)
  85. #define RD_RING_SIZE (KORINA_NUM_RDS * sizeof(struct dma_desc))
  86. #define TD_RING_SIZE (KORINA_NUM_TDS * sizeof(struct dma_desc))
  87. #define TX_TIMEOUT (6000 * HZ / 1000)
  88. enum chain_status { desc_filled, desc_empty };
  89. #define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0)
  90. #define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0)
  91. #define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
  92. /* Information that need to be kept for each board. */
  93. struct korina_private {
  94. struct eth_regs *eth_regs;
  95. struct dma_reg *rx_dma_regs;
  96. struct dma_reg *tx_dma_regs;
  97. struct dma_desc *td_ring; /* transmit descriptor ring */
  98. struct dma_desc *rd_ring; /* receive descriptor ring */
  99. struct sk_buff *tx_skb[KORINA_NUM_TDS];
  100. struct sk_buff *rx_skb[KORINA_NUM_RDS];
  101. int rx_next_done;
  102. int rx_chain_head;
  103. int rx_chain_tail;
  104. enum chain_status rx_chain_status;
  105. int tx_next_done;
  106. int tx_chain_head;
  107. int tx_chain_tail;
  108. enum chain_status tx_chain_status;
  109. int tx_count;
  110. int tx_full;
  111. int rx_irq;
  112. int tx_irq;
  113. int ovr_irq;
  114. int und_irq;
  115. spinlock_t lock; /* NIC xmit lock */
  116. int dma_halt_cnt;
  117. int dma_run_cnt;
  118. struct napi_struct napi;
  119. struct mii_if_info mii_if;
  120. struct net_device *dev;
  121. int phy_addr;
  122. };
  123. extern unsigned int idt_cpu_freq;
  124. static inline void korina_start_dma(struct dma_reg *ch, u32 dma_addr)
  125. {
  126. writel(0, &ch->dmandptr);
  127. writel(dma_addr, &ch->dmadptr);
  128. }
  129. static inline void korina_abort_dma(struct net_device *dev,
  130. struct dma_reg *ch)
  131. {
  132. if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
  133. writel(0x10, &ch->dmac);
  134. while (!(readl(&ch->dmas) & DMA_STAT_HALT))
  135. dev->trans_start = jiffies;
  136. writel(0, &ch->dmas);
  137. }
  138. writel(0, &ch->dmadptr);
  139. writel(0, &ch->dmandptr);
  140. }
  141. static inline void korina_chain_dma(struct dma_reg *ch, u32 dma_addr)
  142. {
  143. writel(dma_addr, &ch->dmandptr);
  144. }
  145. static void korina_abort_tx(struct net_device *dev)
  146. {
  147. struct korina_private *lp = netdev_priv(dev);
  148. korina_abort_dma(dev, lp->tx_dma_regs);
  149. }
  150. static void korina_abort_rx(struct net_device *dev)
  151. {
  152. struct korina_private *lp = netdev_priv(dev);
  153. korina_abort_dma(dev, lp->rx_dma_regs);
  154. }
  155. static void korina_start_rx(struct korina_private *lp,
  156. struct dma_desc *rd)
  157. {
  158. korina_start_dma(lp->rx_dma_regs, CPHYSADDR(rd));
  159. }
  160. static void korina_chain_rx(struct korina_private *lp,
  161. struct dma_desc *rd)
  162. {
  163. korina_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd));
  164. }
  165. /* transmit packet */
  166. static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
  167. {
  168. struct korina_private *lp = netdev_priv(dev);
  169. unsigned long flags;
  170. u32 length;
  171. u32 chain_prev, chain_next;
  172. struct dma_desc *td;
  173. spin_lock_irqsave(&lp->lock, flags);
  174. td = &lp->td_ring[lp->tx_chain_tail];
  175. /* stop queue when full, drop pkts if queue already full */
  176. if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
  177. lp->tx_full = 1;
  178. if (lp->tx_count == (KORINA_NUM_TDS - 2))
  179. netif_stop_queue(dev);
  180. else {
  181. dev->stats.tx_dropped++;
  182. dev_kfree_skb_any(skb);
  183. spin_unlock_irqrestore(&lp->lock, flags);
  184. return NETDEV_TX_BUSY;
  185. }
  186. }
  187. lp->tx_count++;
  188. lp->tx_skb[lp->tx_chain_tail] = skb;
  189. length = skb->len;
  190. dma_cache_wback((u32)skb->data, skb->len);
  191. /* Setup the transmit descriptor. */
  192. dma_cache_inv((u32) td, sizeof(*td));
  193. td->ca = CPHYSADDR(skb->data);
  194. chain_prev = (lp->tx_chain_tail - 1) & KORINA_TDS_MASK;
  195. chain_next = (lp->tx_chain_tail + 1) & KORINA_TDS_MASK;
  196. if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
  197. if (lp->tx_chain_status == desc_empty) {
  198. /* Update tail */
  199. td->control = DMA_COUNT(length) |
  200. DMA_DESC_COF | DMA_DESC_IOF;
  201. /* Move tail */
  202. lp->tx_chain_tail = chain_next;
  203. /* Write to NDPTR */
  204. writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
  205. &lp->tx_dma_regs->dmandptr);
  206. /* Move head to tail */
  207. lp->tx_chain_head = lp->tx_chain_tail;
  208. } else {
  209. /* Update tail */
  210. td->control = DMA_COUNT(length) |
  211. DMA_DESC_COF | DMA_DESC_IOF;
  212. /* Link to prev */
  213. lp->td_ring[chain_prev].control &=
  214. ~DMA_DESC_COF;
  215. /* Link to prev */
  216. lp->td_ring[chain_prev].link = CPHYSADDR(td);
  217. /* Move tail */
  218. lp->tx_chain_tail = chain_next;
  219. /* Write to NDPTR */
  220. writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
  221. &(lp->tx_dma_regs->dmandptr));
  222. /* Move head to tail */
  223. lp->tx_chain_head = lp->tx_chain_tail;
  224. lp->tx_chain_status = desc_empty;
  225. }
  226. } else {
  227. if (lp->tx_chain_status == desc_empty) {
  228. /* Update tail */
  229. td->control = DMA_COUNT(length) |
  230. DMA_DESC_COF | DMA_DESC_IOF;
  231. /* Move tail */
  232. lp->tx_chain_tail = chain_next;
  233. lp->tx_chain_status = desc_filled;
  234. netif_stop_queue(dev);
  235. } else {
  236. /* Update tail */
  237. td->control = DMA_COUNT(length) |
  238. DMA_DESC_COF | DMA_DESC_IOF;
  239. lp->td_ring[chain_prev].control &=
  240. ~DMA_DESC_COF;
  241. lp->td_ring[chain_prev].link = CPHYSADDR(td);
  242. lp->tx_chain_tail = chain_next;
  243. }
  244. }
  245. dma_cache_wback((u32) td, sizeof(*td));
  246. dev->trans_start = jiffies;
  247. spin_unlock_irqrestore(&lp->lock, flags);
  248. return NETDEV_TX_OK;
  249. }
  250. static int mdio_read(struct net_device *dev, int mii_id, int reg)
  251. {
  252. struct korina_private *lp = netdev_priv(dev);
  253. int ret;
  254. mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
  255. writel(0, &lp->eth_regs->miimcfg);
  256. writel(0, &lp->eth_regs->miimcmd);
  257. writel(mii_id | reg, &lp->eth_regs->miimaddr);
  258. writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
  259. ret = (int)(readl(&lp->eth_regs->miimrdd));
  260. return ret;
  261. }
  262. static void mdio_write(struct net_device *dev, int mii_id, int reg, int val)
  263. {
  264. struct korina_private *lp = netdev_priv(dev);
  265. mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
  266. writel(0, &lp->eth_regs->miimcfg);
  267. writel(1, &lp->eth_regs->miimcmd);
  268. writel(mii_id | reg, &lp->eth_regs->miimaddr);
  269. writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
  270. writel(val, &lp->eth_regs->miimwtd);
  271. }
  272. /* Ethernet Rx DMA interrupt */
  273. static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
  274. {
  275. struct net_device *dev = dev_id;
  276. struct korina_private *lp = netdev_priv(dev);
  277. u32 dmas, dmasm;
  278. irqreturn_t retval;
  279. dmas = readl(&lp->rx_dma_regs->dmas);
  280. if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
  281. dmasm = readl(&lp->rx_dma_regs->dmasm);
  282. writel(dmasm | (DMA_STAT_DONE |
  283. DMA_STAT_HALT | DMA_STAT_ERR),
  284. &lp->rx_dma_regs->dmasm);
  285. netif_rx_schedule(&lp->napi);
  286. if (dmas & DMA_STAT_ERR)
  287. printk(KERN_ERR DRV_NAME "%s: DMA error\n", dev->name);
  288. retval = IRQ_HANDLED;
  289. } else
  290. retval = IRQ_NONE;
  291. return retval;
  292. }
  293. static int korina_rx(struct net_device *dev, int limit)
  294. {
  295. struct korina_private *lp = netdev_priv(dev);
  296. struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
  297. struct sk_buff *skb, *skb_new;
  298. u8 *pkt_buf;
  299. u32 devcs, pkt_len, dmas;
  300. int count;
  301. dma_cache_inv((u32)rd, sizeof(*rd));
  302. for (count = 0; count < limit; count++) {
  303. skb = lp->rx_skb[lp->rx_next_done];
  304. skb_new = NULL;
  305. devcs = rd->devcs;
  306. if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
  307. break;
  308. /* Update statistics counters */
  309. if (devcs & ETH_RX_CRC)
  310. dev->stats.rx_crc_errors++;
  311. if (devcs & ETH_RX_LOR)
  312. dev->stats.rx_length_errors++;
  313. if (devcs & ETH_RX_LE)
  314. dev->stats.rx_length_errors++;
  315. if (devcs & ETH_RX_OVR)
  316. dev->stats.rx_over_errors++;
  317. if (devcs & ETH_RX_CV)
  318. dev->stats.rx_frame_errors++;
  319. if (devcs & ETH_RX_CES)
  320. dev->stats.rx_length_errors++;
  321. if (devcs & ETH_RX_MP)
  322. dev->stats.multicast++;
  323. if ((devcs & ETH_RX_LD) != ETH_RX_LD) {
  324. /* check that this is a whole packet
  325. * WARNING: DMA_FD bit incorrectly set
  326. * in Rc32434 (errata ref #077) */
  327. dev->stats.rx_errors++;
  328. dev->stats.rx_dropped++;
  329. } else if ((devcs & ETH_RX_ROK)) {
  330. pkt_len = RCVPKT_LENGTH(devcs);
  331. /* must be the (first and) last
  332. * descriptor then */
  333. pkt_buf = (u8 *)lp->rx_skb[lp->rx_next_done]->data;
  334. /* invalidate the cache */
  335. dma_cache_inv((unsigned long)pkt_buf, pkt_len - 4);
  336. /* Malloc up new buffer. */
  337. skb_new = netdev_alloc_skb(dev, KORINA_RBSIZE + 2);
  338. if (!skb_new)
  339. break;
  340. /* Do not count the CRC */
  341. skb_put(skb, pkt_len - 4);
  342. skb->protocol = eth_type_trans(skb, dev);
  343. /* Pass the packet to upper layers */
  344. netif_receive_skb(skb);
  345. dev->stats.rx_packets++;
  346. dev->stats.rx_bytes += pkt_len;
  347. /* Update the mcast stats */
  348. if (devcs & ETH_RX_MP)
  349. dev->stats.multicast++;
  350. lp->rx_skb[lp->rx_next_done] = skb_new;
  351. }
  352. rd->devcs = 0;
  353. /* Restore descriptor's curr_addr */
  354. if (skb_new)
  355. rd->ca = CPHYSADDR(skb_new->data);
  356. else
  357. rd->ca = CPHYSADDR(skb->data);
  358. rd->control = DMA_COUNT(KORINA_RBSIZE) |
  359. DMA_DESC_COD | DMA_DESC_IOD;
  360. lp->rd_ring[(lp->rx_next_done - 1) &
  361. KORINA_RDS_MASK].control &=
  362. ~DMA_DESC_COD;
  363. lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
  364. dma_cache_wback((u32)rd, sizeof(*rd));
  365. rd = &lp->rd_ring[lp->rx_next_done];
  366. writel(~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
  367. }
  368. dmas = readl(&lp->rx_dma_regs->dmas);
  369. if (dmas & DMA_STAT_HALT) {
  370. writel(~(DMA_STAT_HALT | DMA_STAT_ERR),
  371. &lp->rx_dma_regs->dmas);
  372. lp->dma_halt_cnt++;
  373. rd->devcs = 0;
  374. skb = lp->rx_skb[lp->rx_next_done];
  375. rd->ca = CPHYSADDR(skb->data);
  376. dma_cache_wback((u32)rd, sizeof(*rd));
  377. korina_chain_rx(lp, rd);
  378. }
  379. return count;
  380. }
  381. static int korina_poll(struct napi_struct *napi, int budget)
  382. {
  383. struct korina_private *lp =
  384. container_of(napi, struct korina_private, napi);
  385. struct net_device *dev = lp->dev;
  386. int work_done;
  387. work_done = korina_rx(dev, budget);
  388. if (work_done < budget) {
  389. netif_rx_complete(napi);
  390. writel(readl(&lp->rx_dma_regs->dmasm) &
  391. ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
  392. &lp->rx_dma_regs->dmasm);
  393. }
  394. return work_done;
  395. }
  396. /*
  397. * Set or clear the multicast filter for this adaptor.
  398. */
  399. static void korina_multicast_list(struct net_device *dev)
  400. {
  401. struct korina_private *lp = netdev_priv(dev);
  402. unsigned long flags;
  403. struct dev_mc_list *dmi = dev->mc_list;
  404. u32 recognise = ETH_ARC_AB; /* always accept broadcasts */
  405. int i;
  406. /* Set promiscuous mode */
  407. if (dev->flags & IFF_PROMISC)
  408. recognise |= ETH_ARC_PRO;
  409. else if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 4))
  410. /* All multicast and broadcast */
  411. recognise |= ETH_ARC_AM;
  412. /* Build the hash table */
  413. if (dev->mc_count > 4) {
  414. u16 hash_table[4];
  415. u32 crc;
  416. for (i = 0; i < 4; i++)
  417. hash_table[i] = 0;
  418. for (i = 0; i < dev->mc_count; i++) {
  419. char *addrs = dmi->dmi_addr;
  420. dmi = dmi->next;
  421. if (!(*addrs & 1))
  422. continue;
  423. crc = ether_crc_le(6, addrs);
  424. crc >>= 26;
  425. hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
  426. }
  427. /* Accept filtered multicast */
  428. recognise |= ETH_ARC_AFM;
  429. /* Fill the MAC hash tables with their values */
  430. writel((u32)(hash_table[1] << 16 | hash_table[0]),
  431. &lp->eth_regs->ethhash0);
  432. writel((u32)(hash_table[3] << 16 | hash_table[2]),
  433. &lp->eth_regs->ethhash1);
  434. }
  435. spin_lock_irqsave(&lp->lock, flags);
  436. writel(recognise, &lp->eth_regs->etharc);
  437. spin_unlock_irqrestore(&lp->lock, flags);
  438. }
  439. static void korina_tx(struct net_device *dev)
  440. {
  441. struct korina_private *lp = netdev_priv(dev);
  442. struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
  443. u32 devcs;
  444. u32 dmas;
  445. spin_lock(&lp->lock);
  446. /* Process all desc that are done */
  447. while (IS_DMA_FINISHED(td->control)) {
  448. if (lp->tx_full == 1) {
  449. netif_wake_queue(dev);
  450. lp->tx_full = 0;
  451. }
  452. devcs = lp->td_ring[lp->tx_next_done].devcs;
  453. if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
  454. (ETH_TX_FD | ETH_TX_LD)) {
  455. dev->stats.tx_errors++;
  456. dev->stats.tx_dropped++;
  457. /* Should never happen */
  458. printk(KERN_ERR DRV_NAME "%s: split tx ignored\n",
  459. dev->name);
  460. } else if (devcs & ETH_TX_TOK) {
  461. dev->stats.tx_packets++;
  462. dev->stats.tx_bytes +=
  463. lp->tx_skb[lp->tx_next_done]->len;
  464. } else {
  465. dev->stats.tx_errors++;
  466. dev->stats.tx_dropped++;
  467. /* Underflow */
  468. if (devcs & ETH_TX_UND)
  469. dev->stats.tx_fifo_errors++;
  470. /* Oversized frame */
  471. if (devcs & ETH_TX_OF)
  472. dev->stats.tx_aborted_errors++;
  473. /* Excessive deferrals */
  474. if (devcs & ETH_TX_ED)
  475. dev->stats.tx_carrier_errors++;
  476. /* Collisions: medium busy */
  477. if (devcs & ETH_TX_EC)
  478. dev->stats.collisions++;
  479. /* Late collision */
  480. if (devcs & ETH_TX_LC)
  481. dev->stats.tx_window_errors++;
  482. }
  483. /* We must always free the original skb */
  484. if (lp->tx_skb[lp->tx_next_done]) {
  485. dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
  486. lp->tx_skb[lp->tx_next_done] = NULL;
  487. }
  488. lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
  489. lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
  490. lp->td_ring[lp->tx_next_done].link = 0;
  491. lp->td_ring[lp->tx_next_done].ca = 0;
  492. lp->tx_count--;
  493. /* Go on to next transmission */
  494. lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
  495. td = &lp->td_ring[lp->tx_next_done];
  496. }
  497. /* Clear the DMA status register */
  498. dmas = readl(&lp->tx_dma_regs->dmas);
  499. writel(~dmas, &lp->tx_dma_regs->dmas);
  500. writel(readl(&lp->tx_dma_regs->dmasm) &
  501. ~(DMA_STAT_FINI | DMA_STAT_ERR),
  502. &lp->tx_dma_regs->dmasm);
  503. spin_unlock(&lp->lock);
  504. }
  505. static irqreturn_t
  506. korina_tx_dma_interrupt(int irq, void *dev_id)
  507. {
  508. struct net_device *dev = dev_id;
  509. struct korina_private *lp = netdev_priv(dev);
  510. u32 dmas, dmasm;
  511. irqreturn_t retval;
  512. dmas = readl(&lp->tx_dma_regs->dmas);
  513. if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
  514. dmasm = readl(&lp->tx_dma_regs->dmasm);
  515. writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
  516. &lp->tx_dma_regs->dmasm);
  517. korina_tx(dev);
  518. if (lp->tx_chain_status == desc_filled &&
  519. (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
  520. writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
  521. &(lp->tx_dma_regs->dmandptr));
  522. lp->tx_chain_status = desc_empty;
  523. lp->tx_chain_head = lp->tx_chain_tail;
  524. dev->trans_start = jiffies;
  525. }
  526. if (dmas & DMA_STAT_ERR)
  527. printk(KERN_ERR DRV_NAME "%s: DMA error\n", dev->name);
  528. retval = IRQ_HANDLED;
  529. } else
  530. retval = IRQ_NONE;
  531. return retval;
  532. }
  533. static void korina_check_media(struct net_device *dev, unsigned int init_media)
  534. {
  535. struct korina_private *lp = netdev_priv(dev);
  536. mii_check_media(&lp->mii_if, 0, init_media);
  537. if (lp->mii_if.full_duplex)
  538. writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
  539. &lp->eth_regs->ethmac2);
  540. else
  541. writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
  542. &lp->eth_regs->ethmac2);
  543. }
  544. static void korina_set_carrier(struct mii_if_info *mii)
  545. {
  546. if (mii->force_media) {
  547. /* autoneg is off: Link is always assumed to be up */
  548. if (!netif_carrier_ok(mii->dev))
  549. netif_carrier_on(mii->dev);
  550. } else /* Let MMI library update carrier status */
  551. korina_check_media(mii->dev, 0);
  552. }
  553. static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  554. {
  555. struct korina_private *lp = netdev_priv(dev);
  556. struct mii_ioctl_data *data = if_mii(rq);
  557. int rc;
  558. if (!netif_running(dev))
  559. return -EINVAL;
  560. spin_lock_irq(&lp->lock);
  561. rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
  562. spin_unlock_irq(&lp->lock);
  563. korina_set_carrier(&lp->mii_if);
  564. return rc;
  565. }
  566. /* ethtool helpers */
  567. static void netdev_get_drvinfo(struct net_device *dev,
  568. struct ethtool_drvinfo *info)
  569. {
  570. struct korina_private *lp = netdev_priv(dev);
  571. strcpy(info->driver, DRV_NAME);
  572. strcpy(info->version, DRV_VERSION);
  573. strcpy(info->bus_info, lp->dev->name);
  574. }
  575. static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  576. {
  577. struct korina_private *lp = netdev_priv(dev);
  578. int rc;
  579. spin_lock_irq(&lp->lock);
  580. rc = mii_ethtool_gset(&lp->mii_if, cmd);
  581. spin_unlock_irq(&lp->lock);
  582. return rc;
  583. }
  584. static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  585. {
  586. struct korina_private *lp = netdev_priv(dev);
  587. int rc;
  588. spin_lock_irq(&lp->lock);
  589. rc = mii_ethtool_sset(&lp->mii_if, cmd);
  590. spin_unlock_irq(&lp->lock);
  591. korina_set_carrier(&lp->mii_if);
  592. return rc;
  593. }
  594. static u32 netdev_get_link(struct net_device *dev)
  595. {
  596. struct korina_private *lp = netdev_priv(dev);
  597. return mii_link_ok(&lp->mii_if);
  598. }
  599. static struct ethtool_ops netdev_ethtool_ops = {
  600. .get_drvinfo = netdev_get_drvinfo,
  601. .get_settings = netdev_get_settings,
  602. .set_settings = netdev_set_settings,
  603. .get_link = netdev_get_link,
  604. };
  605. static void korina_alloc_ring(struct net_device *dev)
  606. {
  607. struct korina_private *lp = netdev_priv(dev);
  608. int i;
  609. /* Initialize the transmit descriptors */
  610. for (i = 0; i < KORINA_NUM_TDS; i++) {
  611. lp->td_ring[i].control = DMA_DESC_IOF;
  612. lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
  613. lp->td_ring[i].ca = 0;
  614. lp->td_ring[i].link = 0;
  615. }
  616. lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
  617. lp->tx_full = lp->tx_count = 0;
  618. lp->tx_chain_status = desc_empty;
  619. /* Initialize the receive descriptors */
  620. for (i = 0; i < KORINA_NUM_RDS; i++) {
  621. struct sk_buff *skb = lp->rx_skb[i];
  622. skb = dev_alloc_skb(KORINA_RBSIZE + 2);
  623. if (!skb)
  624. break;
  625. skb_reserve(skb, 2);
  626. lp->rx_skb[i] = skb;
  627. lp->rd_ring[i].control = DMA_DESC_IOD |
  628. DMA_COUNT(KORINA_RBSIZE);
  629. lp->rd_ring[i].devcs = 0;
  630. lp->rd_ring[i].ca = CPHYSADDR(skb->data);
  631. lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]);
  632. }
  633. /* loop back */
  634. lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[0]);
  635. lp->rx_next_done = 0;
  636. lp->rd_ring[i].control |= DMA_DESC_COD;
  637. lp->rx_chain_head = 0;
  638. lp->rx_chain_tail = 0;
  639. lp->rx_chain_status = desc_empty;
  640. }
  641. static void korina_free_ring(struct net_device *dev)
  642. {
  643. struct korina_private *lp = netdev_priv(dev);
  644. int i;
  645. for (i = 0; i < KORINA_NUM_RDS; i++) {
  646. lp->rd_ring[i].control = 0;
  647. if (lp->rx_skb[i])
  648. dev_kfree_skb_any(lp->rx_skb[i]);
  649. lp->rx_skb[i] = NULL;
  650. }
  651. for (i = 0; i < KORINA_NUM_TDS; i++) {
  652. lp->td_ring[i].control = 0;
  653. if (lp->tx_skb[i])
  654. dev_kfree_skb_any(lp->tx_skb[i]);
  655. lp->tx_skb[i] = NULL;
  656. }
  657. }
  658. /*
  659. * Initialize the RC32434 ethernet controller.
  660. */
  661. static int korina_init(struct net_device *dev)
  662. {
  663. struct korina_private *lp = netdev_priv(dev);
  664. /* Disable DMA */
  665. korina_abort_tx(dev);
  666. korina_abort_rx(dev);
  667. /* reset ethernet logic */
  668. writel(0, &lp->eth_regs->ethintfc);
  669. while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
  670. dev->trans_start = jiffies;
  671. /* Enable Ethernet Interface */
  672. writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
  673. /* Allocate rings */
  674. korina_alloc_ring(dev);
  675. writel(0, &lp->rx_dma_regs->dmas);
  676. /* Start Rx DMA */
  677. korina_start_rx(lp, &lp->rd_ring[0]);
  678. writel(readl(&lp->tx_dma_regs->dmasm) &
  679. ~(DMA_STAT_FINI | DMA_STAT_ERR),
  680. &lp->tx_dma_regs->dmasm);
  681. writel(readl(&lp->rx_dma_regs->dmasm) &
  682. ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
  683. &lp->rx_dma_regs->dmasm);
  684. /* Accept only packets destined for this Ethernet device address */
  685. writel(ETH_ARC_AB, &lp->eth_regs->etharc);
  686. /* Set all Ether station address registers to their initial values */
  687. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
  688. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
  689. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
  690. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
  691. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
  692. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
  693. writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
  694. writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
  695. /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
  696. writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
  697. &lp->eth_regs->ethmac2);
  698. /* Back to back inter-packet-gap */
  699. writel(0x15, &lp->eth_regs->ethipgt);
  700. /* Non - Back to back inter-packet-gap */
  701. writel(0x12, &lp->eth_regs->ethipgr);
  702. /* Management Clock Prescaler Divisor
  703. * Clock independent setting */
  704. writel(((idt_cpu_freq) / MII_CLOCK + 1) & ~1,
  705. &lp->eth_regs->ethmcp);
  706. /* don't transmit until fifo contains 48b */
  707. writel(48, &lp->eth_regs->ethfifott);
  708. writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
  709. napi_enable(&lp->napi);
  710. netif_start_queue(dev);
  711. return 0;
  712. }
  713. /*
  714. * Restart the RC32434 ethernet controller.
  715. * FIXME: check the return status where we call it
  716. */
  717. static int korina_restart(struct net_device *dev)
  718. {
  719. struct korina_private *lp = netdev_priv(dev);
  720. int ret;
  721. /*
  722. * Disable interrupts
  723. */
  724. disable_irq(lp->rx_irq);
  725. disable_irq(lp->tx_irq);
  726. disable_irq(lp->ovr_irq);
  727. disable_irq(lp->und_irq);
  728. writel(readl(&lp->tx_dma_regs->dmasm) |
  729. DMA_STAT_FINI | DMA_STAT_ERR,
  730. &lp->tx_dma_regs->dmasm);
  731. writel(readl(&lp->rx_dma_regs->dmasm) |
  732. DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
  733. &lp->rx_dma_regs->dmasm);
  734. korina_free_ring(dev);
  735. napi_disable(&lp->napi);
  736. ret = korina_init(dev);
  737. if (ret < 0) {
  738. printk(KERN_ERR DRV_NAME "%s: cannot restart device\n",
  739. dev->name);
  740. return ret;
  741. }
  742. korina_multicast_list(dev);
  743. enable_irq(lp->und_irq);
  744. enable_irq(lp->ovr_irq);
  745. enable_irq(lp->tx_irq);
  746. enable_irq(lp->rx_irq);
  747. return ret;
  748. }
  749. static void korina_clear_and_restart(struct net_device *dev, u32 value)
  750. {
  751. struct korina_private *lp = netdev_priv(dev);
  752. netif_stop_queue(dev);
  753. writel(value, &lp->eth_regs->ethintfc);
  754. korina_restart(dev);
  755. }
  756. /* Ethernet Tx Underflow interrupt */
  757. static irqreturn_t korina_und_interrupt(int irq, void *dev_id)
  758. {
  759. struct net_device *dev = dev_id;
  760. struct korina_private *lp = netdev_priv(dev);
  761. unsigned int und;
  762. spin_lock(&lp->lock);
  763. und = readl(&lp->eth_regs->ethintfc);
  764. if (und & ETH_INT_FC_UND)
  765. korina_clear_and_restart(dev, und & ~ETH_INT_FC_UND);
  766. spin_unlock(&lp->lock);
  767. return IRQ_HANDLED;
  768. }
  769. static void korina_tx_timeout(struct net_device *dev)
  770. {
  771. struct korina_private *lp = netdev_priv(dev);
  772. unsigned long flags;
  773. spin_lock_irqsave(&lp->lock, flags);
  774. korina_restart(dev);
  775. spin_unlock_irqrestore(&lp->lock, flags);
  776. }
  777. /* Ethernet Rx Overflow interrupt */
  778. static irqreturn_t
  779. korina_ovr_interrupt(int irq, void *dev_id)
  780. {
  781. struct net_device *dev = dev_id;
  782. struct korina_private *lp = netdev_priv(dev);
  783. unsigned int ovr;
  784. spin_lock(&lp->lock);
  785. ovr = readl(&lp->eth_regs->ethintfc);
  786. if (ovr & ETH_INT_FC_OVR)
  787. korina_clear_and_restart(dev, ovr & ~ETH_INT_FC_OVR);
  788. spin_unlock(&lp->lock);
  789. return IRQ_HANDLED;
  790. }
  791. #ifdef CONFIG_NET_POLL_CONTROLLER
  792. static void korina_poll_controller(struct net_device *dev)
  793. {
  794. disable_irq(dev->irq);
  795. korina_tx_dma_interrupt(dev->irq, dev);
  796. enable_irq(dev->irq);
  797. }
  798. #endif
  799. static int korina_open(struct net_device *dev)
  800. {
  801. struct korina_private *lp = netdev_priv(dev);
  802. int ret;
  803. /* Initialize */
  804. ret = korina_init(dev);
  805. if (ret < 0) {
  806. printk(KERN_ERR DRV_NAME "%s: cannot open device\n", dev->name);
  807. goto out;
  808. }
  809. /* Install the interrupt handler
  810. * that handles the Done Finished
  811. * Ovr and Und Events */
  812. ret = request_irq(lp->rx_irq, &korina_rx_dma_interrupt,
  813. IRQF_SHARED | IRQF_DISABLED, "Korina ethernet Rx", dev);
  814. if (ret < 0) {
  815. printk(KERN_ERR DRV_NAME "%s: unable to get Rx DMA IRQ %d\n",
  816. dev->name, lp->rx_irq);
  817. goto err_release;
  818. }
  819. ret = request_irq(lp->tx_irq, &korina_tx_dma_interrupt,
  820. IRQF_SHARED | IRQF_DISABLED, "Korina ethernet Tx", dev);
  821. if (ret < 0) {
  822. printk(KERN_ERR DRV_NAME "%s: unable to get Tx DMA IRQ %d\n",
  823. dev->name, lp->tx_irq);
  824. goto err_free_rx_irq;
  825. }
  826. /* Install handler for overrun error. */
  827. ret = request_irq(lp->ovr_irq, &korina_ovr_interrupt,
  828. IRQF_SHARED | IRQF_DISABLED, "Ethernet Overflow", dev);
  829. if (ret < 0) {
  830. printk(KERN_ERR DRV_NAME"%s: unable to get OVR IRQ %d\n",
  831. dev->name, lp->ovr_irq);
  832. goto err_free_tx_irq;
  833. }
  834. /* Install handler for underflow error. */
  835. ret = request_irq(lp->und_irq, &korina_und_interrupt,
  836. IRQF_SHARED | IRQF_DISABLED, "Ethernet Underflow", dev);
  837. if (ret < 0) {
  838. printk(KERN_ERR DRV_NAME "%s: unable to get UND IRQ %d\n",
  839. dev->name, lp->und_irq);
  840. goto err_free_ovr_irq;
  841. }
  842. out:
  843. return ret;
  844. err_free_ovr_irq:
  845. free_irq(lp->ovr_irq, dev);
  846. err_free_tx_irq:
  847. free_irq(lp->tx_irq, dev);
  848. err_free_rx_irq:
  849. free_irq(lp->rx_irq, dev);
  850. err_release:
  851. korina_free_ring(dev);
  852. goto out;
  853. }
  854. static int korina_close(struct net_device *dev)
  855. {
  856. struct korina_private *lp = netdev_priv(dev);
  857. u32 tmp;
  858. /* Disable interrupts */
  859. disable_irq(lp->rx_irq);
  860. disable_irq(lp->tx_irq);
  861. disable_irq(lp->ovr_irq);
  862. disable_irq(lp->und_irq);
  863. korina_abort_tx(dev);
  864. tmp = readl(&lp->tx_dma_regs->dmasm);
  865. tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
  866. writel(tmp, &lp->tx_dma_regs->dmasm);
  867. korina_abort_rx(dev);
  868. tmp = readl(&lp->rx_dma_regs->dmasm);
  869. tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
  870. writel(tmp, &lp->rx_dma_regs->dmasm);
  871. korina_free_ring(dev);
  872. napi_disable(&lp->napi);
  873. free_irq(lp->rx_irq, dev);
  874. free_irq(lp->tx_irq, dev);
  875. free_irq(lp->ovr_irq, dev);
  876. free_irq(lp->und_irq, dev);
  877. return 0;
  878. }
  879. static int korina_probe(struct platform_device *pdev)
  880. {
  881. struct korina_device *bif = platform_get_drvdata(pdev);
  882. struct korina_private *lp;
  883. struct net_device *dev;
  884. struct resource *r;
  885. int rc;
  886. dev = alloc_etherdev(sizeof(struct korina_private));
  887. if (!dev) {
  888. printk(KERN_ERR DRV_NAME ": alloc_etherdev failed\n");
  889. return -ENOMEM;
  890. }
  891. SET_NETDEV_DEV(dev, &pdev->dev);
  892. lp = netdev_priv(dev);
  893. bif->dev = dev;
  894. memcpy(dev->dev_addr, bif->mac, 6);
  895. lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx");
  896. lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx");
  897. lp->ovr_irq = platform_get_irq_byname(pdev, "korina_ovr");
  898. lp->und_irq = platform_get_irq_byname(pdev, "korina_und");
  899. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs");
  900. dev->base_addr = r->start;
  901. lp->eth_regs = ioremap_nocache(r->start, r->end - r->start);
  902. if (!lp->eth_regs) {
  903. printk(KERN_ERR DRV_NAME "cannot remap registers\n");
  904. rc = -ENXIO;
  905. goto probe_err_out;
  906. }
  907. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx");
  908. lp->rx_dma_regs = ioremap_nocache(r->start, r->end - r->start);
  909. if (!lp->rx_dma_regs) {
  910. printk(KERN_ERR DRV_NAME "cannot remap Rx DMA registers\n");
  911. rc = -ENXIO;
  912. goto probe_err_dma_rx;
  913. }
  914. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx");
  915. lp->tx_dma_regs = ioremap_nocache(r->start, r->end - r->start);
  916. if (!lp->tx_dma_regs) {
  917. printk(KERN_ERR DRV_NAME "cannot remap Tx DMA registers\n");
  918. rc = -ENXIO;
  919. goto probe_err_dma_tx;
  920. }
  921. lp->td_ring = kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL);
  922. if (!lp->td_ring) {
  923. printk(KERN_ERR DRV_NAME "cannot allocate descriptors\n");
  924. rc = -ENXIO;
  925. goto probe_err_td_ring;
  926. }
  927. dma_cache_inv((unsigned long)(lp->td_ring),
  928. TD_RING_SIZE + RD_RING_SIZE);
  929. /* now convert TD_RING pointer to KSEG1 */
  930. lp->td_ring = (struct dma_desc *)KSEG1ADDR(lp->td_ring);
  931. lp->rd_ring = &lp->td_ring[KORINA_NUM_TDS];
  932. spin_lock_init(&lp->lock);
  933. /* just use the rx dma irq */
  934. dev->irq = lp->rx_irq;
  935. lp->dev = dev;
  936. dev->open = korina_open;
  937. dev->stop = korina_close;
  938. dev->hard_start_xmit = korina_send_packet;
  939. dev->set_multicast_list = &korina_multicast_list;
  940. dev->ethtool_ops = &netdev_ethtool_ops;
  941. dev->tx_timeout = korina_tx_timeout;
  942. dev->watchdog_timeo = TX_TIMEOUT;
  943. dev->do_ioctl = &korina_ioctl;
  944. #ifdef CONFIG_NET_POLL_CONTROLLER
  945. dev->poll_controller = korina_poll_controller;
  946. #endif
  947. netif_napi_add(dev, &lp->napi, korina_poll, 64);
  948. lp->phy_addr = (((lp->rx_irq == 0x2c? 1:0) << 8) | 0x05);
  949. lp->mii_if.dev = dev;
  950. lp->mii_if.mdio_read = mdio_read;
  951. lp->mii_if.mdio_write = mdio_write;
  952. lp->mii_if.phy_id = lp->phy_addr;
  953. lp->mii_if.phy_id_mask = 0x1f;
  954. lp->mii_if.reg_num_mask = 0x1f;
  955. rc = register_netdev(dev);
  956. if (rc < 0) {
  957. printk(KERN_ERR DRV_NAME
  958. ": cannot register net device %d\n", rc);
  959. goto probe_err_register;
  960. }
  961. out:
  962. return rc;
  963. probe_err_register:
  964. kfree(lp->td_ring);
  965. probe_err_td_ring:
  966. iounmap(lp->tx_dma_regs);
  967. probe_err_dma_tx:
  968. iounmap(lp->rx_dma_regs);
  969. probe_err_dma_rx:
  970. iounmap(lp->eth_regs);
  971. probe_err_out:
  972. free_netdev(dev);
  973. goto out;
  974. }
  975. static int korina_remove(struct platform_device *pdev)
  976. {
  977. struct korina_device *bif = platform_get_drvdata(pdev);
  978. struct korina_private *lp = netdev_priv(bif->dev);
  979. iounmap(lp->eth_regs);
  980. iounmap(lp->rx_dma_regs);
  981. iounmap(lp->tx_dma_regs);
  982. platform_set_drvdata(pdev, NULL);
  983. unregister_netdev(bif->dev);
  984. free_netdev(bif->dev);
  985. return 0;
  986. }
  987. static struct platform_driver korina_driver = {
  988. .driver.name = "korina",
  989. .probe = korina_probe,
  990. .remove = korina_remove,
  991. };
  992. static int __init korina_init_module(void)
  993. {
  994. return platform_driver_register(&korina_driver);
  995. }
  996. static void korina_cleanup_module(void)
  997. {
  998. return platform_driver_unregister(&korina_driver);
  999. }
  1000. module_init(korina_init_module);
  1001. module_exit(korina_cleanup_module);
  1002. MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
  1003. MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
  1004. MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
  1005. MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
  1006. MODULE_LICENSE("GPL");