pci_sabre.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131
  1. /* $Id: pci_sabre.c,v 1.42 2002/01/23 11:27:32 davem Exp $
  2. * pci_sabre.c: Sabre specific PCI controller support.
  3. *
  4. * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@caipfs.rutgers.edu)
  5. * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
  6. * Copyright (C) 1999 Jakub Jelinek (jakub@redhat.com)
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/types.h>
  10. #include <linux/pci.h>
  11. #include <linux/init.h>
  12. #include <linux/slab.h>
  13. #include <linux/interrupt.h>
  14. #include <asm/apb.h>
  15. #include <asm/pbm.h>
  16. #include <asm/iommu.h>
  17. #include <asm/irq.h>
  18. #include <asm/smp.h>
  19. #include <asm/oplib.h>
  20. #include <asm/prom.h>
  21. #include "pci_impl.h"
  22. #include "iommu_common.h"
  23. /* All SABRE registers are 64-bits. The following accessor
  24. * routines are how they are accessed. The REG parameter
  25. * is a physical address.
  26. */
  27. #define sabre_read(__reg) \
  28. ({ u64 __ret; \
  29. __asm__ __volatile__("ldxa [%1] %2, %0" \
  30. : "=r" (__ret) \
  31. : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
  32. : "memory"); \
  33. __ret; \
  34. })
  35. #define sabre_write(__reg, __val) \
  36. __asm__ __volatile__("stxa %0, [%1] %2" \
  37. : /* no outputs */ \
  38. : "r" (__val), "r" (__reg), \
  39. "i" (ASI_PHYS_BYPASS_EC_E) \
  40. : "memory")
  41. /* SABRE PCI controller register offsets and definitions. */
  42. #define SABRE_UE_AFSR 0x0030UL
  43. #define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
  44. #define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
  45. #define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
  46. #define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
  47. #define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */
  48. #define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */
  49. #define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
  50. #define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */
  51. #define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */
  52. #define SABRE_UECE_AFAR 0x0038UL
  53. #define SABRE_CE_AFSR 0x0040UL
  54. #define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
  55. #define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
  56. #define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
  57. #define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
  58. #define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */
  59. #define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
  60. #define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */
  61. #define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */
  62. #define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */
  63. #define SABRE_IOMMU_CONTROL 0x0200UL
  64. #define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */
  65. #define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */
  66. #define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */
  67. #define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */
  68. #define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */
  69. #define SABRE_IOMMU_TSBSZ_1K 0x0000000000000000
  70. #define SABRE_IOMMU_TSBSZ_2K 0x0000000000010000
  71. #define SABRE_IOMMU_TSBSZ_4K 0x0000000000020000
  72. #define SABRE_IOMMU_TSBSZ_8K 0x0000000000030000
  73. #define SABRE_IOMMU_TSBSZ_16K 0x0000000000040000
  74. #define SABRE_IOMMU_TSBSZ_32K 0x0000000000050000
  75. #define SABRE_IOMMU_TSBSZ_64K 0x0000000000060000
  76. #define SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
  77. #define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */
  78. #define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */
  79. #define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */
  80. #define SABRE_IOMMU_TSBBASE 0x0208UL
  81. #define SABRE_IOMMU_FLUSH 0x0210UL
  82. #define SABRE_IMAP_A_SLOT0 0x0c00UL
  83. #define SABRE_IMAP_B_SLOT0 0x0c20UL
  84. #define SABRE_IMAP_SCSI 0x1000UL
  85. #define SABRE_IMAP_ETH 0x1008UL
  86. #define SABRE_IMAP_BPP 0x1010UL
  87. #define SABRE_IMAP_AU_REC 0x1018UL
  88. #define SABRE_IMAP_AU_PLAY 0x1020UL
  89. #define SABRE_IMAP_PFAIL 0x1028UL
  90. #define SABRE_IMAP_KMS 0x1030UL
  91. #define SABRE_IMAP_FLPY 0x1038UL
  92. #define SABRE_IMAP_SHW 0x1040UL
  93. #define SABRE_IMAP_KBD 0x1048UL
  94. #define SABRE_IMAP_MS 0x1050UL
  95. #define SABRE_IMAP_SER 0x1058UL
  96. #define SABRE_IMAP_UE 0x1070UL
  97. #define SABRE_IMAP_CE 0x1078UL
  98. #define SABRE_IMAP_PCIERR 0x1080UL
  99. #define SABRE_IMAP_GFX 0x1098UL
  100. #define SABRE_IMAP_EUPA 0x10a0UL
  101. #define SABRE_ICLR_A_SLOT0 0x1400UL
  102. #define SABRE_ICLR_B_SLOT0 0x1480UL
  103. #define SABRE_ICLR_SCSI 0x1800UL
  104. #define SABRE_ICLR_ETH 0x1808UL
  105. #define SABRE_ICLR_BPP 0x1810UL
  106. #define SABRE_ICLR_AU_REC 0x1818UL
  107. #define SABRE_ICLR_AU_PLAY 0x1820UL
  108. #define SABRE_ICLR_PFAIL 0x1828UL
  109. #define SABRE_ICLR_KMS 0x1830UL
  110. #define SABRE_ICLR_FLPY 0x1838UL
  111. #define SABRE_ICLR_SHW 0x1840UL
  112. #define SABRE_ICLR_KBD 0x1848UL
  113. #define SABRE_ICLR_MS 0x1850UL
  114. #define SABRE_ICLR_SER 0x1858UL
  115. #define SABRE_ICLR_UE 0x1870UL
  116. #define SABRE_ICLR_CE 0x1878UL
  117. #define SABRE_ICLR_PCIERR 0x1880UL
  118. #define SABRE_WRSYNC 0x1c20UL
  119. #define SABRE_PCICTRL 0x2000UL
  120. #define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */
  121. #define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */
  122. #define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
  123. #define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */
  124. #define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */
  125. #define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */
  126. #define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */
  127. #define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */
  128. #define SABRE_PIOAFSR 0x2010UL
  129. #define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */
  130. #define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */
  131. #define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */
  132. #define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */
  133. #define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */
  134. #define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */
  135. #define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */
  136. #define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */
  137. #define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */
  138. #define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */
  139. #define SABRE_PIOAFAR 0x2018UL
  140. #define SABRE_PCIDIAG 0x2020UL
  141. #define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */
  142. #define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */
  143. #define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */
  144. #define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */
  145. #define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */
  146. #define SABRE_PCITASR 0x2028UL
  147. #define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */
  148. #define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */
  149. #define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */
  150. #define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */
  151. #define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */
  152. #define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */
  153. #define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */
  154. #define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */
  155. #define SABRE_PIOBUF_DIAG 0x5000UL
  156. #define SABRE_DMABUF_DIAGLO 0x5100UL
  157. #define SABRE_DMABUF_DIAGHI 0x51c0UL
  158. #define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */
  159. #define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */
  160. #define SABRE_IOMMU_VADIAG 0xa400UL
  161. #define SABRE_IOMMU_TCDIAG 0xa408UL
  162. #define SABRE_IOMMU_TAG 0xa580UL
  163. #define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */
  164. #define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */
  165. #define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */
  166. #define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */
  167. #define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */
  168. #define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */
  169. #define SABRE_IOMMU_DATA 0xa600UL
  170. #define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */
  171. #define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */
  172. #define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */
  173. #define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */
  174. #define SABRE_PCI_IRQSTATE 0xa800UL
  175. #define SABRE_OBIO_IRQSTATE 0xa808UL
  176. #define SABRE_FFBCFG 0xf000UL
  177. #define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */
  178. #define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */
  179. #define SABRE_MCCTRL0 0xf010UL
  180. #define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */
  181. #define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */
  182. #define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */
  183. #define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */
  184. #define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */
  185. #define SABRE_MCCTRL1 0xf018UL
  186. #define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */
  187. #define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */
  188. #define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */
  189. #define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */
  190. #define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */
  191. #define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */
  192. #define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */
  193. #define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */
  194. #define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */
  195. #define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */
  196. #define SABRE_RESETCTRL 0xf020UL
  197. #define SABRE_CONFIGSPACE 0x001000000UL
  198. #define SABRE_IOSPACE 0x002000000UL
  199. #define SABRE_IOSPACE_SIZE 0x000ffffffUL
  200. #define SABRE_MEMSPACE 0x100000000UL
  201. #define SABRE_MEMSPACE_SIZE 0x07fffffffUL
  202. /* UltraSparc-IIi Programmer's Manual, page 325, PCI
  203. * configuration space address format:
  204. *
  205. * 32 24 23 16 15 11 10 8 7 2 1 0
  206. * ---------------------------------------------------------
  207. * |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 |
  208. * ---------------------------------------------------------
  209. */
  210. #define SABRE_CONFIG_BASE(PBM) \
  211. ((PBM)->config_space | (1UL << 24))
  212. #define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \
  213. (((unsigned long)(BUS) << 16) | \
  214. ((unsigned long)(DEVFN) << 8) | \
  215. ((unsigned long)(REG)))
  216. static int hummingbird_p;
  217. static struct pci_bus *sabre_root_bus;
  218. static void *sabre_pci_config_mkaddr(struct pci_pbm_info *pbm,
  219. unsigned char bus,
  220. unsigned int devfn,
  221. int where)
  222. {
  223. if (!pbm)
  224. return NULL;
  225. return (void *)
  226. (SABRE_CONFIG_BASE(pbm) |
  227. SABRE_CONFIG_ENCODE(bus, devfn, where));
  228. }
  229. static int sabre_out_of_range(unsigned char devfn)
  230. {
  231. if (hummingbird_p)
  232. return 0;
  233. return (((PCI_SLOT(devfn) == 0) && (PCI_FUNC(devfn) > 0)) ||
  234. ((PCI_SLOT(devfn) == 1) && (PCI_FUNC(devfn) > 1)) ||
  235. (PCI_SLOT(devfn) > 1));
  236. }
  237. static int __sabre_out_of_range(struct pci_pbm_info *pbm,
  238. unsigned char bus,
  239. unsigned char devfn)
  240. {
  241. if (hummingbird_p)
  242. return 0;
  243. return ((pbm->parent == 0) ||
  244. ((pbm == &pbm->parent->pbm_A) &&
  245. (bus == pbm->pci_first_busno) &&
  246. PCI_SLOT(devfn) > 8));
  247. }
  248. static int __sabre_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
  249. int where, int size, u32 *value)
  250. {
  251. struct pci_pbm_info *pbm = bus_dev->sysdata;
  252. unsigned char bus = bus_dev->number;
  253. u32 *addr;
  254. u16 tmp16;
  255. u8 tmp8;
  256. switch (size) {
  257. case 1:
  258. *value = 0xff;
  259. break;
  260. case 2:
  261. *value = 0xffff;
  262. break;
  263. case 4:
  264. *value = 0xffffffff;
  265. break;
  266. }
  267. addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
  268. if (!addr)
  269. return PCIBIOS_SUCCESSFUL;
  270. if (__sabre_out_of_range(pbm, bus, devfn))
  271. return PCIBIOS_SUCCESSFUL;
  272. switch (size) {
  273. case 1:
  274. pci_config_read8((u8 *) addr, &tmp8);
  275. *value = tmp8;
  276. break;
  277. case 2:
  278. if (where & 0x01) {
  279. printk("pci_read_config_word: misaligned reg [%x]\n",
  280. where);
  281. return PCIBIOS_SUCCESSFUL;
  282. }
  283. pci_config_read16((u16 *) addr, &tmp16);
  284. *value = tmp16;
  285. break;
  286. case 4:
  287. if (where & 0x03) {
  288. printk("pci_read_config_dword: misaligned reg [%x]\n",
  289. where);
  290. return PCIBIOS_SUCCESSFUL;
  291. }
  292. pci_config_read32(addr, value);
  293. break;
  294. }
  295. return PCIBIOS_SUCCESSFUL;
  296. }
  297. static int sabre_read_pci_cfg(struct pci_bus *bus, unsigned int devfn,
  298. int where, int size, u32 *value)
  299. {
  300. struct pci_pbm_info *pbm = bus->sysdata;
  301. if (bus == pbm->pci_bus && devfn == 0x00)
  302. return pci_host_bridge_read_pci_cfg(bus, devfn, where,
  303. size, value);
  304. if (!bus->number && sabre_out_of_range(devfn)) {
  305. switch (size) {
  306. case 1:
  307. *value = 0xff;
  308. break;
  309. case 2:
  310. *value = 0xffff;
  311. break;
  312. case 4:
  313. *value = 0xffffffff;
  314. break;
  315. }
  316. return PCIBIOS_SUCCESSFUL;
  317. }
  318. if (bus->number || PCI_SLOT(devfn))
  319. return __sabre_read_pci_cfg(bus, devfn, where, size, value);
  320. /* When accessing PCI config space of the PCI controller itself (bus
  321. * 0, device slot 0, function 0) there are restrictions. Each
  322. * register must be accessed as it's natural size. Thus, for example
  323. * the Vendor ID must be accessed as a 16-bit quantity.
  324. */
  325. switch (size) {
  326. case 1:
  327. if (where < 8) {
  328. u32 tmp32;
  329. u16 tmp16;
  330. __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
  331. tmp16 = (u16) tmp32;
  332. if (where & 1)
  333. *value = tmp16 >> 8;
  334. else
  335. *value = tmp16 & 0xff;
  336. } else
  337. return __sabre_read_pci_cfg(bus, devfn, where, 1, value);
  338. break;
  339. case 2:
  340. if (where < 8)
  341. return __sabre_read_pci_cfg(bus, devfn, where, 2, value);
  342. else {
  343. u32 tmp32;
  344. u8 tmp8;
  345. __sabre_read_pci_cfg(bus, devfn, where, 1, &tmp32);
  346. tmp8 = (u8) tmp32;
  347. *value = tmp8;
  348. __sabre_read_pci_cfg(bus, devfn, where + 1, 1, &tmp32);
  349. tmp8 = (u8) tmp32;
  350. *value |= tmp8 << 8;
  351. }
  352. break;
  353. case 4: {
  354. u32 tmp32;
  355. u16 tmp16;
  356. sabre_read_pci_cfg(bus, devfn, where, 2, &tmp32);
  357. tmp16 = (u16) tmp32;
  358. *value = tmp16;
  359. sabre_read_pci_cfg(bus, devfn, where + 2, 2, &tmp32);
  360. tmp16 = (u16) tmp32;
  361. *value |= tmp16 << 16;
  362. break;
  363. }
  364. }
  365. return PCIBIOS_SUCCESSFUL;
  366. }
  367. static int __sabre_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
  368. int where, int size, u32 value)
  369. {
  370. struct pci_pbm_info *pbm = bus_dev->sysdata;
  371. unsigned char bus = bus_dev->number;
  372. u32 *addr;
  373. addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
  374. if (!addr)
  375. return PCIBIOS_SUCCESSFUL;
  376. if (__sabre_out_of_range(pbm, bus, devfn))
  377. return PCIBIOS_SUCCESSFUL;
  378. switch (size) {
  379. case 1:
  380. pci_config_write8((u8 *) addr, value);
  381. break;
  382. case 2:
  383. if (where & 0x01) {
  384. printk("pci_write_config_word: misaligned reg [%x]\n",
  385. where);
  386. return PCIBIOS_SUCCESSFUL;
  387. }
  388. pci_config_write16((u16 *) addr, value);
  389. break;
  390. case 4:
  391. if (where & 0x03) {
  392. printk("pci_write_config_dword: misaligned reg [%x]\n",
  393. where);
  394. return PCIBIOS_SUCCESSFUL;
  395. }
  396. pci_config_write32(addr, value);
  397. break;
  398. }
  399. return PCIBIOS_SUCCESSFUL;
  400. }
  401. static int sabre_write_pci_cfg(struct pci_bus *bus, unsigned int devfn,
  402. int where, int size, u32 value)
  403. {
  404. struct pci_pbm_info *pbm = bus->sysdata;
  405. if (bus == pbm->pci_bus && devfn == 0x00)
  406. return pci_host_bridge_write_pci_cfg(bus, devfn, where,
  407. size, value);
  408. if (bus->number)
  409. return __sabre_write_pci_cfg(bus, devfn, where, size, value);
  410. if (sabre_out_of_range(devfn))
  411. return PCIBIOS_SUCCESSFUL;
  412. switch (size) {
  413. case 1:
  414. if (where < 8) {
  415. u32 tmp32;
  416. u16 tmp16;
  417. __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
  418. tmp16 = (u16) tmp32;
  419. if (where & 1) {
  420. value &= 0x00ff;
  421. value |= tmp16 << 8;
  422. } else {
  423. value &= 0xff00;
  424. value |= tmp16;
  425. }
  426. tmp32 = (u32) tmp16;
  427. return __sabre_write_pci_cfg(bus, devfn, where & ~1, 2, tmp32);
  428. } else
  429. return __sabre_write_pci_cfg(bus, devfn, where, 1, value);
  430. break;
  431. case 2:
  432. if (where < 8)
  433. return __sabre_write_pci_cfg(bus, devfn, where, 2, value);
  434. else {
  435. __sabre_write_pci_cfg(bus, devfn, where, 1, value & 0xff);
  436. __sabre_write_pci_cfg(bus, devfn, where + 1, 1, value >> 8);
  437. }
  438. break;
  439. case 4:
  440. sabre_write_pci_cfg(bus, devfn, where, 2, value & 0xffff);
  441. sabre_write_pci_cfg(bus, devfn, where + 2, 2, value >> 16);
  442. break;
  443. }
  444. return PCIBIOS_SUCCESSFUL;
  445. }
  446. static struct pci_ops sabre_ops = {
  447. .read = sabre_read_pci_cfg,
  448. .write = sabre_write_pci_cfg,
  449. };
  450. /* SABRE error handling support. */
  451. static void sabre_check_iommu_error(struct pci_controller_info *p,
  452. unsigned long afsr,
  453. unsigned long afar)
  454. {
  455. struct pci_iommu *iommu = p->pbm_A.iommu;
  456. unsigned long iommu_tag[16];
  457. unsigned long iommu_data[16];
  458. unsigned long flags;
  459. u64 control;
  460. int i;
  461. spin_lock_irqsave(&iommu->lock, flags);
  462. control = sabre_read(iommu->iommu_control);
  463. if (control & SABRE_IOMMUCTRL_ERR) {
  464. char *type_string;
  465. /* Clear the error encountered bit.
  466. * NOTE: On Sabre this is write 1 to clear,
  467. * which is different from Psycho.
  468. */
  469. sabre_write(iommu->iommu_control, control);
  470. switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) {
  471. case 1:
  472. type_string = "Invalid Error";
  473. break;
  474. case 3:
  475. type_string = "ECC Error";
  476. break;
  477. default:
  478. type_string = "Unknown";
  479. break;
  480. };
  481. printk("SABRE%d: IOMMU Error, type[%s]\n",
  482. p->index, type_string);
  483. /* Enter diagnostic mode and probe for error'd
  484. * entries in the IOTLB.
  485. */
  486. control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR);
  487. sabre_write(iommu->iommu_control,
  488. (control | SABRE_IOMMUCTRL_DENAB));
  489. for (i = 0; i < 16; i++) {
  490. unsigned long base = p->pbm_A.controller_regs;
  491. iommu_tag[i] =
  492. sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL));
  493. iommu_data[i] =
  494. sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL));
  495. sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0);
  496. sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0);
  497. }
  498. sabre_write(iommu->iommu_control, control);
  499. for (i = 0; i < 16; i++) {
  500. unsigned long tag, data;
  501. tag = iommu_tag[i];
  502. if (!(tag & SABRE_IOMMUTAG_ERR))
  503. continue;
  504. data = iommu_data[i];
  505. switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) {
  506. case 1:
  507. type_string = "Invalid Error";
  508. break;
  509. case 3:
  510. type_string = "ECC Error";
  511. break;
  512. default:
  513. type_string = "Unknown";
  514. break;
  515. };
  516. printk("SABRE%d: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n",
  517. p->index, i, tag, type_string,
  518. ((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0),
  519. ((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8),
  520. ((tag & SABRE_IOMMUTAG_VPN) << IOMMU_PAGE_SHIFT));
  521. printk("SABRE%d: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n",
  522. p->index, i, data,
  523. ((data & SABRE_IOMMUDATA_VALID) ? 1 : 0),
  524. ((data & SABRE_IOMMUDATA_USED) ? 1 : 0),
  525. ((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0),
  526. ((data & SABRE_IOMMUDATA_PPN) << IOMMU_PAGE_SHIFT));
  527. }
  528. }
  529. spin_unlock_irqrestore(&iommu->lock, flags);
  530. }
  531. static irqreturn_t sabre_ue_intr(int irq, void *dev_id)
  532. {
  533. struct pci_controller_info *p = dev_id;
  534. unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_UE_AFSR;
  535. unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
  536. unsigned long afsr, afar, error_bits;
  537. int reported;
  538. /* Latch uncorrectable error status. */
  539. afar = sabre_read(afar_reg);
  540. afsr = sabre_read(afsr_reg);
  541. /* Clear the primary/secondary error status bits. */
  542. error_bits = afsr &
  543. (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
  544. SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
  545. SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE);
  546. if (!error_bits)
  547. return IRQ_NONE;
  548. sabre_write(afsr_reg, error_bits);
  549. /* Log the error. */
  550. printk("SABRE%d: Uncorrectable Error, primary error type[%s%s]\n",
  551. p->index,
  552. ((error_bits & SABRE_UEAFSR_PDRD) ?
  553. "DMA Read" :
  554. ((error_bits & SABRE_UEAFSR_PDWR) ?
  555. "DMA Write" : "???")),
  556. ((error_bits & SABRE_UEAFSR_PDTE) ?
  557. ":Translation Error" : ""));
  558. printk("SABRE%d: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
  559. p->index,
  560. (afsr & SABRE_UEAFSR_BMSK) >> 32UL,
  561. (afsr & SABRE_UEAFSR_OFF) >> 29UL,
  562. ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0));
  563. printk("SABRE%d: UE AFAR [%016lx]\n", p->index, afar);
  564. printk("SABRE%d: UE Secondary errors [", p->index);
  565. reported = 0;
  566. if (afsr & SABRE_UEAFSR_SDRD) {
  567. reported++;
  568. printk("(DMA Read)");
  569. }
  570. if (afsr & SABRE_UEAFSR_SDWR) {
  571. reported++;
  572. printk("(DMA Write)");
  573. }
  574. if (afsr & SABRE_UEAFSR_SDTE) {
  575. reported++;
  576. printk("(Translation Error)");
  577. }
  578. if (!reported)
  579. printk("(none)");
  580. printk("]\n");
  581. /* Interrogate IOMMU for error status. */
  582. sabre_check_iommu_error(p, afsr, afar);
  583. return IRQ_HANDLED;
  584. }
  585. static irqreturn_t sabre_ce_intr(int irq, void *dev_id)
  586. {
  587. struct pci_controller_info *p = dev_id;
  588. unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_CE_AFSR;
  589. unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
  590. unsigned long afsr, afar, error_bits;
  591. int reported;
  592. /* Latch error status. */
  593. afar = sabre_read(afar_reg);
  594. afsr = sabre_read(afsr_reg);
  595. /* Clear primary/secondary error status bits. */
  596. error_bits = afsr &
  597. (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
  598. SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR);
  599. if (!error_bits)
  600. return IRQ_NONE;
  601. sabre_write(afsr_reg, error_bits);
  602. /* Log the error. */
  603. printk("SABRE%d: Correctable Error, primary error type[%s]\n",
  604. p->index,
  605. ((error_bits & SABRE_CEAFSR_PDRD) ?
  606. "DMA Read" :
  607. ((error_bits & SABRE_CEAFSR_PDWR) ?
  608. "DMA Write" : "???")));
  609. /* XXX Use syndrome and afar to print out module string just like
  610. * XXX UDB CE trap handler does... -DaveM
  611. */
  612. printk("SABRE%d: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
  613. "was_block(%d)\n",
  614. p->index,
  615. (afsr & SABRE_CEAFSR_ESYND) >> 48UL,
  616. (afsr & SABRE_CEAFSR_BMSK) >> 32UL,
  617. (afsr & SABRE_CEAFSR_OFF) >> 29UL,
  618. ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0));
  619. printk("SABRE%d: CE AFAR [%016lx]\n", p->index, afar);
  620. printk("SABRE%d: CE Secondary errors [", p->index);
  621. reported = 0;
  622. if (afsr & SABRE_CEAFSR_SDRD) {
  623. reported++;
  624. printk("(DMA Read)");
  625. }
  626. if (afsr & SABRE_CEAFSR_SDWR) {
  627. reported++;
  628. printk("(DMA Write)");
  629. }
  630. if (!reported)
  631. printk("(none)");
  632. printk("]\n");
  633. return IRQ_HANDLED;
  634. }
  635. static irqreturn_t sabre_pcierr_intr_other(struct pci_controller_info *p)
  636. {
  637. unsigned long csr_reg, csr, csr_error_bits;
  638. irqreturn_t ret = IRQ_NONE;
  639. u16 stat;
  640. csr_reg = p->pbm_A.controller_regs + SABRE_PCICTRL;
  641. csr = sabre_read(csr_reg);
  642. csr_error_bits =
  643. csr & SABRE_PCICTRL_SERR;
  644. if (csr_error_bits) {
  645. /* Clear the errors. */
  646. sabre_write(csr_reg, csr);
  647. /* Log 'em. */
  648. if (csr_error_bits & SABRE_PCICTRL_SERR)
  649. printk("SABRE%d: PCI SERR signal asserted.\n",
  650. p->index);
  651. ret = IRQ_HANDLED;
  652. }
  653. pci_bus_read_config_word(sabre_root_bus, 0,
  654. PCI_STATUS, &stat);
  655. if (stat & (PCI_STATUS_PARITY |
  656. PCI_STATUS_SIG_TARGET_ABORT |
  657. PCI_STATUS_REC_TARGET_ABORT |
  658. PCI_STATUS_REC_MASTER_ABORT |
  659. PCI_STATUS_SIG_SYSTEM_ERROR)) {
  660. printk("SABRE%d: PCI bus error, PCI_STATUS[%04x]\n",
  661. p->index, stat);
  662. pci_bus_write_config_word(sabre_root_bus, 0,
  663. PCI_STATUS, 0xffff);
  664. ret = IRQ_HANDLED;
  665. }
  666. return ret;
  667. }
  668. static irqreturn_t sabre_pcierr_intr(int irq, void *dev_id)
  669. {
  670. struct pci_controller_info *p = dev_id;
  671. unsigned long afsr_reg, afar_reg;
  672. unsigned long afsr, afar, error_bits;
  673. int reported;
  674. afsr_reg = p->pbm_A.controller_regs + SABRE_PIOAFSR;
  675. afar_reg = p->pbm_A.controller_regs + SABRE_PIOAFAR;
  676. /* Latch error status. */
  677. afar = sabre_read(afar_reg);
  678. afsr = sabre_read(afsr_reg);
  679. /* Clear primary/secondary error status bits. */
  680. error_bits = afsr &
  681. (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA |
  682. SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR |
  683. SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA |
  684. SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR);
  685. if (!error_bits)
  686. return sabre_pcierr_intr_other(p);
  687. sabre_write(afsr_reg, error_bits);
  688. /* Log the error. */
  689. printk("SABRE%d: PCI Error, primary error type[%s]\n",
  690. p->index,
  691. (((error_bits & SABRE_PIOAFSR_PMA) ?
  692. "Master Abort" :
  693. ((error_bits & SABRE_PIOAFSR_PTA) ?
  694. "Target Abort" :
  695. ((error_bits & SABRE_PIOAFSR_PRTRY) ?
  696. "Excessive Retries" :
  697. ((error_bits & SABRE_PIOAFSR_PPERR) ?
  698. "Parity Error" : "???"))))));
  699. printk("SABRE%d: bytemask[%04lx] was_block(%d)\n",
  700. p->index,
  701. (afsr & SABRE_PIOAFSR_BMSK) >> 32UL,
  702. (afsr & SABRE_PIOAFSR_BLK) ? 1 : 0);
  703. printk("SABRE%d: PCI AFAR [%016lx]\n", p->index, afar);
  704. printk("SABRE%d: PCI Secondary errors [", p->index);
  705. reported = 0;
  706. if (afsr & SABRE_PIOAFSR_SMA) {
  707. reported++;
  708. printk("(Master Abort)");
  709. }
  710. if (afsr & SABRE_PIOAFSR_STA) {
  711. reported++;
  712. printk("(Target Abort)");
  713. }
  714. if (afsr & SABRE_PIOAFSR_SRTRY) {
  715. reported++;
  716. printk("(Excessive Retries)");
  717. }
  718. if (afsr & SABRE_PIOAFSR_SPERR) {
  719. reported++;
  720. printk("(Parity Error)");
  721. }
  722. if (!reported)
  723. printk("(none)");
  724. printk("]\n");
  725. /* For the error types shown, scan both PCI buses for devices
  726. * which have logged that error type.
  727. */
  728. /* If we see a Target Abort, this could be the result of an
  729. * IOMMU translation error of some sort. It is extremely
  730. * useful to log this information as usually it indicates
  731. * a bug in the IOMMU support code or a PCI device driver.
  732. */
  733. if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) {
  734. sabre_check_iommu_error(p, afsr, afar);
  735. pci_scan_for_target_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
  736. }
  737. if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA))
  738. pci_scan_for_master_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
  739. /* For excessive retries, SABRE/PBM will abort the device
  740. * and there is no way to specifically check for excessive
  741. * retries in the config space status registers. So what
  742. * we hope is that we'll catch it via the master/target
  743. * abort events.
  744. */
  745. if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR))
  746. pci_scan_for_parity_error(p, &p->pbm_A, p->pbm_A.pci_bus);
  747. return IRQ_HANDLED;
  748. }
  749. static void sabre_register_error_handlers(struct pci_controller_info *p)
  750. {
  751. struct pci_pbm_info *pbm = &p->pbm_A; /* arbitrary */
  752. struct device_node *dp = pbm->prom_node;
  753. struct of_device *op;
  754. unsigned long base = pbm->controller_regs;
  755. u64 tmp;
  756. if (pbm->chip_type == PBM_CHIP_TYPE_SABRE)
  757. dp = dp->parent;
  758. op = of_find_device_by_node(dp);
  759. if (!op)
  760. return;
  761. /* Sabre/Hummingbird IRQ property layout is:
  762. * 0: PCI ERR
  763. * 1: UE ERR
  764. * 2: CE ERR
  765. * 3: POWER FAIL
  766. */
  767. if (op->num_irqs < 4)
  768. return;
  769. /* We clear the error bits in the appropriate AFSR before
  770. * registering the handler so that we don't get spurious
  771. * interrupts.
  772. */
  773. sabre_write(base + SABRE_UE_AFSR,
  774. (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
  775. SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
  776. SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE));
  777. request_irq(op->irqs[1], sabre_ue_intr, IRQF_SHARED, "SABRE UE", p);
  778. sabre_write(base + SABRE_CE_AFSR,
  779. (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
  780. SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR));
  781. request_irq(op->irqs[2], sabre_ce_intr, IRQF_SHARED, "SABRE CE", p);
  782. request_irq(op->irqs[0], sabre_pcierr_intr, IRQF_SHARED,
  783. "SABRE PCIERR", p);
  784. tmp = sabre_read(base + SABRE_PCICTRL);
  785. tmp |= SABRE_PCICTRL_ERREN;
  786. sabre_write(base + SABRE_PCICTRL, tmp);
  787. }
  788. static void apb_init(struct pci_controller_info *p, struct pci_bus *sabre_bus)
  789. {
  790. struct pci_dev *pdev;
  791. list_for_each_entry(pdev, &sabre_bus->devices, bus_list) {
  792. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  793. pdev->device == PCI_DEVICE_ID_SUN_SIMBA) {
  794. u16 word16;
  795. pci_read_config_word(pdev, PCI_COMMAND, &word16);
  796. word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
  797. PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY |
  798. PCI_COMMAND_IO;
  799. pci_write_config_word(pdev, PCI_COMMAND, word16);
  800. /* Status register bits are "write 1 to clear". */
  801. pci_write_config_word(pdev, PCI_STATUS, 0xffff);
  802. pci_write_config_word(pdev, PCI_SEC_STATUS, 0xffff);
  803. /* Use a primary/seconday latency timer value
  804. * of 64.
  805. */
  806. pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 64);
  807. pci_write_config_byte(pdev, PCI_SEC_LATENCY_TIMER, 64);
  808. /* Enable reporting/forwarding of master aborts,
  809. * parity, and SERR.
  810. */
  811. pci_write_config_byte(pdev, PCI_BRIDGE_CONTROL,
  812. (PCI_BRIDGE_CTL_PARITY |
  813. PCI_BRIDGE_CTL_SERR |
  814. PCI_BRIDGE_CTL_MASTER_ABORT));
  815. }
  816. }
  817. }
  818. static void sabre_scan_bus(struct pci_controller_info *p)
  819. {
  820. static int once;
  821. struct pci_bus *pbus;
  822. /* The APB bridge speaks to the Sabre host PCI bridge
  823. * at 66Mhz, but the front side of APB runs at 33Mhz
  824. * for both segments.
  825. */
  826. p->pbm_A.is_66mhz_capable = 0;
  827. /* This driver has not been verified to handle
  828. * multiple SABREs yet, so trap this.
  829. *
  830. * Also note that the SABRE host bridge is hardwired
  831. * to live at bus 0.
  832. */
  833. if (once != 0) {
  834. prom_printf("SABRE: Multiple controllers unsupported.\n");
  835. prom_halt();
  836. }
  837. once++;
  838. pbus = pci_scan_one_pbm(&p->pbm_A);
  839. if (!pbus)
  840. return;
  841. sabre_root_bus = pbus;
  842. apb_init(p, pbus);
  843. sabre_register_error_handlers(p);
  844. }
  845. static void sabre_iommu_init(struct pci_controller_info *p,
  846. int tsbsize, unsigned long dvma_offset,
  847. u32 dma_mask)
  848. {
  849. struct pci_iommu *iommu = p->pbm_A.iommu;
  850. unsigned long i;
  851. u64 control;
  852. /* Register addresses. */
  853. iommu->iommu_control = p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL;
  854. iommu->iommu_tsbbase = p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE;
  855. iommu->iommu_flush = p->pbm_A.controller_regs + SABRE_IOMMU_FLUSH;
  856. iommu->write_complete_reg = p->pbm_A.controller_regs + SABRE_WRSYNC;
  857. /* Sabre's IOMMU lacks ctx flushing. */
  858. iommu->iommu_ctxflush = 0;
  859. /* Invalidate TLB Entries. */
  860. control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
  861. control |= SABRE_IOMMUCTRL_DENAB;
  862. sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
  863. for(i = 0; i < 16; i++) {
  864. sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TAG + (i * 8UL), 0);
  865. sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_DATA + (i * 8UL), 0);
  866. }
  867. /* Leave diag mode enabled for full-flushing done
  868. * in pci_iommu.c
  869. */
  870. pci_iommu_table_init(iommu, tsbsize * 1024 * 8, dvma_offset, dma_mask);
  871. sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE,
  872. __pa(iommu->page_table));
  873. control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
  874. control &= ~(SABRE_IOMMUCTRL_TSBSZ | SABRE_IOMMUCTRL_TBWSZ);
  875. control |= SABRE_IOMMUCTRL_ENAB;
  876. switch(tsbsize) {
  877. case 64:
  878. control |= SABRE_IOMMU_TSBSZ_64K;
  879. break;
  880. case 128:
  881. control |= SABRE_IOMMU_TSBSZ_128K;
  882. break;
  883. default:
  884. prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize);
  885. prom_halt();
  886. break;
  887. }
  888. sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
  889. }
  890. static void sabre_pbm_init(struct pci_controller_info *p, struct device_node *dp)
  891. {
  892. struct pci_pbm_info *pbm;
  893. pbm = &p->pbm_A;
  894. pbm->name = dp->full_name;
  895. printk("%s: SABRE PCI Bus Module\n", pbm->name);
  896. pbm->chip_type = PBM_CHIP_TYPE_SABRE;
  897. pbm->parent = p;
  898. pbm->prom_node = dp;
  899. pbm->pci_first_busno = p->pci_first_busno;
  900. pbm->pci_last_busno = p->pci_last_busno;
  901. pci_determine_mem_io_space(pbm);
  902. }
  903. void sabre_init(struct device_node *dp, char *model_name)
  904. {
  905. struct linux_prom64_registers *pr_regs;
  906. struct pci_controller_info *p;
  907. struct pci_iommu *iommu;
  908. int tsbsize;
  909. u32 *busrange;
  910. u32 *vdma;
  911. u32 upa_portid, dma_mask;
  912. u64 clear_irq;
  913. hummingbird_p = 0;
  914. if (!strcmp(model_name, "pci108e,a001"))
  915. hummingbird_p = 1;
  916. else if (!strcmp(model_name, "SUNW,sabre")) {
  917. const char *compat = of_get_property(dp, "compatible", NULL);
  918. if (compat && !strcmp(compat, "pci108e,a001"))
  919. hummingbird_p = 1;
  920. if (!hummingbird_p) {
  921. struct device_node *dp;
  922. /* Of course, Sun has to encode things a thousand
  923. * different ways, inconsistently.
  924. */
  925. cpu_find_by_instance(0, &dp, NULL);
  926. if (!strcmp(dp->name, "SUNW,UltraSPARC-IIe"))
  927. hummingbird_p = 1;
  928. }
  929. }
  930. p = kzalloc(sizeof(*p), GFP_ATOMIC);
  931. if (!p) {
  932. prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n");
  933. prom_halt();
  934. }
  935. iommu = kzalloc(sizeof(*iommu), GFP_ATOMIC);
  936. if (!iommu) {
  937. prom_printf("SABRE: Error, kmalloc(pci_iommu) failed.\n");
  938. prom_halt();
  939. }
  940. p->pbm_A.iommu = iommu;
  941. upa_portid = of_getintprop_default(dp, "upa-portid", 0xff);
  942. p->next = pci_controller_root;
  943. pci_controller_root = p;
  944. p->pbm_A.portid = upa_portid;
  945. p->index = pci_num_controllers++;
  946. p->scan_bus = sabre_scan_bus;
  947. p->pci_ops = &sabre_ops;
  948. /*
  949. * Map in SABRE register set and report the presence of this SABRE.
  950. */
  951. pr_regs = of_get_property(dp, "reg", NULL);
  952. /*
  953. * First REG in property is base of entire SABRE register space.
  954. */
  955. p->pbm_A.controller_regs = pr_regs[0].phys_addr;
  956. /* Clear interrupts */
  957. /* PCI first */
  958. for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8)
  959. sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
  960. /* Then OBIO */
  961. for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8)
  962. sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
  963. /* Error interrupts are enabled later after the bus scan. */
  964. sabre_write(p->pbm_A.controller_regs + SABRE_PCICTRL,
  965. (SABRE_PCICTRL_MRLEN | SABRE_PCICTRL_SERR |
  966. SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN));
  967. /* Now map in PCI config space for entire SABRE. */
  968. p->pbm_A.config_space =
  969. (p->pbm_A.controller_regs + SABRE_CONFIGSPACE);
  970. vdma = of_get_property(dp, "virtual-dma", NULL);
  971. dma_mask = vdma[0];
  972. switch(vdma[1]) {
  973. case 0x20000000:
  974. dma_mask |= 0x1fffffff;
  975. tsbsize = 64;
  976. break;
  977. case 0x40000000:
  978. dma_mask |= 0x3fffffff;
  979. tsbsize = 128;
  980. break;
  981. case 0x80000000:
  982. dma_mask |= 0x7fffffff;
  983. tsbsize = 128;
  984. break;
  985. default:
  986. prom_printf("SABRE: strange virtual-dma size.\n");
  987. prom_halt();
  988. }
  989. sabre_iommu_init(p, tsbsize, vdma[0], dma_mask);
  990. busrange = of_get_property(dp, "bus-range", NULL);
  991. p->pci_first_busno = busrange[0];
  992. p->pci_last_busno = busrange[1];
  993. /*
  994. * Look for APB underneath.
  995. */
  996. sabre_pbm_init(p, dp);
  997. }