huge_memory.c 70 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/shrinker.h>
  15. #include <linux/mm_inline.h>
  16. #include <linux/kthread.h>
  17. #include <linux/khugepaged.h>
  18. #include <linux/freezer.h>
  19. #include <linux/mman.h>
  20. #include <linux/pagemap.h>
  21. #include <asm/tlb.h>
  22. #include <asm/pgalloc.h>
  23. #include "internal.h"
  24. /*
  25. * By default transparent hugepage support is enabled for all mappings
  26. * and khugepaged scans all mappings. Defrag is only invoked by
  27. * khugepaged hugepage allocations and by page faults inside
  28. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  29. * allocations.
  30. */
  31. unsigned long transparent_hugepage_flags __read_mostly =
  32. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  33. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  34. #endif
  35. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  36. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  37. #endif
  38. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  39. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  40. /* default scan 8*512 pte (or vmas) every 30 second */
  41. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  42. static unsigned int khugepaged_pages_collapsed;
  43. static unsigned int khugepaged_full_scans;
  44. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  45. /* during fragmentation poll the hugepage allocator once every minute */
  46. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  47. static struct task_struct *khugepaged_thread __read_mostly;
  48. static DEFINE_MUTEX(khugepaged_mutex);
  49. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  50. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  51. /*
  52. * default collapse hugepages if there is at least one pte mapped like
  53. * it would have happened if the vma was large enough during page
  54. * fault.
  55. */
  56. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  57. static int khugepaged(void *none);
  58. static int mm_slots_hash_init(void);
  59. static int khugepaged_slab_init(void);
  60. static void khugepaged_slab_free(void);
  61. #define MM_SLOTS_HASH_HEADS 1024
  62. static struct hlist_head *mm_slots_hash __read_mostly;
  63. static struct kmem_cache *mm_slot_cache __read_mostly;
  64. /**
  65. * struct mm_slot - hash lookup from mm to mm_slot
  66. * @hash: hash collision list
  67. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  68. * @mm: the mm that this information is valid for
  69. */
  70. struct mm_slot {
  71. struct hlist_node hash;
  72. struct list_head mm_node;
  73. struct mm_struct *mm;
  74. };
  75. /**
  76. * struct khugepaged_scan - cursor for scanning
  77. * @mm_head: the head of the mm list to scan
  78. * @mm_slot: the current mm_slot we are scanning
  79. * @address: the next address inside that to be scanned
  80. *
  81. * There is only the one khugepaged_scan instance of this cursor structure.
  82. */
  83. struct khugepaged_scan {
  84. struct list_head mm_head;
  85. struct mm_slot *mm_slot;
  86. unsigned long address;
  87. };
  88. static struct khugepaged_scan khugepaged_scan = {
  89. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  90. };
  91. static int set_recommended_min_free_kbytes(void)
  92. {
  93. struct zone *zone;
  94. int nr_zones = 0;
  95. unsigned long recommended_min;
  96. extern int min_free_kbytes;
  97. if (!khugepaged_enabled())
  98. return 0;
  99. for_each_populated_zone(zone)
  100. nr_zones++;
  101. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  102. recommended_min = pageblock_nr_pages * nr_zones * 2;
  103. /*
  104. * Make sure that on average at least two pageblocks are almost free
  105. * of another type, one for a migratetype to fall back to and a
  106. * second to avoid subsequent fallbacks of other types There are 3
  107. * MIGRATE_TYPES we care about.
  108. */
  109. recommended_min += pageblock_nr_pages * nr_zones *
  110. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  111. /* don't ever allow to reserve more than 5% of the lowmem */
  112. recommended_min = min(recommended_min,
  113. (unsigned long) nr_free_buffer_pages() / 20);
  114. recommended_min <<= (PAGE_SHIFT-10);
  115. if (recommended_min > min_free_kbytes)
  116. min_free_kbytes = recommended_min;
  117. setup_per_zone_wmarks();
  118. return 0;
  119. }
  120. late_initcall(set_recommended_min_free_kbytes);
  121. static int start_khugepaged(void)
  122. {
  123. int err = 0;
  124. if (khugepaged_enabled()) {
  125. if (!khugepaged_thread)
  126. khugepaged_thread = kthread_run(khugepaged, NULL,
  127. "khugepaged");
  128. if (unlikely(IS_ERR(khugepaged_thread))) {
  129. printk(KERN_ERR
  130. "khugepaged: kthread_run(khugepaged) failed\n");
  131. err = PTR_ERR(khugepaged_thread);
  132. khugepaged_thread = NULL;
  133. }
  134. if (!list_empty(&khugepaged_scan.mm_head))
  135. wake_up_interruptible(&khugepaged_wait);
  136. set_recommended_min_free_kbytes();
  137. } else if (khugepaged_thread) {
  138. kthread_stop(khugepaged_thread);
  139. khugepaged_thread = NULL;
  140. }
  141. return err;
  142. }
  143. static atomic_t huge_zero_refcount;
  144. static unsigned long huge_zero_pfn __read_mostly;
  145. static inline bool is_huge_zero_pfn(unsigned long pfn)
  146. {
  147. unsigned long zero_pfn = ACCESS_ONCE(huge_zero_pfn);
  148. return zero_pfn && pfn == zero_pfn;
  149. }
  150. static inline bool is_huge_zero_pmd(pmd_t pmd)
  151. {
  152. return is_huge_zero_pfn(pmd_pfn(pmd));
  153. }
  154. static unsigned long get_huge_zero_page(void)
  155. {
  156. struct page *zero_page;
  157. retry:
  158. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  159. return ACCESS_ONCE(huge_zero_pfn);
  160. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  161. HPAGE_PMD_ORDER);
  162. if (!zero_page)
  163. return 0;
  164. preempt_disable();
  165. if (cmpxchg(&huge_zero_pfn, 0, page_to_pfn(zero_page))) {
  166. preempt_enable();
  167. __free_page(zero_page);
  168. goto retry;
  169. }
  170. /* We take additional reference here. It will be put back by shrinker */
  171. atomic_set(&huge_zero_refcount, 2);
  172. preempt_enable();
  173. return ACCESS_ONCE(huge_zero_pfn);
  174. }
  175. static void put_huge_zero_page(void)
  176. {
  177. /*
  178. * Counter should never go to zero here. Only shrinker can put
  179. * last reference.
  180. */
  181. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  182. }
  183. static int shrink_huge_zero_page(struct shrinker *shrink,
  184. struct shrink_control *sc)
  185. {
  186. if (!sc->nr_to_scan)
  187. /* we can free zero page only if last reference remains */
  188. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  189. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  190. unsigned long zero_pfn = xchg(&huge_zero_pfn, 0);
  191. BUG_ON(zero_pfn == 0);
  192. __free_page(__pfn_to_page(zero_pfn));
  193. }
  194. return 0;
  195. }
  196. static struct shrinker huge_zero_page_shrinker = {
  197. .shrink = shrink_huge_zero_page,
  198. .seeks = DEFAULT_SEEKS,
  199. };
  200. #ifdef CONFIG_SYSFS
  201. static ssize_t double_flag_show(struct kobject *kobj,
  202. struct kobj_attribute *attr, char *buf,
  203. enum transparent_hugepage_flag enabled,
  204. enum transparent_hugepage_flag req_madv)
  205. {
  206. if (test_bit(enabled, &transparent_hugepage_flags)) {
  207. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  208. return sprintf(buf, "[always] madvise never\n");
  209. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  210. return sprintf(buf, "always [madvise] never\n");
  211. else
  212. return sprintf(buf, "always madvise [never]\n");
  213. }
  214. static ssize_t double_flag_store(struct kobject *kobj,
  215. struct kobj_attribute *attr,
  216. const char *buf, size_t count,
  217. enum transparent_hugepage_flag enabled,
  218. enum transparent_hugepage_flag req_madv)
  219. {
  220. if (!memcmp("always", buf,
  221. min(sizeof("always")-1, count))) {
  222. set_bit(enabled, &transparent_hugepage_flags);
  223. clear_bit(req_madv, &transparent_hugepage_flags);
  224. } else if (!memcmp("madvise", buf,
  225. min(sizeof("madvise")-1, count))) {
  226. clear_bit(enabled, &transparent_hugepage_flags);
  227. set_bit(req_madv, &transparent_hugepage_flags);
  228. } else if (!memcmp("never", buf,
  229. min(sizeof("never")-1, count))) {
  230. clear_bit(enabled, &transparent_hugepage_flags);
  231. clear_bit(req_madv, &transparent_hugepage_flags);
  232. } else
  233. return -EINVAL;
  234. return count;
  235. }
  236. static ssize_t enabled_show(struct kobject *kobj,
  237. struct kobj_attribute *attr, char *buf)
  238. {
  239. return double_flag_show(kobj, attr, buf,
  240. TRANSPARENT_HUGEPAGE_FLAG,
  241. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  242. }
  243. static ssize_t enabled_store(struct kobject *kobj,
  244. struct kobj_attribute *attr,
  245. const char *buf, size_t count)
  246. {
  247. ssize_t ret;
  248. ret = double_flag_store(kobj, attr, buf, count,
  249. TRANSPARENT_HUGEPAGE_FLAG,
  250. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  251. if (ret > 0) {
  252. int err;
  253. mutex_lock(&khugepaged_mutex);
  254. err = start_khugepaged();
  255. mutex_unlock(&khugepaged_mutex);
  256. if (err)
  257. ret = err;
  258. }
  259. return ret;
  260. }
  261. static struct kobj_attribute enabled_attr =
  262. __ATTR(enabled, 0644, enabled_show, enabled_store);
  263. static ssize_t single_flag_show(struct kobject *kobj,
  264. struct kobj_attribute *attr, char *buf,
  265. enum transparent_hugepage_flag flag)
  266. {
  267. return sprintf(buf, "%d\n",
  268. !!test_bit(flag, &transparent_hugepage_flags));
  269. }
  270. static ssize_t single_flag_store(struct kobject *kobj,
  271. struct kobj_attribute *attr,
  272. const char *buf, size_t count,
  273. enum transparent_hugepage_flag flag)
  274. {
  275. unsigned long value;
  276. int ret;
  277. ret = kstrtoul(buf, 10, &value);
  278. if (ret < 0)
  279. return ret;
  280. if (value > 1)
  281. return -EINVAL;
  282. if (value)
  283. set_bit(flag, &transparent_hugepage_flags);
  284. else
  285. clear_bit(flag, &transparent_hugepage_flags);
  286. return count;
  287. }
  288. /*
  289. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  290. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  291. * memory just to allocate one more hugepage.
  292. */
  293. static ssize_t defrag_show(struct kobject *kobj,
  294. struct kobj_attribute *attr, char *buf)
  295. {
  296. return double_flag_show(kobj, attr, buf,
  297. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  298. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  299. }
  300. static ssize_t defrag_store(struct kobject *kobj,
  301. struct kobj_attribute *attr,
  302. const char *buf, size_t count)
  303. {
  304. return double_flag_store(kobj, attr, buf, count,
  305. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  306. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  307. }
  308. static struct kobj_attribute defrag_attr =
  309. __ATTR(defrag, 0644, defrag_show, defrag_store);
  310. #ifdef CONFIG_DEBUG_VM
  311. static ssize_t debug_cow_show(struct kobject *kobj,
  312. struct kobj_attribute *attr, char *buf)
  313. {
  314. return single_flag_show(kobj, attr, buf,
  315. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  316. }
  317. static ssize_t debug_cow_store(struct kobject *kobj,
  318. struct kobj_attribute *attr,
  319. const char *buf, size_t count)
  320. {
  321. return single_flag_store(kobj, attr, buf, count,
  322. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  323. }
  324. static struct kobj_attribute debug_cow_attr =
  325. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  326. #endif /* CONFIG_DEBUG_VM */
  327. static struct attribute *hugepage_attr[] = {
  328. &enabled_attr.attr,
  329. &defrag_attr.attr,
  330. #ifdef CONFIG_DEBUG_VM
  331. &debug_cow_attr.attr,
  332. #endif
  333. NULL,
  334. };
  335. static struct attribute_group hugepage_attr_group = {
  336. .attrs = hugepage_attr,
  337. };
  338. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  339. struct kobj_attribute *attr,
  340. char *buf)
  341. {
  342. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  343. }
  344. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  345. struct kobj_attribute *attr,
  346. const char *buf, size_t count)
  347. {
  348. unsigned long msecs;
  349. int err;
  350. err = strict_strtoul(buf, 10, &msecs);
  351. if (err || msecs > UINT_MAX)
  352. return -EINVAL;
  353. khugepaged_scan_sleep_millisecs = msecs;
  354. wake_up_interruptible(&khugepaged_wait);
  355. return count;
  356. }
  357. static struct kobj_attribute scan_sleep_millisecs_attr =
  358. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  359. scan_sleep_millisecs_store);
  360. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  361. struct kobj_attribute *attr,
  362. char *buf)
  363. {
  364. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  365. }
  366. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  367. struct kobj_attribute *attr,
  368. const char *buf, size_t count)
  369. {
  370. unsigned long msecs;
  371. int err;
  372. err = strict_strtoul(buf, 10, &msecs);
  373. if (err || msecs > UINT_MAX)
  374. return -EINVAL;
  375. khugepaged_alloc_sleep_millisecs = msecs;
  376. wake_up_interruptible(&khugepaged_wait);
  377. return count;
  378. }
  379. static struct kobj_attribute alloc_sleep_millisecs_attr =
  380. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  381. alloc_sleep_millisecs_store);
  382. static ssize_t pages_to_scan_show(struct kobject *kobj,
  383. struct kobj_attribute *attr,
  384. char *buf)
  385. {
  386. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  387. }
  388. static ssize_t pages_to_scan_store(struct kobject *kobj,
  389. struct kobj_attribute *attr,
  390. const char *buf, size_t count)
  391. {
  392. int err;
  393. unsigned long pages;
  394. err = strict_strtoul(buf, 10, &pages);
  395. if (err || !pages || pages > UINT_MAX)
  396. return -EINVAL;
  397. khugepaged_pages_to_scan = pages;
  398. return count;
  399. }
  400. static struct kobj_attribute pages_to_scan_attr =
  401. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  402. pages_to_scan_store);
  403. static ssize_t pages_collapsed_show(struct kobject *kobj,
  404. struct kobj_attribute *attr,
  405. char *buf)
  406. {
  407. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  408. }
  409. static struct kobj_attribute pages_collapsed_attr =
  410. __ATTR_RO(pages_collapsed);
  411. static ssize_t full_scans_show(struct kobject *kobj,
  412. struct kobj_attribute *attr,
  413. char *buf)
  414. {
  415. return sprintf(buf, "%u\n", khugepaged_full_scans);
  416. }
  417. static struct kobj_attribute full_scans_attr =
  418. __ATTR_RO(full_scans);
  419. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  420. struct kobj_attribute *attr, char *buf)
  421. {
  422. return single_flag_show(kobj, attr, buf,
  423. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  424. }
  425. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  426. struct kobj_attribute *attr,
  427. const char *buf, size_t count)
  428. {
  429. return single_flag_store(kobj, attr, buf, count,
  430. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  431. }
  432. static struct kobj_attribute khugepaged_defrag_attr =
  433. __ATTR(defrag, 0644, khugepaged_defrag_show,
  434. khugepaged_defrag_store);
  435. /*
  436. * max_ptes_none controls if khugepaged should collapse hugepages over
  437. * any unmapped ptes in turn potentially increasing the memory
  438. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  439. * reduce the available free memory in the system as it
  440. * runs. Increasing max_ptes_none will instead potentially reduce the
  441. * free memory in the system during the khugepaged scan.
  442. */
  443. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  444. struct kobj_attribute *attr,
  445. char *buf)
  446. {
  447. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  448. }
  449. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  450. struct kobj_attribute *attr,
  451. const char *buf, size_t count)
  452. {
  453. int err;
  454. unsigned long max_ptes_none;
  455. err = strict_strtoul(buf, 10, &max_ptes_none);
  456. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  457. return -EINVAL;
  458. khugepaged_max_ptes_none = max_ptes_none;
  459. return count;
  460. }
  461. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  462. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  463. khugepaged_max_ptes_none_store);
  464. static struct attribute *khugepaged_attr[] = {
  465. &khugepaged_defrag_attr.attr,
  466. &khugepaged_max_ptes_none_attr.attr,
  467. &pages_to_scan_attr.attr,
  468. &pages_collapsed_attr.attr,
  469. &full_scans_attr.attr,
  470. &scan_sleep_millisecs_attr.attr,
  471. &alloc_sleep_millisecs_attr.attr,
  472. NULL,
  473. };
  474. static struct attribute_group khugepaged_attr_group = {
  475. .attrs = khugepaged_attr,
  476. .name = "khugepaged",
  477. };
  478. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  479. {
  480. int err;
  481. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  482. if (unlikely(!*hugepage_kobj)) {
  483. printk(KERN_ERR "hugepage: failed kobject create\n");
  484. return -ENOMEM;
  485. }
  486. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  487. if (err) {
  488. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  489. goto delete_obj;
  490. }
  491. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  492. if (err) {
  493. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  494. goto remove_hp_group;
  495. }
  496. return 0;
  497. remove_hp_group:
  498. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  499. delete_obj:
  500. kobject_put(*hugepage_kobj);
  501. return err;
  502. }
  503. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  504. {
  505. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  506. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  507. kobject_put(hugepage_kobj);
  508. }
  509. #else
  510. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  511. {
  512. return 0;
  513. }
  514. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  515. {
  516. }
  517. #endif /* CONFIG_SYSFS */
  518. static int __init hugepage_init(void)
  519. {
  520. int err;
  521. struct kobject *hugepage_kobj;
  522. if (!has_transparent_hugepage()) {
  523. transparent_hugepage_flags = 0;
  524. return -EINVAL;
  525. }
  526. err = hugepage_init_sysfs(&hugepage_kobj);
  527. if (err)
  528. return err;
  529. err = khugepaged_slab_init();
  530. if (err)
  531. goto out;
  532. err = mm_slots_hash_init();
  533. if (err) {
  534. khugepaged_slab_free();
  535. goto out;
  536. }
  537. register_shrinker(&huge_zero_page_shrinker);
  538. /*
  539. * By default disable transparent hugepages on smaller systems,
  540. * where the extra memory used could hurt more than TLB overhead
  541. * is likely to save. The admin can still enable it through /sys.
  542. */
  543. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  544. transparent_hugepage_flags = 0;
  545. start_khugepaged();
  546. return 0;
  547. out:
  548. hugepage_exit_sysfs(hugepage_kobj);
  549. return err;
  550. }
  551. module_init(hugepage_init)
  552. static int __init setup_transparent_hugepage(char *str)
  553. {
  554. int ret = 0;
  555. if (!str)
  556. goto out;
  557. if (!strcmp(str, "always")) {
  558. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  559. &transparent_hugepage_flags);
  560. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  561. &transparent_hugepage_flags);
  562. ret = 1;
  563. } else if (!strcmp(str, "madvise")) {
  564. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  565. &transparent_hugepage_flags);
  566. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  567. &transparent_hugepage_flags);
  568. ret = 1;
  569. } else if (!strcmp(str, "never")) {
  570. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  571. &transparent_hugepage_flags);
  572. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  573. &transparent_hugepage_flags);
  574. ret = 1;
  575. }
  576. out:
  577. if (!ret)
  578. printk(KERN_WARNING
  579. "transparent_hugepage= cannot parse, ignored\n");
  580. return ret;
  581. }
  582. __setup("transparent_hugepage=", setup_transparent_hugepage);
  583. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  584. {
  585. if (likely(vma->vm_flags & VM_WRITE))
  586. pmd = pmd_mkwrite(pmd);
  587. return pmd;
  588. }
  589. static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
  590. {
  591. pmd_t entry;
  592. entry = mk_pmd(page, vma->vm_page_prot);
  593. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  594. entry = pmd_mkhuge(entry);
  595. return entry;
  596. }
  597. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  598. struct vm_area_struct *vma,
  599. unsigned long haddr, pmd_t *pmd,
  600. struct page *page)
  601. {
  602. pgtable_t pgtable;
  603. VM_BUG_ON(!PageCompound(page));
  604. pgtable = pte_alloc_one(mm, haddr);
  605. if (unlikely(!pgtable))
  606. return VM_FAULT_OOM;
  607. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  608. __SetPageUptodate(page);
  609. spin_lock(&mm->page_table_lock);
  610. if (unlikely(!pmd_none(*pmd))) {
  611. spin_unlock(&mm->page_table_lock);
  612. mem_cgroup_uncharge_page(page);
  613. put_page(page);
  614. pte_free(mm, pgtable);
  615. } else {
  616. pmd_t entry;
  617. entry = mk_huge_pmd(page, vma);
  618. /*
  619. * The spinlocking to take the lru_lock inside
  620. * page_add_new_anon_rmap() acts as a full memory
  621. * barrier to be sure clear_huge_page writes become
  622. * visible after the set_pmd_at() write.
  623. */
  624. page_add_new_anon_rmap(page, vma, haddr);
  625. set_pmd_at(mm, haddr, pmd, entry);
  626. pgtable_trans_huge_deposit(mm, pgtable);
  627. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  628. mm->nr_ptes++;
  629. spin_unlock(&mm->page_table_lock);
  630. }
  631. return 0;
  632. }
  633. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  634. {
  635. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  636. }
  637. static inline struct page *alloc_hugepage_vma(int defrag,
  638. struct vm_area_struct *vma,
  639. unsigned long haddr, int nd,
  640. gfp_t extra_gfp)
  641. {
  642. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  643. HPAGE_PMD_ORDER, vma, haddr, nd);
  644. }
  645. #ifndef CONFIG_NUMA
  646. static inline struct page *alloc_hugepage(int defrag)
  647. {
  648. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  649. HPAGE_PMD_ORDER);
  650. }
  651. #endif
  652. static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  653. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  654. unsigned long zero_pfn)
  655. {
  656. pmd_t entry;
  657. entry = pfn_pmd(zero_pfn, vma->vm_page_prot);
  658. entry = pmd_wrprotect(entry);
  659. entry = pmd_mkhuge(entry);
  660. set_pmd_at(mm, haddr, pmd, entry);
  661. pgtable_trans_huge_deposit(mm, pgtable);
  662. mm->nr_ptes++;
  663. }
  664. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  665. unsigned long address, pmd_t *pmd,
  666. unsigned int flags)
  667. {
  668. struct page *page;
  669. unsigned long haddr = address & HPAGE_PMD_MASK;
  670. pte_t *pte;
  671. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  672. if (unlikely(anon_vma_prepare(vma)))
  673. return VM_FAULT_OOM;
  674. if (unlikely(khugepaged_enter(vma)))
  675. return VM_FAULT_OOM;
  676. if (!(flags & FAULT_FLAG_WRITE)) {
  677. pgtable_t pgtable;
  678. unsigned long zero_pfn;
  679. pgtable = pte_alloc_one(mm, haddr);
  680. if (unlikely(!pgtable))
  681. return VM_FAULT_OOM;
  682. zero_pfn = get_huge_zero_page();
  683. if (unlikely(!zero_pfn)) {
  684. pte_free(mm, pgtable);
  685. count_vm_event(THP_FAULT_FALLBACK);
  686. goto out;
  687. }
  688. spin_lock(&mm->page_table_lock);
  689. set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
  690. zero_pfn);
  691. spin_unlock(&mm->page_table_lock);
  692. return 0;
  693. }
  694. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  695. vma, haddr, numa_node_id(), 0);
  696. if (unlikely(!page)) {
  697. count_vm_event(THP_FAULT_FALLBACK);
  698. goto out;
  699. }
  700. count_vm_event(THP_FAULT_ALLOC);
  701. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  702. put_page(page);
  703. goto out;
  704. }
  705. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
  706. page))) {
  707. mem_cgroup_uncharge_page(page);
  708. put_page(page);
  709. goto out;
  710. }
  711. return 0;
  712. }
  713. out:
  714. /*
  715. * Use __pte_alloc instead of pte_alloc_map, because we can't
  716. * run pte_offset_map on the pmd, if an huge pmd could
  717. * materialize from under us from a different thread.
  718. */
  719. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  720. return VM_FAULT_OOM;
  721. /* if an huge pmd materialized from under us just retry later */
  722. if (unlikely(pmd_trans_huge(*pmd)))
  723. return 0;
  724. /*
  725. * A regular pmd is established and it can't morph into a huge pmd
  726. * from under us anymore at this point because we hold the mmap_sem
  727. * read mode and khugepaged takes it in write mode. So now it's
  728. * safe to run pte_offset_map().
  729. */
  730. pte = pte_offset_map(pmd, address);
  731. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  732. }
  733. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  734. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  735. struct vm_area_struct *vma)
  736. {
  737. struct page *src_page;
  738. pmd_t pmd;
  739. pgtable_t pgtable;
  740. int ret;
  741. ret = -ENOMEM;
  742. pgtable = pte_alloc_one(dst_mm, addr);
  743. if (unlikely(!pgtable))
  744. goto out;
  745. spin_lock(&dst_mm->page_table_lock);
  746. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  747. ret = -EAGAIN;
  748. pmd = *src_pmd;
  749. if (unlikely(!pmd_trans_huge(pmd))) {
  750. pte_free(dst_mm, pgtable);
  751. goto out_unlock;
  752. }
  753. /*
  754. * mm->page_table_lock is enough to be sure that huge zero pmd is not
  755. * under splitting since we don't split the page itself, only pmd to
  756. * a page table.
  757. */
  758. if (is_huge_zero_pmd(pmd)) {
  759. unsigned long zero_pfn;
  760. /*
  761. * get_huge_zero_page() will never allocate a new page here,
  762. * since we already have a zero page to copy. It just takes a
  763. * reference.
  764. */
  765. zero_pfn = get_huge_zero_page();
  766. set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  767. zero_pfn);
  768. ret = 0;
  769. goto out_unlock;
  770. }
  771. if (unlikely(pmd_trans_splitting(pmd))) {
  772. /* split huge page running from under us */
  773. spin_unlock(&src_mm->page_table_lock);
  774. spin_unlock(&dst_mm->page_table_lock);
  775. pte_free(dst_mm, pgtable);
  776. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  777. goto out;
  778. }
  779. src_page = pmd_page(pmd);
  780. VM_BUG_ON(!PageHead(src_page));
  781. get_page(src_page);
  782. page_dup_rmap(src_page);
  783. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  784. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  785. pmd = pmd_mkold(pmd_wrprotect(pmd));
  786. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  787. pgtable_trans_huge_deposit(dst_mm, pgtable);
  788. dst_mm->nr_ptes++;
  789. ret = 0;
  790. out_unlock:
  791. spin_unlock(&src_mm->page_table_lock);
  792. spin_unlock(&dst_mm->page_table_lock);
  793. out:
  794. return ret;
  795. }
  796. void huge_pmd_set_accessed(struct mm_struct *mm,
  797. struct vm_area_struct *vma,
  798. unsigned long address,
  799. pmd_t *pmd, pmd_t orig_pmd,
  800. int dirty)
  801. {
  802. pmd_t entry;
  803. unsigned long haddr;
  804. spin_lock(&mm->page_table_lock);
  805. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  806. goto unlock;
  807. entry = pmd_mkyoung(orig_pmd);
  808. haddr = address & HPAGE_PMD_MASK;
  809. if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
  810. update_mmu_cache_pmd(vma, address, pmd);
  811. unlock:
  812. spin_unlock(&mm->page_table_lock);
  813. }
  814. static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
  815. struct vm_area_struct *vma, unsigned long address,
  816. pmd_t *pmd, unsigned long haddr)
  817. {
  818. pgtable_t pgtable;
  819. pmd_t _pmd;
  820. struct page *page;
  821. int i, ret = 0;
  822. unsigned long mmun_start; /* For mmu_notifiers */
  823. unsigned long mmun_end; /* For mmu_notifiers */
  824. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  825. if (!page) {
  826. ret |= VM_FAULT_OOM;
  827. goto out;
  828. }
  829. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  830. put_page(page);
  831. ret |= VM_FAULT_OOM;
  832. goto out;
  833. }
  834. clear_user_highpage(page, address);
  835. __SetPageUptodate(page);
  836. mmun_start = haddr;
  837. mmun_end = haddr + HPAGE_PMD_SIZE;
  838. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  839. spin_lock(&mm->page_table_lock);
  840. pmdp_clear_flush(vma, haddr, pmd);
  841. /* leave pmd empty until pte is filled */
  842. pgtable = pgtable_trans_huge_withdraw(mm);
  843. pmd_populate(mm, &_pmd, pgtable);
  844. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  845. pte_t *pte, entry;
  846. if (haddr == (address & PAGE_MASK)) {
  847. entry = mk_pte(page, vma->vm_page_prot);
  848. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  849. page_add_new_anon_rmap(page, vma, haddr);
  850. } else {
  851. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  852. entry = pte_mkspecial(entry);
  853. }
  854. pte = pte_offset_map(&_pmd, haddr);
  855. VM_BUG_ON(!pte_none(*pte));
  856. set_pte_at(mm, haddr, pte, entry);
  857. pte_unmap(pte);
  858. }
  859. smp_wmb(); /* make pte visible before pmd */
  860. pmd_populate(mm, pmd, pgtable);
  861. spin_unlock(&mm->page_table_lock);
  862. put_huge_zero_page();
  863. inc_mm_counter(mm, MM_ANONPAGES);
  864. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  865. ret |= VM_FAULT_WRITE;
  866. out:
  867. return ret;
  868. }
  869. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  870. struct vm_area_struct *vma,
  871. unsigned long address,
  872. pmd_t *pmd, pmd_t orig_pmd,
  873. struct page *page,
  874. unsigned long haddr)
  875. {
  876. pgtable_t pgtable;
  877. pmd_t _pmd;
  878. int ret = 0, i;
  879. struct page **pages;
  880. unsigned long mmun_start; /* For mmu_notifiers */
  881. unsigned long mmun_end; /* For mmu_notifiers */
  882. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  883. GFP_KERNEL);
  884. if (unlikely(!pages)) {
  885. ret |= VM_FAULT_OOM;
  886. goto out;
  887. }
  888. for (i = 0; i < HPAGE_PMD_NR; i++) {
  889. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  890. __GFP_OTHER_NODE,
  891. vma, address, page_to_nid(page));
  892. if (unlikely(!pages[i] ||
  893. mem_cgroup_newpage_charge(pages[i], mm,
  894. GFP_KERNEL))) {
  895. if (pages[i])
  896. put_page(pages[i]);
  897. mem_cgroup_uncharge_start();
  898. while (--i >= 0) {
  899. mem_cgroup_uncharge_page(pages[i]);
  900. put_page(pages[i]);
  901. }
  902. mem_cgroup_uncharge_end();
  903. kfree(pages);
  904. ret |= VM_FAULT_OOM;
  905. goto out;
  906. }
  907. }
  908. for (i = 0; i < HPAGE_PMD_NR; i++) {
  909. copy_user_highpage(pages[i], page + i,
  910. haddr + PAGE_SIZE * i, vma);
  911. __SetPageUptodate(pages[i]);
  912. cond_resched();
  913. }
  914. mmun_start = haddr;
  915. mmun_end = haddr + HPAGE_PMD_SIZE;
  916. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  917. spin_lock(&mm->page_table_lock);
  918. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  919. goto out_free_pages;
  920. VM_BUG_ON(!PageHead(page));
  921. pmdp_clear_flush(vma, haddr, pmd);
  922. /* leave pmd empty until pte is filled */
  923. pgtable = pgtable_trans_huge_withdraw(mm);
  924. pmd_populate(mm, &_pmd, pgtable);
  925. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  926. pte_t *pte, entry;
  927. entry = mk_pte(pages[i], vma->vm_page_prot);
  928. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  929. page_add_new_anon_rmap(pages[i], vma, haddr);
  930. pte = pte_offset_map(&_pmd, haddr);
  931. VM_BUG_ON(!pte_none(*pte));
  932. set_pte_at(mm, haddr, pte, entry);
  933. pte_unmap(pte);
  934. }
  935. kfree(pages);
  936. smp_wmb(); /* make pte visible before pmd */
  937. pmd_populate(mm, pmd, pgtable);
  938. page_remove_rmap(page);
  939. spin_unlock(&mm->page_table_lock);
  940. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  941. ret |= VM_FAULT_WRITE;
  942. put_page(page);
  943. out:
  944. return ret;
  945. out_free_pages:
  946. spin_unlock(&mm->page_table_lock);
  947. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  948. mem_cgroup_uncharge_start();
  949. for (i = 0; i < HPAGE_PMD_NR; i++) {
  950. mem_cgroup_uncharge_page(pages[i]);
  951. put_page(pages[i]);
  952. }
  953. mem_cgroup_uncharge_end();
  954. kfree(pages);
  955. goto out;
  956. }
  957. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  958. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  959. {
  960. int ret = 0;
  961. struct page *page = NULL, *new_page;
  962. unsigned long haddr;
  963. unsigned long mmun_start; /* For mmu_notifiers */
  964. unsigned long mmun_end; /* For mmu_notifiers */
  965. VM_BUG_ON(!vma->anon_vma);
  966. haddr = address & HPAGE_PMD_MASK;
  967. if (is_huge_zero_pmd(orig_pmd))
  968. goto alloc;
  969. spin_lock(&mm->page_table_lock);
  970. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  971. goto out_unlock;
  972. page = pmd_page(orig_pmd);
  973. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  974. if (page_mapcount(page) == 1) {
  975. pmd_t entry;
  976. entry = pmd_mkyoung(orig_pmd);
  977. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  978. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  979. update_mmu_cache_pmd(vma, address, pmd);
  980. ret |= VM_FAULT_WRITE;
  981. goto out_unlock;
  982. }
  983. get_page(page);
  984. spin_unlock(&mm->page_table_lock);
  985. alloc:
  986. if (transparent_hugepage_enabled(vma) &&
  987. !transparent_hugepage_debug_cow())
  988. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  989. vma, haddr, numa_node_id(), 0);
  990. else
  991. new_page = NULL;
  992. if (unlikely(!new_page)) {
  993. count_vm_event(THP_FAULT_FALLBACK);
  994. if (is_huge_zero_pmd(orig_pmd)) {
  995. ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
  996. address, pmd, haddr);
  997. } else {
  998. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  999. pmd, orig_pmd, page, haddr);
  1000. if (ret & VM_FAULT_OOM)
  1001. split_huge_page(page);
  1002. put_page(page);
  1003. }
  1004. goto out;
  1005. }
  1006. count_vm_event(THP_FAULT_ALLOC);
  1007. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  1008. put_page(new_page);
  1009. if (page) {
  1010. split_huge_page(page);
  1011. put_page(page);
  1012. }
  1013. ret |= VM_FAULT_OOM;
  1014. goto out;
  1015. }
  1016. if (is_huge_zero_pmd(orig_pmd))
  1017. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  1018. else
  1019. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  1020. __SetPageUptodate(new_page);
  1021. mmun_start = haddr;
  1022. mmun_end = haddr + HPAGE_PMD_SIZE;
  1023. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1024. spin_lock(&mm->page_table_lock);
  1025. if (page)
  1026. put_page(page);
  1027. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  1028. spin_unlock(&mm->page_table_lock);
  1029. mem_cgroup_uncharge_page(new_page);
  1030. put_page(new_page);
  1031. goto out_mn;
  1032. } else {
  1033. pmd_t entry;
  1034. entry = mk_huge_pmd(new_page, vma);
  1035. pmdp_clear_flush(vma, haddr, pmd);
  1036. page_add_new_anon_rmap(new_page, vma, haddr);
  1037. set_pmd_at(mm, haddr, pmd, entry);
  1038. update_mmu_cache_pmd(vma, address, pmd);
  1039. if (is_huge_zero_pmd(orig_pmd)) {
  1040. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1041. put_huge_zero_page();
  1042. } else {
  1043. VM_BUG_ON(!PageHead(page));
  1044. page_remove_rmap(page);
  1045. put_page(page);
  1046. }
  1047. ret |= VM_FAULT_WRITE;
  1048. }
  1049. spin_unlock(&mm->page_table_lock);
  1050. out_mn:
  1051. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1052. out:
  1053. return ret;
  1054. out_unlock:
  1055. spin_unlock(&mm->page_table_lock);
  1056. return ret;
  1057. }
  1058. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1059. unsigned long addr,
  1060. pmd_t *pmd,
  1061. unsigned int flags)
  1062. {
  1063. struct mm_struct *mm = vma->vm_mm;
  1064. struct page *page = NULL;
  1065. assert_spin_locked(&mm->page_table_lock);
  1066. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  1067. goto out;
  1068. page = pmd_page(*pmd);
  1069. VM_BUG_ON(!PageHead(page));
  1070. if (flags & FOLL_TOUCH) {
  1071. pmd_t _pmd;
  1072. /*
  1073. * We should set the dirty bit only for FOLL_WRITE but
  1074. * for now the dirty bit in the pmd is meaningless.
  1075. * And if the dirty bit will become meaningful and
  1076. * we'll only set it with FOLL_WRITE, an atomic
  1077. * set_bit will be required on the pmd to set the
  1078. * young bit, instead of the current set_pmd_at.
  1079. */
  1080. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  1081. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  1082. }
  1083. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1084. if (page->mapping && trylock_page(page)) {
  1085. lru_add_drain();
  1086. if (page->mapping)
  1087. mlock_vma_page(page);
  1088. unlock_page(page);
  1089. }
  1090. }
  1091. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1092. VM_BUG_ON(!PageCompound(page));
  1093. if (flags & FOLL_GET)
  1094. get_page_foll(page);
  1095. out:
  1096. return page;
  1097. }
  1098. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1099. pmd_t *pmd, unsigned long addr)
  1100. {
  1101. int ret = 0;
  1102. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1103. struct page *page;
  1104. pgtable_t pgtable;
  1105. pmd_t orig_pmd;
  1106. pgtable = pgtable_trans_huge_withdraw(tlb->mm);
  1107. orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
  1108. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1109. if (is_huge_zero_pmd(orig_pmd)) {
  1110. tlb->mm->nr_ptes--;
  1111. spin_unlock(&tlb->mm->page_table_lock);
  1112. put_huge_zero_page();
  1113. } else {
  1114. page = pmd_page(orig_pmd);
  1115. page_remove_rmap(page);
  1116. VM_BUG_ON(page_mapcount(page) < 0);
  1117. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1118. VM_BUG_ON(!PageHead(page));
  1119. tlb->mm->nr_ptes--;
  1120. spin_unlock(&tlb->mm->page_table_lock);
  1121. tlb_remove_page(tlb, page);
  1122. }
  1123. pte_free(tlb->mm, pgtable);
  1124. ret = 1;
  1125. }
  1126. return ret;
  1127. }
  1128. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1129. unsigned long addr, unsigned long end,
  1130. unsigned char *vec)
  1131. {
  1132. int ret = 0;
  1133. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1134. /*
  1135. * All logical pages in the range are present
  1136. * if backed by a huge page.
  1137. */
  1138. spin_unlock(&vma->vm_mm->page_table_lock);
  1139. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  1140. ret = 1;
  1141. }
  1142. return ret;
  1143. }
  1144. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  1145. unsigned long old_addr,
  1146. unsigned long new_addr, unsigned long old_end,
  1147. pmd_t *old_pmd, pmd_t *new_pmd)
  1148. {
  1149. int ret = 0;
  1150. pmd_t pmd;
  1151. struct mm_struct *mm = vma->vm_mm;
  1152. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1153. (new_addr & ~HPAGE_PMD_MASK) ||
  1154. old_end - old_addr < HPAGE_PMD_SIZE ||
  1155. (new_vma->vm_flags & VM_NOHUGEPAGE))
  1156. goto out;
  1157. /*
  1158. * The destination pmd shouldn't be established, free_pgtables()
  1159. * should have release it.
  1160. */
  1161. if (WARN_ON(!pmd_none(*new_pmd))) {
  1162. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1163. goto out;
  1164. }
  1165. ret = __pmd_trans_huge_lock(old_pmd, vma);
  1166. if (ret == 1) {
  1167. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  1168. VM_BUG_ON(!pmd_none(*new_pmd));
  1169. set_pmd_at(mm, new_addr, new_pmd, pmd);
  1170. spin_unlock(&mm->page_table_lock);
  1171. }
  1172. out:
  1173. return ret;
  1174. }
  1175. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1176. unsigned long addr, pgprot_t newprot)
  1177. {
  1178. struct mm_struct *mm = vma->vm_mm;
  1179. int ret = 0;
  1180. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1181. pmd_t entry;
  1182. entry = pmdp_get_and_clear(mm, addr, pmd);
  1183. entry = pmd_modify(entry, newprot);
  1184. BUG_ON(pmd_write(entry));
  1185. set_pmd_at(mm, addr, pmd, entry);
  1186. spin_unlock(&vma->vm_mm->page_table_lock);
  1187. ret = 1;
  1188. }
  1189. return ret;
  1190. }
  1191. /*
  1192. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  1193. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  1194. *
  1195. * Note that if it returns 1, this routine returns without unlocking page
  1196. * table locks. So callers must unlock them.
  1197. */
  1198. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1199. {
  1200. spin_lock(&vma->vm_mm->page_table_lock);
  1201. if (likely(pmd_trans_huge(*pmd))) {
  1202. if (unlikely(pmd_trans_splitting(*pmd))) {
  1203. spin_unlock(&vma->vm_mm->page_table_lock);
  1204. wait_split_huge_page(vma->anon_vma, pmd);
  1205. return -1;
  1206. } else {
  1207. /* Thp mapped by 'pmd' is stable, so we can
  1208. * handle it as it is. */
  1209. return 1;
  1210. }
  1211. }
  1212. spin_unlock(&vma->vm_mm->page_table_lock);
  1213. return 0;
  1214. }
  1215. pmd_t *page_check_address_pmd(struct page *page,
  1216. struct mm_struct *mm,
  1217. unsigned long address,
  1218. enum page_check_address_pmd_flag flag)
  1219. {
  1220. pmd_t *pmd, *ret = NULL;
  1221. if (address & ~HPAGE_PMD_MASK)
  1222. goto out;
  1223. pmd = mm_find_pmd(mm, address);
  1224. if (!pmd)
  1225. goto out;
  1226. if (pmd_none(*pmd))
  1227. goto out;
  1228. if (pmd_page(*pmd) != page)
  1229. goto out;
  1230. /*
  1231. * split_vma() may create temporary aliased mappings. There is
  1232. * no risk as long as all huge pmd are found and have their
  1233. * splitting bit set before __split_huge_page_refcount
  1234. * runs. Finding the same huge pmd more than once during the
  1235. * same rmap walk is not a problem.
  1236. */
  1237. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1238. pmd_trans_splitting(*pmd))
  1239. goto out;
  1240. if (pmd_trans_huge(*pmd)) {
  1241. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1242. !pmd_trans_splitting(*pmd));
  1243. ret = pmd;
  1244. }
  1245. out:
  1246. return ret;
  1247. }
  1248. static int __split_huge_page_splitting(struct page *page,
  1249. struct vm_area_struct *vma,
  1250. unsigned long address)
  1251. {
  1252. struct mm_struct *mm = vma->vm_mm;
  1253. pmd_t *pmd;
  1254. int ret = 0;
  1255. /* For mmu_notifiers */
  1256. const unsigned long mmun_start = address;
  1257. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1258. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1259. spin_lock(&mm->page_table_lock);
  1260. pmd = page_check_address_pmd(page, mm, address,
  1261. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1262. if (pmd) {
  1263. /*
  1264. * We can't temporarily set the pmd to null in order
  1265. * to split it, the pmd must remain marked huge at all
  1266. * times or the VM won't take the pmd_trans_huge paths
  1267. * and it won't wait on the anon_vma->root->mutex to
  1268. * serialize against split_huge_page*.
  1269. */
  1270. pmdp_splitting_flush(vma, address, pmd);
  1271. ret = 1;
  1272. }
  1273. spin_unlock(&mm->page_table_lock);
  1274. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1275. return ret;
  1276. }
  1277. static void __split_huge_page_refcount(struct page *page)
  1278. {
  1279. int i;
  1280. struct zone *zone = page_zone(page);
  1281. struct lruvec *lruvec;
  1282. int tail_count = 0;
  1283. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1284. spin_lock_irq(&zone->lru_lock);
  1285. lruvec = mem_cgroup_page_lruvec(page, zone);
  1286. compound_lock(page);
  1287. /* complete memcg works before add pages to LRU */
  1288. mem_cgroup_split_huge_fixup(page);
  1289. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1290. struct page *page_tail = page + i;
  1291. /* tail_page->_mapcount cannot change */
  1292. BUG_ON(page_mapcount(page_tail) < 0);
  1293. tail_count += page_mapcount(page_tail);
  1294. /* check for overflow */
  1295. BUG_ON(tail_count < 0);
  1296. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1297. /*
  1298. * tail_page->_count is zero and not changing from
  1299. * under us. But get_page_unless_zero() may be running
  1300. * from under us on the tail_page. If we used
  1301. * atomic_set() below instead of atomic_add(), we
  1302. * would then run atomic_set() concurrently with
  1303. * get_page_unless_zero(), and atomic_set() is
  1304. * implemented in C not using locked ops. spin_unlock
  1305. * on x86 sometime uses locked ops because of PPro
  1306. * errata 66, 92, so unless somebody can guarantee
  1307. * atomic_set() here would be safe on all archs (and
  1308. * not only on x86), it's safer to use atomic_add().
  1309. */
  1310. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1311. &page_tail->_count);
  1312. /* after clearing PageTail the gup refcount can be released */
  1313. smp_mb();
  1314. /*
  1315. * retain hwpoison flag of the poisoned tail page:
  1316. * fix for the unsuitable process killed on Guest Machine(KVM)
  1317. * by the memory-failure.
  1318. */
  1319. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1320. page_tail->flags |= (page->flags &
  1321. ((1L << PG_referenced) |
  1322. (1L << PG_swapbacked) |
  1323. (1L << PG_mlocked) |
  1324. (1L << PG_uptodate)));
  1325. page_tail->flags |= (1L << PG_dirty);
  1326. /* clear PageTail before overwriting first_page */
  1327. smp_wmb();
  1328. /*
  1329. * __split_huge_page_splitting() already set the
  1330. * splitting bit in all pmd that could map this
  1331. * hugepage, that will ensure no CPU can alter the
  1332. * mapcount on the head page. The mapcount is only
  1333. * accounted in the head page and it has to be
  1334. * transferred to all tail pages in the below code. So
  1335. * for this code to be safe, the split the mapcount
  1336. * can't change. But that doesn't mean userland can't
  1337. * keep changing and reading the page contents while
  1338. * we transfer the mapcount, so the pmd splitting
  1339. * status is achieved setting a reserved bit in the
  1340. * pmd, not by clearing the present bit.
  1341. */
  1342. page_tail->_mapcount = page->_mapcount;
  1343. BUG_ON(page_tail->mapping);
  1344. page_tail->mapping = page->mapping;
  1345. page_tail->index = page->index + i;
  1346. BUG_ON(!PageAnon(page_tail));
  1347. BUG_ON(!PageUptodate(page_tail));
  1348. BUG_ON(!PageDirty(page_tail));
  1349. BUG_ON(!PageSwapBacked(page_tail));
  1350. lru_add_page_tail(page, page_tail, lruvec);
  1351. }
  1352. atomic_sub(tail_count, &page->_count);
  1353. BUG_ON(atomic_read(&page->_count) <= 0);
  1354. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1355. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1356. ClearPageCompound(page);
  1357. compound_unlock(page);
  1358. spin_unlock_irq(&zone->lru_lock);
  1359. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1360. struct page *page_tail = page + i;
  1361. BUG_ON(page_count(page_tail) <= 0);
  1362. /*
  1363. * Tail pages may be freed if there wasn't any mapping
  1364. * like if add_to_swap() is running on a lru page that
  1365. * had its mapping zapped. And freeing these pages
  1366. * requires taking the lru_lock so we do the put_page
  1367. * of the tail pages after the split is complete.
  1368. */
  1369. put_page(page_tail);
  1370. }
  1371. /*
  1372. * Only the head page (now become a regular page) is required
  1373. * to be pinned by the caller.
  1374. */
  1375. BUG_ON(page_count(page) <= 0);
  1376. }
  1377. static int __split_huge_page_map(struct page *page,
  1378. struct vm_area_struct *vma,
  1379. unsigned long address)
  1380. {
  1381. struct mm_struct *mm = vma->vm_mm;
  1382. pmd_t *pmd, _pmd;
  1383. int ret = 0, i;
  1384. pgtable_t pgtable;
  1385. unsigned long haddr;
  1386. spin_lock(&mm->page_table_lock);
  1387. pmd = page_check_address_pmd(page, mm, address,
  1388. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1389. if (pmd) {
  1390. pgtable = pgtable_trans_huge_withdraw(mm);
  1391. pmd_populate(mm, &_pmd, pgtable);
  1392. haddr = address;
  1393. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1394. pte_t *pte, entry;
  1395. BUG_ON(PageCompound(page+i));
  1396. entry = mk_pte(page + i, vma->vm_page_prot);
  1397. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1398. if (!pmd_write(*pmd))
  1399. entry = pte_wrprotect(entry);
  1400. else
  1401. BUG_ON(page_mapcount(page) != 1);
  1402. if (!pmd_young(*pmd))
  1403. entry = pte_mkold(entry);
  1404. pte = pte_offset_map(&_pmd, haddr);
  1405. BUG_ON(!pte_none(*pte));
  1406. set_pte_at(mm, haddr, pte, entry);
  1407. pte_unmap(pte);
  1408. }
  1409. smp_wmb(); /* make pte visible before pmd */
  1410. /*
  1411. * Up to this point the pmd is present and huge and
  1412. * userland has the whole access to the hugepage
  1413. * during the split (which happens in place). If we
  1414. * overwrite the pmd with the not-huge version
  1415. * pointing to the pte here (which of course we could
  1416. * if all CPUs were bug free), userland could trigger
  1417. * a small page size TLB miss on the small sized TLB
  1418. * while the hugepage TLB entry is still established
  1419. * in the huge TLB. Some CPU doesn't like that. See
  1420. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1421. * Erratum 383 on page 93. Intel should be safe but is
  1422. * also warns that it's only safe if the permission
  1423. * and cache attributes of the two entries loaded in
  1424. * the two TLB is identical (which should be the case
  1425. * here). But it is generally safer to never allow
  1426. * small and huge TLB entries for the same virtual
  1427. * address to be loaded simultaneously. So instead of
  1428. * doing "pmd_populate(); flush_tlb_range();" we first
  1429. * mark the current pmd notpresent (atomically because
  1430. * here the pmd_trans_huge and pmd_trans_splitting
  1431. * must remain set at all times on the pmd until the
  1432. * split is complete for this pmd), then we flush the
  1433. * SMP TLB and finally we write the non-huge version
  1434. * of the pmd entry with pmd_populate.
  1435. */
  1436. pmdp_invalidate(vma, address, pmd);
  1437. pmd_populate(mm, pmd, pgtable);
  1438. ret = 1;
  1439. }
  1440. spin_unlock(&mm->page_table_lock);
  1441. return ret;
  1442. }
  1443. /* must be called with anon_vma->root->mutex hold */
  1444. static void __split_huge_page(struct page *page,
  1445. struct anon_vma *anon_vma)
  1446. {
  1447. int mapcount, mapcount2;
  1448. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1449. struct anon_vma_chain *avc;
  1450. BUG_ON(!PageHead(page));
  1451. BUG_ON(PageTail(page));
  1452. mapcount = 0;
  1453. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1454. struct vm_area_struct *vma = avc->vma;
  1455. unsigned long addr = vma_address(page, vma);
  1456. BUG_ON(is_vma_temporary_stack(vma));
  1457. mapcount += __split_huge_page_splitting(page, vma, addr);
  1458. }
  1459. /*
  1460. * It is critical that new vmas are added to the tail of the
  1461. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1462. * and establishes a child pmd before
  1463. * __split_huge_page_splitting() freezes the parent pmd (so if
  1464. * we fail to prevent copy_huge_pmd() from running until the
  1465. * whole __split_huge_page() is complete), we will still see
  1466. * the newly established pmd of the child later during the
  1467. * walk, to be able to set it as pmd_trans_splitting too.
  1468. */
  1469. if (mapcount != page_mapcount(page))
  1470. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1471. mapcount, page_mapcount(page));
  1472. BUG_ON(mapcount != page_mapcount(page));
  1473. __split_huge_page_refcount(page);
  1474. mapcount2 = 0;
  1475. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1476. struct vm_area_struct *vma = avc->vma;
  1477. unsigned long addr = vma_address(page, vma);
  1478. BUG_ON(is_vma_temporary_stack(vma));
  1479. mapcount2 += __split_huge_page_map(page, vma, addr);
  1480. }
  1481. if (mapcount != mapcount2)
  1482. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1483. mapcount, mapcount2, page_mapcount(page));
  1484. BUG_ON(mapcount != mapcount2);
  1485. }
  1486. int split_huge_page(struct page *page)
  1487. {
  1488. struct anon_vma *anon_vma;
  1489. int ret = 1;
  1490. BUG_ON(is_huge_zero_pfn(page_to_pfn(page)));
  1491. BUG_ON(!PageAnon(page));
  1492. anon_vma = page_lock_anon_vma(page);
  1493. if (!anon_vma)
  1494. goto out;
  1495. ret = 0;
  1496. if (!PageCompound(page))
  1497. goto out_unlock;
  1498. BUG_ON(!PageSwapBacked(page));
  1499. __split_huge_page(page, anon_vma);
  1500. count_vm_event(THP_SPLIT);
  1501. BUG_ON(PageCompound(page));
  1502. out_unlock:
  1503. page_unlock_anon_vma(anon_vma);
  1504. out:
  1505. return ret;
  1506. }
  1507. #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1508. int hugepage_madvise(struct vm_area_struct *vma,
  1509. unsigned long *vm_flags, int advice)
  1510. {
  1511. struct mm_struct *mm = vma->vm_mm;
  1512. switch (advice) {
  1513. case MADV_HUGEPAGE:
  1514. /*
  1515. * Be somewhat over-protective like KSM for now!
  1516. */
  1517. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1518. return -EINVAL;
  1519. if (mm->def_flags & VM_NOHUGEPAGE)
  1520. return -EINVAL;
  1521. *vm_flags &= ~VM_NOHUGEPAGE;
  1522. *vm_flags |= VM_HUGEPAGE;
  1523. /*
  1524. * If the vma become good for khugepaged to scan,
  1525. * register it here without waiting a page fault that
  1526. * may not happen any time soon.
  1527. */
  1528. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1529. return -ENOMEM;
  1530. break;
  1531. case MADV_NOHUGEPAGE:
  1532. /*
  1533. * Be somewhat over-protective like KSM for now!
  1534. */
  1535. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1536. return -EINVAL;
  1537. *vm_flags &= ~VM_HUGEPAGE;
  1538. *vm_flags |= VM_NOHUGEPAGE;
  1539. /*
  1540. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1541. * this vma even if we leave the mm registered in khugepaged if
  1542. * it got registered before VM_NOHUGEPAGE was set.
  1543. */
  1544. break;
  1545. }
  1546. return 0;
  1547. }
  1548. static int __init khugepaged_slab_init(void)
  1549. {
  1550. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1551. sizeof(struct mm_slot),
  1552. __alignof__(struct mm_slot), 0, NULL);
  1553. if (!mm_slot_cache)
  1554. return -ENOMEM;
  1555. return 0;
  1556. }
  1557. static void __init khugepaged_slab_free(void)
  1558. {
  1559. kmem_cache_destroy(mm_slot_cache);
  1560. mm_slot_cache = NULL;
  1561. }
  1562. static inline struct mm_slot *alloc_mm_slot(void)
  1563. {
  1564. if (!mm_slot_cache) /* initialization failed */
  1565. return NULL;
  1566. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1567. }
  1568. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1569. {
  1570. kmem_cache_free(mm_slot_cache, mm_slot);
  1571. }
  1572. static int __init mm_slots_hash_init(void)
  1573. {
  1574. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1575. GFP_KERNEL);
  1576. if (!mm_slots_hash)
  1577. return -ENOMEM;
  1578. return 0;
  1579. }
  1580. #if 0
  1581. static void __init mm_slots_hash_free(void)
  1582. {
  1583. kfree(mm_slots_hash);
  1584. mm_slots_hash = NULL;
  1585. }
  1586. #endif
  1587. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1588. {
  1589. struct mm_slot *mm_slot;
  1590. struct hlist_head *bucket;
  1591. struct hlist_node *node;
  1592. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1593. % MM_SLOTS_HASH_HEADS];
  1594. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1595. if (mm == mm_slot->mm)
  1596. return mm_slot;
  1597. }
  1598. return NULL;
  1599. }
  1600. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1601. struct mm_slot *mm_slot)
  1602. {
  1603. struct hlist_head *bucket;
  1604. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1605. % MM_SLOTS_HASH_HEADS];
  1606. mm_slot->mm = mm;
  1607. hlist_add_head(&mm_slot->hash, bucket);
  1608. }
  1609. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1610. {
  1611. return atomic_read(&mm->mm_users) == 0;
  1612. }
  1613. int __khugepaged_enter(struct mm_struct *mm)
  1614. {
  1615. struct mm_slot *mm_slot;
  1616. int wakeup;
  1617. mm_slot = alloc_mm_slot();
  1618. if (!mm_slot)
  1619. return -ENOMEM;
  1620. /* __khugepaged_exit() must not run from under us */
  1621. VM_BUG_ON(khugepaged_test_exit(mm));
  1622. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1623. free_mm_slot(mm_slot);
  1624. return 0;
  1625. }
  1626. spin_lock(&khugepaged_mm_lock);
  1627. insert_to_mm_slots_hash(mm, mm_slot);
  1628. /*
  1629. * Insert just behind the scanning cursor, to let the area settle
  1630. * down a little.
  1631. */
  1632. wakeup = list_empty(&khugepaged_scan.mm_head);
  1633. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1634. spin_unlock(&khugepaged_mm_lock);
  1635. atomic_inc(&mm->mm_count);
  1636. if (wakeup)
  1637. wake_up_interruptible(&khugepaged_wait);
  1638. return 0;
  1639. }
  1640. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1641. {
  1642. unsigned long hstart, hend;
  1643. if (!vma->anon_vma)
  1644. /*
  1645. * Not yet faulted in so we will register later in the
  1646. * page fault if needed.
  1647. */
  1648. return 0;
  1649. if (vma->vm_ops)
  1650. /* khugepaged not yet working on file or special mappings */
  1651. return 0;
  1652. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1653. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1654. hend = vma->vm_end & HPAGE_PMD_MASK;
  1655. if (hstart < hend)
  1656. return khugepaged_enter(vma);
  1657. return 0;
  1658. }
  1659. void __khugepaged_exit(struct mm_struct *mm)
  1660. {
  1661. struct mm_slot *mm_slot;
  1662. int free = 0;
  1663. spin_lock(&khugepaged_mm_lock);
  1664. mm_slot = get_mm_slot(mm);
  1665. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1666. hlist_del(&mm_slot->hash);
  1667. list_del(&mm_slot->mm_node);
  1668. free = 1;
  1669. }
  1670. spin_unlock(&khugepaged_mm_lock);
  1671. if (free) {
  1672. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1673. free_mm_slot(mm_slot);
  1674. mmdrop(mm);
  1675. } else if (mm_slot) {
  1676. /*
  1677. * This is required to serialize against
  1678. * khugepaged_test_exit() (which is guaranteed to run
  1679. * under mmap sem read mode). Stop here (after we
  1680. * return all pagetables will be destroyed) until
  1681. * khugepaged has finished working on the pagetables
  1682. * under the mmap_sem.
  1683. */
  1684. down_write(&mm->mmap_sem);
  1685. up_write(&mm->mmap_sem);
  1686. }
  1687. }
  1688. static void release_pte_page(struct page *page)
  1689. {
  1690. /* 0 stands for page_is_file_cache(page) == false */
  1691. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1692. unlock_page(page);
  1693. putback_lru_page(page);
  1694. }
  1695. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1696. {
  1697. while (--_pte >= pte) {
  1698. pte_t pteval = *_pte;
  1699. if (!pte_none(pteval))
  1700. release_pte_page(pte_page(pteval));
  1701. }
  1702. }
  1703. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1704. unsigned long address,
  1705. pte_t *pte)
  1706. {
  1707. struct page *page;
  1708. pte_t *_pte;
  1709. int referenced = 0, none = 0;
  1710. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1711. _pte++, address += PAGE_SIZE) {
  1712. pte_t pteval = *_pte;
  1713. if (pte_none(pteval)) {
  1714. if (++none <= khugepaged_max_ptes_none)
  1715. continue;
  1716. else
  1717. goto out;
  1718. }
  1719. if (!pte_present(pteval) || !pte_write(pteval))
  1720. goto out;
  1721. page = vm_normal_page(vma, address, pteval);
  1722. if (unlikely(!page))
  1723. goto out;
  1724. VM_BUG_ON(PageCompound(page));
  1725. BUG_ON(!PageAnon(page));
  1726. VM_BUG_ON(!PageSwapBacked(page));
  1727. /* cannot use mapcount: can't collapse if there's a gup pin */
  1728. if (page_count(page) != 1)
  1729. goto out;
  1730. /*
  1731. * We can do it before isolate_lru_page because the
  1732. * page can't be freed from under us. NOTE: PG_lock
  1733. * is needed to serialize against split_huge_page
  1734. * when invoked from the VM.
  1735. */
  1736. if (!trylock_page(page))
  1737. goto out;
  1738. /*
  1739. * Isolate the page to avoid collapsing an hugepage
  1740. * currently in use by the VM.
  1741. */
  1742. if (isolate_lru_page(page)) {
  1743. unlock_page(page);
  1744. goto out;
  1745. }
  1746. /* 0 stands for page_is_file_cache(page) == false */
  1747. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1748. VM_BUG_ON(!PageLocked(page));
  1749. VM_BUG_ON(PageLRU(page));
  1750. /* If there is no mapped pte young don't collapse the page */
  1751. if (pte_young(pteval) || PageReferenced(page) ||
  1752. mmu_notifier_test_young(vma->vm_mm, address))
  1753. referenced = 1;
  1754. }
  1755. if (likely(referenced))
  1756. return 1;
  1757. out:
  1758. release_pte_pages(pte, _pte);
  1759. return 0;
  1760. }
  1761. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1762. struct vm_area_struct *vma,
  1763. unsigned long address,
  1764. spinlock_t *ptl)
  1765. {
  1766. pte_t *_pte;
  1767. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1768. pte_t pteval = *_pte;
  1769. struct page *src_page;
  1770. if (pte_none(pteval)) {
  1771. clear_user_highpage(page, address);
  1772. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1773. } else {
  1774. src_page = pte_page(pteval);
  1775. copy_user_highpage(page, src_page, address, vma);
  1776. VM_BUG_ON(page_mapcount(src_page) != 1);
  1777. release_pte_page(src_page);
  1778. /*
  1779. * ptl mostly unnecessary, but preempt has to
  1780. * be disabled to update the per-cpu stats
  1781. * inside page_remove_rmap().
  1782. */
  1783. spin_lock(ptl);
  1784. /*
  1785. * paravirt calls inside pte_clear here are
  1786. * superfluous.
  1787. */
  1788. pte_clear(vma->vm_mm, address, _pte);
  1789. page_remove_rmap(src_page);
  1790. spin_unlock(ptl);
  1791. free_page_and_swap_cache(src_page);
  1792. }
  1793. address += PAGE_SIZE;
  1794. page++;
  1795. }
  1796. }
  1797. static void khugepaged_alloc_sleep(void)
  1798. {
  1799. wait_event_freezable_timeout(khugepaged_wait, false,
  1800. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1801. }
  1802. #ifdef CONFIG_NUMA
  1803. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1804. {
  1805. if (IS_ERR(*hpage)) {
  1806. if (!*wait)
  1807. return false;
  1808. *wait = false;
  1809. *hpage = NULL;
  1810. khugepaged_alloc_sleep();
  1811. } else if (*hpage) {
  1812. put_page(*hpage);
  1813. *hpage = NULL;
  1814. }
  1815. return true;
  1816. }
  1817. static struct page
  1818. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1819. struct vm_area_struct *vma, unsigned long address,
  1820. int node)
  1821. {
  1822. VM_BUG_ON(*hpage);
  1823. /*
  1824. * Allocate the page while the vma is still valid and under
  1825. * the mmap_sem read mode so there is no memory allocation
  1826. * later when we take the mmap_sem in write mode. This is more
  1827. * friendly behavior (OTOH it may actually hide bugs) to
  1828. * filesystems in userland with daemons allocating memory in
  1829. * the userland I/O paths. Allocating memory with the
  1830. * mmap_sem in read mode is good idea also to allow greater
  1831. * scalability.
  1832. */
  1833. *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1834. node, __GFP_OTHER_NODE);
  1835. /*
  1836. * After allocating the hugepage, release the mmap_sem read lock in
  1837. * preparation for taking it in write mode.
  1838. */
  1839. up_read(&mm->mmap_sem);
  1840. if (unlikely(!*hpage)) {
  1841. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1842. *hpage = ERR_PTR(-ENOMEM);
  1843. return NULL;
  1844. }
  1845. count_vm_event(THP_COLLAPSE_ALLOC);
  1846. return *hpage;
  1847. }
  1848. #else
  1849. static struct page *khugepaged_alloc_hugepage(bool *wait)
  1850. {
  1851. struct page *hpage;
  1852. do {
  1853. hpage = alloc_hugepage(khugepaged_defrag());
  1854. if (!hpage) {
  1855. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1856. if (!*wait)
  1857. return NULL;
  1858. *wait = false;
  1859. khugepaged_alloc_sleep();
  1860. } else
  1861. count_vm_event(THP_COLLAPSE_ALLOC);
  1862. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  1863. return hpage;
  1864. }
  1865. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1866. {
  1867. if (!*hpage)
  1868. *hpage = khugepaged_alloc_hugepage(wait);
  1869. if (unlikely(!*hpage))
  1870. return false;
  1871. return true;
  1872. }
  1873. static struct page
  1874. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1875. struct vm_area_struct *vma, unsigned long address,
  1876. int node)
  1877. {
  1878. up_read(&mm->mmap_sem);
  1879. VM_BUG_ON(!*hpage);
  1880. return *hpage;
  1881. }
  1882. #endif
  1883. static bool hugepage_vma_check(struct vm_area_struct *vma)
  1884. {
  1885. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1886. (vma->vm_flags & VM_NOHUGEPAGE))
  1887. return false;
  1888. if (!vma->anon_vma || vma->vm_ops)
  1889. return false;
  1890. if (is_vma_temporary_stack(vma))
  1891. return false;
  1892. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1893. return true;
  1894. }
  1895. static void collapse_huge_page(struct mm_struct *mm,
  1896. unsigned long address,
  1897. struct page **hpage,
  1898. struct vm_area_struct *vma,
  1899. int node)
  1900. {
  1901. pmd_t *pmd, _pmd;
  1902. pte_t *pte;
  1903. pgtable_t pgtable;
  1904. struct page *new_page;
  1905. spinlock_t *ptl;
  1906. int isolated;
  1907. unsigned long hstart, hend;
  1908. unsigned long mmun_start; /* For mmu_notifiers */
  1909. unsigned long mmun_end; /* For mmu_notifiers */
  1910. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1911. /* release the mmap_sem read lock. */
  1912. new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
  1913. if (!new_page)
  1914. return;
  1915. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
  1916. return;
  1917. /*
  1918. * Prevent all access to pagetables with the exception of
  1919. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1920. * handled by the anon_vma lock + PG_lock.
  1921. */
  1922. down_write(&mm->mmap_sem);
  1923. if (unlikely(khugepaged_test_exit(mm)))
  1924. goto out;
  1925. vma = find_vma(mm, address);
  1926. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1927. hend = vma->vm_end & HPAGE_PMD_MASK;
  1928. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1929. goto out;
  1930. if (!hugepage_vma_check(vma))
  1931. goto out;
  1932. pmd = mm_find_pmd(mm, address);
  1933. if (!pmd)
  1934. goto out;
  1935. if (pmd_trans_huge(*pmd))
  1936. goto out;
  1937. anon_vma_lock(vma->anon_vma);
  1938. pte = pte_offset_map(pmd, address);
  1939. ptl = pte_lockptr(mm, pmd);
  1940. mmun_start = address;
  1941. mmun_end = address + HPAGE_PMD_SIZE;
  1942. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1943. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1944. /*
  1945. * After this gup_fast can't run anymore. This also removes
  1946. * any huge TLB entry from the CPU so we won't allow
  1947. * huge and small TLB entries for the same virtual address
  1948. * to avoid the risk of CPU bugs in that area.
  1949. */
  1950. _pmd = pmdp_clear_flush(vma, address, pmd);
  1951. spin_unlock(&mm->page_table_lock);
  1952. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1953. spin_lock(ptl);
  1954. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1955. spin_unlock(ptl);
  1956. if (unlikely(!isolated)) {
  1957. pte_unmap(pte);
  1958. spin_lock(&mm->page_table_lock);
  1959. BUG_ON(!pmd_none(*pmd));
  1960. set_pmd_at(mm, address, pmd, _pmd);
  1961. spin_unlock(&mm->page_table_lock);
  1962. anon_vma_unlock(vma->anon_vma);
  1963. goto out;
  1964. }
  1965. /*
  1966. * All pages are isolated and locked so anon_vma rmap
  1967. * can't run anymore.
  1968. */
  1969. anon_vma_unlock(vma->anon_vma);
  1970. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1971. pte_unmap(pte);
  1972. __SetPageUptodate(new_page);
  1973. pgtable = pmd_pgtable(_pmd);
  1974. _pmd = mk_huge_pmd(new_page, vma);
  1975. /*
  1976. * spin_lock() below is not the equivalent of smp_wmb(), so
  1977. * this is needed to avoid the copy_huge_page writes to become
  1978. * visible after the set_pmd_at() write.
  1979. */
  1980. smp_wmb();
  1981. spin_lock(&mm->page_table_lock);
  1982. BUG_ON(!pmd_none(*pmd));
  1983. page_add_new_anon_rmap(new_page, vma, address);
  1984. set_pmd_at(mm, address, pmd, _pmd);
  1985. update_mmu_cache_pmd(vma, address, pmd);
  1986. pgtable_trans_huge_deposit(mm, pgtable);
  1987. spin_unlock(&mm->page_table_lock);
  1988. *hpage = NULL;
  1989. khugepaged_pages_collapsed++;
  1990. out_up_write:
  1991. up_write(&mm->mmap_sem);
  1992. return;
  1993. out:
  1994. mem_cgroup_uncharge_page(new_page);
  1995. goto out_up_write;
  1996. }
  1997. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1998. struct vm_area_struct *vma,
  1999. unsigned long address,
  2000. struct page **hpage)
  2001. {
  2002. pmd_t *pmd;
  2003. pte_t *pte, *_pte;
  2004. int ret = 0, referenced = 0, none = 0;
  2005. struct page *page;
  2006. unsigned long _address;
  2007. spinlock_t *ptl;
  2008. int node = -1;
  2009. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2010. pmd = mm_find_pmd(mm, address);
  2011. if (!pmd)
  2012. goto out;
  2013. if (pmd_trans_huge(*pmd))
  2014. goto out;
  2015. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2016. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  2017. _pte++, _address += PAGE_SIZE) {
  2018. pte_t pteval = *_pte;
  2019. if (pte_none(pteval)) {
  2020. if (++none <= khugepaged_max_ptes_none)
  2021. continue;
  2022. else
  2023. goto out_unmap;
  2024. }
  2025. if (!pte_present(pteval) || !pte_write(pteval))
  2026. goto out_unmap;
  2027. page = vm_normal_page(vma, _address, pteval);
  2028. if (unlikely(!page))
  2029. goto out_unmap;
  2030. /*
  2031. * Chose the node of the first page. This could
  2032. * be more sophisticated and look at more pages,
  2033. * but isn't for now.
  2034. */
  2035. if (node == -1)
  2036. node = page_to_nid(page);
  2037. VM_BUG_ON(PageCompound(page));
  2038. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  2039. goto out_unmap;
  2040. /* cannot use mapcount: can't collapse if there's a gup pin */
  2041. if (page_count(page) != 1)
  2042. goto out_unmap;
  2043. if (pte_young(pteval) || PageReferenced(page) ||
  2044. mmu_notifier_test_young(vma->vm_mm, address))
  2045. referenced = 1;
  2046. }
  2047. if (referenced)
  2048. ret = 1;
  2049. out_unmap:
  2050. pte_unmap_unlock(pte, ptl);
  2051. if (ret)
  2052. /* collapse_huge_page will return with the mmap_sem released */
  2053. collapse_huge_page(mm, address, hpage, vma, node);
  2054. out:
  2055. return ret;
  2056. }
  2057. static void collect_mm_slot(struct mm_slot *mm_slot)
  2058. {
  2059. struct mm_struct *mm = mm_slot->mm;
  2060. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2061. if (khugepaged_test_exit(mm)) {
  2062. /* free mm_slot */
  2063. hlist_del(&mm_slot->hash);
  2064. list_del(&mm_slot->mm_node);
  2065. /*
  2066. * Not strictly needed because the mm exited already.
  2067. *
  2068. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  2069. */
  2070. /* khugepaged_mm_lock actually not necessary for the below */
  2071. free_mm_slot(mm_slot);
  2072. mmdrop(mm);
  2073. }
  2074. }
  2075. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  2076. struct page **hpage)
  2077. __releases(&khugepaged_mm_lock)
  2078. __acquires(&khugepaged_mm_lock)
  2079. {
  2080. struct mm_slot *mm_slot;
  2081. struct mm_struct *mm;
  2082. struct vm_area_struct *vma;
  2083. int progress = 0;
  2084. VM_BUG_ON(!pages);
  2085. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2086. if (khugepaged_scan.mm_slot)
  2087. mm_slot = khugepaged_scan.mm_slot;
  2088. else {
  2089. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  2090. struct mm_slot, mm_node);
  2091. khugepaged_scan.address = 0;
  2092. khugepaged_scan.mm_slot = mm_slot;
  2093. }
  2094. spin_unlock(&khugepaged_mm_lock);
  2095. mm = mm_slot->mm;
  2096. down_read(&mm->mmap_sem);
  2097. if (unlikely(khugepaged_test_exit(mm)))
  2098. vma = NULL;
  2099. else
  2100. vma = find_vma(mm, khugepaged_scan.address);
  2101. progress++;
  2102. for (; vma; vma = vma->vm_next) {
  2103. unsigned long hstart, hend;
  2104. cond_resched();
  2105. if (unlikely(khugepaged_test_exit(mm))) {
  2106. progress++;
  2107. break;
  2108. }
  2109. if (!hugepage_vma_check(vma)) {
  2110. skip:
  2111. progress++;
  2112. continue;
  2113. }
  2114. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2115. hend = vma->vm_end & HPAGE_PMD_MASK;
  2116. if (hstart >= hend)
  2117. goto skip;
  2118. if (khugepaged_scan.address > hend)
  2119. goto skip;
  2120. if (khugepaged_scan.address < hstart)
  2121. khugepaged_scan.address = hstart;
  2122. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2123. while (khugepaged_scan.address < hend) {
  2124. int ret;
  2125. cond_resched();
  2126. if (unlikely(khugepaged_test_exit(mm)))
  2127. goto breakouterloop;
  2128. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2129. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2130. hend);
  2131. ret = khugepaged_scan_pmd(mm, vma,
  2132. khugepaged_scan.address,
  2133. hpage);
  2134. /* move to next address */
  2135. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2136. progress += HPAGE_PMD_NR;
  2137. if (ret)
  2138. /* we released mmap_sem so break loop */
  2139. goto breakouterloop_mmap_sem;
  2140. if (progress >= pages)
  2141. goto breakouterloop;
  2142. }
  2143. }
  2144. breakouterloop:
  2145. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2146. breakouterloop_mmap_sem:
  2147. spin_lock(&khugepaged_mm_lock);
  2148. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2149. /*
  2150. * Release the current mm_slot if this mm is about to die, or
  2151. * if we scanned all vmas of this mm.
  2152. */
  2153. if (khugepaged_test_exit(mm) || !vma) {
  2154. /*
  2155. * Make sure that if mm_users is reaching zero while
  2156. * khugepaged runs here, khugepaged_exit will find
  2157. * mm_slot not pointing to the exiting mm.
  2158. */
  2159. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2160. khugepaged_scan.mm_slot = list_entry(
  2161. mm_slot->mm_node.next,
  2162. struct mm_slot, mm_node);
  2163. khugepaged_scan.address = 0;
  2164. } else {
  2165. khugepaged_scan.mm_slot = NULL;
  2166. khugepaged_full_scans++;
  2167. }
  2168. collect_mm_slot(mm_slot);
  2169. }
  2170. return progress;
  2171. }
  2172. static int khugepaged_has_work(void)
  2173. {
  2174. return !list_empty(&khugepaged_scan.mm_head) &&
  2175. khugepaged_enabled();
  2176. }
  2177. static int khugepaged_wait_event(void)
  2178. {
  2179. return !list_empty(&khugepaged_scan.mm_head) ||
  2180. kthread_should_stop();
  2181. }
  2182. static void khugepaged_do_scan(void)
  2183. {
  2184. struct page *hpage = NULL;
  2185. unsigned int progress = 0, pass_through_head = 0;
  2186. unsigned int pages = khugepaged_pages_to_scan;
  2187. bool wait = true;
  2188. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2189. while (progress < pages) {
  2190. if (!khugepaged_prealloc_page(&hpage, &wait))
  2191. break;
  2192. cond_resched();
  2193. if (unlikely(kthread_should_stop() || freezing(current)))
  2194. break;
  2195. spin_lock(&khugepaged_mm_lock);
  2196. if (!khugepaged_scan.mm_slot)
  2197. pass_through_head++;
  2198. if (khugepaged_has_work() &&
  2199. pass_through_head < 2)
  2200. progress += khugepaged_scan_mm_slot(pages - progress,
  2201. &hpage);
  2202. else
  2203. progress = pages;
  2204. spin_unlock(&khugepaged_mm_lock);
  2205. }
  2206. if (!IS_ERR_OR_NULL(hpage))
  2207. put_page(hpage);
  2208. }
  2209. static void khugepaged_wait_work(void)
  2210. {
  2211. try_to_freeze();
  2212. if (khugepaged_has_work()) {
  2213. if (!khugepaged_scan_sleep_millisecs)
  2214. return;
  2215. wait_event_freezable_timeout(khugepaged_wait,
  2216. kthread_should_stop(),
  2217. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2218. return;
  2219. }
  2220. if (khugepaged_enabled())
  2221. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2222. }
  2223. static int khugepaged(void *none)
  2224. {
  2225. struct mm_slot *mm_slot;
  2226. set_freezable();
  2227. set_user_nice(current, 19);
  2228. while (!kthread_should_stop()) {
  2229. khugepaged_do_scan();
  2230. khugepaged_wait_work();
  2231. }
  2232. spin_lock(&khugepaged_mm_lock);
  2233. mm_slot = khugepaged_scan.mm_slot;
  2234. khugepaged_scan.mm_slot = NULL;
  2235. if (mm_slot)
  2236. collect_mm_slot(mm_slot);
  2237. spin_unlock(&khugepaged_mm_lock);
  2238. return 0;
  2239. }
  2240. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  2241. unsigned long haddr, pmd_t *pmd)
  2242. {
  2243. struct mm_struct *mm = vma->vm_mm;
  2244. pgtable_t pgtable;
  2245. pmd_t _pmd;
  2246. int i;
  2247. pmdp_clear_flush(vma, haddr, pmd);
  2248. /* leave pmd empty until pte is filled */
  2249. pgtable = pgtable_trans_huge_withdraw(mm);
  2250. pmd_populate(mm, &_pmd, pgtable);
  2251. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  2252. pte_t *pte, entry;
  2253. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  2254. entry = pte_mkspecial(entry);
  2255. pte = pte_offset_map(&_pmd, haddr);
  2256. VM_BUG_ON(!pte_none(*pte));
  2257. set_pte_at(mm, haddr, pte, entry);
  2258. pte_unmap(pte);
  2259. }
  2260. smp_wmb(); /* make pte visible before pmd */
  2261. pmd_populate(mm, pmd, pgtable);
  2262. put_huge_zero_page();
  2263. }
  2264. void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
  2265. pmd_t *pmd)
  2266. {
  2267. struct page *page;
  2268. struct mm_struct *mm = vma->vm_mm;
  2269. unsigned long haddr = address & HPAGE_PMD_MASK;
  2270. unsigned long mmun_start; /* For mmu_notifiers */
  2271. unsigned long mmun_end; /* For mmu_notifiers */
  2272. BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
  2273. mmun_start = haddr;
  2274. mmun_end = haddr + HPAGE_PMD_SIZE;
  2275. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2276. spin_lock(&mm->page_table_lock);
  2277. if (unlikely(!pmd_trans_huge(*pmd))) {
  2278. spin_unlock(&mm->page_table_lock);
  2279. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2280. return;
  2281. }
  2282. if (is_huge_zero_pmd(*pmd)) {
  2283. __split_huge_zero_page_pmd(vma, haddr, pmd);
  2284. spin_unlock(&mm->page_table_lock);
  2285. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2286. return;
  2287. }
  2288. page = pmd_page(*pmd);
  2289. VM_BUG_ON(!page_count(page));
  2290. get_page(page);
  2291. spin_unlock(&mm->page_table_lock);
  2292. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2293. split_huge_page(page);
  2294. put_page(page);
  2295. BUG_ON(pmd_trans_huge(*pmd));
  2296. }
  2297. void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
  2298. pmd_t *pmd)
  2299. {
  2300. struct vm_area_struct *vma;
  2301. vma = find_vma(mm, address);
  2302. BUG_ON(vma == NULL);
  2303. split_huge_page_pmd(vma, address, pmd);
  2304. }
  2305. static void split_huge_page_address(struct mm_struct *mm,
  2306. unsigned long address)
  2307. {
  2308. pmd_t *pmd;
  2309. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2310. pmd = mm_find_pmd(mm, address);
  2311. if (!pmd)
  2312. return;
  2313. /*
  2314. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2315. * materialize from under us.
  2316. */
  2317. split_huge_page_pmd_mm(mm, address, pmd);
  2318. }
  2319. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2320. unsigned long start,
  2321. unsigned long end,
  2322. long adjust_next)
  2323. {
  2324. /*
  2325. * If the new start address isn't hpage aligned and it could
  2326. * previously contain an hugepage: check if we need to split
  2327. * an huge pmd.
  2328. */
  2329. if (start & ~HPAGE_PMD_MASK &&
  2330. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2331. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2332. split_huge_page_address(vma->vm_mm, start);
  2333. /*
  2334. * If the new end address isn't hpage aligned and it could
  2335. * previously contain an hugepage: check if we need to split
  2336. * an huge pmd.
  2337. */
  2338. if (end & ~HPAGE_PMD_MASK &&
  2339. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2340. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2341. split_huge_page_address(vma->vm_mm, end);
  2342. /*
  2343. * If we're also updating the vma->vm_next->vm_start, if the new
  2344. * vm_next->vm_start isn't page aligned and it could previously
  2345. * contain an hugepage: check if we need to split an huge pmd.
  2346. */
  2347. if (adjust_next > 0) {
  2348. struct vm_area_struct *next = vma->vm_next;
  2349. unsigned long nstart = next->vm_start;
  2350. nstart += adjust_next << PAGE_SHIFT;
  2351. if (nstart & ~HPAGE_PMD_MASK &&
  2352. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2353. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2354. split_huge_page_address(next->vm_mm, nstart);
  2355. }
  2356. }