paging_tmpl.h 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. /*
  20. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  21. * so the code in this file is compiled twice, once per pte size.
  22. */
  23. #if PTTYPE == 64
  24. #define pt_element_t u64
  25. #define guest_walker guest_walker64
  26. #define FNAME(name) paging##64_##name
  27. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  28. #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
  29. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  30. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  31. #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
  32. #define PT_PTE_COPY_MASK PT64_PTE_COPY_MASK
  33. #ifdef CONFIG_X86_64
  34. #define PT_MAX_FULL_LEVELS 4
  35. #else
  36. #define PT_MAX_FULL_LEVELS 2
  37. #endif
  38. #elif PTTYPE == 32
  39. #define pt_element_t u32
  40. #define guest_walker guest_walker32
  41. #define FNAME(name) paging##32_##name
  42. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  43. #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
  44. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  45. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  46. #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
  47. #define PT_PTE_COPY_MASK PT32_PTE_COPY_MASK
  48. #define PT_MAX_FULL_LEVELS 2
  49. #else
  50. #error Invalid PTTYPE value
  51. #endif
  52. /*
  53. * The guest_walker structure emulates the behavior of the hardware page
  54. * table walker.
  55. */
  56. struct guest_walker {
  57. int level;
  58. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  59. pt_element_t *table;
  60. pt_element_t *ptep;
  61. pt_element_t inherited_ar;
  62. gfn_t gfn;
  63. u32 error_code;
  64. };
  65. /*
  66. * Fetch a guest pte for a guest virtual address
  67. */
  68. static int FNAME(walk_addr)(struct guest_walker *walker,
  69. struct kvm_vcpu *vcpu, gva_t addr,
  70. int write_fault, int user_fault, int fetch_fault)
  71. {
  72. hpa_t hpa;
  73. struct kvm_memory_slot *slot;
  74. pt_element_t *ptep;
  75. pt_element_t root;
  76. gfn_t table_gfn;
  77. pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
  78. walker->level = vcpu->mmu.root_level;
  79. walker->table = NULL;
  80. root = vcpu->cr3;
  81. #if PTTYPE == 64
  82. if (!is_long_mode(vcpu)) {
  83. walker->ptep = &vcpu->pdptrs[(addr >> 30) & 3];
  84. root = *walker->ptep;
  85. if (!(root & PT_PRESENT_MASK))
  86. goto not_present;
  87. --walker->level;
  88. }
  89. #endif
  90. table_gfn = (root & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  91. walker->table_gfn[walker->level - 1] = table_gfn;
  92. pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
  93. walker->level - 1, table_gfn);
  94. slot = gfn_to_memslot(vcpu->kvm, table_gfn);
  95. hpa = safe_gpa_to_hpa(vcpu, root & PT64_BASE_ADDR_MASK);
  96. walker->table = kmap_atomic(pfn_to_page(hpa >> PAGE_SHIFT), KM_USER0);
  97. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  98. (vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) == 0);
  99. walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
  100. for (;;) {
  101. int index = PT_INDEX(addr, walker->level);
  102. hpa_t paddr;
  103. ptep = &walker->table[index];
  104. ASSERT(((unsigned long)walker->table & PAGE_MASK) ==
  105. ((unsigned long)ptep & PAGE_MASK));
  106. if (!is_present_pte(*ptep))
  107. goto not_present;
  108. if (write_fault && !is_writeble_pte(*ptep))
  109. if (user_fault || is_write_protection(vcpu))
  110. goto access_error;
  111. if (user_fault && !(*ptep & PT_USER_MASK))
  112. goto access_error;
  113. #if PTTYPE == 64
  114. if (fetch_fault && is_nx(vcpu) && (*ptep & PT64_NX_MASK))
  115. goto access_error;
  116. #endif
  117. if (!(*ptep & PT_ACCESSED_MASK)) {
  118. mark_page_dirty(vcpu->kvm, table_gfn);
  119. *ptep |= PT_ACCESSED_MASK;
  120. }
  121. if (walker->level == PT_PAGE_TABLE_LEVEL) {
  122. walker->gfn = (*ptep & PT_BASE_ADDR_MASK)
  123. >> PAGE_SHIFT;
  124. break;
  125. }
  126. if (walker->level == PT_DIRECTORY_LEVEL
  127. && (*ptep & PT_PAGE_SIZE_MASK)
  128. && (PTTYPE == 64 || is_pse(vcpu))) {
  129. walker->gfn = (*ptep & PT_DIR_BASE_ADDR_MASK)
  130. >> PAGE_SHIFT;
  131. walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
  132. break;
  133. }
  134. walker->inherited_ar &= walker->table[index];
  135. table_gfn = (*ptep & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
  136. paddr = safe_gpa_to_hpa(vcpu, *ptep & PT_BASE_ADDR_MASK);
  137. kunmap_atomic(walker->table, KM_USER0);
  138. walker->table = kmap_atomic(pfn_to_page(paddr >> PAGE_SHIFT),
  139. KM_USER0);
  140. --walker->level;
  141. walker->table_gfn[walker->level - 1 ] = table_gfn;
  142. pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
  143. walker->level - 1, table_gfn);
  144. }
  145. walker->ptep = ptep;
  146. pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)*ptep);
  147. return 1;
  148. not_present:
  149. walker->error_code = 0;
  150. goto err;
  151. access_error:
  152. walker->error_code = PFERR_PRESENT_MASK;
  153. err:
  154. if (write_fault)
  155. walker->error_code |= PFERR_WRITE_MASK;
  156. if (user_fault)
  157. walker->error_code |= PFERR_USER_MASK;
  158. if (fetch_fault)
  159. walker->error_code |= PFERR_FETCH_MASK;
  160. return 0;
  161. }
  162. static void FNAME(release_walker)(struct guest_walker *walker)
  163. {
  164. if (walker->table)
  165. kunmap_atomic(walker->table, KM_USER0);
  166. }
  167. static void FNAME(mark_pagetable_dirty)(struct kvm *kvm,
  168. struct guest_walker *walker)
  169. {
  170. mark_page_dirty(kvm, walker->table_gfn[walker->level - 1]);
  171. }
  172. static void FNAME(set_pte_common)(struct kvm_vcpu *vcpu,
  173. u64 *shadow_pte,
  174. gpa_t gaddr,
  175. pt_element_t *gpte,
  176. u64 access_bits,
  177. int user_fault,
  178. int write_fault,
  179. int *ptwrite,
  180. struct guest_walker *walker,
  181. gfn_t gfn)
  182. {
  183. hpa_t paddr;
  184. int dirty = *gpte & PT_DIRTY_MASK;
  185. int was_rmapped = is_rmap_pte(*shadow_pte);
  186. pgprintk("%s: spte %llx gpte %llx access %llx write_fault %d"
  187. " user_fault %d gfn %lx\n",
  188. __FUNCTION__, *shadow_pte, (u64)*gpte, access_bits,
  189. write_fault, user_fault, gfn);
  190. if (write_fault && !dirty) {
  191. *gpte |= PT_DIRTY_MASK;
  192. dirty = 1;
  193. FNAME(mark_pagetable_dirty)(vcpu->kvm, walker);
  194. }
  195. *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
  196. if (!dirty)
  197. access_bits &= ~PT_WRITABLE_MASK;
  198. paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
  199. *shadow_pte |= PT_PRESENT_MASK;
  200. if (access_bits & PT_USER_MASK)
  201. *shadow_pte |= PT_USER_MASK;
  202. if (is_error_hpa(paddr)) {
  203. *shadow_pte |= gaddr;
  204. *shadow_pte |= PT_SHADOW_IO_MARK;
  205. *shadow_pte &= ~PT_PRESENT_MASK;
  206. return;
  207. }
  208. *shadow_pte |= paddr;
  209. if (!write_fault && (*shadow_pte & PT_SHADOW_USER_MASK) &&
  210. !(*shadow_pte & PT_USER_MASK)) {
  211. /*
  212. * If supervisor write protect is disabled, we shadow kernel
  213. * pages as user pages so we can trap the write access.
  214. */
  215. *shadow_pte |= PT_USER_MASK;
  216. *shadow_pte &= ~PT_WRITABLE_MASK;
  217. access_bits &= ~PT_WRITABLE_MASK;
  218. }
  219. if ((access_bits & PT_WRITABLE_MASK)
  220. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  221. struct kvm_mmu_page *shadow;
  222. *shadow_pte |= PT_WRITABLE_MASK;
  223. if (user_fault) {
  224. mmu_unshadow(vcpu, gfn);
  225. goto unshadowed;
  226. }
  227. shadow = kvm_mmu_lookup_page(vcpu, gfn);
  228. if (shadow) {
  229. pgprintk("%s: found shadow page for %lx, marking ro\n",
  230. __FUNCTION__, gfn);
  231. access_bits &= ~PT_WRITABLE_MASK;
  232. if (is_writeble_pte(*shadow_pte)) {
  233. *shadow_pte &= ~PT_WRITABLE_MASK;
  234. kvm_arch_ops->tlb_flush(vcpu);
  235. }
  236. if (write_fault)
  237. *ptwrite = 1;
  238. }
  239. }
  240. unshadowed:
  241. if (access_bits & PT_WRITABLE_MASK)
  242. mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
  243. page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
  244. if (!was_rmapped)
  245. rmap_add(vcpu, shadow_pte);
  246. }
  247. static void FNAME(set_pte)(struct kvm_vcpu *vcpu, pt_element_t *gpte,
  248. u64 *shadow_pte, u64 access_bits,
  249. int user_fault, int write_fault, int *ptwrite,
  250. struct guest_walker *walker, gfn_t gfn)
  251. {
  252. access_bits &= *gpte;
  253. *shadow_pte |= (*gpte & PT_PTE_COPY_MASK);
  254. FNAME(set_pte_common)(vcpu, shadow_pte, *gpte & PT_BASE_ADDR_MASK,
  255. gpte, access_bits, user_fault, write_fault,
  256. ptwrite, walker, gfn);
  257. }
  258. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
  259. u64 *spte, const void *pte, int bytes)
  260. {
  261. pt_element_t gpte;
  262. if (bytes < sizeof(pt_element_t))
  263. return;
  264. gpte = *(const pt_element_t *)pte;
  265. if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK))
  266. return;
  267. pgprintk("%s: gpte %llx spte %p\n", __FUNCTION__, (u64)gpte, spte);
  268. FNAME(set_pte)(vcpu, &gpte, spte, PT_USER_MASK | PT_WRITABLE_MASK, 0,
  269. 0, NULL, NULL,
  270. (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT);
  271. }
  272. static void FNAME(set_pde)(struct kvm_vcpu *vcpu, pt_element_t *gpde,
  273. u64 *shadow_pte, u64 access_bits,
  274. int user_fault, int write_fault, int *ptwrite,
  275. struct guest_walker *walker, gfn_t gfn)
  276. {
  277. gpa_t gaddr;
  278. access_bits &= *gpde;
  279. gaddr = (gpa_t)gfn << PAGE_SHIFT;
  280. if (PTTYPE == 32 && is_cpuid_PSE36())
  281. gaddr |= (*gpde & PT32_DIR_PSE36_MASK) <<
  282. (32 - PT32_DIR_PSE36_SHIFT);
  283. *shadow_pte |= *gpde & PT_PTE_COPY_MASK;
  284. FNAME(set_pte_common)(vcpu, shadow_pte, gaddr,
  285. gpde, access_bits, user_fault, write_fault,
  286. ptwrite, walker, gfn);
  287. }
  288. /*
  289. * Fetch a shadow pte for a specific level in the paging hierarchy.
  290. */
  291. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  292. struct guest_walker *walker,
  293. int user_fault, int write_fault, int *ptwrite)
  294. {
  295. hpa_t shadow_addr;
  296. int level;
  297. u64 *shadow_ent;
  298. u64 *prev_shadow_ent = NULL;
  299. pt_element_t *guest_ent = walker->ptep;
  300. if (!is_present_pte(*guest_ent))
  301. return NULL;
  302. shadow_addr = vcpu->mmu.root_hpa;
  303. level = vcpu->mmu.shadow_root_level;
  304. if (level == PT32E_ROOT_LEVEL) {
  305. shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
  306. shadow_addr &= PT64_BASE_ADDR_MASK;
  307. --level;
  308. }
  309. for (; ; level--) {
  310. u32 index = SHADOW_PT_INDEX(addr, level);
  311. struct kvm_mmu_page *shadow_page;
  312. u64 shadow_pte;
  313. int metaphysical;
  314. gfn_t table_gfn;
  315. unsigned hugepage_access = 0;
  316. shadow_ent = ((u64 *)__va(shadow_addr)) + index;
  317. if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) {
  318. if (level == PT_PAGE_TABLE_LEVEL)
  319. break;
  320. shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
  321. prev_shadow_ent = shadow_ent;
  322. continue;
  323. }
  324. if (level == PT_PAGE_TABLE_LEVEL)
  325. break;
  326. if (level - 1 == PT_PAGE_TABLE_LEVEL
  327. && walker->level == PT_DIRECTORY_LEVEL) {
  328. metaphysical = 1;
  329. hugepage_access = *guest_ent;
  330. hugepage_access &= PT_USER_MASK | PT_WRITABLE_MASK;
  331. hugepage_access >>= PT_WRITABLE_SHIFT;
  332. table_gfn = (*guest_ent & PT_BASE_ADDR_MASK)
  333. >> PAGE_SHIFT;
  334. } else {
  335. metaphysical = 0;
  336. table_gfn = walker->table_gfn[level - 2];
  337. }
  338. shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
  339. metaphysical, hugepage_access,
  340. shadow_ent);
  341. shadow_addr = __pa(shadow_page->spt);
  342. shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
  343. | PT_WRITABLE_MASK | PT_USER_MASK;
  344. *shadow_ent = shadow_pte;
  345. prev_shadow_ent = shadow_ent;
  346. }
  347. if (walker->level == PT_DIRECTORY_LEVEL) {
  348. if (prev_shadow_ent)
  349. *prev_shadow_ent |= PT_SHADOW_PS_MARK;
  350. FNAME(set_pde)(vcpu, guest_ent, shadow_ent,
  351. walker->inherited_ar, user_fault, write_fault,
  352. ptwrite, walker, walker->gfn);
  353. } else {
  354. ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
  355. FNAME(set_pte)(vcpu, guest_ent, shadow_ent,
  356. walker->inherited_ar, user_fault, write_fault,
  357. ptwrite, walker, walker->gfn);
  358. }
  359. return shadow_ent;
  360. }
  361. /*
  362. * Page fault handler. There are several causes for a page fault:
  363. * - there is no shadow pte for the guest pte
  364. * - write access through a shadow pte marked read only so that we can set
  365. * the dirty bit
  366. * - write access to a shadow pte marked read only so we can update the page
  367. * dirty bitmap, when userspace requests it
  368. * - mmio access; in this case we will never install a present shadow pte
  369. * - normal guest page fault due to the guest pte marked not present, not
  370. * writable, or not executable
  371. *
  372. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  373. * a negative value on error.
  374. */
  375. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
  376. u32 error_code)
  377. {
  378. int write_fault = error_code & PFERR_WRITE_MASK;
  379. int user_fault = error_code & PFERR_USER_MASK;
  380. int fetch_fault = error_code & PFERR_FETCH_MASK;
  381. struct guest_walker walker;
  382. u64 *shadow_pte;
  383. int write_pt = 0;
  384. int r;
  385. pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
  386. kvm_mmu_audit(vcpu, "pre page fault");
  387. r = mmu_topup_memory_caches(vcpu);
  388. if (r)
  389. return r;
  390. /*
  391. * Look up the shadow pte for the faulting address.
  392. */
  393. r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
  394. fetch_fault);
  395. /*
  396. * The page is not mapped by the guest. Let the guest handle it.
  397. */
  398. if (!r) {
  399. pgprintk("%s: guest page fault\n", __FUNCTION__);
  400. inject_page_fault(vcpu, addr, walker.error_code);
  401. FNAME(release_walker)(&walker);
  402. vcpu->last_pt_write_count = 0; /* reset fork detector */
  403. return 0;
  404. }
  405. shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  406. &write_pt);
  407. pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __FUNCTION__,
  408. shadow_pte, *shadow_pte, write_pt);
  409. FNAME(release_walker)(&walker);
  410. if (!write_pt)
  411. vcpu->last_pt_write_count = 0; /* reset fork detector */
  412. /*
  413. * mmio: emulate if accessible, otherwise its a guest fault.
  414. */
  415. if (is_io_pte(*shadow_pte))
  416. return 1;
  417. ++vcpu->stat.pf_fixed;
  418. kvm_mmu_audit(vcpu, "post page fault (fixed)");
  419. return write_pt;
  420. }
  421. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
  422. {
  423. struct guest_walker walker;
  424. gpa_t gpa = UNMAPPED_GVA;
  425. int r;
  426. r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
  427. if (r) {
  428. gpa = (gpa_t)walker.gfn << PAGE_SHIFT;
  429. gpa |= vaddr & ~PAGE_MASK;
  430. }
  431. FNAME(release_walker)(&walker);
  432. return gpa;
  433. }
  434. #undef pt_element_t
  435. #undef guest_walker
  436. #undef FNAME
  437. #undef PT_BASE_ADDR_MASK
  438. #undef PT_INDEX
  439. #undef SHADOW_PT_INDEX
  440. #undef PT_LEVEL_MASK
  441. #undef PT_PTE_COPY_MASK
  442. #undef PT_NON_PTE_COPY_MASK
  443. #undef PT_DIR_BASE_ADDR_MASK
  444. #undef PT_MAX_FULL_LEVELS