kvm_main.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86.h"
  19. #include "irq.h"
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/gfp.h>
  25. #include <linux/mm.h>
  26. #include <linux/miscdevice.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/reboot.h>
  29. #include <linux/debugfs.h>
  30. #include <linux/highmem.h>
  31. #include <linux/file.h>
  32. #include <linux/sysdev.h>
  33. #include <linux/cpu.h>
  34. #include <linux/sched.h>
  35. #include <linux/cpumask.h>
  36. #include <linux/smp.h>
  37. #include <linux/anon_inodes.h>
  38. #include <linux/profile.h>
  39. #include <linux/kvm_para.h>
  40. #include <linux/pagemap.h>
  41. #include <linux/mman.h>
  42. #include <asm/processor.h>
  43. #include <asm/io.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/desc.h>
  46. MODULE_AUTHOR("Qumranet");
  47. MODULE_LICENSE("GPL");
  48. static DEFINE_SPINLOCK(kvm_lock);
  49. static LIST_HEAD(vm_list);
  50. static cpumask_t cpus_hardware_enabled;
  51. struct kmem_cache *kvm_vcpu_cache;
  52. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  53. static __read_mostly struct preempt_ops kvm_preempt_ops;
  54. static struct dentry *debugfs_dir;
  55. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  56. unsigned long arg);
  57. static inline int valid_vcpu(int n)
  58. {
  59. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  60. }
  61. /*
  62. * Switches to specified vcpu, until a matching vcpu_put()
  63. */
  64. void vcpu_load(struct kvm_vcpu *vcpu)
  65. {
  66. int cpu;
  67. mutex_lock(&vcpu->mutex);
  68. cpu = get_cpu();
  69. preempt_notifier_register(&vcpu->preempt_notifier);
  70. kvm_arch_vcpu_load(vcpu, cpu);
  71. put_cpu();
  72. }
  73. void vcpu_put(struct kvm_vcpu *vcpu)
  74. {
  75. preempt_disable();
  76. kvm_arch_vcpu_put(vcpu);
  77. preempt_notifier_unregister(&vcpu->preempt_notifier);
  78. preempt_enable();
  79. mutex_unlock(&vcpu->mutex);
  80. }
  81. static void ack_flush(void *_completed)
  82. {
  83. }
  84. void kvm_flush_remote_tlbs(struct kvm *kvm)
  85. {
  86. int i, cpu;
  87. cpumask_t cpus;
  88. struct kvm_vcpu *vcpu;
  89. cpus_clear(cpus);
  90. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  91. vcpu = kvm->vcpus[i];
  92. if (!vcpu)
  93. continue;
  94. if (test_and_set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  95. continue;
  96. cpu = vcpu->cpu;
  97. if (cpu != -1 && cpu != raw_smp_processor_id())
  98. cpu_set(cpu, cpus);
  99. }
  100. smp_call_function_mask(cpus, ack_flush, NULL, 1);
  101. }
  102. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  103. {
  104. struct page *page;
  105. int r;
  106. mutex_init(&vcpu->mutex);
  107. vcpu->cpu = -1;
  108. vcpu->mmu.root_hpa = INVALID_PAGE;
  109. vcpu->kvm = kvm;
  110. vcpu->vcpu_id = id;
  111. if (!irqchip_in_kernel(kvm) || id == 0)
  112. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  113. else
  114. vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
  115. init_waitqueue_head(&vcpu->wq);
  116. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  117. if (!page) {
  118. r = -ENOMEM;
  119. goto fail;
  120. }
  121. vcpu->run = page_address(page);
  122. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  123. if (!page) {
  124. r = -ENOMEM;
  125. goto fail_free_run;
  126. }
  127. vcpu->pio_data = page_address(page);
  128. r = kvm_mmu_create(vcpu);
  129. if (r < 0)
  130. goto fail_free_pio_data;
  131. if (irqchip_in_kernel(kvm)) {
  132. r = kvm_create_lapic(vcpu);
  133. if (r < 0)
  134. goto fail_mmu_destroy;
  135. }
  136. return 0;
  137. fail_mmu_destroy:
  138. kvm_mmu_destroy(vcpu);
  139. fail_free_pio_data:
  140. free_page((unsigned long)vcpu->pio_data);
  141. fail_free_run:
  142. free_page((unsigned long)vcpu->run);
  143. fail:
  144. return r;
  145. }
  146. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  147. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  148. {
  149. kvm_free_lapic(vcpu);
  150. kvm_mmu_destroy(vcpu);
  151. free_page((unsigned long)vcpu->pio_data);
  152. free_page((unsigned long)vcpu->run);
  153. }
  154. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  155. static struct kvm *kvm_create_vm(void)
  156. {
  157. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  158. if (!kvm)
  159. return ERR_PTR(-ENOMEM);
  160. kvm_io_bus_init(&kvm->pio_bus);
  161. mutex_init(&kvm->lock);
  162. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  163. kvm_io_bus_init(&kvm->mmio_bus);
  164. spin_lock(&kvm_lock);
  165. list_add(&kvm->vm_list, &vm_list);
  166. spin_unlock(&kvm_lock);
  167. return kvm;
  168. }
  169. /*
  170. * Free any memory in @free but not in @dont.
  171. */
  172. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  173. struct kvm_memory_slot *dont)
  174. {
  175. if (!dont || free->rmap != dont->rmap)
  176. vfree(free->rmap);
  177. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  178. vfree(free->dirty_bitmap);
  179. free->npages = 0;
  180. free->dirty_bitmap = NULL;
  181. free->rmap = NULL;
  182. }
  183. static void kvm_free_physmem(struct kvm *kvm)
  184. {
  185. int i;
  186. for (i = 0; i < kvm->nmemslots; ++i)
  187. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  188. }
  189. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  190. {
  191. vcpu_load(vcpu);
  192. kvm_mmu_unload(vcpu);
  193. vcpu_put(vcpu);
  194. }
  195. static void kvm_free_vcpus(struct kvm *kvm)
  196. {
  197. unsigned int i;
  198. /*
  199. * Unpin any mmu pages first.
  200. */
  201. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  202. if (kvm->vcpus[i])
  203. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  204. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  205. if (kvm->vcpus[i]) {
  206. kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
  207. kvm->vcpus[i] = NULL;
  208. }
  209. }
  210. }
  211. static void kvm_destroy_vm(struct kvm *kvm)
  212. {
  213. spin_lock(&kvm_lock);
  214. list_del(&kvm->vm_list);
  215. spin_unlock(&kvm_lock);
  216. kvm_io_bus_destroy(&kvm->pio_bus);
  217. kvm_io_bus_destroy(&kvm->mmio_bus);
  218. kfree(kvm->vpic);
  219. kfree(kvm->vioapic);
  220. kvm_free_vcpus(kvm);
  221. kvm_free_physmem(kvm);
  222. kfree(kvm);
  223. }
  224. static int kvm_vm_release(struct inode *inode, struct file *filp)
  225. {
  226. struct kvm *kvm = filp->private_data;
  227. kvm_destroy_vm(kvm);
  228. return 0;
  229. }
  230. /*
  231. * Allocate some memory and give it an address in the guest physical address
  232. * space.
  233. *
  234. * Discontiguous memory is allowed, mostly for framebuffers.
  235. *
  236. * Must be called holding kvm->lock.
  237. */
  238. int __kvm_set_memory_region(struct kvm *kvm,
  239. struct kvm_userspace_memory_region *mem,
  240. int user_alloc)
  241. {
  242. int r;
  243. gfn_t base_gfn;
  244. unsigned long npages;
  245. unsigned long i;
  246. struct kvm_memory_slot *memslot;
  247. struct kvm_memory_slot old, new;
  248. r = -EINVAL;
  249. /* General sanity checks */
  250. if (mem->memory_size & (PAGE_SIZE - 1))
  251. goto out;
  252. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  253. goto out;
  254. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  255. goto out;
  256. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  257. goto out;
  258. memslot = &kvm->memslots[mem->slot];
  259. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  260. npages = mem->memory_size >> PAGE_SHIFT;
  261. if (!npages)
  262. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  263. new = old = *memslot;
  264. new.base_gfn = base_gfn;
  265. new.npages = npages;
  266. new.flags = mem->flags;
  267. /* Disallow changing a memory slot's size. */
  268. r = -EINVAL;
  269. if (npages && old.npages && npages != old.npages)
  270. goto out_free;
  271. /* Check for overlaps */
  272. r = -EEXIST;
  273. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  274. struct kvm_memory_slot *s = &kvm->memslots[i];
  275. if (s == memslot)
  276. continue;
  277. if (!((base_gfn + npages <= s->base_gfn) ||
  278. (base_gfn >= s->base_gfn + s->npages)))
  279. goto out_free;
  280. }
  281. /* Free page dirty bitmap if unneeded */
  282. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  283. new.dirty_bitmap = NULL;
  284. r = -ENOMEM;
  285. /* Allocate if a slot is being created */
  286. if (npages && !new.rmap) {
  287. new.rmap = vmalloc(npages * sizeof(struct page *));
  288. if (!new.rmap)
  289. goto out_free;
  290. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  291. new.user_alloc = user_alloc;
  292. if (user_alloc)
  293. new.userspace_addr = mem->userspace_addr;
  294. else {
  295. down_write(&current->mm->mmap_sem);
  296. new.userspace_addr = do_mmap(NULL, 0,
  297. npages * PAGE_SIZE,
  298. PROT_READ | PROT_WRITE,
  299. MAP_SHARED | MAP_ANONYMOUS,
  300. 0);
  301. up_write(&current->mm->mmap_sem);
  302. if (IS_ERR((void *)new.userspace_addr))
  303. goto out_free;
  304. }
  305. } else {
  306. if (!old.user_alloc && old.rmap) {
  307. int ret;
  308. down_write(&current->mm->mmap_sem);
  309. ret = do_munmap(current->mm, old.userspace_addr,
  310. old.npages * PAGE_SIZE);
  311. up_write(&current->mm->mmap_sem);
  312. if (ret < 0)
  313. printk(KERN_WARNING
  314. "kvm_vm_ioctl_set_memory_region: "
  315. "failed to munmap memory\n");
  316. }
  317. }
  318. /* Allocate page dirty bitmap if needed */
  319. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  320. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  321. new.dirty_bitmap = vmalloc(dirty_bytes);
  322. if (!new.dirty_bitmap)
  323. goto out_free;
  324. memset(new.dirty_bitmap, 0, dirty_bytes);
  325. }
  326. if (mem->slot >= kvm->nmemslots)
  327. kvm->nmemslots = mem->slot + 1;
  328. if (!kvm->n_requested_mmu_pages) {
  329. unsigned int n_pages;
  330. if (npages) {
  331. n_pages = npages * KVM_PERMILLE_MMU_PAGES / 1000;
  332. kvm_mmu_change_mmu_pages(kvm, kvm->n_alloc_mmu_pages +
  333. n_pages);
  334. } else {
  335. unsigned int nr_mmu_pages;
  336. n_pages = old.npages * KVM_PERMILLE_MMU_PAGES / 1000;
  337. nr_mmu_pages = kvm->n_alloc_mmu_pages - n_pages;
  338. nr_mmu_pages = max(nr_mmu_pages,
  339. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  340. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  341. }
  342. }
  343. *memslot = new;
  344. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  345. kvm_flush_remote_tlbs(kvm);
  346. kvm_free_physmem_slot(&old, &new);
  347. return 0;
  348. out_free:
  349. kvm_free_physmem_slot(&new, &old);
  350. out:
  351. return r;
  352. }
  353. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  354. int kvm_set_memory_region(struct kvm *kvm,
  355. struct kvm_userspace_memory_region *mem,
  356. int user_alloc)
  357. {
  358. int r;
  359. mutex_lock(&kvm->lock);
  360. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  361. mutex_unlock(&kvm->lock);
  362. return r;
  363. }
  364. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  365. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  366. struct
  367. kvm_userspace_memory_region *mem,
  368. int user_alloc)
  369. {
  370. if (mem->slot >= KVM_MEMORY_SLOTS)
  371. return -EINVAL;
  372. return kvm_set_memory_region(kvm, mem, user_alloc);
  373. }
  374. /*
  375. * Get (and clear) the dirty memory log for a memory slot.
  376. */
  377. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  378. struct kvm_dirty_log *log)
  379. {
  380. struct kvm_memory_slot *memslot;
  381. int r, i;
  382. int n;
  383. unsigned long any = 0;
  384. mutex_lock(&kvm->lock);
  385. r = -EINVAL;
  386. if (log->slot >= KVM_MEMORY_SLOTS)
  387. goto out;
  388. memslot = &kvm->memslots[log->slot];
  389. r = -ENOENT;
  390. if (!memslot->dirty_bitmap)
  391. goto out;
  392. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  393. for (i = 0; !any && i < n/sizeof(long); ++i)
  394. any = memslot->dirty_bitmap[i];
  395. r = -EFAULT;
  396. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  397. goto out;
  398. /* If nothing is dirty, don't bother messing with page tables. */
  399. if (any) {
  400. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  401. kvm_flush_remote_tlbs(kvm);
  402. memset(memslot->dirty_bitmap, 0, n);
  403. }
  404. r = 0;
  405. out:
  406. mutex_unlock(&kvm->lock);
  407. return r;
  408. }
  409. int is_error_page(struct page *page)
  410. {
  411. return page == bad_page;
  412. }
  413. EXPORT_SYMBOL_GPL(is_error_page);
  414. static inline unsigned long bad_hva(void)
  415. {
  416. return PAGE_OFFSET;
  417. }
  418. int kvm_is_error_hva(unsigned long addr)
  419. {
  420. return addr == bad_hva();
  421. }
  422. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  423. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  424. {
  425. int i;
  426. struct kvm_mem_alias *alias;
  427. for (i = 0; i < kvm->naliases; ++i) {
  428. alias = &kvm->aliases[i];
  429. if (gfn >= alias->base_gfn
  430. && gfn < alias->base_gfn + alias->npages)
  431. return alias->target_gfn + gfn - alias->base_gfn;
  432. }
  433. return gfn;
  434. }
  435. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  436. {
  437. int i;
  438. for (i = 0; i < kvm->nmemslots; ++i) {
  439. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  440. if (gfn >= memslot->base_gfn
  441. && gfn < memslot->base_gfn + memslot->npages)
  442. return memslot;
  443. }
  444. return NULL;
  445. }
  446. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  447. {
  448. gfn = unalias_gfn(kvm, gfn);
  449. return __gfn_to_memslot(kvm, gfn);
  450. }
  451. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  452. {
  453. int i;
  454. gfn = unalias_gfn(kvm, gfn);
  455. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  456. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  457. if (gfn >= memslot->base_gfn
  458. && gfn < memslot->base_gfn + memslot->npages)
  459. return 1;
  460. }
  461. return 0;
  462. }
  463. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  464. static unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  465. {
  466. struct kvm_memory_slot *slot;
  467. gfn = unalias_gfn(kvm, gfn);
  468. slot = __gfn_to_memslot(kvm, gfn);
  469. if (!slot)
  470. return bad_hva();
  471. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  472. }
  473. /*
  474. * Requires current->mm->mmap_sem to be held
  475. */
  476. static struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn)
  477. {
  478. struct page *page[1];
  479. unsigned long addr;
  480. int npages;
  481. might_sleep();
  482. addr = gfn_to_hva(kvm, gfn);
  483. if (kvm_is_error_hva(addr)) {
  484. get_page(bad_page);
  485. return bad_page;
  486. }
  487. npages = get_user_pages(current, current->mm, addr, 1, 1, 1, page,
  488. NULL);
  489. if (npages != 1) {
  490. get_page(bad_page);
  491. return bad_page;
  492. }
  493. return page[0];
  494. }
  495. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  496. {
  497. struct page *page;
  498. down_read(&current->mm->mmap_sem);
  499. page = __gfn_to_page(kvm, gfn);
  500. up_read(&current->mm->mmap_sem);
  501. return page;
  502. }
  503. EXPORT_SYMBOL_GPL(gfn_to_page);
  504. void kvm_release_page(struct page *page)
  505. {
  506. if (!PageReserved(page))
  507. SetPageDirty(page);
  508. put_page(page);
  509. }
  510. EXPORT_SYMBOL_GPL(kvm_release_page);
  511. static int next_segment(unsigned long len, int offset)
  512. {
  513. if (len > PAGE_SIZE - offset)
  514. return PAGE_SIZE - offset;
  515. else
  516. return len;
  517. }
  518. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  519. int len)
  520. {
  521. int r;
  522. unsigned long addr;
  523. addr = gfn_to_hva(kvm, gfn);
  524. if (kvm_is_error_hva(addr))
  525. return -EFAULT;
  526. r = copy_from_user(data, (void __user *)addr + offset, len);
  527. if (r)
  528. return -EFAULT;
  529. return 0;
  530. }
  531. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  532. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  533. {
  534. gfn_t gfn = gpa >> PAGE_SHIFT;
  535. int seg;
  536. int offset = offset_in_page(gpa);
  537. int ret;
  538. while ((seg = next_segment(len, offset)) != 0) {
  539. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  540. if (ret < 0)
  541. return ret;
  542. offset = 0;
  543. len -= seg;
  544. data += seg;
  545. ++gfn;
  546. }
  547. return 0;
  548. }
  549. EXPORT_SYMBOL_GPL(kvm_read_guest);
  550. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  551. int offset, int len)
  552. {
  553. int r;
  554. unsigned long addr;
  555. addr = gfn_to_hva(kvm, gfn);
  556. if (kvm_is_error_hva(addr))
  557. return -EFAULT;
  558. r = copy_to_user((void __user *)addr + offset, data, len);
  559. if (r)
  560. return -EFAULT;
  561. mark_page_dirty(kvm, gfn);
  562. return 0;
  563. }
  564. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  565. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  566. unsigned long len)
  567. {
  568. gfn_t gfn = gpa >> PAGE_SHIFT;
  569. int seg;
  570. int offset = offset_in_page(gpa);
  571. int ret;
  572. while ((seg = next_segment(len, offset)) != 0) {
  573. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  574. if (ret < 0)
  575. return ret;
  576. offset = 0;
  577. len -= seg;
  578. data += seg;
  579. ++gfn;
  580. }
  581. return 0;
  582. }
  583. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  584. {
  585. void *page_virt;
  586. struct page *page;
  587. page = gfn_to_page(kvm, gfn);
  588. if (is_error_page(page)) {
  589. kvm_release_page(page);
  590. return -EFAULT;
  591. }
  592. page_virt = kmap_atomic(page, KM_USER0);
  593. memset(page_virt + offset, 0, len);
  594. kunmap_atomic(page_virt, KM_USER0);
  595. kvm_release_page(page);
  596. mark_page_dirty(kvm, gfn);
  597. return 0;
  598. }
  599. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  600. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  601. {
  602. gfn_t gfn = gpa >> PAGE_SHIFT;
  603. int seg;
  604. int offset = offset_in_page(gpa);
  605. int ret;
  606. while ((seg = next_segment(len, offset)) != 0) {
  607. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  608. if (ret < 0)
  609. return ret;
  610. offset = 0;
  611. len -= seg;
  612. ++gfn;
  613. }
  614. return 0;
  615. }
  616. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  617. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  618. {
  619. struct kvm_memory_slot *memslot;
  620. gfn = unalias_gfn(kvm, gfn);
  621. memslot = __gfn_to_memslot(kvm, gfn);
  622. if (memslot && memslot->dirty_bitmap) {
  623. unsigned long rel_gfn = gfn - memslot->base_gfn;
  624. /* avoid RMW */
  625. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  626. set_bit(rel_gfn, memslot->dirty_bitmap);
  627. }
  628. }
  629. /*
  630. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  631. */
  632. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  633. {
  634. DECLARE_WAITQUEUE(wait, current);
  635. add_wait_queue(&vcpu->wq, &wait);
  636. /*
  637. * We will block until either an interrupt or a signal wakes us up
  638. */
  639. while (!kvm_cpu_has_interrupt(vcpu)
  640. && !signal_pending(current)
  641. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  642. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  643. set_current_state(TASK_INTERRUPTIBLE);
  644. vcpu_put(vcpu);
  645. schedule();
  646. vcpu_load(vcpu);
  647. }
  648. __set_current_state(TASK_RUNNING);
  649. remove_wait_queue(&vcpu->wq, &wait);
  650. }
  651. void kvm_resched(struct kvm_vcpu *vcpu)
  652. {
  653. if (!need_resched())
  654. return;
  655. cond_resched();
  656. }
  657. EXPORT_SYMBOL_GPL(kvm_resched);
  658. /*
  659. * Translate a guest virtual address to a guest physical address.
  660. */
  661. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  662. struct kvm_translation *tr)
  663. {
  664. unsigned long vaddr = tr->linear_address;
  665. gpa_t gpa;
  666. vcpu_load(vcpu);
  667. mutex_lock(&vcpu->kvm->lock);
  668. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  669. tr->physical_address = gpa;
  670. tr->valid = gpa != UNMAPPED_GVA;
  671. tr->writeable = 1;
  672. tr->usermode = 0;
  673. mutex_unlock(&vcpu->kvm->lock);
  674. vcpu_put(vcpu);
  675. return 0;
  676. }
  677. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  678. struct kvm_interrupt *irq)
  679. {
  680. if (irq->irq < 0 || irq->irq >= 256)
  681. return -EINVAL;
  682. if (irqchip_in_kernel(vcpu->kvm))
  683. return -ENXIO;
  684. vcpu_load(vcpu);
  685. set_bit(irq->irq, vcpu->irq_pending);
  686. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  687. vcpu_put(vcpu);
  688. return 0;
  689. }
  690. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  691. unsigned long address,
  692. int *type)
  693. {
  694. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  695. unsigned long pgoff;
  696. struct page *page;
  697. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  698. if (pgoff == 0)
  699. page = virt_to_page(vcpu->run);
  700. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  701. page = virt_to_page(vcpu->pio_data);
  702. else
  703. return NOPAGE_SIGBUS;
  704. get_page(page);
  705. if (type != NULL)
  706. *type = VM_FAULT_MINOR;
  707. return page;
  708. }
  709. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  710. .nopage = kvm_vcpu_nopage,
  711. };
  712. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  713. {
  714. vma->vm_ops = &kvm_vcpu_vm_ops;
  715. return 0;
  716. }
  717. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  718. {
  719. struct kvm_vcpu *vcpu = filp->private_data;
  720. fput(vcpu->kvm->filp);
  721. return 0;
  722. }
  723. static struct file_operations kvm_vcpu_fops = {
  724. .release = kvm_vcpu_release,
  725. .unlocked_ioctl = kvm_vcpu_ioctl,
  726. .compat_ioctl = kvm_vcpu_ioctl,
  727. .mmap = kvm_vcpu_mmap,
  728. };
  729. /*
  730. * Allocates an inode for the vcpu.
  731. */
  732. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  733. {
  734. int fd, r;
  735. struct inode *inode;
  736. struct file *file;
  737. r = anon_inode_getfd(&fd, &inode, &file,
  738. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  739. if (r)
  740. return r;
  741. atomic_inc(&vcpu->kvm->filp->f_count);
  742. return fd;
  743. }
  744. /*
  745. * Creates some virtual cpus. Good luck creating more than one.
  746. */
  747. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  748. {
  749. int r;
  750. struct kvm_vcpu *vcpu;
  751. if (!valid_vcpu(n))
  752. return -EINVAL;
  753. vcpu = kvm_x86_ops->vcpu_create(kvm, n);
  754. if (IS_ERR(vcpu))
  755. return PTR_ERR(vcpu);
  756. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  757. /* We do fxsave: this must be aligned. */
  758. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  759. vcpu_load(vcpu);
  760. r = kvm_x86_ops->vcpu_reset(vcpu);
  761. if (r == 0)
  762. r = kvm_mmu_setup(vcpu);
  763. vcpu_put(vcpu);
  764. if (r < 0)
  765. goto free_vcpu;
  766. mutex_lock(&kvm->lock);
  767. if (kvm->vcpus[n]) {
  768. r = -EEXIST;
  769. mutex_unlock(&kvm->lock);
  770. goto mmu_unload;
  771. }
  772. kvm->vcpus[n] = vcpu;
  773. mutex_unlock(&kvm->lock);
  774. /* Now it's all set up, let userspace reach it */
  775. r = create_vcpu_fd(vcpu);
  776. if (r < 0)
  777. goto unlink;
  778. return r;
  779. unlink:
  780. mutex_lock(&kvm->lock);
  781. kvm->vcpus[n] = NULL;
  782. mutex_unlock(&kvm->lock);
  783. mmu_unload:
  784. vcpu_load(vcpu);
  785. kvm_mmu_unload(vcpu);
  786. vcpu_put(vcpu);
  787. free_vcpu:
  788. kvm_x86_ops->vcpu_free(vcpu);
  789. return r;
  790. }
  791. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  792. {
  793. if (sigset) {
  794. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  795. vcpu->sigset_active = 1;
  796. vcpu->sigset = *sigset;
  797. } else
  798. vcpu->sigset_active = 0;
  799. return 0;
  800. }
  801. static long kvm_vcpu_ioctl(struct file *filp,
  802. unsigned int ioctl, unsigned long arg)
  803. {
  804. struct kvm_vcpu *vcpu = filp->private_data;
  805. void __user *argp = (void __user *)arg;
  806. int r;
  807. switch (ioctl) {
  808. case KVM_RUN:
  809. r = -EINVAL;
  810. if (arg)
  811. goto out;
  812. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  813. break;
  814. case KVM_GET_REGS: {
  815. struct kvm_regs kvm_regs;
  816. memset(&kvm_regs, 0, sizeof kvm_regs);
  817. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  818. if (r)
  819. goto out;
  820. r = -EFAULT;
  821. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  822. goto out;
  823. r = 0;
  824. break;
  825. }
  826. case KVM_SET_REGS: {
  827. struct kvm_regs kvm_regs;
  828. r = -EFAULT;
  829. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  830. goto out;
  831. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  832. if (r)
  833. goto out;
  834. r = 0;
  835. break;
  836. }
  837. case KVM_GET_SREGS: {
  838. struct kvm_sregs kvm_sregs;
  839. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  840. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  841. if (r)
  842. goto out;
  843. r = -EFAULT;
  844. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  845. goto out;
  846. r = 0;
  847. break;
  848. }
  849. case KVM_SET_SREGS: {
  850. struct kvm_sregs kvm_sregs;
  851. r = -EFAULT;
  852. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  853. goto out;
  854. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  855. if (r)
  856. goto out;
  857. r = 0;
  858. break;
  859. }
  860. case KVM_TRANSLATE: {
  861. struct kvm_translation tr;
  862. r = -EFAULT;
  863. if (copy_from_user(&tr, argp, sizeof tr))
  864. goto out;
  865. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  866. if (r)
  867. goto out;
  868. r = -EFAULT;
  869. if (copy_to_user(argp, &tr, sizeof tr))
  870. goto out;
  871. r = 0;
  872. break;
  873. }
  874. case KVM_INTERRUPT: {
  875. struct kvm_interrupt irq;
  876. r = -EFAULT;
  877. if (copy_from_user(&irq, argp, sizeof irq))
  878. goto out;
  879. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  880. if (r)
  881. goto out;
  882. r = 0;
  883. break;
  884. }
  885. case KVM_DEBUG_GUEST: {
  886. struct kvm_debug_guest dbg;
  887. r = -EFAULT;
  888. if (copy_from_user(&dbg, argp, sizeof dbg))
  889. goto out;
  890. r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
  891. if (r)
  892. goto out;
  893. r = 0;
  894. break;
  895. }
  896. case KVM_SET_SIGNAL_MASK: {
  897. struct kvm_signal_mask __user *sigmask_arg = argp;
  898. struct kvm_signal_mask kvm_sigmask;
  899. sigset_t sigset, *p;
  900. p = NULL;
  901. if (argp) {
  902. r = -EFAULT;
  903. if (copy_from_user(&kvm_sigmask, argp,
  904. sizeof kvm_sigmask))
  905. goto out;
  906. r = -EINVAL;
  907. if (kvm_sigmask.len != sizeof sigset)
  908. goto out;
  909. r = -EFAULT;
  910. if (copy_from_user(&sigset, sigmask_arg->sigset,
  911. sizeof sigset))
  912. goto out;
  913. p = &sigset;
  914. }
  915. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  916. break;
  917. }
  918. case KVM_GET_FPU: {
  919. struct kvm_fpu fpu;
  920. memset(&fpu, 0, sizeof fpu);
  921. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, &fpu);
  922. if (r)
  923. goto out;
  924. r = -EFAULT;
  925. if (copy_to_user(argp, &fpu, sizeof fpu))
  926. goto out;
  927. r = 0;
  928. break;
  929. }
  930. case KVM_SET_FPU: {
  931. struct kvm_fpu fpu;
  932. r = -EFAULT;
  933. if (copy_from_user(&fpu, argp, sizeof fpu))
  934. goto out;
  935. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, &fpu);
  936. if (r)
  937. goto out;
  938. r = 0;
  939. break;
  940. }
  941. default:
  942. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  943. }
  944. out:
  945. return r;
  946. }
  947. static long kvm_vm_ioctl(struct file *filp,
  948. unsigned int ioctl, unsigned long arg)
  949. {
  950. struct kvm *kvm = filp->private_data;
  951. void __user *argp = (void __user *)arg;
  952. int r;
  953. switch (ioctl) {
  954. case KVM_CREATE_VCPU:
  955. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  956. if (r < 0)
  957. goto out;
  958. break;
  959. case KVM_SET_USER_MEMORY_REGION: {
  960. struct kvm_userspace_memory_region kvm_userspace_mem;
  961. r = -EFAULT;
  962. if (copy_from_user(&kvm_userspace_mem, argp,
  963. sizeof kvm_userspace_mem))
  964. goto out;
  965. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  966. if (r)
  967. goto out;
  968. break;
  969. }
  970. case KVM_GET_DIRTY_LOG: {
  971. struct kvm_dirty_log log;
  972. r = -EFAULT;
  973. if (copy_from_user(&log, argp, sizeof log))
  974. goto out;
  975. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  976. if (r)
  977. goto out;
  978. break;
  979. }
  980. default:
  981. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  982. }
  983. out:
  984. return r;
  985. }
  986. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  987. unsigned long address,
  988. int *type)
  989. {
  990. struct kvm *kvm = vma->vm_file->private_data;
  991. unsigned long pgoff;
  992. struct page *page;
  993. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  994. if (!kvm_is_visible_gfn(kvm, pgoff))
  995. return NOPAGE_SIGBUS;
  996. /* current->mm->mmap_sem is already held so call lockless version */
  997. page = __gfn_to_page(kvm, pgoff);
  998. if (is_error_page(page)) {
  999. kvm_release_page(page);
  1000. return NOPAGE_SIGBUS;
  1001. }
  1002. if (type != NULL)
  1003. *type = VM_FAULT_MINOR;
  1004. return page;
  1005. }
  1006. static struct vm_operations_struct kvm_vm_vm_ops = {
  1007. .nopage = kvm_vm_nopage,
  1008. };
  1009. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1010. {
  1011. vma->vm_ops = &kvm_vm_vm_ops;
  1012. return 0;
  1013. }
  1014. static struct file_operations kvm_vm_fops = {
  1015. .release = kvm_vm_release,
  1016. .unlocked_ioctl = kvm_vm_ioctl,
  1017. .compat_ioctl = kvm_vm_ioctl,
  1018. .mmap = kvm_vm_mmap,
  1019. };
  1020. static int kvm_dev_ioctl_create_vm(void)
  1021. {
  1022. int fd, r;
  1023. struct inode *inode;
  1024. struct file *file;
  1025. struct kvm *kvm;
  1026. kvm = kvm_create_vm();
  1027. if (IS_ERR(kvm))
  1028. return PTR_ERR(kvm);
  1029. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  1030. if (r) {
  1031. kvm_destroy_vm(kvm);
  1032. return r;
  1033. }
  1034. kvm->filp = file;
  1035. return fd;
  1036. }
  1037. static long kvm_dev_ioctl(struct file *filp,
  1038. unsigned int ioctl, unsigned long arg)
  1039. {
  1040. void __user *argp = (void __user *)arg;
  1041. long r = -EINVAL;
  1042. switch (ioctl) {
  1043. case KVM_GET_API_VERSION:
  1044. r = -EINVAL;
  1045. if (arg)
  1046. goto out;
  1047. r = KVM_API_VERSION;
  1048. break;
  1049. case KVM_CREATE_VM:
  1050. r = -EINVAL;
  1051. if (arg)
  1052. goto out;
  1053. r = kvm_dev_ioctl_create_vm();
  1054. break;
  1055. case KVM_CHECK_EXTENSION: {
  1056. int ext = (long)argp;
  1057. switch (ext) {
  1058. case KVM_CAP_IRQCHIP:
  1059. case KVM_CAP_HLT:
  1060. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1061. case KVM_CAP_USER_MEMORY:
  1062. case KVM_CAP_SET_TSS_ADDR:
  1063. r = 1;
  1064. break;
  1065. default:
  1066. r = 0;
  1067. break;
  1068. }
  1069. break;
  1070. }
  1071. case KVM_GET_VCPU_MMAP_SIZE:
  1072. r = -EINVAL;
  1073. if (arg)
  1074. goto out;
  1075. r = 2 * PAGE_SIZE;
  1076. break;
  1077. default:
  1078. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1079. }
  1080. out:
  1081. return r;
  1082. }
  1083. static struct file_operations kvm_chardev_ops = {
  1084. .unlocked_ioctl = kvm_dev_ioctl,
  1085. .compat_ioctl = kvm_dev_ioctl,
  1086. };
  1087. static struct miscdevice kvm_dev = {
  1088. KVM_MINOR,
  1089. "kvm",
  1090. &kvm_chardev_ops,
  1091. };
  1092. /*
  1093. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  1094. * cached on it.
  1095. */
  1096. static void decache_vcpus_on_cpu(int cpu)
  1097. {
  1098. struct kvm *vm;
  1099. struct kvm_vcpu *vcpu;
  1100. int i;
  1101. spin_lock(&kvm_lock);
  1102. list_for_each_entry(vm, &vm_list, vm_list)
  1103. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1104. vcpu = vm->vcpus[i];
  1105. if (!vcpu)
  1106. continue;
  1107. /*
  1108. * If the vcpu is locked, then it is running on some
  1109. * other cpu and therefore it is not cached on the
  1110. * cpu in question.
  1111. *
  1112. * If it's not locked, check the last cpu it executed
  1113. * on.
  1114. */
  1115. if (mutex_trylock(&vcpu->mutex)) {
  1116. if (vcpu->cpu == cpu) {
  1117. kvm_x86_ops->vcpu_decache(vcpu);
  1118. vcpu->cpu = -1;
  1119. }
  1120. mutex_unlock(&vcpu->mutex);
  1121. }
  1122. }
  1123. spin_unlock(&kvm_lock);
  1124. }
  1125. static void hardware_enable(void *junk)
  1126. {
  1127. int cpu = raw_smp_processor_id();
  1128. if (cpu_isset(cpu, cpus_hardware_enabled))
  1129. return;
  1130. cpu_set(cpu, cpus_hardware_enabled);
  1131. kvm_x86_ops->hardware_enable(NULL);
  1132. }
  1133. static void hardware_disable(void *junk)
  1134. {
  1135. int cpu = raw_smp_processor_id();
  1136. if (!cpu_isset(cpu, cpus_hardware_enabled))
  1137. return;
  1138. cpu_clear(cpu, cpus_hardware_enabled);
  1139. decache_vcpus_on_cpu(cpu);
  1140. kvm_x86_ops->hardware_disable(NULL);
  1141. }
  1142. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1143. void *v)
  1144. {
  1145. int cpu = (long)v;
  1146. val &= ~CPU_TASKS_FROZEN;
  1147. switch (val) {
  1148. case CPU_DYING:
  1149. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1150. cpu);
  1151. hardware_disable(NULL);
  1152. break;
  1153. case CPU_UP_CANCELED:
  1154. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1155. cpu);
  1156. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  1157. break;
  1158. case CPU_ONLINE:
  1159. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1160. cpu);
  1161. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  1162. break;
  1163. }
  1164. return NOTIFY_OK;
  1165. }
  1166. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1167. void *v)
  1168. {
  1169. if (val == SYS_RESTART) {
  1170. /*
  1171. * Some (well, at least mine) BIOSes hang on reboot if
  1172. * in vmx root mode.
  1173. */
  1174. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1175. on_each_cpu(hardware_disable, NULL, 0, 1);
  1176. }
  1177. return NOTIFY_OK;
  1178. }
  1179. static struct notifier_block kvm_reboot_notifier = {
  1180. .notifier_call = kvm_reboot,
  1181. .priority = 0,
  1182. };
  1183. void kvm_io_bus_init(struct kvm_io_bus *bus)
  1184. {
  1185. memset(bus, 0, sizeof(*bus));
  1186. }
  1187. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1188. {
  1189. int i;
  1190. for (i = 0; i < bus->dev_count; i++) {
  1191. struct kvm_io_device *pos = bus->devs[i];
  1192. kvm_iodevice_destructor(pos);
  1193. }
  1194. }
  1195. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  1196. {
  1197. int i;
  1198. for (i = 0; i < bus->dev_count; i++) {
  1199. struct kvm_io_device *pos = bus->devs[i];
  1200. if (pos->in_range(pos, addr))
  1201. return pos;
  1202. }
  1203. return NULL;
  1204. }
  1205. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  1206. {
  1207. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  1208. bus->devs[bus->dev_count++] = dev;
  1209. }
  1210. static struct notifier_block kvm_cpu_notifier = {
  1211. .notifier_call = kvm_cpu_hotplug,
  1212. .priority = 20, /* must be > scheduler priority */
  1213. };
  1214. static u64 stat_get(void *_offset)
  1215. {
  1216. unsigned offset = (long)_offset;
  1217. u64 total = 0;
  1218. struct kvm *kvm;
  1219. struct kvm_vcpu *vcpu;
  1220. int i;
  1221. spin_lock(&kvm_lock);
  1222. list_for_each_entry(kvm, &vm_list, vm_list)
  1223. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  1224. vcpu = kvm->vcpus[i];
  1225. if (vcpu)
  1226. total += *(u32 *)((void *)vcpu + offset);
  1227. }
  1228. spin_unlock(&kvm_lock);
  1229. return total;
  1230. }
  1231. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  1232. static __init void kvm_init_debug(void)
  1233. {
  1234. struct kvm_stats_debugfs_item *p;
  1235. debugfs_dir = debugfs_create_dir("kvm", NULL);
  1236. for (p = debugfs_entries; p->name; ++p)
  1237. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  1238. (void *)(long)p->offset,
  1239. &stat_fops);
  1240. }
  1241. static void kvm_exit_debug(void)
  1242. {
  1243. struct kvm_stats_debugfs_item *p;
  1244. for (p = debugfs_entries; p->name; ++p)
  1245. debugfs_remove(p->dentry);
  1246. debugfs_remove(debugfs_dir);
  1247. }
  1248. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1249. {
  1250. hardware_disable(NULL);
  1251. return 0;
  1252. }
  1253. static int kvm_resume(struct sys_device *dev)
  1254. {
  1255. hardware_enable(NULL);
  1256. return 0;
  1257. }
  1258. static struct sysdev_class kvm_sysdev_class = {
  1259. .name = "kvm",
  1260. .suspend = kvm_suspend,
  1261. .resume = kvm_resume,
  1262. };
  1263. static struct sys_device kvm_sysdev = {
  1264. .id = 0,
  1265. .cls = &kvm_sysdev_class,
  1266. };
  1267. struct page *bad_page;
  1268. static inline
  1269. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1270. {
  1271. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1272. }
  1273. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1274. {
  1275. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1276. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1277. }
  1278. static void kvm_sched_out(struct preempt_notifier *pn,
  1279. struct task_struct *next)
  1280. {
  1281. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1282. kvm_x86_ops->vcpu_put(vcpu);
  1283. }
  1284. int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
  1285. struct module *module)
  1286. {
  1287. int r;
  1288. int cpu;
  1289. if (kvm_x86_ops) {
  1290. printk(KERN_ERR "kvm: already loaded the other module\n");
  1291. return -EEXIST;
  1292. }
  1293. if (!ops->cpu_has_kvm_support()) {
  1294. printk(KERN_ERR "kvm: no hardware support\n");
  1295. return -EOPNOTSUPP;
  1296. }
  1297. if (ops->disabled_by_bios()) {
  1298. printk(KERN_ERR "kvm: disabled by bios\n");
  1299. return -EOPNOTSUPP;
  1300. }
  1301. kvm_x86_ops = ops;
  1302. r = kvm_x86_ops->hardware_setup();
  1303. if (r < 0)
  1304. goto out;
  1305. for_each_online_cpu(cpu) {
  1306. smp_call_function_single(cpu,
  1307. kvm_x86_ops->check_processor_compatibility,
  1308. &r, 0, 1);
  1309. if (r < 0)
  1310. goto out_free_0;
  1311. }
  1312. on_each_cpu(hardware_enable, NULL, 0, 1);
  1313. r = register_cpu_notifier(&kvm_cpu_notifier);
  1314. if (r)
  1315. goto out_free_1;
  1316. register_reboot_notifier(&kvm_reboot_notifier);
  1317. r = sysdev_class_register(&kvm_sysdev_class);
  1318. if (r)
  1319. goto out_free_2;
  1320. r = sysdev_register(&kvm_sysdev);
  1321. if (r)
  1322. goto out_free_3;
  1323. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1324. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  1325. __alignof__(struct kvm_vcpu), 0, 0);
  1326. if (!kvm_vcpu_cache) {
  1327. r = -ENOMEM;
  1328. goto out_free_4;
  1329. }
  1330. kvm_chardev_ops.owner = module;
  1331. r = misc_register(&kvm_dev);
  1332. if (r) {
  1333. printk(KERN_ERR "kvm: misc device register failed\n");
  1334. goto out_free;
  1335. }
  1336. kvm_preempt_ops.sched_in = kvm_sched_in;
  1337. kvm_preempt_ops.sched_out = kvm_sched_out;
  1338. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  1339. return 0;
  1340. out_free:
  1341. kmem_cache_destroy(kvm_vcpu_cache);
  1342. out_free_4:
  1343. sysdev_unregister(&kvm_sysdev);
  1344. out_free_3:
  1345. sysdev_class_unregister(&kvm_sysdev_class);
  1346. out_free_2:
  1347. unregister_reboot_notifier(&kvm_reboot_notifier);
  1348. unregister_cpu_notifier(&kvm_cpu_notifier);
  1349. out_free_1:
  1350. on_each_cpu(hardware_disable, NULL, 0, 1);
  1351. out_free_0:
  1352. kvm_x86_ops->hardware_unsetup();
  1353. out:
  1354. kvm_x86_ops = NULL;
  1355. return r;
  1356. }
  1357. EXPORT_SYMBOL_GPL(kvm_init_x86);
  1358. void kvm_exit_x86(void)
  1359. {
  1360. misc_deregister(&kvm_dev);
  1361. kmem_cache_destroy(kvm_vcpu_cache);
  1362. sysdev_unregister(&kvm_sysdev);
  1363. sysdev_class_unregister(&kvm_sysdev_class);
  1364. unregister_reboot_notifier(&kvm_reboot_notifier);
  1365. unregister_cpu_notifier(&kvm_cpu_notifier);
  1366. on_each_cpu(hardware_disable, NULL, 0, 1);
  1367. kvm_x86_ops->hardware_unsetup();
  1368. kvm_x86_ops = NULL;
  1369. }
  1370. EXPORT_SYMBOL_GPL(kvm_exit_x86);
  1371. static __init int kvm_init(void)
  1372. {
  1373. int r;
  1374. r = kvm_mmu_module_init();
  1375. if (r)
  1376. goto out4;
  1377. kvm_init_debug();
  1378. kvm_arch_init();
  1379. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1380. if (bad_page == NULL) {
  1381. r = -ENOMEM;
  1382. goto out;
  1383. }
  1384. return 0;
  1385. out:
  1386. kvm_exit_debug();
  1387. kvm_mmu_module_exit();
  1388. out4:
  1389. return r;
  1390. }
  1391. static __exit void kvm_exit(void)
  1392. {
  1393. kvm_exit_debug();
  1394. __free_page(bad_page);
  1395. kvm_mmu_module_exit();
  1396. }
  1397. module_init(kvm_init)
  1398. module_exit(kvm_exit)