main.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238
  1. /*
  2. * Sonics Silicon Backplane
  3. * Subsystem core
  4. *
  5. * Copyright 2005, Broadcom Corporation
  6. * Copyright 2006, 2007, Michael Buesch <mb@bu3sch.de>
  7. *
  8. * Licensed under the GNU/GPL. See COPYING for details.
  9. */
  10. #include "ssb_private.h"
  11. #include <linux/delay.h>
  12. #include <linux/io.h>
  13. #include <linux/ssb/ssb.h>
  14. #include <linux/ssb/ssb_regs.h>
  15. #include <linux/ssb/ssb_driver_gige.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/pci.h>
  18. #include <pcmcia/cs_types.h>
  19. #include <pcmcia/cs.h>
  20. #include <pcmcia/cistpl.h>
  21. #include <pcmcia/ds.h>
  22. MODULE_DESCRIPTION("Sonics Silicon Backplane driver");
  23. MODULE_LICENSE("GPL");
  24. /* Temporary list of yet-to-be-attached buses */
  25. static LIST_HEAD(attach_queue);
  26. /* List if running buses */
  27. static LIST_HEAD(buses);
  28. /* Software ID counter */
  29. static unsigned int next_busnumber;
  30. /* buses_mutes locks the two buslists and the next_busnumber.
  31. * Don't lock this directly, but use ssb_buses_[un]lock() below. */
  32. static DEFINE_MUTEX(buses_mutex);
  33. /* There are differences in the codeflow, if the bus is
  34. * initialized from early boot, as various needed services
  35. * are not available early. This is a mechanism to delay
  36. * these initializations to after early boot has finished.
  37. * It's also used to avoid mutex locking, as that's not
  38. * available and needed early. */
  39. static bool ssb_is_early_boot = 1;
  40. static void ssb_buses_lock(void);
  41. static void ssb_buses_unlock(void);
  42. #ifdef CONFIG_SSB_PCIHOST
  43. struct ssb_bus *ssb_pci_dev_to_bus(struct pci_dev *pdev)
  44. {
  45. struct ssb_bus *bus;
  46. ssb_buses_lock();
  47. list_for_each_entry(bus, &buses, list) {
  48. if (bus->bustype == SSB_BUSTYPE_PCI &&
  49. bus->host_pci == pdev)
  50. goto found;
  51. }
  52. bus = NULL;
  53. found:
  54. ssb_buses_unlock();
  55. return bus;
  56. }
  57. #endif /* CONFIG_SSB_PCIHOST */
  58. #ifdef CONFIG_SSB_PCMCIAHOST
  59. struct ssb_bus *ssb_pcmcia_dev_to_bus(struct pcmcia_device *pdev)
  60. {
  61. struct ssb_bus *bus;
  62. ssb_buses_lock();
  63. list_for_each_entry(bus, &buses, list) {
  64. if (bus->bustype == SSB_BUSTYPE_PCMCIA &&
  65. bus->host_pcmcia == pdev)
  66. goto found;
  67. }
  68. bus = NULL;
  69. found:
  70. ssb_buses_unlock();
  71. return bus;
  72. }
  73. #endif /* CONFIG_SSB_PCMCIAHOST */
  74. int ssb_for_each_bus_call(unsigned long data,
  75. int (*func)(struct ssb_bus *bus, unsigned long data))
  76. {
  77. struct ssb_bus *bus;
  78. int res;
  79. ssb_buses_lock();
  80. list_for_each_entry(bus, &buses, list) {
  81. res = func(bus, data);
  82. if (res >= 0) {
  83. ssb_buses_unlock();
  84. return res;
  85. }
  86. }
  87. ssb_buses_unlock();
  88. return -ENODEV;
  89. }
  90. static struct ssb_device *ssb_device_get(struct ssb_device *dev)
  91. {
  92. if (dev)
  93. get_device(dev->dev);
  94. return dev;
  95. }
  96. static void ssb_device_put(struct ssb_device *dev)
  97. {
  98. if (dev)
  99. put_device(dev->dev);
  100. }
  101. static int ssb_bus_resume(struct ssb_bus *bus)
  102. {
  103. int err;
  104. ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
  105. err = ssb_pcmcia_init(bus);
  106. if (err) {
  107. /* No need to disable XTAL, as we don't have one on PCMCIA. */
  108. return err;
  109. }
  110. ssb_chipco_resume(&bus->chipco);
  111. return 0;
  112. }
  113. static int ssb_device_resume(struct device *dev)
  114. {
  115. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  116. struct ssb_driver *ssb_drv;
  117. struct ssb_bus *bus;
  118. int err = 0;
  119. bus = ssb_dev->bus;
  120. if (bus->suspend_cnt == bus->nr_devices) {
  121. err = ssb_bus_resume(bus);
  122. if (err)
  123. return err;
  124. }
  125. bus->suspend_cnt--;
  126. if (dev->driver) {
  127. ssb_drv = drv_to_ssb_drv(dev->driver);
  128. if (ssb_drv && ssb_drv->resume)
  129. err = ssb_drv->resume(ssb_dev);
  130. if (err)
  131. goto out;
  132. }
  133. out:
  134. return err;
  135. }
  136. static void ssb_bus_suspend(struct ssb_bus *bus, pm_message_t state)
  137. {
  138. ssb_chipco_suspend(&bus->chipco, state);
  139. ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
  140. /* Reset HW state information in memory, so that HW is
  141. * completely reinitialized on resume. */
  142. bus->mapped_device = NULL;
  143. #ifdef CONFIG_SSB_DRIVER_PCICORE
  144. bus->pcicore.setup_done = 0;
  145. #endif
  146. #ifdef CONFIG_SSB_DEBUG
  147. bus->powered_up = 0;
  148. #endif
  149. }
  150. static int ssb_device_suspend(struct device *dev, pm_message_t state)
  151. {
  152. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  153. struct ssb_driver *ssb_drv;
  154. struct ssb_bus *bus;
  155. int err = 0;
  156. if (dev->driver) {
  157. ssb_drv = drv_to_ssb_drv(dev->driver);
  158. if (ssb_drv && ssb_drv->suspend)
  159. err = ssb_drv->suspend(ssb_dev, state);
  160. if (err)
  161. goto out;
  162. }
  163. bus = ssb_dev->bus;
  164. bus->suspend_cnt++;
  165. if (bus->suspend_cnt == bus->nr_devices) {
  166. /* All devices suspended. Shutdown the bus. */
  167. ssb_bus_suspend(bus, state);
  168. }
  169. out:
  170. return err;
  171. }
  172. #ifdef CONFIG_SSB_PCIHOST
  173. int ssb_devices_freeze(struct ssb_bus *bus)
  174. {
  175. struct ssb_device *dev;
  176. struct ssb_driver *drv;
  177. int err = 0;
  178. int i;
  179. pm_message_t state = PMSG_FREEZE;
  180. /* First check that we are capable to freeze all devices. */
  181. for (i = 0; i < bus->nr_devices; i++) {
  182. dev = &(bus->devices[i]);
  183. if (!dev->dev ||
  184. !dev->dev->driver ||
  185. !device_is_registered(dev->dev))
  186. continue;
  187. drv = drv_to_ssb_drv(dev->dev->driver);
  188. if (!drv)
  189. continue;
  190. if (!drv->suspend) {
  191. /* Nope, can't suspend this one. */
  192. return -EOPNOTSUPP;
  193. }
  194. }
  195. /* Now suspend all devices */
  196. for (i = 0; i < bus->nr_devices; i++) {
  197. dev = &(bus->devices[i]);
  198. if (!dev->dev ||
  199. !dev->dev->driver ||
  200. !device_is_registered(dev->dev))
  201. continue;
  202. drv = drv_to_ssb_drv(dev->dev->driver);
  203. if (!drv)
  204. continue;
  205. err = drv->suspend(dev, state);
  206. if (err) {
  207. ssb_printk(KERN_ERR PFX "Failed to freeze device %s\n",
  208. dev->dev->bus_id);
  209. goto err_unwind;
  210. }
  211. }
  212. return 0;
  213. err_unwind:
  214. for (i--; i >= 0; i--) {
  215. dev = &(bus->devices[i]);
  216. if (!dev->dev ||
  217. !dev->dev->driver ||
  218. !device_is_registered(dev->dev))
  219. continue;
  220. drv = drv_to_ssb_drv(dev->dev->driver);
  221. if (!drv)
  222. continue;
  223. if (drv->resume)
  224. drv->resume(dev);
  225. }
  226. return err;
  227. }
  228. int ssb_devices_thaw(struct ssb_bus *bus)
  229. {
  230. struct ssb_device *dev;
  231. struct ssb_driver *drv;
  232. int err;
  233. int i;
  234. for (i = 0; i < bus->nr_devices; i++) {
  235. dev = &(bus->devices[i]);
  236. if (!dev->dev ||
  237. !dev->dev->driver ||
  238. !device_is_registered(dev->dev))
  239. continue;
  240. drv = drv_to_ssb_drv(dev->dev->driver);
  241. if (!drv)
  242. continue;
  243. if (SSB_WARN_ON(!drv->resume))
  244. continue;
  245. err = drv->resume(dev);
  246. if (err) {
  247. ssb_printk(KERN_ERR PFX "Failed to thaw device %s\n",
  248. dev->dev->bus_id);
  249. }
  250. }
  251. return 0;
  252. }
  253. #endif /* CONFIG_SSB_PCIHOST */
  254. static void ssb_device_shutdown(struct device *dev)
  255. {
  256. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  257. struct ssb_driver *ssb_drv;
  258. if (!dev->driver)
  259. return;
  260. ssb_drv = drv_to_ssb_drv(dev->driver);
  261. if (ssb_drv && ssb_drv->shutdown)
  262. ssb_drv->shutdown(ssb_dev);
  263. }
  264. static int ssb_device_remove(struct device *dev)
  265. {
  266. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  267. struct ssb_driver *ssb_drv = drv_to_ssb_drv(dev->driver);
  268. if (ssb_drv && ssb_drv->remove)
  269. ssb_drv->remove(ssb_dev);
  270. ssb_device_put(ssb_dev);
  271. return 0;
  272. }
  273. static int ssb_device_probe(struct device *dev)
  274. {
  275. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  276. struct ssb_driver *ssb_drv = drv_to_ssb_drv(dev->driver);
  277. int err = 0;
  278. ssb_device_get(ssb_dev);
  279. if (ssb_drv && ssb_drv->probe)
  280. err = ssb_drv->probe(ssb_dev, &ssb_dev->id);
  281. if (err)
  282. ssb_device_put(ssb_dev);
  283. return err;
  284. }
  285. static int ssb_match_devid(const struct ssb_device_id *tabid,
  286. const struct ssb_device_id *devid)
  287. {
  288. if ((tabid->vendor != devid->vendor) &&
  289. tabid->vendor != SSB_ANY_VENDOR)
  290. return 0;
  291. if ((tabid->coreid != devid->coreid) &&
  292. tabid->coreid != SSB_ANY_ID)
  293. return 0;
  294. if ((tabid->revision != devid->revision) &&
  295. tabid->revision != SSB_ANY_REV)
  296. return 0;
  297. return 1;
  298. }
  299. static int ssb_bus_match(struct device *dev, struct device_driver *drv)
  300. {
  301. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  302. struct ssb_driver *ssb_drv = drv_to_ssb_drv(drv);
  303. const struct ssb_device_id *id;
  304. for (id = ssb_drv->id_table;
  305. id->vendor || id->coreid || id->revision;
  306. id++) {
  307. if (ssb_match_devid(id, &ssb_dev->id))
  308. return 1; /* found */
  309. }
  310. return 0;
  311. }
  312. static int ssb_device_uevent(struct device *dev, struct kobj_uevent_env *env)
  313. {
  314. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  315. if (!dev)
  316. return -ENODEV;
  317. return add_uevent_var(env,
  318. "MODALIAS=ssb:v%04Xid%04Xrev%02X",
  319. ssb_dev->id.vendor, ssb_dev->id.coreid,
  320. ssb_dev->id.revision);
  321. }
  322. static struct bus_type ssb_bustype = {
  323. .name = "ssb",
  324. .match = ssb_bus_match,
  325. .probe = ssb_device_probe,
  326. .remove = ssb_device_remove,
  327. .shutdown = ssb_device_shutdown,
  328. .suspend = ssb_device_suspend,
  329. .resume = ssb_device_resume,
  330. .uevent = ssb_device_uevent,
  331. };
  332. static void ssb_buses_lock(void)
  333. {
  334. /* See the comment at the ssb_is_early_boot definition */
  335. if (!ssb_is_early_boot)
  336. mutex_lock(&buses_mutex);
  337. }
  338. static void ssb_buses_unlock(void)
  339. {
  340. /* See the comment at the ssb_is_early_boot definition */
  341. if (!ssb_is_early_boot)
  342. mutex_unlock(&buses_mutex);
  343. }
  344. static void ssb_devices_unregister(struct ssb_bus *bus)
  345. {
  346. struct ssb_device *sdev;
  347. int i;
  348. for (i = bus->nr_devices - 1; i >= 0; i--) {
  349. sdev = &(bus->devices[i]);
  350. if (sdev->dev)
  351. device_unregister(sdev->dev);
  352. }
  353. }
  354. void ssb_bus_unregister(struct ssb_bus *bus)
  355. {
  356. ssb_buses_lock();
  357. ssb_devices_unregister(bus);
  358. list_del(&bus->list);
  359. ssb_buses_unlock();
  360. ssb_pcmcia_exit(bus);
  361. ssb_pci_exit(bus);
  362. ssb_iounmap(bus);
  363. }
  364. EXPORT_SYMBOL(ssb_bus_unregister);
  365. static void ssb_release_dev(struct device *dev)
  366. {
  367. struct __ssb_dev_wrapper *devwrap;
  368. devwrap = container_of(dev, struct __ssb_dev_wrapper, dev);
  369. kfree(devwrap);
  370. }
  371. static int ssb_devices_register(struct ssb_bus *bus)
  372. {
  373. struct ssb_device *sdev;
  374. struct device *dev;
  375. struct __ssb_dev_wrapper *devwrap;
  376. int i, err = 0;
  377. int dev_idx = 0;
  378. for (i = 0; i < bus->nr_devices; i++) {
  379. sdev = &(bus->devices[i]);
  380. /* We don't register SSB-system devices to the kernel,
  381. * as the drivers for them are built into SSB. */
  382. switch (sdev->id.coreid) {
  383. case SSB_DEV_CHIPCOMMON:
  384. case SSB_DEV_PCI:
  385. case SSB_DEV_PCIE:
  386. case SSB_DEV_PCMCIA:
  387. case SSB_DEV_MIPS:
  388. case SSB_DEV_MIPS_3302:
  389. case SSB_DEV_EXTIF:
  390. continue;
  391. }
  392. devwrap = kzalloc(sizeof(*devwrap), GFP_KERNEL);
  393. if (!devwrap) {
  394. ssb_printk(KERN_ERR PFX
  395. "Could not allocate device\n");
  396. err = -ENOMEM;
  397. goto error;
  398. }
  399. dev = &devwrap->dev;
  400. devwrap->sdev = sdev;
  401. dev->release = ssb_release_dev;
  402. dev->bus = &ssb_bustype;
  403. snprintf(dev->bus_id, sizeof(dev->bus_id),
  404. "ssb%u:%d", bus->busnumber, dev_idx);
  405. switch (bus->bustype) {
  406. case SSB_BUSTYPE_PCI:
  407. #ifdef CONFIG_SSB_PCIHOST
  408. sdev->irq = bus->host_pci->irq;
  409. dev->parent = &bus->host_pci->dev;
  410. #endif
  411. break;
  412. case SSB_BUSTYPE_PCMCIA:
  413. #ifdef CONFIG_SSB_PCMCIAHOST
  414. sdev->irq = bus->host_pcmcia->irq.AssignedIRQ;
  415. dev->parent = &bus->host_pcmcia->dev;
  416. #endif
  417. break;
  418. case SSB_BUSTYPE_SSB:
  419. break;
  420. }
  421. sdev->dev = dev;
  422. err = device_register(dev);
  423. if (err) {
  424. ssb_printk(KERN_ERR PFX
  425. "Could not register %s\n",
  426. dev->bus_id);
  427. /* Set dev to NULL to not unregister
  428. * dev on error unwinding. */
  429. sdev->dev = NULL;
  430. kfree(devwrap);
  431. goto error;
  432. }
  433. dev_idx++;
  434. }
  435. return 0;
  436. error:
  437. /* Unwind the already registered devices. */
  438. ssb_devices_unregister(bus);
  439. return err;
  440. }
  441. /* Needs ssb_buses_lock() */
  442. static int ssb_attach_queued_buses(void)
  443. {
  444. struct ssb_bus *bus, *n;
  445. int err = 0;
  446. int drop_them_all = 0;
  447. list_for_each_entry_safe(bus, n, &attach_queue, list) {
  448. if (drop_them_all) {
  449. list_del(&bus->list);
  450. continue;
  451. }
  452. /* Can't init the PCIcore in ssb_bus_register(), as that
  453. * is too early in boot for embedded systems
  454. * (no udelay() available). So do it here in attach stage.
  455. */
  456. err = ssb_bus_powerup(bus, 0);
  457. if (err)
  458. goto error;
  459. ssb_pcicore_init(&bus->pcicore);
  460. ssb_bus_may_powerdown(bus);
  461. err = ssb_devices_register(bus);
  462. error:
  463. if (err) {
  464. drop_them_all = 1;
  465. list_del(&bus->list);
  466. continue;
  467. }
  468. list_move_tail(&bus->list, &buses);
  469. }
  470. return err;
  471. }
  472. static u8 ssb_ssb_read8(struct ssb_device *dev, u16 offset)
  473. {
  474. struct ssb_bus *bus = dev->bus;
  475. offset += dev->core_index * SSB_CORE_SIZE;
  476. return readb(bus->mmio + offset);
  477. }
  478. static u16 ssb_ssb_read16(struct ssb_device *dev, u16 offset)
  479. {
  480. struct ssb_bus *bus = dev->bus;
  481. offset += dev->core_index * SSB_CORE_SIZE;
  482. return readw(bus->mmio + offset);
  483. }
  484. static u32 ssb_ssb_read32(struct ssb_device *dev, u16 offset)
  485. {
  486. struct ssb_bus *bus = dev->bus;
  487. offset += dev->core_index * SSB_CORE_SIZE;
  488. return readl(bus->mmio + offset);
  489. }
  490. static void ssb_ssb_write8(struct ssb_device *dev, u16 offset, u8 value)
  491. {
  492. struct ssb_bus *bus = dev->bus;
  493. offset += dev->core_index * SSB_CORE_SIZE;
  494. writeb(value, bus->mmio + offset);
  495. }
  496. static void ssb_ssb_write16(struct ssb_device *dev, u16 offset, u16 value)
  497. {
  498. struct ssb_bus *bus = dev->bus;
  499. offset += dev->core_index * SSB_CORE_SIZE;
  500. writew(value, bus->mmio + offset);
  501. }
  502. static void ssb_ssb_write32(struct ssb_device *dev, u16 offset, u32 value)
  503. {
  504. struct ssb_bus *bus = dev->bus;
  505. offset += dev->core_index * SSB_CORE_SIZE;
  506. writel(value, bus->mmio + offset);
  507. }
  508. /* Ops for the plain SSB bus without a host-device (no PCI or PCMCIA). */
  509. static const struct ssb_bus_ops ssb_ssb_ops = {
  510. .read8 = ssb_ssb_read8,
  511. .read16 = ssb_ssb_read16,
  512. .read32 = ssb_ssb_read32,
  513. .write8 = ssb_ssb_write8,
  514. .write16 = ssb_ssb_write16,
  515. .write32 = ssb_ssb_write32,
  516. };
  517. static int ssb_fetch_invariants(struct ssb_bus *bus,
  518. ssb_invariants_func_t get_invariants)
  519. {
  520. struct ssb_init_invariants iv;
  521. int err;
  522. memset(&iv, 0, sizeof(iv));
  523. err = get_invariants(bus, &iv);
  524. if (err)
  525. goto out;
  526. memcpy(&bus->boardinfo, &iv.boardinfo, sizeof(iv.boardinfo));
  527. memcpy(&bus->sprom, &iv.sprom, sizeof(iv.sprom));
  528. bus->has_cardbus_slot = iv.has_cardbus_slot;
  529. out:
  530. return err;
  531. }
  532. static int ssb_bus_register(struct ssb_bus *bus,
  533. ssb_invariants_func_t get_invariants,
  534. unsigned long baseaddr)
  535. {
  536. int err;
  537. spin_lock_init(&bus->bar_lock);
  538. INIT_LIST_HEAD(&bus->list);
  539. #ifdef CONFIG_SSB_EMBEDDED
  540. spin_lock_init(&bus->gpio_lock);
  541. #endif
  542. /* Powerup the bus */
  543. err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
  544. if (err)
  545. goto out;
  546. ssb_buses_lock();
  547. bus->busnumber = next_busnumber;
  548. /* Scan for devices (cores) */
  549. err = ssb_bus_scan(bus, baseaddr);
  550. if (err)
  551. goto err_disable_xtal;
  552. /* Init PCI-host device (if any) */
  553. err = ssb_pci_init(bus);
  554. if (err)
  555. goto err_unmap;
  556. /* Init PCMCIA-host device (if any) */
  557. err = ssb_pcmcia_init(bus);
  558. if (err)
  559. goto err_pci_exit;
  560. /* Initialize basic system devices (if available) */
  561. err = ssb_bus_powerup(bus, 0);
  562. if (err)
  563. goto err_pcmcia_exit;
  564. ssb_chipcommon_init(&bus->chipco);
  565. ssb_mipscore_init(&bus->mipscore);
  566. err = ssb_fetch_invariants(bus, get_invariants);
  567. if (err) {
  568. ssb_bus_may_powerdown(bus);
  569. goto err_pcmcia_exit;
  570. }
  571. ssb_bus_may_powerdown(bus);
  572. /* Queue it for attach.
  573. * See the comment at the ssb_is_early_boot definition. */
  574. list_add_tail(&bus->list, &attach_queue);
  575. if (!ssb_is_early_boot) {
  576. /* This is not early boot, so we must attach the bus now */
  577. err = ssb_attach_queued_buses();
  578. if (err)
  579. goto err_dequeue;
  580. }
  581. next_busnumber++;
  582. ssb_buses_unlock();
  583. out:
  584. return err;
  585. err_dequeue:
  586. list_del(&bus->list);
  587. err_pcmcia_exit:
  588. ssb_pcmcia_exit(bus);
  589. err_pci_exit:
  590. ssb_pci_exit(bus);
  591. err_unmap:
  592. ssb_iounmap(bus);
  593. err_disable_xtal:
  594. ssb_buses_unlock();
  595. ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
  596. return err;
  597. }
  598. #ifdef CONFIG_SSB_PCIHOST
  599. int ssb_bus_pcibus_register(struct ssb_bus *bus,
  600. struct pci_dev *host_pci)
  601. {
  602. int err;
  603. bus->bustype = SSB_BUSTYPE_PCI;
  604. bus->host_pci = host_pci;
  605. bus->ops = &ssb_pci_ops;
  606. err = ssb_bus_register(bus, ssb_pci_get_invariants, 0);
  607. if (!err) {
  608. ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found on "
  609. "PCI device %s\n", host_pci->dev.bus_id);
  610. }
  611. return err;
  612. }
  613. EXPORT_SYMBOL(ssb_bus_pcibus_register);
  614. #endif /* CONFIG_SSB_PCIHOST */
  615. #ifdef CONFIG_SSB_PCMCIAHOST
  616. int ssb_bus_pcmciabus_register(struct ssb_bus *bus,
  617. struct pcmcia_device *pcmcia_dev,
  618. unsigned long baseaddr)
  619. {
  620. int err;
  621. bus->bustype = SSB_BUSTYPE_PCMCIA;
  622. bus->host_pcmcia = pcmcia_dev;
  623. bus->ops = &ssb_pcmcia_ops;
  624. err = ssb_bus_register(bus, ssb_pcmcia_get_invariants, baseaddr);
  625. if (!err) {
  626. ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found on "
  627. "PCMCIA device %s\n", pcmcia_dev->devname);
  628. }
  629. return err;
  630. }
  631. EXPORT_SYMBOL(ssb_bus_pcmciabus_register);
  632. #endif /* CONFIG_SSB_PCMCIAHOST */
  633. int ssb_bus_ssbbus_register(struct ssb_bus *bus,
  634. unsigned long baseaddr,
  635. ssb_invariants_func_t get_invariants)
  636. {
  637. int err;
  638. bus->bustype = SSB_BUSTYPE_SSB;
  639. bus->ops = &ssb_ssb_ops;
  640. err = ssb_bus_register(bus, get_invariants, baseaddr);
  641. if (!err) {
  642. ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found at "
  643. "address 0x%08lX\n", baseaddr);
  644. }
  645. return err;
  646. }
  647. int __ssb_driver_register(struct ssb_driver *drv, struct module *owner)
  648. {
  649. drv->drv.name = drv->name;
  650. drv->drv.bus = &ssb_bustype;
  651. drv->drv.owner = owner;
  652. return driver_register(&drv->drv);
  653. }
  654. EXPORT_SYMBOL(__ssb_driver_register);
  655. void ssb_driver_unregister(struct ssb_driver *drv)
  656. {
  657. driver_unregister(&drv->drv);
  658. }
  659. EXPORT_SYMBOL(ssb_driver_unregister);
  660. void ssb_set_devtypedata(struct ssb_device *dev, void *data)
  661. {
  662. struct ssb_bus *bus = dev->bus;
  663. struct ssb_device *ent;
  664. int i;
  665. for (i = 0; i < bus->nr_devices; i++) {
  666. ent = &(bus->devices[i]);
  667. if (ent->id.vendor != dev->id.vendor)
  668. continue;
  669. if (ent->id.coreid != dev->id.coreid)
  670. continue;
  671. ent->devtypedata = data;
  672. }
  673. }
  674. EXPORT_SYMBOL(ssb_set_devtypedata);
  675. static u32 clkfactor_f6_resolve(u32 v)
  676. {
  677. /* map the magic values */
  678. switch (v) {
  679. case SSB_CHIPCO_CLK_F6_2:
  680. return 2;
  681. case SSB_CHIPCO_CLK_F6_3:
  682. return 3;
  683. case SSB_CHIPCO_CLK_F6_4:
  684. return 4;
  685. case SSB_CHIPCO_CLK_F6_5:
  686. return 5;
  687. case SSB_CHIPCO_CLK_F6_6:
  688. return 6;
  689. case SSB_CHIPCO_CLK_F6_7:
  690. return 7;
  691. }
  692. return 0;
  693. }
  694. /* Calculate the speed the backplane would run at a given set of clockcontrol values */
  695. u32 ssb_calc_clock_rate(u32 plltype, u32 n, u32 m)
  696. {
  697. u32 n1, n2, clock, m1, m2, m3, mc;
  698. n1 = (n & SSB_CHIPCO_CLK_N1);
  699. n2 = ((n & SSB_CHIPCO_CLK_N2) >> SSB_CHIPCO_CLK_N2_SHIFT);
  700. switch (plltype) {
  701. case SSB_PLLTYPE_6: /* 100/200 or 120/240 only */
  702. if (m & SSB_CHIPCO_CLK_T6_MMASK)
  703. return SSB_CHIPCO_CLK_T6_M0;
  704. return SSB_CHIPCO_CLK_T6_M1;
  705. case SSB_PLLTYPE_1: /* 48Mhz base, 3 dividers */
  706. case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
  707. case SSB_PLLTYPE_4: /* 48Mhz, 4 dividers */
  708. case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
  709. n1 = clkfactor_f6_resolve(n1);
  710. n2 += SSB_CHIPCO_CLK_F5_BIAS;
  711. break;
  712. case SSB_PLLTYPE_2: /* 48Mhz, 4 dividers */
  713. n1 += SSB_CHIPCO_CLK_T2_BIAS;
  714. n2 += SSB_CHIPCO_CLK_T2_BIAS;
  715. SSB_WARN_ON(!((n1 >= 2) && (n1 <= 7)));
  716. SSB_WARN_ON(!((n2 >= 5) && (n2 <= 23)));
  717. break;
  718. case SSB_PLLTYPE_5: /* 25Mhz, 4 dividers */
  719. return 100000000;
  720. default:
  721. SSB_WARN_ON(1);
  722. }
  723. switch (plltype) {
  724. case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
  725. case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
  726. clock = SSB_CHIPCO_CLK_BASE2 * n1 * n2;
  727. break;
  728. default:
  729. clock = SSB_CHIPCO_CLK_BASE1 * n1 * n2;
  730. }
  731. if (!clock)
  732. return 0;
  733. m1 = (m & SSB_CHIPCO_CLK_M1);
  734. m2 = ((m & SSB_CHIPCO_CLK_M2) >> SSB_CHIPCO_CLK_M2_SHIFT);
  735. m3 = ((m & SSB_CHIPCO_CLK_M3) >> SSB_CHIPCO_CLK_M3_SHIFT);
  736. mc = ((m & SSB_CHIPCO_CLK_MC) >> SSB_CHIPCO_CLK_MC_SHIFT);
  737. switch (plltype) {
  738. case SSB_PLLTYPE_1: /* 48Mhz base, 3 dividers */
  739. case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
  740. case SSB_PLLTYPE_4: /* 48Mhz, 4 dividers */
  741. case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
  742. m1 = clkfactor_f6_resolve(m1);
  743. if ((plltype == SSB_PLLTYPE_1) ||
  744. (plltype == SSB_PLLTYPE_3))
  745. m2 += SSB_CHIPCO_CLK_F5_BIAS;
  746. else
  747. m2 = clkfactor_f6_resolve(m2);
  748. m3 = clkfactor_f6_resolve(m3);
  749. switch (mc) {
  750. case SSB_CHIPCO_CLK_MC_BYPASS:
  751. return clock;
  752. case SSB_CHIPCO_CLK_MC_M1:
  753. return (clock / m1);
  754. case SSB_CHIPCO_CLK_MC_M1M2:
  755. return (clock / (m1 * m2));
  756. case SSB_CHIPCO_CLK_MC_M1M2M3:
  757. return (clock / (m1 * m2 * m3));
  758. case SSB_CHIPCO_CLK_MC_M1M3:
  759. return (clock / (m1 * m3));
  760. }
  761. return 0;
  762. case SSB_PLLTYPE_2:
  763. m1 += SSB_CHIPCO_CLK_T2_BIAS;
  764. m2 += SSB_CHIPCO_CLK_T2M2_BIAS;
  765. m3 += SSB_CHIPCO_CLK_T2_BIAS;
  766. SSB_WARN_ON(!((m1 >= 2) && (m1 <= 7)));
  767. SSB_WARN_ON(!((m2 >= 3) && (m2 <= 10)));
  768. SSB_WARN_ON(!((m3 >= 2) && (m3 <= 7)));
  769. if (!(mc & SSB_CHIPCO_CLK_T2MC_M1BYP))
  770. clock /= m1;
  771. if (!(mc & SSB_CHIPCO_CLK_T2MC_M2BYP))
  772. clock /= m2;
  773. if (!(mc & SSB_CHIPCO_CLK_T2MC_M3BYP))
  774. clock /= m3;
  775. return clock;
  776. default:
  777. SSB_WARN_ON(1);
  778. }
  779. return 0;
  780. }
  781. /* Get the current speed the backplane is running at */
  782. u32 ssb_clockspeed(struct ssb_bus *bus)
  783. {
  784. u32 rate;
  785. u32 plltype;
  786. u32 clkctl_n, clkctl_m;
  787. if (ssb_extif_available(&bus->extif))
  788. ssb_extif_get_clockcontrol(&bus->extif, &plltype,
  789. &clkctl_n, &clkctl_m);
  790. else if (bus->chipco.dev)
  791. ssb_chipco_get_clockcontrol(&bus->chipco, &plltype,
  792. &clkctl_n, &clkctl_m);
  793. else
  794. return 0;
  795. if (bus->chip_id == 0x5365) {
  796. rate = 100000000;
  797. } else {
  798. rate = ssb_calc_clock_rate(plltype, clkctl_n, clkctl_m);
  799. if (plltype == SSB_PLLTYPE_3) /* 25Mhz, 2 dividers */
  800. rate /= 2;
  801. }
  802. return rate;
  803. }
  804. EXPORT_SYMBOL(ssb_clockspeed);
  805. static u32 ssb_tmslow_reject_bitmask(struct ssb_device *dev)
  806. {
  807. u32 rev = ssb_read32(dev, SSB_IDLOW) & SSB_IDLOW_SSBREV;
  808. /* The REJECT bit changed position in TMSLOW between
  809. * Backplane revisions. */
  810. switch (rev) {
  811. case SSB_IDLOW_SSBREV_22:
  812. return SSB_TMSLOW_REJECT_22;
  813. case SSB_IDLOW_SSBREV_23:
  814. return SSB_TMSLOW_REJECT_23;
  815. case SSB_IDLOW_SSBREV_24: /* TODO - find the proper REJECT bits */
  816. case SSB_IDLOW_SSBREV_25: /* same here */
  817. case SSB_IDLOW_SSBREV_26: /* same here */
  818. case SSB_IDLOW_SSBREV_27: /* same here */
  819. return SSB_TMSLOW_REJECT_23; /* this is a guess */
  820. default:
  821. printk(KERN_INFO "ssb: Backplane Revision 0x%.8X\n", rev);
  822. WARN_ON(1);
  823. }
  824. return (SSB_TMSLOW_REJECT_22 | SSB_TMSLOW_REJECT_23);
  825. }
  826. int ssb_device_is_enabled(struct ssb_device *dev)
  827. {
  828. u32 val;
  829. u32 reject;
  830. reject = ssb_tmslow_reject_bitmask(dev);
  831. val = ssb_read32(dev, SSB_TMSLOW);
  832. val &= SSB_TMSLOW_CLOCK | SSB_TMSLOW_RESET | reject;
  833. return (val == SSB_TMSLOW_CLOCK);
  834. }
  835. EXPORT_SYMBOL(ssb_device_is_enabled);
  836. static void ssb_flush_tmslow(struct ssb_device *dev)
  837. {
  838. /* Make _really_ sure the device has finished the TMSLOW
  839. * register write transaction, as we risk running into
  840. * a machine check exception otherwise.
  841. * Do this by reading the register back to commit the
  842. * PCI write and delay an additional usec for the device
  843. * to react to the change. */
  844. ssb_read32(dev, SSB_TMSLOW);
  845. udelay(1);
  846. }
  847. void ssb_device_enable(struct ssb_device *dev, u32 core_specific_flags)
  848. {
  849. u32 val;
  850. ssb_device_disable(dev, core_specific_flags);
  851. ssb_write32(dev, SSB_TMSLOW,
  852. SSB_TMSLOW_RESET | SSB_TMSLOW_CLOCK |
  853. SSB_TMSLOW_FGC | core_specific_flags);
  854. ssb_flush_tmslow(dev);
  855. /* Clear SERR if set. This is a hw bug workaround. */
  856. if (ssb_read32(dev, SSB_TMSHIGH) & SSB_TMSHIGH_SERR)
  857. ssb_write32(dev, SSB_TMSHIGH, 0);
  858. val = ssb_read32(dev, SSB_IMSTATE);
  859. if (val & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
  860. val &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
  861. ssb_write32(dev, SSB_IMSTATE, val);
  862. }
  863. ssb_write32(dev, SSB_TMSLOW,
  864. SSB_TMSLOW_CLOCK | SSB_TMSLOW_FGC |
  865. core_specific_flags);
  866. ssb_flush_tmslow(dev);
  867. ssb_write32(dev, SSB_TMSLOW, SSB_TMSLOW_CLOCK |
  868. core_specific_flags);
  869. ssb_flush_tmslow(dev);
  870. }
  871. EXPORT_SYMBOL(ssb_device_enable);
  872. /* Wait for a bit in a register to get set or unset.
  873. * timeout is in units of ten-microseconds */
  874. static int ssb_wait_bit(struct ssb_device *dev, u16 reg, u32 bitmask,
  875. int timeout, int set)
  876. {
  877. int i;
  878. u32 val;
  879. for (i = 0; i < timeout; i++) {
  880. val = ssb_read32(dev, reg);
  881. if (set) {
  882. if (val & bitmask)
  883. return 0;
  884. } else {
  885. if (!(val & bitmask))
  886. return 0;
  887. }
  888. udelay(10);
  889. }
  890. printk(KERN_ERR PFX "Timeout waiting for bitmask %08X on "
  891. "register %04X to %s.\n",
  892. bitmask, reg, (set ? "set" : "clear"));
  893. return -ETIMEDOUT;
  894. }
  895. void ssb_device_disable(struct ssb_device *dev, u32 core_specific_flags)
  896. {
  897. u32 reject;
  898. if (ssb_read32(dev, SSB_TMSLOW) & SSB_TMSLOW_RESET)
  899. return;
  900. reject = ssb_tmslow_reject_bitmask(dev);
  901. ssb_write32(dev, SSB_TMSLOW, reject | SSB_TMSLOW_CLOCK);
  902. ssb_wait_bit(dev, SSB_TMSLOW, reject, 1000, 1);
  903. ssb_wait_bit(dev, SSB_TMSHIGH, SSB_TMSHIGH_BUSY, 1000, 0);
  904. ssb_write32(dev, SSB_TMSLOW,
  905. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
  906. reject | SSB_TMSLOW_RESET |
  907. core_specific_flags);
  908. ssb_flush_tmslow(dev);
  909. ssb_write32(dev, SSB_TMSLOW,
  910. reject | SSB_TMSLOW_RESET |
  911. core_specific_flags);
  912. ssb_flush_tmslow(dev);
  913. }
  914. EXPORT_SYMBOL(ssb_device_disable);
  915. u32 ssb_dma_translation(struct ssb_device *dev)
  916. {
  917. switch (dev->bus->bustype) {
  918. case SSB_BUSTYPE_SSB:
  919. case SSB_BUSTYPE_PCMCIA:
  920. return 0;
  921. case SSB_BUSTYPE_PCI:
  922. return SSB_PCI_DMA;
  923. }
  924. return 0;
  925. }
  926. EXPORT_SYMBOL(ssb_dma_translation);
  927. int ssb_dma_set_mask(struct ssb_device *ssb_dev, u64 mask)
  928. {
  929. struct device *dev = ssb_dev->dev;
  930. #ifdef CONFIG_SSB_PCIHOST
  931. if (ssb_dev->bus->bustype == SSB_BUSTYPE_PCI &&
  932. !dma_supported(dev, mask))
  933. return -EIO;
  934. #endif
  935. dev->coherent_dma_mask = mask;
  936. dev->dma_mask = &dev->coherent_dma_mask;
  937. return 0;
  938. }
  939. EXPORT_SYMBOL(ssb_dma_set_mask);
  940. int ssb_bus_may_powerdown(struct ssb_bus *bus)
  941. {
  942. struct ssb_chipcommon *cc;
  943. int err = 0;
  944. /* On buses where more than one core may be working
  945. * at a time, we must not powerdown stuff if there are
  946. * still cores that may want to run. */
  947. if (bus->bustype == SSB_BUSTYPE_SSB)
  948. goto out;
  949. cc = &bus->chipco;
  950. ssb_chipco_set_clockmode(cc, SSB_CLKMODE_SLOW);
  951. err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
  952. if (err)
  953. goto error;
  954. out:
  955. #ifdef CONFIG_SSB_DEBUG
  956. bus->powered_up = 0;
  957. #endif
  958. return err;
  959. error:
  960. ssb_printk(KERN_ERR PFX "Bus powerdown failed\n");
  961. goto out;
  962. }
  963. EXPORT_SYMBOL(ssb_bus_may_powerdown);
  964. int ssb_bus_powerup(struct ssb_bus *bus, bool dynamic_pctl)
  965. {
  966. struct ssb_chipcommon *cc;
  967. int err;
  968. enum ssb_clkmode mode;
  969. err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
  970. if (err)
  971. goto error;
  972. cc = &bus->chipco;
  973. mode = dynamic_pctl ? SSB_CLKMODE_DYNAMIC : SSB_CLKMODE_FAST;
  974. ssb_chipco_set_clockmode(cc, mode);
  975. #ifdef CONFIG_SSB_DEBUG
  976. bus->powered_up = 1;
  977. #endif
  978. return 0;
  979. error:
  980. ssb_printk(KERN_ERR PFX "Bus powerup failed\n");
  981. return err;
  982. }
  983. EXPORT_SYMBOL(ssb_bus_powerup);
  984. u32 ssb_admatch_base(u32 adm)
  985. {
  986. u32 base = 0;
  987. switch (adm & SSB_ADM_TYPE) {
  988. case SSB_ADM_TYPE0:
  989. base = (adm & SSB_ADM_BASE0);
  990. break;
  991. case SSB_ADM_TYPE1:
  992. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  993. base = (adm & SSB_ADM_BASE1);
  994. break;
  995. case SSB_ADM_TYPE2:
  996. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  997. base = (adm & SSB_ADM_BASE2);
  998. break;
  999. default:
  1000. SSB_WARN_ON(1);
  1001. }
  1002. return base;
  1003. }
  1004. EXPORT_SYMBOL(ssb_admatch_base);
  1005. u32 ssb_admatch_size(u32 adm)
  1006. {
  1007. u32 size = 0;
  1008. switch (adm & SSB_ADM_TYPE) {
  1009. case SSB_ADM_TYPE0:
  1010. size = ((adm & SSB_ADM_SZ0) >> SSB_ADM_SZ0_SHIFT);
  1011. break;
  1012. case SSB_ADM_TYPE1:
  1013. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  1014. size = ((adm & SSB_ADM_SZ1) >> SSB_ADM_SZ1_SHIFT);
  1015. break;
  1016. case SSB_ADM_TYPE2:
  1017. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  1018. size = ((adm & SSB_ADM_SZ2) >> SSB_ADM_SZ2_SHIFT);
  1019. break;
  1020. default:
  1021. SSB_WARN_ON(1);
  1022. }
  1023. size = (1 << (size + 1));
  1024. return size;
  1025. }
  1026. EXPORT_SYMBOL(ssb_admatch_size);
  1027. static int __init ssb_modinit(void)
  1028. {
  1029. int err;
  1030. /* See the comment at the ssb_is_early_boot definition */
  1031. ssb_is_early_boot = 0;
  1032. err = bus_register(&ssb_bustype);
  1033. if (err)
  1034. return err;
  1035. /* Maybe we already registered some buses at early boot.
  1036. * Check for this and attach them
  1037. */
  1038. ssb_buses_lock();
  1039. err = ssb_attach_queued_buses();
  1040. ssb_buses_unlock();
  1041. if (err)
  1042. bus_unregister(&ssb_bustype);
  1043. err = b43_pci_ssb_bridge_init();
  1044. if (err) {
  1045. ssb_printk(KERN_ERR "Broadcom 43xx PCI-SSB-bridge "
  1046. "initialization failed\n");
  1047. /* don't fail SSB init because of this */
  1048. err = 0;
  1049. }
  1050. err = ssb_gige_init();
  1051. if (err) {
  1052. ssb_printk(KERN_ERR "SSB Broadcom Gigabit Ethernet "
  1053. "driver initialization failed\n");
  1054. /* don't fail SSB init because of this */
  1055. err = 0;
  1056. }
  1057. return err;
  1058. }
  1059. /* ssb must be initialized after PCI but before the ssb drivers.
  1060. * That means we must use some initcall between subsys_initcall
  1061. * and device_initcall. */
  1062. fs_initcall(ssb_modinit);
  1063. static void __exit ssb_modexit(void)
  1064. {
  1065. ssb_gige_exit();
  1066. b43_pci_ssb_bridge_exit();
  1067. bus_unregister(&ssb_bustype);
  1068. }
  1069. module_exit(ssb_modexit)