disk-io.c 96 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include <linux/slab.h>
  30. #include <linux/migrate.h>
  31. #include <linux/ratelimit.h>
  32. #include <asm/unaligned.h>
  33. #include "compat.h"
  34. #include "ctree.h"
  35. #include "disk-io.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "async-thread.h"
  41. #include "locking.h"
  42. #include "tree-log.h"
  43. #include "free-space-cache.h"
  44. #include "inode-map.h"
  45. static struct extent_io_ops btree_extent_io_ops;
  46. static void end_workqueue_fn(struct btrfs_work *work);
  47. static void free_fs_root(struct btrfs_root *root);
  48. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  49. int read_only);
  50. static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
  51. static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
  52. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  53. struct btrfs_root *root);
  54. static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  55. static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  56. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  57. struct extent_io_tree *dirty_pages,
  58. int mark);
  59. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  60. struct extent_io_tree *pinned_extents);
  61. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  62. /*
  63. * end_io_wq structs are used to do processing in task context when an IO is
  64. * complete. This is used during reads to verify checksums, and it is used
  65. * by writes to insert metadata for new file extents after IO is complete.
  66. */
  67. struct end_io_wq {
  68. struct bio *bio;
  69. bio_end_io_t *end_io;
  70. void *private;
  71. struct btrfs_fs_info *info;
  72. int error;
  73. int metadata;
  74. struct list_head list;
  75. struct btrfs_work work;
  76. };
  77. /*
  78. * async submit bios are used to offload expensive checksumming
  79. * onto the worker threads. They checksum file and metadata bios
  80. * just before they are sent down the IO stack.
  81. */
  82. struct async_submit_bio {
  83. struct inode *inode;
  84. struct bio *bio;
  85. struct list_head list;
  86. extent_submit_bio_hook_t *submit_bio_start;
  87. extent_submit_bio_hook_t *submit_bio_done;
  88. int rw;
  89. int mirror_num;
  90. unsigned long bio_flags;
  91. /*
  92. * bio_offset is optional, can be used if the pages in the bio
  93. * can't tell us where in the file the bio should go
  94. */
  95. u64 bio_offset;
  96. struct btrfs_work work;
  97. };
  98. /*
  99. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  100. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  101. * the level the eb occupies in the tree.
  102. *
  103. * Different roots are used for different purposes and may nest inside each
  104. * other and they require separate keysets. As lockdep keys should be
  105. * static, assign keysets according to the purpose of the root as indicated
  106. * by btrfs_root->objectid. This ensures that all special purpose roots
  107. * have separate keysets.
  108. *
  109. * Lock-nesting across peer nodes is always done with the immediate parent
  110. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  111. * subclass to avoid triggering lockdep warning in such cases.
  112. *
  113. * The key is set by the readpage_end_io_hook after the buffer has passed
  114. * csum validation but before the pages are unlocked. It is also set by
  115. * btrfs_init_new_buffer on freshly allocated blocks.
  116. *
  117. * We also add a check to make sure the highest level of the tree is the
  118. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  119. * needs update as well.
  120. */
  121. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  122. # if BTRFS_MAX_LEVEL != 8
  123. # error
  124. # endif
  125. static struct btrfs_lockdep_keyset {
  126. u64 id; /* root objectid */
  127. const char *name_stem; /* lock name stem */
  128. char names[BTRFS_MAX_LEVEL + 1][20];
  129. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  130. } btrfs_lockdep_keysets[] = {
  131. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  132. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  133. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  134. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  135. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  136. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  137. { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
  138. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  139. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  140. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  141. { .id = 0, .name_stem = "tree" },
  142. };
  143. void __init btrfs_init_lockdep(void)
  144. {
  145. int i, j;
  146. /* initialize lockdep class names */
  147. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  148. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  149. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  150. snprintf(ks->names[j], sizeof(ks->names[j]),
  151. "btrfs-%s-%02d", ks->name_stem, j);
  152. }
  153. }
  154. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  155. int level)
  156. {
  157. struct btrfs_lockdep_keyset *ks;
  158. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  159. /* find the matching keyset, id 0 is the default entry */
  160. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  161. if (ks->id == objectid)
  162. break;
  163. lockdep_set_class_and_name(&eb->lock,
  164. &ks->keys[level], ks->names[level]);
  165. }
  166. #endif
  167. /*
  168. * extents on the btree inode are pretty simple, there's one extent
  169. * that covers the entire device
  170. */
  171. static struct extent_map *btree_get_extent(struct inode *inode,
  172. struct page *page, size_t pg_offset, u64 start, u64 len,
  173. int create)
  174. {
  175. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  176. struct extent_map *em;
  177. int ret;
  178. read_lock(&em_tree->lock);
  179. em = lookup_extent_mapping(em_tree, start, len);
  180. if (em) {
  181. em->bdev =
  182. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  183. read_unlock(&em_tree->lock);
  184. goto out;
  185. }
  186. read_unlock(&em_tree->lock);
  187. em = alloc_extent_map();
  188. if (!em) {
  189. em = ERR_PTR(-ENOMEM);
  190. goto out;
  191. }
  192. em->start = 0;
  193. em->len = (u64)-1;
  194. em->block_len = (u64)-1;
  195. em->block_start = 0;
  196. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  197. write_lock(&em_tree->lock);
  198. ret = add_extent_mapping(em_tree, em);
  199. if (ret == -EEXIST) {
  200. u64 failed_start = em->start;
  201. u64 failed_len = em->len;
  202. free_extent_map(em);
  203. em = lookup_extent_mapping(em_tree, start, len);
  204. if (em) {
  205. ret = 0;
  206. } else {
  207. em = lookup_extent_mapping(em_tree, failed_start,
  208. failed_len);
  209. ret = -EIO;
  210. }
  211. } else if (ret) {
  212. free_extent_map(em);
  213. em = NULL;
  214. }
  215. write_unlock(&em_tree->lock);
  216. if (ret)
  217. em = ERR_PTR(ret);
  218. out:
  219. return em;
  220. }
  221. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  222. {
  223. return crc32c(seed, data, len);
  224. }
  225. void btrfs_csum_final(u32 crc, char *result)
  226. {
  227. put_unaligned_le32(~crc, result);
  228. }
  229. /*
  230. * compute the csum for a btree block, and either verify it or write it
  231. * into the csum field of the block.
  232. */
  233. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  234. int verify)
  235. {
  236. u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
  237. char *result = NULL;
  238. unsigned long len;
  239. unsigned long cur_len;
  240. unsigned long offset = BTRFS_CSUM_SIZE;
  241. char *kaddr;
  242. unsigned long map_start;
  243. unsigned long map_len;
  244. int err;
  245. u32 crc = ~(u32)0;
  246. unsigned long inline_result;
  247. len = buf->len - offset;
  248. while (len > 0) {
  249. err = map_private_extent_buffer(buf, offset, 32,
  250. &kaddr, &map_start, &map_len);
  251. if (err)
  252. return 1;
  253. cur_len = min(len, map_len - (offset - map_start));
  254. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  255. crc, cur_len);
  256. len -= cur_len;
  257. offset += cur_len;
  258. }
  259. if (csum_size > sizeof(inline_result)) {
  260. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  261. if (!result)
  262. return 1;
  263. } else {
  264. result = (char *)&inline_result;
  265. }
  266. btrfs_csum_final(crc, result);
  267. if (verify) {
  268. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  269. u32 val;
  270. u32 found = 0;
  271. memcpy(&found, result, csum_size);
  272. read_extent_buffer(buf, &val, 0, csum_size);
  273. printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
  274. "failed on %llu wanted %X found %X "
  275. "level %d\n",
  276. root->fs_info->sb->s_id,
  277. (unsigned long long)buf->start, val, found,
  278. btrfs_header_level(buf));
  279. if (result != (char *)&inline_result)
  280. kfree(result);
  281. return 1;
  282. }
  283. } else {
  284. write_extent_buffer(buf, result, 0, csum_size);
  285. }
  286. if (result != (char *)&inline_result)
  287. kfree(result);
  288. return 0;
  289. }
  290. /*
  291. * we can't consider a given block up to date unless the transid of the
  292. * block matches the transid in the parent node's pointer. This is how we
  293. * detect blocks that either didn't get written at all or got written
  294. * in the wrong place.
  295. */
  296. static int verify_parent_transid(struct extent_io_tree *io_tree,
  297. struct extent_buffer *eb, u64 parent_transid)
  298. {
  299. struct extent_state *cached_state = NULL;
  300. int ret;
  301. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  302. return 0;
  303. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  304. 0, &cached_state, GFP_NOFS);
  305. if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
  306. btrfs_header_generation(eb) == parent_transid) {
  307. ret = 0;
  308. goto out;
  309. }
  310. printk_ratelimited("parent transid verify failed on %llu wanted %llu "
  311. "found %llu\n",
  312. (unsigned long long)eb->start,
  313. (unsigned long long)parent_transid,
  314. (unsigned long long)btrfs_header_generation(eb));
  315. ret = 1;
  316. clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
  317. out:
  318. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  319. &cached_state, GFP_NOFS);
  320. return ret;
  321. }
  322. /*
  323. * helper to read a given tree block, doing retries as required when
  324. * the checksums don't match and we have alternate mirrors to try.
  325. */
  326. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  327. struct extent_buffer *eb,
  328. u64 start, u64 parent_transid)
  329. {
  330. struct extent_io_tree *io_tree;
  331. int ret;
  332. int num_copies = 0;
  333. int mirror_num = 0;
  334. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  335. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  336. while (1) {
  337. ret = read_extent_buffer_pages(io_tree, eb, start,
  338. WAIT_COMPLETE,
  339. btree_get_extent, mirror_num);
  340. if (!ret &&
  341. !verify_parent_transid(io_tree, eb, parent_transid))
  342. return ret;
  343. /*
  344. * This buffer's crc is fine, but its contents are corrupted, so
  345. * there is no reason to read the other copies, they won't be
  346. * any less wrong.
  347. */
  348. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  349. return ret;
  350. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  351. eb->start, eb->len);
  352. if (num_copies == 1)
  353. return ret;
  354. mirror_num++;
  355. if (mirror_num > num_copies)
  356. return ret;
  357. }
  358. return -EIO;
  359. }
  360. /*
  361. * checksum a dirty tree block before IO. This has extra checks to make sure
  362. * we only fill in the checksum field in the first page of a multi-page block
  363. */
  364. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  365. {
  366. struct extent_io_tree *tree;
  367. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  368. u64 found_start;
  369. unsigned long len;
  370. struct extent_buffer *eb;
  371. int ret;
  372. tree = &BTRFS_I(page->mapping->host)->io_tree;
  373. if (page->private == EXTENT_PAGE_PRIVATE) {
  374. WARN_ON(1);
  375. goto out;
  376. }
  377. if (!page->private) {
  378. WARN_ON(1);
  379. goto out;
  380. }
  381. len = page->private >> 2;
  382. WARN_ON(len == 0);
  383. eb = alloc_extent_buffer(tree, start, len, page);
  384. if (eb == NULL) {
  385. WARN_ON(1);
  386. goto out;
  387. }
  388. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  389. btrfs_header_generation(eb));
  390. BUG_ON(ret);
  391. WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
  392. found_start = btrfs_header_bytenr(eb);
  393. if (found_start != start) {
  394. WARN_ON(1);
  395. goto err;
  396. }
  397. if (eb->first_page != page) {
  398. WARN_ON(1);
  399. goto err;
  400. }
  401. if (!PageUptodate(page)) {
  402. WARN_ON(1);
  403. goto err;
  404. }
  405. csum_tree_block(root, eb, 0);
  406. err:
  407. free_extent_buffer(eb);
  408. out:
  409. return 0;
  410. }
  411. static int check_tree_block_fsid(struct btrfs_root *root,
  412. struct extent_buffer *eb)
  413. {
  414. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  415. u8 fsid[BTRFS_UUID_SIZE];
  416. int ret = 1;
  417. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  418. BTRFS_FSID_SIZE);
  419. while (fs_devices) {
  420. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  421. ret = 0;
  422. break;
  423. }
  424. fs_devices = fs_devices->seed;
  425. }
  426. return ret;
  427. }
  428. #define CORRUPT(reason, eb, root, slot) \
  429. printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
  430. "root=%llu, slot=%d\n", reason, \
  431. (unsigned long long)btrfs_header_bytenr(eb), \
  432. (unsigned long long)root->objectid, slot)
  433. static noinline int check_leaf(struct btrfs_root *root,
  434. struct extent_buffer *leaf)
  435. {
  436. struct btrfs_key key;
  437. struct btrfs_key leaf_key;
  438. u32 nritems = btrfs_header_nritems(leaf);
  439. int slot;
  440. if (nritems == 0)
  441. return 0;
  442. /* Check the 0 item */
  443. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  444. BTRFS_LEAF_DATA_SIZE(root)) {
  445. CORRUPT("invalid item offset size pair", leaf, root, 0);
  446. return -EIO;
  447. }
  448. /*
  449. * Check to make sure each items keys are in the correct order and their
  450. * offsets make sense. We only have to loop through nritems-1 because
  451. * we check the current slot against the next slot, which verifies the
  452. * next slot's offset+size makes sense and that the current's slot
  453. * offset is correct.
  454. */
  455. for (slot = 0; slot < nritems - 1; slot++) {
  456. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  457. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  458. /* Make sure the keys are in the right order */
  459. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  460. CORRUPT("bad key order", leaf, root, slot);
  461. return -EIO;
  462. }
  463. /*
  464. * Make sure the offset and ends are right, remember that the
  465. * item data starts at the end of the leaf and grows towards the
  466. * front.
  467. */
  468. if (btrfs_item_offset_nr(leaf, slot) !=
  469. btrfs_item_end_nr(leaf, slot + 1)) {
  470. CORRUPT("slot offset bad", leaf, root, slot);
  471. return -EIO;
  472. }
  473. /*
  474. * Check to make sure that we don't point outside of the leaf,
  475. * just incase all the items are consistent to eachother, but
  476. * all point outside of the leaf.
  477. */
  478. if (btrfs_item_end_nr(leaf, slot) >
  479. BTRFS_LEAF_DATA_SIZE(root)) {
  480. CORRUPT("slot end outside of leaf", leaf, root, slot);
  481. return -EIO;
  482. }
  483. }
  484. return 0;
  485. }
  486. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  487. struct extent_state *state)
  488. {
  489. struct extent_io_tree *tree;
  490. u64 found_start;
  491. int found_level;
  492. unsigned long len;
  493. struct extent_buffer *eb;
  494. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  495. int ret = 0;
  496. tree = &BTRFS_I(page->mapping->host)->io_tree;
  497. if (page->private == EXTENT_PAGE_PRIVATE)
  498. goto out;
  499. if (!page->private)
  500. goto out;
  501. len = page->private >> 2;
  502. WARN_ON(len == 0);
  503. eb = alloc_extent_buffer(tree, start, len, page);
  504. if (eb == NULL) {
  505. ret = -EIO;
  506. goto out;
  507. }
  508. found_start = btrfs_header_bytenr(eb);
  509. if (found_start != start) {
  510. printk_ratelimited(KERN_INFO "btrfs bad tree block start "
  511. "%llu %llu\n",
  512. (unsigned long long)found_start,
  513. (unsigned long long)eb->start);
  514. ret = -EIO;
  515. goto err;
  516. }
  517. if (eb->first_page != page) {
  518. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  519. eb->first_page->index, page->index);
  520. WARN_ON(1);
  521. ret = -EIO;
  522. goto err;
  523. }
  524. if (check_tree_block_fsid(root, eb)) {
  525. printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
  526. (unsigned long long)eb->start);
  527. ret = -EIO;
  528. goto err;
  529. }
  530. found_level = btrfs_header_level(eb);
  531. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  532. eb, found_level);
  533. ret = csum_tree_block(root, eb, 1);
  534. if (ret) {
  535. ret = -EIO;
  536. goto err;
  537. }
  538. /*
  539. * If this is a leaf block and it is corrupt, set the corrupt bit so
  540. * that we don't try and read the other copies of this block, just
  541. * return -EIO.
  542. */
  543. if (found_level == 0 && check_leaf(root, eb)) {
  544. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  545. ret = -EIO;
  546. }
  547. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  548. end = eb->start + end - 1;
  549. err:
  550. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  551. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  552. btree_readahead_hook(root, eb, eb->start, ret);
  553. }
  554. free_extent_buffer(eb);
  555. out:
  556. return ret;
  557. }
  558. static int btree_io_failed_hook(struct bio *failed_bio,
  559. struct page *page, u64 start, u64 end,
  560. int mirror_num, struct extent_state *state)
  561. {
  562. struct extent_io_tree *tree;
  563. unsigned long len;
  564. struct extent_buffer *eb;
  565. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  566. tree = &BTRFS_I(page->mapping->host)->io_tree;
  567. if (page->private == EXTENT_PAGE_PRIVATE)
  568. goto out;
  569. if (!page->private)
  570. goto out;
  571. len = page->private >> 2;
  572. WARN_ON(len == 0);
  573. eb = alloc_extent_buffer(tree, start, len, page);
  574. if (eb == NULL)
  575. goto out;
  576. if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
  577. clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
  578. btree_readahead_hook(root, eb, eb->start, -EIO);
  579. }
  580. free_extent_buffer(eb);
  581. out:
  582. return -EIO; /* we fixed nothing */
  583. }
  584. static void end_workqueue_bio(struct bio *bio, int err)
  585. {
  586. struct end_io_wq *end_io_wq = bio->bi_private;
  587. struct btrfs_fs_info *fs_info;
  588. fs_info = end_io_wq->info;
  589. end_io_wq->error = err;
  590. end_io_wq->work.func = end_workqueue_fn;
  591. end_io_wq->work.flags = 0;
  592. if (bio->bi_rw & REQ_WRITE) {
  593. if (end_io_wq->metadata == 1)
  594. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  595. &end_io_wq->work);
  596. else if (end_io_wq->metadata == 2)
  597. btrfs_queue_worker(&fs_info->endio_freespace_worker,
  598. &end_io_wq->work);
  599. else
  600. btrfs_queue_worker(&fs_info->endio_write_workers,
  601. &end_io_wq->work);
  602. } else {
  603. if (end_io_wq->metadata)
  604. btrfs_queue_worker(&fs_info->endio_meta_workers,
  605. &end_io_wq->work);
  606. else
  607. btrfs_queue_worker(&fs_info->endio_workers,
  608. &end_io_wq->work);
  609. }
  610. }
  611. /*
  612. * For the metadata arg you want
  613. *
  614. * 0 - if data
  615. * 1 - if normal metadta
  616. * 2 - if writing to the free space cache area
  617. */
  618. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  619. int metadata)
  620. {
  621. struct end_io_wq *end_io_wq;
  622. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  623. if (!end_io_wq)
  624. return -ENOMEM;
  625. end_io_wq->private = bio->bi_private;
  626. end_io_wq->end_io = bio->bi_end_io;
  627. end_io_wq->info = info;
  628. end_io_wq->error = 0;
  629. end_io_wq->bio = bio;
  630. end_io_wq->metadata = metadata;
  631. bio->bi_private = end_io_wq;
  632. bio->bi_end_io = end_workqueue_bio;
  633. return 0;
  634. }
  635. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  636. {
  637. unsigned long limit = min_t(unsigned long,
  638. info->workers.max_workers,
  639. info->fs_devices->open_devices);
  640. return 256 * limit;
  641. }
  642. static void run_one_async_start(struct btrfs_work *work)
  643. {
  644. struct async_submit_bio *async;
  645. async = container_of(work, struct async_submit_bio, work);
  646. async->submit_bio_start(async->inode, async->rw, async->bio,
  647. async->mirror_num, async->bio_flags,
  648. async->bio_offset);
  649. }
  650. static void run_one_async_done(struct btrfs_work *work)
  651. {
  652. struct btrfs_fs_info *fs_info;
  653. struct async_submit_bio *async;
  654. int limit;
  655. async = container_of(work, struct async_submit_bio, work);
  656. fs_info = BTRFS_I(async->inode)->root->fs_info;
  657. limit = btrfs_async_submit_limit(fs_info);
  658. limit = limit * 2 / 3;
  659. atomic_dec(&fs_info->nr_async_submits);
  660. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  661. waitqueue_active(&fs_info->async_submit_wait))
  662. wake_up(&fs_info->async_submit_wait);
  663. async->submit_bio_done(async->inode, async->rw, async->bio,
  664. async->mirror_num, async->bio_flags,
  665. async->bio_offset);
  666. }
  667. static void run_one_async_free(struct btrfs_work *work)
  668. {
  669. struct async_submit_bio *async;
  670. async = container_of(work, struct async_submit_bio, work);
  671. kfree(async);
  672. }
  673. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  674. int rw, struct bio *bio, int mirror_num,
  675. unsigned long bio_flags,
  676. u64 bio_offset,
  677. extent_submit_bio_hook_t *submit_bio_start,
  678. extent_submit_bio_hook_t *submit_bio_done)
  679. {
  680. struct async_submit_bio *async;
  681. async = kmalloc(sizeof(*async), GFP_NOFS);
  682. if (!async)
  683. return -ENOMEM;
  684. async->inode = inode;
  685. async->rw = rw;
  686. async->bio = bio;
  687. async->mirror_num = mirror_num;
  688. async->submit_bio_start = submit_bio_start;
  689. async->submit_bio_done = submit_bio_done;
  690. async->work.func = run_one_async_start;
  691. async->work.ordered_func = run_one_async_done;
  692. async->work.ordered_free = run_one_async_free;
  693. async->work.flags = 0;
  694. async->bio_flags = bio_flags;
  695. async->bio_offset = bio_offset;
  696. atomic_inc(&fs_info->nr_async_submits);
  697. if (rw & REQ_SYNC)
  698. btrfs_set_work_high_prio(&async->work);
  699. btrfs_queue_worker(&fs_info->workers, &async->work);
  700. while (atomic_read(&fs_info->async_submit_draining) &&
  701. atomic_read(&fs_info->nr_async_submits)) {
  702. wait_event(fs_info->async_submit_wait,
  703. (atomic_read(&fs_info->nr_async_submits) == 0));
  704. }
  705. return 0;
  706. }
  707. static int btree_csum_one_bio(struct bio *bio)
  708. {
  709. struct bio_vec *bvec = bio->bi_io_vec;
  710. int bio_index = 0;
  711. struct btrfs_root *root;
  712. WARN_ON(bio->bi_vcnt <= 0);
  713. while (bio_index < bio->bi_vcnt) {
  714. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  715. csum_dirty_buffer(root, bvec->bv_page);
  716. bio_index++;
  717. bvec++;
  718. }
  719. return 0;
  720. }
  721. static int __btree_submit_bio_start(struct inode *inode, int rw,
  722. struct bio *bio, int mirror_num,
  723. unsigned long bio_flags,
  724. u64 bio_offset)
  725. {
  726. /*
  727. * when we're called for a write, we're already in the async
  728. * submission context. Just jump into btrfs_map_bio
  729. */
  730. btree_csum_one_bio(bio);
  731. return 0;
  732. }
  733. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  734. int mirror_num, unsigned long bio_flags,
  735. u64 bio_offset)
  736. {
  737. /*
  738. * when we're called for a write, we're already in the async
  739. * submission context. Just jump into btrfs_map_bio
  740. */
  741. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  742. }
  743. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  744. int mirror_num, unsigned long bio_flags,
  745. u64 bio_offset)
  746. {
  747. int ret;
  748. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  749. bio, 1);
  750. BUG_ON(ret);
  751. if (!(rw & REQ_WRITE)) {
  752. /*
  753. * called for a read, do the setup so that checksum validation
  754. * can happen in the async kernel threads
  755. */
  756. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  757. mirror_num, 0);
  758. }
  759. /*
  760. * kthread helpers are used to submit writes so that checksumming
  761. * can happen in parallel across all CPUs
  762. */
  763. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  764. inode, rw, bio, mirror_num, 0,
  765. bio_offset,
  766. __btree_submit_bio_start,
  767. __btree_submit_bio_done);
  768. }
  769. #ifdef CONFIG_MIGRATION
  770. static int btree_migratepage(struct address_space *mapping,
  771. struct page *newpage, struct page *page)
  772. {
  773. /*
  774. * we can't safely write a btree page from here,
  775. * we haven't done the locking hook
  776. */
  777. if (PageDirty(page))
  778. return -EAGAIN;
  779. /*
  780. * Buffers may be managed in a filesystem specific way.
  781. * We must have no buffers or drop them.
  782. */
  783. if (page_has_private(page) &&
  784. !try_to_release_page(page, GFP_KERNEL))
  785. return -EAGAIN;
  786. return migrate_page(mapping, newpage, page);
  787. }
  788. #endif
  789. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  790. {
  791. struct extent_io_tree *tree;
  792. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  793. struct extent_buffer *eb;
  794. int was_dirty;
  795. tree = &BTRFS_I(page->mapping->host)->io_tree;
  796. if (!(current->flags & PF_MEMALLOC)) {
  797. return extent_write_full_page(tree, page,
  798. btree_get_extent, wbc);
  799. }
  800. redirty_page_for_writepage(wbc, page);
  801. eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
  802. WARN_ON(!eb);
  803. was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
  804. if (!was_dirty) {
  805. spin_lock(&root->fs_info->delalloc_lock);
  806. root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
  807. spin_unlock(&root->fs_info->delalloc_lock);
  808. }
  809. free_extent_buffer(eb);
  810. unlock_page(page);
  811. return 0;
  812. }
  813. static int btree_writepages(struct address_space *mapping,
  814. struct writeback_control *wbc)
  815. {
  816. struct extent_io_tree *tree;
  817. tree = &BTRFS_I(mapping->host)->io_tree;
  818. if (wbc->sync_mode == WB_SYNC_NONE) {
  819. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  820. u64 num_dirty;
  821. unsigned long thresh = 32 * 1024 * 1024;
  822. if (wbc->for_kupdate)
  823. return 0;
  824. /* this is a bit racy, but that's ok */
  825. num_dirty = root->fs_info->dirty_metadata_bytes;
  826. if (num_dirty < thresh)
  827. return 0;
  828. }
  829. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  830. }
  831. static int btree_readpage(struct file *file, struct page *page)
  832. {
  833. struct extent_io_tree *tree;
  834. tree = &BTRFS_I(page->mapping->host)->io_tree;
  835. return extent_read_full_page(tree, page, btree_get_extent, 0);
  836. }
  837. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  838. {
  839. struct extent_io_tree *tree;
  840. struct extent_map_tree *map;
  841. int ret;
  842. if (PageWriteback(page) || PageDirty(page))
  843. return 0;
  844. tree = &BTRFS_I(page->mapping->host)->io_tree;
  845. map = &BTRFS_I(page->mapping->host)->extent_tree;
  846. ret = try_release_extent_state(map, tree, page, gfp_flags);
  847. if (!ret)
  848. return 0;
  849. ret = try_release_extent_buffer(tree, page);
  850. if (ret == 1) {
  851. ClearPagePrivate(page);
  852. set_page_private(page, 0);
  853. page_cache_release(page);
  854. }
  855. return ret;
  856. }
  857. static void btree_invalidatepage(struct page *page, unsigned long offset)
  858. {
  859. struct extent_io_tree *tree;
  860. tree = &BTRFS_I(page->mapping->host)->io_tree;
  861. extent_invalidatepage(tree, page, offset);
  862. btree_releasepage(page, GFP_NOFS);
  863. if (PagePrivate(page)) {
  864. printk(KERN_WARNING "btrfs warning page private not zero "
  865. "on page %llu\n", (unsigned long long)page_offset(page));
  866. ClearPagePrivate(page);
  867. set_page_private(page, 0);
  868. page_cache_release(page);
  869. }
  870. }
  871. static const struct address_space_operations btree_aops = {
  872. .readpage = btree_readpage,
  873. .writepage = btree_writepage,
  874. .writepages = btree_writepages,
  875. .releasepage = btree_releasepage,
  876. .invalidatepage = btree_invalidatepage,
  877. #ifdef CONFIG_MIGRATION
  878. .migratepage = btree_migratepage,
  879. #endif
  880. };
  881. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  882. u64 parent_transid)
  883. {
  884. struct extent_buffer *buf = NULL;
  885. struct inode *btree_inode = root->fs_info->btree_inode;
  886. int ret = 0;
  887. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  888. if (!buf)
  889. return 0;
  890. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  891. buf, 0, WAIT_NONE, btree_get_extent, 0);
  892. free_extent_buffer(buf);
  893. return ret;
  894. }
  895. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  896. int mirror_num, struct extent_buffer **eb)
  897. {
  898. struct extent_buffer *buf = NULL;
  899. struct inode *btree_inode = root->fs_info->btree_inode;
  900. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  901. int ret;
  902. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  903. if (!buf)
  904. return 0;
  905. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  906. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  907. btree_get_extent, mirror_num);
  908. if (ret) {
  909. free_extent_buffer(buf);
  910. return ret;
  911. }
  912. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  913. free_extent_buffer(buf);
  914. return -EIO;
  915. } else if (extent_buffer_uptodate(io_tree, buf, NULL)) {
  916. *eb = buf;
  917. } else {
  918. free_extent_buffer(buf);
  919. }
  920. return 0;
  921. }
  922. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  923. u64 bytenr, u32 blocksize)
  924. {
  925. struct inode *btree_inode = root->fs_info->btree_inode;
  926. struct extent_buffer *eb;
  927. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  928. bytenr, blocksize);
  929. return eb;
  930. }
  931. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  932. u64 bytenr, u32 blocksize)
  933. {
  934. struct inode *btree_inode = root->fs_info->btree_inode;
  935. struct extent_buffer *eb;
  936. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  937. bytenr, blocksize, NULL);
  938. return eb;
  939. }
  940. int btrfs_write_tree_block(struct extent_buffer *buf)
  941. {
  942. return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
  943. buf->start + buf->len - 1);
  944. }
  945. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  946. {
  947. return filemap_fdatawait_range(buf->first_page->mapping,
  948. buf->start, buf->start + buf->len - 1);
  949. }
  950. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  951. u32 blocksize, u64 parent_transid)
  952. {
  953. struct extent_buffer *buf = NULL;
  954. int ret;
  955. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  956. if (!buf)
  957. return NULL;
  958. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  959. if (ret == 0)
  960. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  961. return buf;
  962. }
  963. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  964. struct extent_buffer *buf)
  965. {
  966. struct inode *btree_inode = root->fs_info->btree_inode;
  967. if (btrfs_header_generation(buf) ==
  968. root->fs_info->running_transaction->transid) {
  969. btrfs_assert_tree_locked(buf);
  970. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  971. spin_lock(&root->fs_info->delalloc_lock);
  972. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  973. root->fs_info->dirty_metadata_bytes -= buf->len;
  974. else
  975. WARN_ON(1);
  976. spin_unlock(&root->fs_info->delalloc_lock);
  977. }
  978. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  979. btrfs_set_lock_blocking(buf);
  980. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  981. buf);
  982. }
  983. return 0;
  984. }
  985. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  986. u32 stripesize, struct btrfs_root *root,
  987. struct btrfs_fs_info *fs_info,
  988. u64 objectid)
  989. {
  990. root->node = NULL;
  991. root->commit_root = NULL;
  992. root->sectorsize = sectorsize;
  993. root->nodesize = nodesize;
  994. root->leafsize = leafsize;
  995. root->stripesize = stripesize;
  996. root->ref_cows = 0;
  997. root->track_dirty = 0;
  998. root->in_radix = 0;
  999. root->orphan_item_inserted = 0;
  1000. root->orphan_cleanup_state = 0;
  1001. root->fs_info = fs_info;
  1002. root->objectid = objectid;
  1003. root->last_trans = 0;
  1004. root->highest_objectid = 0;
  1005. root->name = NULL;
  1006. root->inode_tree = RB_ROOT;
  1007. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1008. root->block_rsv = NULL;
  1009. root->orphan_block_rsv = NULL;
  1010. INIT_LIST_HEAD(&root->dirty_list);
  1011. INIT_LIST_HEAD(&root->orphan_list);
  1012. INIT_LIST_HEAD(&root->root_list);
  1013. spin_lock_init(&root->orphan_lock);
  1014. spin_lock_init(&root->inode_lock);
  1015. spin_lock_init(&root->accounting_lock);
  1016. mutex_init(&root->objectid_mutex);
  1017. mutex_init(&root->log_mutex);
  1018. init_waitqueue_head(&root->log_writer_wait);
  1019. init_waitqueue_head(&root->log_commit_wait[0]);
  1020. init_waitqueue_head(&root->log_commit_wait[1]);
  1021. atomic_set(&root->log_commit[0], 0);
  1022. atomic_set(&root->log_commit[1], 0);
  1023. atomic_set(&root->log_writers, 0);
  1024. root->log_batch = 0;
  1025. root->log_transid = 0;
  1026. root->last_log_commit = 0;
  1027. extent_io_tree_init(&root->dirty_log_pages,
  1028. fs_info->btree_inode->i_mapping);
  1029. memset(&root->root_key, 0, sizeof(root->root_key));
  1030. memset(&root->root_item, 0, sizeof(root->root_item));
  1031. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1032. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  1033. root->defrag_trans_start = fs_info->generation;
  1034. init_completion(&root->kobj_unregister);
  1035. root->defrag_running = 0;
  1036. root->root_key.objectid = objectid;
  1037. root->anon_dev = 0;
  1038. return 0;
  1039. }
  1040. static int find_and_setup_root(struct btrfs_root *tree_root,
  1041. struct btrfs_fs_info *fs_info,
  1042. u64 objectid,
  1043. struct btrfs_root *root)
  1044. {
  1045. int ret;
  1046. u32 blocksize;
  1047. u64 generation;
  1048. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1049. tree_root->sectorsize, tree_root->stripesize,
  1050. root, fs_info, objectid);
  1051. ret = btrfs_find_last_root(tree_root, objectid,
  1052. &root->root_item, &root->root_key);
  1053. if (ret > 0)
  1054. return -ENOENT;
  1055. BUG_ON(ret);
  1056. generation = btrfs_root_generation(&root->root_item);
  1057. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1058. root->commit_root = NULL;
  1059. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1060. blocksize, generation);
  1061. if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
  1062. free_extent_buffer(root->node);
  1063. root->node = NULL;
  1064. return -EIO;
  1065. }
  1066. root->commit_root = btrfs_root_node(root);
  1067. return 0;
  1068. }
  1069. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1070. struct btrfs_fs_info *fs_info)
  1071. {
  1072. struct btrfs_root *root;
  1073. struct btrfs_root *tree_root = fs_info->tree_root;
  1074. struct extent_buffer *leaf;
  1075. root = kzalloc(sizeof(*root), GFP_NOFS);
  1076. if (!root)
  1077. return ERR_PTR(-ENOMEM);
  1078. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1079. tree_root->sectorsize, tree_root->stripesize,
  1080. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1081. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1082. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1083. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1084. /*
  1085. * log trees do not get reference counted because they go away
  1086. * before a real commit is actually done. They do store pointers
  1087. * to file data extents, and those reference counts still get
  1088. * updated (along with back refs to the log tree).
  1089. */
  1090. root->ref_cows = 0;
  1091. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  1092. BTRFS_TREE_LOG_OBJECTID, NULL,
  1093. 0, 0, 0, 0);
  1094. if (IS_ERR(leaf)) {
  1095. kfree(root);
  1096. return ERR_CAST(leaf);
  1097. }
  1098. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1099. btrfs_set_header_bytenr(leaf, leaf->start);
  1100. btrfs_set_header_generation(leaf, trans->transid);
  1101. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1102. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1103. root->node = leaf;
  1104. write_extent_buffer(root->node, root->fs_info->fsid,
  1105. (unsigned long)btrfs_header_fsid(root->node),
  1106. BTRFS_FSID_SIZE);
  1107. btrfs_mark_buffer_dirty(root->node);
  1108. btrfs_tree_unlock(root->node);
  1109. return root;
  1110. }
  1111. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1112. struct btrfs_fs_info *fs_info)
  1113. {
  1114. struct btrfs_root *log_root;
  1115. log_root = alloc_log_tree(trans, fs_info);
  1116. if (IS_ERR(log_root))
  1117. return PTR_ERR(log_root);
  1118. WARN_ON(fs_info->log_root_tree);
  1119. fs_info->log_root_tree = log_root;
  1120. return 0;
  1121. }
  1122. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1123. struct btrfs_root *root)
  1124. {
  1125. struct btrfs_root *log_root;
  1126. struct btrfs_inode_item *inode_item;
  1127. log_root = alloc_log_tree(trans, root->fs_info);
  1128. if (IS_ERR(log_root))
  1129. return PTR_ERR(log_root);
  1130. log_root->last_trans = trans->transid;
  1131. log_root->root_key.offset = root->root_key.objectid;
  1132. inode_item = &log_root->root_item.inode;
  1133. inode_item->generation = cpu_to_le64(1);
  1134. inode_item->size = cpu_to_le64(3);
  1135. inode_item->nlink = cpu_to_le32(1);
  1136. inode_item->nbytes = cpu_to_le64(root->leafsize);
  1137. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  1138. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1139. WARN_ON(root->log_root);
  1140. root->log_root = log_root;
  1141. root->log_transid = 0;
  1142. root->last_log_commit = 0;
  1143. return 0;
  1144. }
  1145. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  1146. struct btrfs_key *location)
  1147. {
  1148. struct btrfs_root *root;
  1149. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1150. struct btrfs_path *path;
  1151. struct extent_buffer *l;
  1152. u64 generation;
  1153. u32 blocksize;
  1154. int ret = 0;
  1155. root = kzalloc(sizeof(*root), GFP_NOFS);
  1156. if (!root)
  1157. return ERR_PTR(-ENOMEM);
  1158. if (location->offset == (u64)-1) {
  1159. ret = find_and_setup_root(tree_root, fs_info,
  1160. location->objectid, root);
  1161. if (ret) {
  1162. kfree(root);
  1163. return ERR_PTR(ret);
  1164. }
  1165. goto out;
  1166. }
  1167. __setup_root(tree_root->nodesize, tree_root->leafsize,
  1168. tree_root->sectorsize, tree_root->stripesize,
  1169. root, fs_info, location->objectid);
  1170. path = btrfs_alloc_path();
  1171. if (!path) {
  1172. kfree(root);
  1173. return ERR_PTR(-ENOMEM);
  1174. }
  1175. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  1176. if (ret == 0) {
  1177. l = path->nodes[0];
  1178. read_extent_buffer(l, &root->root_item,
  1179. btrfs_item_ptr_offset(l, path->slots[0]),
  1180. sizeof(root->root_item));
  1181. memcpy(&root->root_key, location, sizeof(*location));
  1182. }
  1183. btrfs_free_path(path);
  1184. if (ret) {
  1185. kfree(root);
  1186. if (ret > 0)
  1187. ret = -ENOENT;
  1188. return ERR_PTR(ret);
  1189. }
  1190. generation = btrfs_root_generation(&root->root_item);
  1191. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  1192. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1193. blocksize, generation);
  1194. root->commit_root = btrfs_root_node(root);
  1195. BUG_ON(!root->node);
  1196. out:
  1197. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1198. root->ref_cows = 1;
  1199. btrfs_check_and_init_root_item(&root->root_item);
  1200. }
  1201. return root;
  1202. }
  1203. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1204. struct btrfs_key *location)
  1205. {
  1206. struct btrfs_root *root;
  1207. int ret;
  1208. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1209. return fs_info->tree_root;
  1210. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1211. return fs_info->extent_root;
  1212. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1213. return fs_info->chunk_root;
  1214. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1215. return fs_info->dev_root;
  1216. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1217. return fs_info->csum_root;
  1218. again:
  1219. spin_lock(&fs_info->fs_roots_radix_lock);
  1220. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1221. (unsigned long)location->objectid);
  1222. spin_unlock(&fs_info->fs_roots_radix_lock);
  1223. if (root)
  1224. return root;
  1225. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1226. if (IS_ERR(root))
  1227. return root;
  1228. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1229. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1230. GFP_NOFS);
  1231. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1232. ret = -ENOMEM;
  1233. goto fail;
  1234. }
  1235. btrfs_init_free_ino_ctl(root);
  1236. mutex_init(&root->fs_commit_mutex);
  1237. spin_lock_init(&root->cache_lock);
  1238. init_waitqueue_head(&root->cache_wait);
  1239. ret = get_anon_bdev(&root->anon_dev);
  1240. if (ret)
  1241. goto fail;
  1242. if (btrfs_root_refs(&root->root_item) == 0) {
  1243. ret = -ENOENT;
  1244. goto fail;
  1245. }
  1246. ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
  1247. if (ret < 0)
  1248. goto fail;
  1249. if (ret == 0)
  1250. root->orphan_item_inserted = 1;
  1251. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  1252. if (ret)
  1253. goto fail;
  1254. spin_lock(&fs_info->fs_roots_radix_lock);
  1255. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1256. (unsigned long)root->root_key.objectid,
  1257. root);
  1258. if (ret == 0)
  1259. root->in_radix = 1;
  1260. spin_unlock(&fs_info->fs_roots_radix_lock);
  1261. radix_tree_preload_end();
  1262. if (ret) {
  1263. if (ret == -EEXIST) {
  1264. free_fs_root(root);
  1265. goto again;
  1266. }
  1267. goto fail;
  1268. }
  1269. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1270. root->root_key.objectid);
  1271. WARN_ON(ret);
  1272. return root;
  1273. fail:
  1274. free_fs_root(root);
  1275. return ERR_PTR(ret);
  1276. }
  1277. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1278. {
  1279. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1280. int ret = 0;
  1281. struct btrfs_device *device;
  1282. struct backing_dev_info *bdi;
  1283. rcu_read_lock();
  1284. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1285. if (!device->bdev)
  1286. continue;
  1287. bdi = blk_get_backing_dev_info(device->bdev);
  1288. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1289. ret = 1;
  1290. break;
  1291. }
  1292. }
  1293. rcu_read_unlock();
  1294. return ret;
  1295. }
  1296. /*
  1297. * If this fails, caller must call bdi_destroy() to get rid of the
  1298. * bdi again.
  1299. */
  1300. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1301. {
  1302. int err;
  1303. bdi->capabilities = BDI_CAP_MAP_COPY;
  1304. err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
  1305. if (err)
  1306. return err;
  1307. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1308. bdi->congested_fn = btrfs_congested_fn;
  1309. bdi->congested_data = info;
  1310. return 0;
  1311. }
  1312. static int bio_ready_for_csum(struct bio *bio)
  1313. {
  1314. u64 length = 0;
  1315. u64 buf_len = 0;
  1316. u64 start = 0;
  1317. struct page *page;
  1318. struct extent_io_tree *io_tree = NULL;
  1319. struct bio_vec *bvec;
  1320. int i;
  1321. int ret;
  1322. bio_for_each_segment(bvec, bio, i) {
  1323. page = bvec->bv_page;
  1324. if (page->private == EXTENT_PAGE_PRIVATE) {
  1325. length += bvec->bv_len;
  1326. continue;
  1327. }
  1328. if (!page->private) {
  1329. length += bvec->bv_len;
  1330. continue;
  1331. }
  1332. length = bvec->bv_len;
  1333. buf_len = page->private >> 2;
  1334. start = page_offset(page) + bvec->bv_offset;
  1335. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1336. }
  1337. /* are we fully contained in this bio? */
  1338. if (buf_len <= length)
  1339. return 1;
  1340. ret = extent_range_uptodate(io_tree, start + length,
  1341. start + buf_len - 1);
  1342. return ret;
  1343. }
  1344. /*
  1345. * called by the kthread helper functions to finally call the bio end_io
  1346. * functions. This is where read checksum verification actually happens
  1347. */
  1348. static void end_workqueue_fn(struct btrfs_work *work)
  1349. {
  1350. struct bio *bio;
  1351. struct end_io_wq *end_io_wq;
  1352. struct btrfs_fs_info *fs_info;
  1353. int error;
  1354. end_io_wq = container_of(work, struct end_io_wq, work);
  1355. bio = end_io_wq->bio;
  1356. fs_info = end_io_wq->info;
  1357. /* metadata bio reads are special because the whole tree block must
  1358. * be checksummed at once. This makes sure the entire block is in
  1359. * ram and up to date before trying to verify things. For
  1360. * blocksize <= pagesize, it is basically a noop
  1361. */
  1362. if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
  1363. !bio_ready_for_csum(bio)) {
  1364. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1365. &end_io_wq->work);
  1366. return;
  1367. }
  1368. error = end_io_wq->error;
  1369. bio->bi_private = end_io_wq->private;
  1370. bio->bi_end_io = end_io_wq->end_io;
  1371. kfree(end_io_wq);
  1372. bio_endio(bio, error);
  1373. }
  1374. static int cleaner_kthread(void *arg)
  1375. {
  1376. struct btrfs_root *root = arg;
  1377. do {
  1378. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1379. if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
  1380. mutex_trylock(&root->fs_info->cleaner_mutex)) {
  1381. btrfs_run_delayed_iputs(root);
  1382. btrfs_clean_old_snapshots(root);
  1383. mutex_unlock(&root->fs_info->cleaner_mutex);
  1384. btrfs_run_defrag_inodes(root->fs_info);
  1385. }
  1386. if (freezing(current)) {
  1387. refrigerator();
  1388. } else {
  1389. set_current_state(TASK_INTERRUPTIBLE);
  1390. if (!kthread_should_stop())
  1391. schedule();
  1392. __set_current_state(TASK_RUNNING);
  1393. }
  1394. } while (!kthread_should_stop());
  1395. return 0;
  1396. }
  1397. static int transaction_kthread(void *arg)
  1398. {
  1399. struct btrfs_root *root = arg;
  1400. struct btrfs_trans_handle *trans;
  1401. struct btrfs_transaction *cur;
  1402. u64 transid;
  1403. unsigned long now;
  1404. unsigned long delay;
  1405. int ret;
  1406. do {
  1407. delay = HZ * 30;
  1408. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1409. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1410. spin_lock(&root->fs_info->trans_lock);
  1411. cur = root->fs_info->running_transaction;
  1412. if (!cur) {
  1413. spin_unlock(&root->fs_info->trans_lock);
  1414. goto sleep;
  1415. }
  1416. now = get_seconds();
  1417. if (!cur->blocked &&
  1418. (now < cur->start_time || now - cur->start_time < 30)) {
  1419. spin_unlock(&root->fs_info->trans_lock);
  1420. delay = HZ * 5;
  1421. goto sleep;
  1422. }
  1423. transid = cur->transid;
  1424. spin_unlock(&root->fs_info->trans_lock);
  1425. trans = btrfs_join_transaction(root);
  1426. BUG_ON(IS_ERR(trans));
  1427. if (transid == trans->transid) {
  1428. ret = btrfs_commit_transaction(trans, root);
  1429. BUG_ON(ret);
  1430. } else {
  1431. btrfs_end_transaction(trans, root);
  1432. }
  1433. sleep:
  1434. wake_up_process(root->fs_info->cleaner_kthread);
  1435. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1436. if (freezing(current)) {
  1437. refrigerator();
  1438. } else {
  1439. set_current_state(TASK_INTERRUPTIBLE);
  1440. if (!kthread_should_stop() &&
  1441. !btrfs_transaction_blocked(root->fs_info))
  1442. schedule_timeout(delay);
  1443. __set_current_state(TASK_RUNNING);
  1444. }
  1445. } while (!kthread_should_stop());
  1446. return 0;
  1447. }
  1448. /*
  1449. * this will find the highest generation in the array of
  1450. * root backups. The index of the highest array is returned,
  1451. * or -1 if we can't find anything.
  1452. *
  1453. * We check to make sure the array is valid by comparing the
  1454. * generation of the latest root in the array with the generation
  1455. * in the super block. If they don't match we pitch it.
  1456. */
  1457. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1458. {
  1459. u64 cur;
  1460. int newest_index = -1;
  1461. struct btrfs_root_backup *root_backup;
  1462. int i;
  1463. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1464. root_backup = info->super_copy->super_roots + i;
  1465. cur = btrfs_backup_tree_root_gen(root_backup);
  1466. if (cur == newest_gen)
  1467. newest_index = i;
  1468. }
  1469. /* check to see if we actually wrapped around */
  1470. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1471. root_backup = info->super_copy->super_roots;
  1472. cur = btrfs_backup_tree_root_gen(root_backup);
  1473. if (cur == newest_gen)
  1474. newest_index = 0;
  1475. }
  1476. return newest_index;
  1477. }
  1478. /*
  1479. * find the oldest backup so we know where to store new entries
  1480. * in the backup array. This will set the backup_root_index
  1481. * field in the fs_info struct
  1482. */
  1483. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1484. u64 newest_gen)
  1485. {
  1486. int newest_index = -1;
  1487. newest_index = find_newest_super_backup(info, newest_gen);
  1488. /* if there was garbage in there, just move along */
  1489. if (newest_index == -1) {
  1490. info->backup_root_index = 0;
  1491. } else {
  1492. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1493. }
  1494. }
  1495. /*
  1496. * copy all the root pointers into the super backup array.
  1497. * this will bump the backup pointer by one when it is
  1498. * done
  1499. */
  1500. static void backup_super_roots(struct btrfs_fs_info *info)
  1501. {
  1502. int next_backup;
  1503. struct btrfs_root_backup *root_backup;
  1504. int last_backup;
  1505. next_backup = info->backup_root_index;
  1506. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1507. BTRFS_NUM_BACKUP_ROOTS;
  1508. /*
  1509. * just overwrite the last backup if we're at the same generation
  1510. * this happens only at umount
  1511. */
  1512. root_backup = info->super_for_commit->super_roots + last_backup;
  1513. if (btrfs_backup_tree_root_gen(root_backup) ==
  1514. btrfs_header_generation(info->tree_root->node))
  1515. next_backup = last_backup;
  1516. root_backup = info->super_for_commit->super_roots + next_backup;
  1517. /*
  1518. * make sure all of our padding and empty slots get zero filled
  1519. * regardless of which ones we use today
  1520. */
  1521. memset(root_backup, 0, sizeof(*root_backup));
  1522. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1523. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1524. btrfs_set_backup_tree_root_gen(root_backup,
  1525. btrfs_header_generation(info->tree_root->node));
  1526. btrfs_set_backup_tree_root_level(root_backup,
  1527. btrfs_header_level(info->tree_root->node));
  1528. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1529. btrfs_set_backup_chunk_root_gen(root_backup,
  1530. btrfs_header_generation(info->chunk_root->node));
  1531. btrfs_set_backup_chunk_root_level(root_backup,
  1532. btrfs_header_level(info->chunk_root->node));
  1533. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1534. btrfs_set_backup_extent_root_gen(root_backup,
  1535. btrfs_header_generation(info->extent_root->node));
  1536. btrfs_set_backup_extent_root_level(root_backup,
  1537. btrfs_header_level(info->extent_root->node));
  1538. /*
  1539. * we might commit during log recovery, which happens before we set
  1540. * the fs_root. Make sure it is valid before we fill it in.
  1541. */
  1542. if (info->fs_root && info->fs_root->node) {
  1543. btrfs_set_backup_fs_root(root_backup,
  1544. info->fs_root->node->start);
  1545. btrfs_set_backup_fs_root_gen(root_backup,
  1546. btrfs_header_generation(info->fs_root->node));
  1547. btrfs_set_backup_fs_root_level(root_backup,
  1548. btrfs_header_level(info->fs_root->node));
  1549. }
  1550. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1551. btrfs_set_backup_dev_root_gen(root_backup,
  1552. btrfs_header_generation(info->dev_root->node));
  1553. btrfs_set_backup_dev_root_level(root_backup,
  1554. btrfs_header_level(info->dev_root->node));
  1555. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1556. btrfs_set_backup_csum_root_gen(root_backup,
  1557. btrfs_header_generation(info->csum_root->node));
  1558. btrfs_set_backup_csum_root_level(root_backup,
  1559. btrfs_header_level(info->csum_root->node));
  1560. btrfs_set_backup_total_bytes(root_backup,
  1561. btrfs_super_total_bytes(info->super_copy));
  1562. btrfs_set_backup_bytes_used(root_backup,
  1563. btrfs_super_bytes_used(info->super_copy));
  1564. btrfs_set_backup_num_devices(root_backup,
  1565. btrfs_super_num_devices(info->super_copy));
  1566. /*
  1567. * if we don't copy this out to the super_copy, it won't get remembered
  1568. * for the next commit
  1569. */
  1570. memcpy(&info->super_copy->super_roots,
  1571. &info->super_for_commit->super_roots,
  1572. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1573. }
  1574. /*
  1575. * this copies info out of the root backup array and back into
  1576. * the in-memory super block. It is meant to help iterate through
  1577. * the array, so you send it the number of backups you've already
  1578. * tried and the last backup index you used.
  1579. *
  1580. * this returns -1 when it has tried all the backups
  1581. */
  1582. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1583. struct btrfs_super_block *super,
  1584. int *num_backups_tried, int *backup_index)
  1585. {
  1586. struct btrfs_root_backup *root_backup;
  1587. int newest = *backup_index;
  1588. if (*num_backups_tried == 0) {
  1589. u64 gen = btrfs_super_generation(super);
  1590. newest = find_newest_super_backup(info, gen);
  1591. if (newest == -1)
  1592. return -1;
  1593. *backup_index = newest;
  1594. *num_backups_tried = 1;
  1595. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1596. /* we've tried all the backups, all done */
  1597. return -1;
  1598. } else {
  1599. /* jump to the next oldest backup */
  1600. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1601. BTRFS_NUM_BACKUP_ROOTS;
  1602. *backup_index = newest;
  1603. *num_backups_tried += 1;
  1604. }
  1605. root_backup = super->super_roots + newest;
  1606. btrfs_set_super_generation(super,
  1607. btrfs_backup_tree_root_gen(root_backup));
  1608. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1609. btrfs_set_super_root_level(super,
  1610. btrfs_backup_tree_root_level(root_backup));
  1611. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1612. /*
  1613. * fixme: the total bytes and num_devices need to match or we should
  1614. * need a fsck
  1615. */
  1616. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1617. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1618. return 0;
  1619. }
  1620. /* helper to cleanup tree roots */
  1621. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1622. {
  1623. free_extent_buffer(info->tree_root->node);
  1624. free_extent_buffer(info->tree_root->commit_root);
  1625. free_extent_buffer(info->dev_root->node);
  1626. free_extent_buffer(info->dev_root->commit_root);
  1627. free_extent_buffer(info->extent_root->node);
  1628. free_extent_buffer(info->extent_root->commit_root);
  1629. free_extent_buffer(info->csum_root->node);
  1630. free_extent_buffer(info->csum_root->commit_root);
  1631. info->tree_root->node = NULL;
  1632. info->tree_root->commit_root = NULL;
  1633. info->dev_root->node = NULL;
  1634. info->dev_root->commit_root = NULL;
  1635. info->extent_root->node = NULL;
  1636. info->extent_root->commit_root = NULL;
  1637. info->csum_root->node = NULL;
  1638. info->csum_root->commit_root = NULL;
  1639. if (chunk_root) {
  1640. free_extent_buffer(info->chunk_root->node);
  1641. free_extent_buffer(info->chunk_root->commit_root);
  1642. info->chunk_root->node = NULL;
  1643. info->chunk_root->commit_root = NULL;
  1644. }
  1645. }
  1646. struct btrfs_root *open_ctree(struct super_block *sb,
  1647. struct btrfs_fs_devices *fs_devices,
  1648. char *options)
  1649. {
  1650. u32 sectorsize;
  1651. u32 nodesize;
  1652. u32 leafsize;
  1653. u32 blocksize;
  1654. u32 stripesize;
  1655. u64 generation;
  1656. u64 features;
  1657. struct btrfs_key location;
  1658. struct buffer_head *bh;
  1659. struct btrfs_super_block *disk_super;
  1660. struct btrfs_root *tree_root = btrfs_sb(sb);
  1661. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1662. struct btrfs_root *extent_root;
  1663. struct btrfs_root *csum_root;
  1664. struct btrfs_root *chunk_root;
  1665. struct btrfs_root *dev_root;
  1666. struct btrfs_root *log_tree_root;
  1667. int ret;
  1668. int err = -EINVAL;
  1669. int num_backups_tried = 0;
  1670. int backup_index = 0;
  1671. extent_root = fs_info->extent_root =
  1672. kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
  1673. csum_root = fs_info->csum_root =
  1674. kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
  1675. chunk_root = fs_info->chunk_root =
  1676. kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
  1677. dev_root = fs_info->dev_root =
  1678. kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
  1679. if (!extent_root || !csum_root || !chunk_root || !dev_root) {
  1680. err = -ENOMEM;
  1681. goto fail;
  1682. }
  1683. ret = init_srcu_struct(&fs_info->subvol_srcu);
  1684. if (ret) {
  1685. err = ret;
  1686. goto fail;
  1687. }
  1688. ret = setup_bdi(fs_info, &fs_info->bdi);
  1689. if (ret) {
  1690. err = ret;
  1691. goto fail_srcu;
  1692. }
  1693. fs_info->btree_inode = new_inode(sb);
  1694. if (!fs_info->btree_inode) {
  1695. err = -ENOMEM;
  1696. goto fail_bdi;
  1697. }
  1698. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  1699. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  1700. INIT_LIST_HEAD(&fs_info->trans_list);
  1701. INIT_LIST_HEAD(&fs_info->dead_roots);
  1702. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  1703. INIT_LIST_HEAD(&fs_info->hashers);
  1704. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1705. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1706. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  1707. spin_lock_init(&fs_info->delalloc_lock);
  1708. spin_lock_init(&fs_info->trans_lock);
  1709. spin_lock_init(&fs_info->ref_cache_lock);
  1710. spin_lock_init(&fs_info->fs_roots_radix_lock);
  1711. spin_lock_init(&fs_info->delayed_iput_lock);
  1712. spin_lock_init(&fs_info->defrag_inodes_lock);
  1713. spin_lock_init(&fs_info->free_chunk_lock);
  1714. mutex_init(&fs_info->reloc_mutex);
  1715. init_completion(&fs_info->kobj_unregister);
  1716. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1717. INIT_LIST_HEAD(&fs_info->space_info);
  1718. btrfs_mapping_init(&fs_info->mapping_tree);
  1719. btrfs_init_block_rsv(&fs_info->global_block_rsv);
  1720. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
  1721. btrfs_init_block_rsv(&fs_info->trans_block_rsv);
  1722. btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
  1723. btrfs_init_block_rsv(&fs_info->empty_block_rsv);
  1724. btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
  1725. atomic_set(&fs_info->nr_async_submits, 0);
  1726. atomic_set(&fs_info->async_delalloc_pages, 0);
  1727. atomic_set(&fs_info->async_submit_draining, 0);
  1728. atomic_set(&fs_info->nr_async_bios, 0);
  1729. atomic_set(&fs_info->defrag_running, 0);
  1730. fs_info->sb = sb;
  1731. fs_info->max_inline = 8192 * 1024;
  1732. fs_info->metadata_ratio = 0;
  1733. fs_info->defrag_inodes = RB_ROOT;
  1734. fs_info->trans_no_join = 0;
  1735. fs_info->free_chunk_space = 0;
  1736. /* readahead state */
  1737. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
  1738. spin_lock_init(&fs_info->reada_lock);
  1739. fs_info->thread_pool_size = min_t(unsigned long,
  1740. num_online_cpus() + 2, 8);
  1741. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1742. spin_lock_init(&fs_info->ordered_extent_lock);
  1743. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  1744. GFP_NOFS);
  1745. if (!fs_info->delayed_root) {
  1746. err = -ENOMEM;
  1747. goto fail_iput;
  1748. }
  1749. btrfs_init_delayed_root(fs_info->delayed_root);
  1750. mutex_init(&fs_info->scrub_lock);
  1751. atomic_set(&fs_info->scrubs_running, 0);
  1752. atomic_set(&fs_info->scrub_pause_req, 0);
  1753. atomic_set(&fs_info->scrubs_paused, 0);
  1754. atomic_set(&fs_info->scrub_cancel_req, 0);
  1755. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1756. init_rwsem(&fs_info->scrub_super_lock);
  1757. fs_info->scrub_workers_refcnt = 0;
  1758. spin_lock_init(&fs_info->balance_lock);
  1759. mutex_init(&fs_info->balance_mutex);
  1760. atomic_set(&fs_info->balance_running, 0);
  1761. atomic_set(&fs_info->balance_pause_req, 0);
  1762. atomic_set(&fs_info->balance_cancel_req, 0);
  1763. fs_info->balance_ctl = NULL;
  1764. init_waitqueue_head(&fs_info->balance_wait_q);
  1765. sb->s_blocksize = 4096;
  1766. sb->s_blocksize_bits = blksize_bits(4096);
  1767. sb->s_bdi = &fs_info->bdi;
  1768. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1769. set_nlink(fs_info->btree_inode, 1);
  1770. /*
  1771. * we set the i_size on the btree inode to the max possible int.
  1772. * the real end of the address space is determined by all of
  1773. * the devices in the system
  1774. */
  1775. fs_info->btree_inode->i_size = OFFSET_MAX;
  1776. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1777. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1778. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1779. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1780. fs_info->btree_inode->i_mapping);
  1781. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1782. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1783. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1784. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1785. sizeof(struct btrfs_key));
  1786. BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
  1787. insert_inode_hash(fs_info->btree_inode);
  1788. spin_lock_init(&fs_info->block_group_cache_lock);
  1789. fs_info->block_group_cache_tree = RB_ROOT;
  1790. extent_io_tree_init(&fs_info->freed_extents[0],
  1791. fs_info->btree_inode->i_mapping);
  1792. extent_io_tree_init(&fs_info->freed_extents[1],
  1793. fs_info->btree_inode->i_mapping);
  1794. fs_info->pinned_extents = &fs_info->freed_extents[0];
  1795. fs_info->do_barriers = 1;
  1796. mutex_init(&fs_info->ordered_operations_mutex);
  1797. mutex_init(&fs_info->tree_log_mutex);
  1798. mutex_init(&fs_info->chunk_mutex);
  1799. mutex_init(&fs_info->transaction_kthread_mutex);
  1800. mutex_init(&fs_info->cleaner_mutex);
  1801. mutex_init(&fs_info->volume_mutex);
  1802. init_rwsem(&fs_info->extent_commit_sem);
  1803. init_rwsem(&fs_info->cleanup_work_sem);
  1804. init_rwsem(&fs_info->subvol_sem);
  1805. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1806. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1807. init_waitqueue_head(&fs_info->transaction_throttle);
  1808. init_waitqueue_head(&fs_info->transaction_wait);
  1809. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  1810. init_waitqueue_head(&fs_info->async_submit_wait);
  1811. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1812. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1813. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1814. if (!bh) {
  1815. err = -EINVAL;
  1816. goto fail_alloc;
  1817. }
  1818. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  1819. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  1820. sizeof(*fs_info->super_for_commit));
  1821. brelse(bh);
  1822. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  1823. disk_super = fs_info->super_copy;
  1824. if (!btrfs_super_root(disk_super))
  1825. goto fail_alloc;
  1826. /* check FS state, whether FS is broken. */
  1827. fs_info->fs_state |= btrfs_super_flags(disk_super);
  1828. btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  1829. /*
  1830. * run through our array of backup supers and setup
  1831. * our ring pointer to the oldest one
  1832. */
  1833. generation = btrfs_super_generation(disk_super);
  1834. find_oldest_super_backup(fs_info, generation);
  1835. /*
  1836. * In the long term, we'll store the compression type in the super
  1837. * block, and it'll be used for per file compression control.
  1838. */
  1839. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  1840. ret = btrfs_parse_options(tree_root, options);
  1841. if (ret) {
  1842. err = ret;
  1843. goto fail_alloc;
  1844. }
  1845. features = btrfs_super_incompat_flags(disk_super) &
  1846. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1847. if (features) {
  1848. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1849. "unsupported optional features (%Lx).\n",
  1850. (unsigned long long)features);
  1851. err = -EINVAL;
  1852. goto fail_alloc;
  1853. }
  1854. features = btrfs_super_incompat_flags(disk_super);
  1855. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1856. if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
  1857. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  1858. btrfs_set_super_incompat_flags(disk_super, features);
  1859. features = btrfs_super_compat_ro_flags(disk_super) &
  1860. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1861. if (!(sb->s_flags & MS_RDONLY) && features) {
  1862. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1863. "unsupported option features (%Lx).\n",
  1864. (unsigned long long)features);
  1865. err = -EINVAL;
  1866. goto fail_alloc;
  1867. }
  1868. btrfs_init_workers(&fs_info->generic_worker,
  1869. "genwork", 1, NULL);
  1870. btrfs_init_workers(&fs_info->workers, "worker",
  1871. fs_info->thread_pool_size,
  1872. &fs_info->generic_worker);
  1873. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1874. fs_info->thread_pool_size,
  1875. &fs_info->generic_worker);
  1876. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1877. min_t(u64, fs_devices->num_devices,
  1878. fs_info->thread_pool_size),
  1879. &fs_info->generic_worker);
  1880. btrfs_init_workers(&fs_info->caching_workers, "cache",
  1881. 2, &fs_info->generic_worker);
  1882. /* a higher idle thresh on the submit workers makes it much more
  1883. * likely that bios will be send down in a sane order to the
  1884. * devices
  1885. */
  1886. fs_info->submit_workers.idle_thresh = 64;
  1887. fs_info->workers.idle_thresh = 16;
  1888. fs_info->workers.ordered = 1;
  1889. fs_info->delalloc_workers.idle_thresh = 2;
  1890. fs_info->delalloc_workers.ordered = 1;
  1891. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
  1892. &fs_info->generic_worker);
  1893. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1894. fs_info->thread_pool_size,
  1895. &fs_info->generic_worker);
  1896. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1897. fs_info->thread_pool_size,
  1898. &fs_info->generic_worker);
  1899. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1900. "endio-meta-write", fs_info->thread_pool_size,
  1901. &fs_info->generic_worker);
  1902. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1903. fs_info->thread_pool_size,
  1904. &fs_info->generic_worker);
  1905. btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
  1906. 1, &fs_info->generic_worker);
  1907. btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
  1908. fs_info->thread_pool_size,
  1909. &fs_info->generic_worker);
  1910. btrfs_init_workers(&fs_info->readahead_workers, "readahead",
  1911. fs_info->thread_pool_size,
  1912. &fs_info->generic_worker);
  1913. /*
  1914. * endios are largely parallel and should have a very
  1915. * low idle thresh
  1916. */
  1917. fs_info->endio_workers.idle_thresh = 4;
  1918. fs_info->endio_meta_workers.idle_thresh = 4;
  1919. fs_info->endio_write_workers.idle_thresh = 2;
  1920. fs_info->endio_meta_write_workers.idle_thresh = 2;
  1921. fs_info->readahead_workers.idle_thresh = 2;
  1922. /*
  1923. * btrfs_start_workers can really only fail because of ENOMEM so just
  1924. * return -ENOMEM if any of these fail.
  1925. */
  1926. ret = btrfs_start_workers(&fs_info->workers);
  1927. ret |= btrfs_start_workers(&fs_info->generic_worker);
  1928. ret |= btrfs_start_workers(&fs_info->submit_workers);
  1929. ret |= btrfs_start_workers(&fs_info->delalloc_workers);
  1930. ret |= btrfs_start_workers(&fs_info->fixup_workers);
  1931. ret |= btrfs_start_workers(&fs_info->endio_workers);
  1932. ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
  1933. ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
  1934. ret |= btrfs_start_workers(&fs_info->endio_write_workers);
  1935. ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
  1936. ret |= btrfs_start_workers(&fs_info->delayed_workers);
  1937. ret |= btrfs_start_workers(&fs_info->caching_workers);
  1938. ret |= btrfs_start_workers(&fs_info->readahead_workers);
  1939. if (ret) {
  1940. ret = -ENOMEM;
  1941. goto fail_sb_buffer;
  1942. }
  1943. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1944. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1945. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1946. nodesize = btrfs_super_nodesize(disk_super);
  1947. leafsize = btrfs_super_leafsize(disk_super);
  1948. sectorsize = btrfs_super_sectorsize(disk_super);
  1949. stripesize = btrfs_super_stripesize(disk_super);
  1950. tree_root->nodesize = nodesize;
  1951. tree_root->leafsize = leafsize;
  1952. tree_root->sectorsize = sectorsize;
  1953. tree_root->stripesize = stripesize;
  1954. sb->s_blocksize = sectorsize;
  1955. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1956. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1957. sizeof(disk_super->magic))) {
  1958. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1959. goto fail_sb_buffer;
  1960. }
  1961. mutex_lock(&fs_info->chunk_mutex);
  1962. ret = btrfs_read_sys_array(tree_root);
  1963. mutex_unlock(&fs_info->chunk_mutex);
  1964. if (ret) {
  1965. printk(KERN_WARNING "btrfs: failed to read the system "
  1966. "array on %s\n", sb->s_id);
  1967. goto fail_sb_buffer;
  1968. }
  1969. blocksize = btrfs_level_size(tree_root,
  1970. btrfs_super_chunk_root_level(disk_super));
  1971. generation = btrfs_super_chunk_root_generation(disk_super);
  1972. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1973. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1974. chunk_root->node = read_tree_block(chunk_root,
  1975. btrfs_super_chunk_root(disk_super),
  1976. blocksize, generation);
  1977. BUG_ON(!chunk_root->node);
  1978. if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
  1979. printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
  1980. sb->s_id);
  1981. goto fail_tree_roots;
  1982. }
  1983. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  1984. chunk_root->commit_root = btrfs_root_node(chunk_root);
  1985. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1986. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1987. BTRFS_UUID_SIZE);
  1988. ret = btrfs_read_chunk_tree(chunk_root);
  1989. if (ret) {
  1990. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  1991. sb->s_id);
  1992. goto fail_tree_roots;
  1993. }
  1994. btrfs_close_extra_devices(fs_devices);
  1995. retry_root_backup:
  1996. blocksize = btrfs_level_size(tree_root,
  1997. btrfs_super_root_level(disk_super));
  1998. generation = btrfs_super_generation(disk_super);
  1999. tree_root->node = read_tree_block(tree_root,
  2000. btrfs_super_root(disk_super),
  2001. blocksize, generation);
  2002. if (!tree_root->node ||
  2003. !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
  2004. printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
  2005. sb->s_id);
  2006. goto recovery_tree_root;
  2007. }
  2008. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2009. tree_root->commit_root = btrfs_root_node(tree_root);
  2010. ret = find_and_setup_root(tree_root, fs_info,
  2011. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  2012. if (ret)
  2013. goto recovery_tree_root;
  2014. extent_root->track_dirty = 1;
  2015. ret = find_and_setup_root(tree_root, fs_info,
  2016. BTRFS_DEV_TREE_OBJECTID, dev_root);
  2017. if (ret)
  2018. goto recovery_tree_root;
  2019. dev_root->track_dirty = 1;
  2020. ret = find_and_setup_root(tree_root, fs_info,
  2021. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  2022. if (ret)
  2023. goto recovery_tree_root;
  2024. csum_root->track_dirty = 1;
  2025. fs_info->generation = generation;
  2026. fs_info->last_trans_committed = generation;
  2027. ret = btrfs_init_space_info(fs_info);
  2028. if (ret) {
  2029. printk(KERN_ERR "Failed to initial space info: %d\n", ret);
  2030. goto fail_block_groups;
  2031. }
  2032. ret = btrfs_read_block_groups(extent_root);
  2033. if (ret) {
  2034. printk(KERN_ERR "Failed to read block groups: %d\n", ret);
  2035. goto fail_block_groups;
  2036. }
  2037. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2038. "btrfs-cleaner");
  2039. if (IS_ERR(fs_info->cleaner_kthread))
  2040. goto fail_block_groups;
  2041. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2042. tree_root,
  2043. "btrfs-transaction");
  2044. if (IS_ERR(fs_info->transaction_kthread))
  2045. goto fail_cleaner;
  2046. if (!btrfs_test_opt(tree_root, SSD) &&
  2047. !btrfs_test_opt(tree_root, NOSSD) &&
  2048. !fs_info->fs_devices->rotating) {
  2049. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  2050. "mode\n");
  2051. btrfs_set_opt(fs_info->mount_opt, SSD);
  2052. }
  2053. /* do not make disk changes in broken FS */
  2054. if (btrfs_super_log_root(disk_super) != 0 &&
  2055. !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
  2056. u64 bytenr = btrfs_super_log_root(disk_super);
  2057. if (fs_devices->rw_devices == 0) {
  2058. printk(KERN_WARNING "Btrfs log replay required "
  2059. "on RO media\n");
  2060. err = -EIO;
  2061. goto fail_trans_kthread;
  2062. }
  2063. blocksize =
  2064. btrfs_level_size(tree_root,
  2065. btrfs_super_log_root_level(disk_super));
  2066. log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
  2067. if (!log_tree_root) {
  2068. err = -ENOMEM;
  2069. goto fail_trans_kthread;
  2070. }
  2071. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  2072. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2073. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2074. blocksize,
  2075. generation + 1);
  2076. ret = btrfs_recover_log_trees(log_tree_root);
  2077. BUG_ON(ret);
  2078. if (sb->s_flags & MS_RDONLY) {
  2079. ret = btrfs_commit_super(tree_root);
  2080. BUG_ON(ret);
  2081. }
  2082. }
  2083. ret = btrfs_find_orphan_roots(tree_root);
  2084. BUG_ON(ret);
  2085. if (!(sb->s_flags & MS_RDONLY)) {
  2086. ret = btrfs_cleanup_fs_roots(fs_info);
  2087. BUG_ON(ret);
  2088. ret = btrfs_recover_relocation(tree_root);
  2089. if (ret < 0) {
  2090. printk(KERN_WARNING
  2091. "btrfs: failed to recover relocation\n");
  2092. err = -EINVAL;
  2093. goto fail_trans_kthread;
  2094. }
  2095. }
  2096. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2097. location.type = BTRFS_ROOT_ITEM_KEY;
  2098. location.offset = (u64)-1;
  2099. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2100. if (!fs_info->fs_root)
  2101. goto fail_trans_kthread;
  2102. if (IS_ERR(fs_info->fs_root)) {
  2103. err = PTR_ERR(fs_info->fs_root);
  2104. goto fail_trans_kthread;
  2105. }
  2106. if (!(sb->s_flags & MS_RDONLY)) {
  2107. down_read(&fs_info->cleanup_work_sem);
  2108. err = btrfs_orphan_cleanup(fs_info->fs_root);
  2109. if (!err)
  2110. err = btrfs_orphan_cleanup(fs_info->tree_root);
  2111. up_read(&fs_info->cleanup_work_sem);
  2112. if (!err)
  2113. err = btrfs_recover_balance(fs_info->tree_root);
  2114. if (err) {
  2115. close_ctree(tree_root);
  2116. return ERR_PTR(err);
  2117. }
  2118. }
  2119. return tree_root;
  2120. fail_trans_kthread:
  2121. kthread_stop(fs_info->transaction_kthread);
  2122. fail_cleaner:
  2123. kthread_stop(fs_info->cleaner_kthread);
  2124. /*
  2125. * make sure we're done with the btree inode before we stop our
  2126. * kthreads
  2127. */
  2128. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2129. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2130. fail_block_groups:
  2131. btrfs_free_block_groups(fs_info);
  2132. fail_tree_roots:
  2133. free_root_pointers(fs_info, 1);
  2134. fail_sb_buffer:
  2135. btrfs_stop_workers(&fs_info->generic_worker);
  2136. btrfs_stop_workers(&fs_info->readahead_workers);
  2137. btrfs_stop_workers(&fs_info->fixup_workers);
  2138. btrfs_stop_workers(&fs_info->delalloc_workers);
  2139. btrfs_stop_workers(&fs_info->workers);
  2140. btrfs_stop_workers(&fs_info->endio_workers);
  2141. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2142. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2143. btrfs_stop_workers(&fs_info->endio_write_workers);
  2144. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2145. btrfs_stop_workers(&fs_info->submit_workers);
  2146. btrfs_stop_workers(&fs_info->delayed_workers);
  2147. btrfs_stop_workers(&fs_info->caching_workers);
  2148. fail_alloc:
  2149. fail_iput:
  2150. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2151. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2152. iput(fs_info->btree_inode);
  2153. fail_bdi:
  2154. bdi_destroy(&fs_info->bdi);
  2155. fail_srcu:
  2156. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2157. fail:
  2158. btrfs_close_devices(fs_info->fs_devices);
  2159. free_fs_info(fs_info);
  2160. return ERR_PTR(err);
  2161. recovery_tree_root:
  2162. if (!btrfs_test_opt(tree_root, RECOVERY))
  2163. goto fail_tree_roots;
  2164. free_root_pointers(fs_info, 0);
  2165. /* don't use the log in recovery mode, it won't be valid */
  2166. btrfs_set_super_log_root(disk_super, 0);
  2167. /* we can't trust the free space cache either */
  2168. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2169. ret = next_root_backup(fs_info, fs_info->super_copy,
  2170. &num_backups_tried, &backup_index);
  2171. if (ret == -1)
  2172. goto fail_block_groups;
  2173. goto retry_root_backup;
  2174. }
  2175. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2176. {
  2177. char b[BDEVNAME_SIZE];
  2178. if (uptodate) {
  2179. set_buffer_uptodate(bh);
  2180. } else {
  2181. printk_ratelimited(KERN_WARNING "lost page write due to "
  2182. "I/O error on %s\n",
  2183. bdevname(bh->b_bdev, b));
  2184. /* note, we dont' set_buffer_write_io_error because we have
  2185. * our own ways of dealing with the IO errors
  2186. */
  2187. clear_buffer_uptodate(bh);
  2188. }
  2189. unlock_buffer(bh);
  2190. put_bh(bh);
  2191. }
  2192. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2193. {
  2194. struct buffer_head *bh;
  2195. struct buffer_head *latest = NULL;
  2196. struct btrfs_super_block *super;
  2197. int i;
  2198. u64 transid = 0;
  2199. u64 bytenr;
  2200. /* we would like to check all the supers, but that would make
  2201. * a btrfs mount succeed after a mkfs from a different FS.
  2202. * So, we need to add a special mount option to scan for
  2203. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2204. */
  2205. for (i = 0; i < 1; i++) {
  2206. bytenr = btrfs_sb_offset(i);
  2207. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  2208. break;
  2209. bh = __bread(bdev, bytenr / 4096, 4096);
  2210. if (!bh)
  2211. continue;
  2212. super = (struct btrfs_super_block *)bh->b_data;
  2213. if (btrfs_super_bytenr(super) != bytenr ||
  2214. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  2215. sizeof(super->magic))) {
  2216. brelse(bh);
  2217. continue;
  2218. }
  2219. if (!latest || btrfs_super_generation(super) > transid) {
  2220. brelse(latest);
  2221. latest = bh;
  2222. transid = btrfs_super_generation(super);
  2223. } else {
  2224. brelse(bh);
  2225. }
  2226. }
  2227. return latest;
  2228. }
  2229. /*
  2230. * this should be called twice, once with wait == 0 and
  2231. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2232. * we write are pinned.
  2233. *
  2234. * They are released when wait == 1 is done.
  2235. * max_mirrors must be the same for both runs, and it indicates how
  2236. * many supers on this one device should be written.
  2237. *
  2238. * max_mirrors == 0 means to write them all.
  2239. */
  2240. static int write_dev_supers(struct btrfs_device *device,
  2241. struct btrfs_super_block *sb,
  2242. int do_barriers, int wait, int max_mirrors)
  2243. {
  2244. struct buffer_head *bh;
  2245. int i;
  2246. int ret;
  2247. int errors = 0;
  2248. u32 crc;
  2249. u64 bytenr;
  2250. if (max_mirrors == 0)
  2251. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2252. for (i = 0; i < max_mirrors; i++) {
  2253. bytenr = btrfs_sb_offset(i);
  2254. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  2255. break;
  2256. if (wait) {
  2257. bh = __find_get_block(device->bdev, bytenr / 4096,
  2258. BTRFS_SUPER_INFO_SIZE);
  2259. BUG_ON(!bh);
  2260. wait_on_buffer(bh);
  2261. if (!buffer_uptodate(bh))
  2262. errors++;
  2263. /* drop our reference */
  2264. brelse(bh);
  2265. /* drop the reference from the wait == 0 run */
  2266. brelse(bh);
  2267. continue;
  2268. } else {
  2269. btrfs_set_super_bytenr(sb, bytenr);
  2270. crc = ~(u32)0;
  2271. crc = btrfs_csum_data(NULL, (char *)sb +
  2272. BTRFS_CSUM_SIZE, crc,
  2273. BTRFS_SUPER_INFO_SIZE -
  2274. BTRFS_CSUM_SIZE);
  2275. btrfs_csum_final(crc, sb->csum);
  2276. /*
  2277. * one reference for us, and we leave it for the
  2278. * caller
  2279. */
  2280. bh = __getblk(device->bdev, bytenr / 4096,
  2281. BTRFS_SUPER_INFO_SIZE);
  2282. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2283. /* one reference for submit_bh */
  2284. get_bh(bh);
  2285. set_buffer_uptodate(bh);
  2286. lock_buffer(bh);
  2287. bh->b_end_io = btrfs_end_buffer_write_sync;
  2288. }
  2289. /*
  2290. * we fua the first super. The others we allow
  2291. * to go down lazy.
  2292. */
  2293. ret = submit_bh(WRITE_FUA, bh);
  2294. if (ret)
  2295. errors++;
  2296. }
  2297. return errors < i ? 0 : -1;
  2298. }
  2299. /*
  2300. * endio for the write_dev_flush, this will wake anyone waiting
  2301. * for the barrier when it is done
  2302. */
  2303. static void btrfs_end_empty_barrier(struct bio *bio, int err)
  2304. {
  2305. if (err) {
  2306. if (err == -EOPNOTSUPP)
  2307. set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
  2308. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2309. }
  2310. if (bio->bi_private)
  2311. complete(bio->bi_private);
  2312. bio_put(bio);
  2313. }
  2314. /*
  2315. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  2316. * sent down. With wait == 1, it waits for the previous flush.
  2317. *
  2318. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  2319. * capable
  2320. */
  2321. static int write_dev_flush(struct btrfs_device *device, int wait)
  2322. {
  2323. struct bio *bio;
  2324. int ret = 0;
  2325. if (device->nobarriers)
  2326. return 0;
  2327. if (wait) {
  2328. bio = device->flush_bio;
  2329. if (!bio)
  2330. return 0;
  2331. wait_for_completion(&device->flush_wait);
  2332. if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
  2333. printk("btrfs: disabling barriers on dev %s\n",
  2334. device->name);
  2335. device->nobarriers = 1;
  2336. }
  2337. if (!bio_flagged(bio, BIO_UPTODATE)) {
  2338. ret = -EIO;
  2339. }
  2340. /* drop the reference from the wait == 0 run */
  2341. bio_put(bio);
  2342. device->flush_bio = NULL;
  2343. return ret;
  2344. }
  2345. /*
  2346. * one reference for us, and we leave it for the
  2347. * caller
  2348. */
  2349. device->flush_bio = NULL;;
  2350. bio = bio_alloc(GFP_NOFS, 0);
  2351. if (!bio)
  2352. return -ENOMEM;
  2353. bio->bi_end_io = btrfs_end_empty_barrier;
  2354. bio->bi_bdev = device->bdev;
  2355. init_completion(&device->flush_wait);
  2356. bio->bi_private = &device->flush_wait;
  2357. device->flush_bio = bio;
  2358. bio_get(bio);
  2359. submit_bio(WRITE_FLUSH, bio);
  2360. return 0;
  2361. }
  2362. /*
  2363. * send an empty flush down to each device in parallel,
  2364. * then wait for them
  2365. */
  2366. static int barrier_all_devices(struct btrfs_fs_info *info)
  2367. {
  2368. struct list_head *head;
  2369. struct btrfs_device *dev;
  2370. int errors = 0;
  2371. int ret;
  2372. /* send down all the barriers */
  2373. head = &info->fs_devices->devices;
  2374. list_for_each_entry_rcu(dev, head, dev_list) {
  2375. if (!dev->bdev) {
  2376. errors++;
  2377. continue;
  2378. }
  2379. if (!dev->in_fs_metadata || !dev->writeable)
  2380. continue;
  2381. ret = write_dev_flush(dev, 0);
  2382. if (ret)
  2383. errors++;
  2384. }
  2385. /* wait for all the barriers */
  2386. list_for_each_entry_rcu(dev, head, dev_list) {
  2387. if (!dev->bdev) {
  2388. errors++;
  2389. continue;
  2390. }
  2391. if (!dev->in_fs_metadata || !dev->writeable)
  2392. continue;
  2393. ret = write_dev_flush(dev, 1);
  2394. if (ret)
  2395. errors++;
  2396. }
  2397. if (errors)
  2398. return -EIO;
  2399. return 0;
  2400. }
  2401. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  2402. {
  2403. struct list_head *head;
  2404. struct btrfs_device *dev;
  2405. struct btrfs_super_block *sb;
  2406. struct btrfs_dev_item *dev_item;
  2407. int ret;
  2408. int do_barriers;
  2409. int max_errors;
  2410. int total_errors = 0;
  2411. u64 flags;
  2412. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  2413. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  2414. backup_super_roots(root->fs_info);
  2415. sb = root->fs_info->super_for_commit;
  2416. dev_item = &sb->dev_item;
  2417. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  2418. head = &root->fs_info->fs_devices->devices;
  2419. if (do_barriers)
  2420. barrier_all_devices(root->fs_info);
  2421. list_for_each_entry_rcu(dev, head, dev_list) {
  2422. if (!dev->bdev) {
  2423. total_errors++;
  2424. continue;
  2425. }
  2426. if (!dev->in_fs_metadata || !dev->writeable)
  2427. continue;
  2428. btrfs_set_stack_device_generation(dev_item, 0);
  2429. btrfs_set_stack_device_type(dev_item, dev->type);
  2430. btrfs_set_stack_device_id(dev_item, dev->devid);
  2431. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  2432. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  2433. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  2434. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  2435. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  2436. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  2437. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  2438. flags = btrfs_super_flags(sb);
  2439. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  2440. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  2441. if (ret)
  2442. total_errors++;
  2443. }
  2444. if (total_errors > max_errors) {
  2445. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2446. total_errors);
  2447. BUG();
  2448. }
  2449. total_errors = 0;
  2450. list_for_each_entry_rcu(dev, head, dev_list) {
  2451. if (!dev->bdev)
  2452. continue;
  2453. if (!dev->in_fs_metadata || !dev->writeable)
  2454. continue;
  2455. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  2456. if (ret)
  2457. total_errors++;
  2458. }
  2459. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  2460. if (total_errors > max_errors) {
  2461. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  2462. total_errors);
  2463. BUG();
  2464. }
  2465. return 0;
  2466. }
  2467. int write_ctree_super(struct btrfs_trans_handle *trans,
  2468. struct btrfs_root *root, int max_mirrors)
  2469. {
  2470. int ret;
  2471. ret = write_all_supers(root, max_mirrors);
  2472. return ret;
  2473. }
  2474. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  2475. {
  2476. spin_lock(&fs_info->fs_roots_radix_lock);
  2477. radix_tree_delete(&fs_info->fs_roots_radix,
  2478. (unsigned long)root->root_key.objectid);
  2479. spin_unlock(&fs_info->fs_roots_radix_lock);
  2480. if (btrfs_root_refs(&root->root_item) == 0)
  2481. synchronize_srcu(&fs_info->subvol_srcu);
  2482. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  2483. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  2484. free_fs_root(root);
  2485. return 0;
  2486. }
  2487. static void free_fs_root(struct btrfs_root *root)
  2488. {
  2489. iput(root->cache_inode);
  2490. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  2491. if (root->anon_dev)
  2492. free_anon_bdev(root->anon_dev);
  2493. free_extent_buffer(root->node);
  2494. free_extent_buffer(root->commit_root);
  2495. kfree(root->free_ino_ctl);
  2496. kfree(root->free_ino_pinned);
  2497. kfree(root->name);
  2498. kfree(root);
  2499. }
  2500. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  2501. {
  2502. int ret;
  2503. struct btrfs_root *gang[8];
  2504. int i;
  2505. while (!list_empty(&fs_info->dead_roots)) {
  2506. gang[0] = list_entry(fs_info->dead_roots.next,
  2507. struct btrfs_root, root_list);
  2508. list_del(&gang[0]->root_list);
  2509. if (gang[0]->in_radix) {
  2510. btrfs_free_fs_root(fs_info, gang[0]);
  2511. } else {
  2512. free_extent_buffer(gang[0]->node);
  2513. free_extent_buffer(gang[0]->commit_root);
  2514. kfree(gang[0]);
  2515. }
  2516. }
  2517. while (1) {
  2518. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2519. (void **)gang, 0,
  2520. ARRAY_SIZE(gang));
  2521. if (!ret)
  2522. break;
  2523. for (i = 0; i < ret; i++)
  2524. btrfs_free_fs_root(fs_info, gang[i]);
  2525. }
  2526. return 0;
  2527. }
  2528. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  2529. {
  2530. u64 root_objectid = 0;
  2531. struct btrfs_root *gang[8];
  2532. int i;
  2533. int ret;
  2534. while (1) {
  2535. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  2536. (void **)gang, root_objectid,
  2537. ARRAY_SIZE(gang));
  2538. if (!ret)
  2539. break;
  2540. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  2541. for (i = 0; i < ret; i++) {
  2542. int err;
  2543. root_objectid = gang[i]->root_key.objectid;
  2544. err = btrfs_orphan_cleanup(gang[i]);
  2545. if (err)
  2546. return err;
  2547. }
  2548. root_objectid++;
  2549. }
  2550. return 0;
  2551. }
  2552. int btrfs_commit_super(struct btrfs_root *root)
  2553. {
  2554. struct btrfs_trans_handle *trans;
  2555. int ret;
  2556. mutex_lock(&root->fs_info->cleaner_mutex);
  2557. btrfs_run_delayed_iputs(root);
  2558. btrfs_clean_old_snapshots(root);
  2559. mutex_unlock(&root->fs_info->cleaner_mutex);
  2560. /* wait until ongoing cleanup work done */
  2561. down_write(&root->fs_info->cleanup_work_sem);
  2562. up_write(&root->fs_info->cleanup_work_sem);
  2563. trans = btrfs_join_transaction(root);
  2564. if (IS_ERR(trans))
  2565. return PTR_ERR(trans);
  2566. ret = btrfs_commit_transaction(trans, root);
  2567. BUG_ON(ret);
  2568. /* run commit again to drop the original snapshot */
  2569. trans = btrfs_join_transaction(root);
  2570. if (IS_ERR(trans))
  2571. return PTR_ERR(trans);
  2572. btrfs_commit_transaction(trans, root);
  2573. ret = btrfs_write_and_wait_transaction(NULL, root);
  2574. BUG_ON(ret);
  2575. ret = write_ctree_super(NULL, root, 0);
  2576. return ret;
  2577. }
  2578. int close_ctree(struct btrfs_root *root)
  2579. {
  2580. struct btrfs_fs_info *fs_info = root->fs_info;
  2581. int ret;
  2582. fs_info->closing = 1;
  2583. smp_mb();
  2584. /* pause restriper - we want to resume on mount */
  2585. btrfs_pause_balance(root->fs_info);
  2586. btrfs_scrub_cancel(root);
  2587. /* wait for any defraggers to finish */
  2588. wait_event(fs_info->transaction_wait,
  2589. (atomic_read(&fs_info->defrag_running) == 0));
  2590. /* clear out the rbtree of defraggable inodes */
  2591. btrfs_run_defrag_inodes(root->fs_info);
  2592. /*
  2593. * Here come 2 situations when btrfs is broken to flip readonly:
  2594. *
  2595. * 1. when btrfs flips readonly somewhere else before
  2596. * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
  2597. * and btrfs will skip to write sb directly to keep
  2598. * ERROR state on disk.
  2599. *
  2600. * 2. when btrfs flips readonly just in btrfs_commit_super,
  2601. * and in such case, btrfs cannot write sb via btrfs_commit_super,
  2602. * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
  2603. * btrfs will cleanup all FS resources first and write sb then.
  2604. */
  2605. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  2606. ret = btrfs_commit_super(root);
  2607. if (ret)
  2608. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2609. }
  2610. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
  2611. ret = btrfs_error_commit_super(root);
  2612. if (ret)
  2613. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2614. }
  2615. btrfs_put_block_group_cache(fs_info);
  2616. kthread_stop(root->fs_info->transaction_kthread);
  2617. kthread_stop(root->fs_info->cleaner_kthread);
  2618. fs_info->closing = 2;
  2619. smp_mb();
  2620. if (fs_info->delalloc_bytes) {
  2621. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2622. (unsigned long long)fs_info->delalloc_bytes);
  2623. }
  2624. if (fs_info->total_ref_cache_size) {
  2625. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  2626. (unsigned long long)fs_info->total_ref_cache_size);
  2627. }
  2628. free_extent_buffer(fs_info->extent_root->node);
  2629. free_extent_buffer(fs_info->extent_root->commit_root);
  2630. free_extent_buffer(fs_info->tree_root->node);
  2631. free_extent_buffer(fs_info->tree_root->commit_root);
  2632. free_extent_buffer(root->fs_info->chunk_root->node);
  2633. free_extent_buffer(root->fs_info->chunk_root->commit_root);
  2634. free_extent_buffer(root->fs_info->dev_root->node);
  2635. free_extent_buffer(root->fs_info->dev_root->commit_root);
  2636. free_extent_buffer(root->fs_info->csum_root->node);
  2637. free_extent_buffer(root->fs_info->csum_root->commit_root);
  2638. btrfs_free_block_groups(root->fs_info);
  2639. del_fs_roots(fs_info);
  2640. iput(fs_info->btree_inode);
  2641. btrfs_stop_workers(&fs_info->generic_worker);
  2642. btrfs_stop_workers(&fs_info->fixup_workers);
  2643. btrfs_stop_workers(&fs_info->delalloc_workers);
  2644. btrfs_stop_workers(&fs_info->workers);
  2645. btrfs_stop_workers(&fs_info->endio_workers);
  2646. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2647. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2648. btrfs_stop_workers(&fs_info->endio_write_workers);
  2649. btrfs_stop_workers(&fs_info->endio_freespace_worker);
  2650. btrfs_stop_workers(&fs_info->submit_workers);
  2651. btrfs_stop_workers(&fs_info->delayed_workers);
  2652. btrfs_stop_workers(&fs_info->caching_workers);
  2653. btrfs_stop_workers(&fs_info->readahead_workers);
  2654. btrfs_close_devices(fs_info->fs_devices);
  2655. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2656. bdi_destroy(&fs_info->bdi);
  2657. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2658. free_fs_info(fs_info);
  2659. return 0;
  2660. }
  2661. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  2662. {
  2663. int ret;
  2664. struct inode *btree_inode = buf->first_page->mapping->host;
  2665. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
  2666. NULL);
  2667. if (!ret)
  2668. return ret;
  2669. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2670. parent_transid);
  2671. return !ret;
  2672. }
  2673. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2674. {
  2675. struct inode *btree_inode = buf->first_page->mapping->host;
  2676. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  2677. buf);
  2678. }
  2679. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2680. {
  2681. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2682. u64 transid = btrfs_header_generation(buf);
  2683. struct inode *btree_inode = root->fs_info->btree_inode;
  2684. int was_dirty;
  2685. btrfs_assert_tree_locked(buf);
  2686. if (transid != root->fs_info->generation) {
  2687. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2688. "found %llu running %llu\n",
  2689. (unsigned long long)buf->start,
  2690. (unsigned long long)transid,
  2691. (unsigned long long)root->fs_info->generation);
  2692. WARN_ON(1);
  2693. }
  2694. was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  2695. buf);
  2696. if (!was_dirty) {
  2697. spin_lock(&root->fs_info->delalloc_lock);
  2698. root->fs_info->dirty_metadata_bytes += buf->len;
  2699. spin_unlock(&root->fs_info->delalloc_lock);
  2700. }
  2701. }
  2702. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2703. {
  2704. /*
  2705. * looks as though older kernels can get into trouble with
  2706. * this code, they end up stuck in balance_dirty_pages forever
  2707. */
  2708. u64 num_dirty;
  2709. unsigned long thresh = 32 * 1024 * 1024;
  2710. if (current->flags & PF_MEMALLOC)
  2711. return;
  2712. btrfs_balance_delayed_items(root);
  2713. num_dirty = root->fs_info->dirty_metadata_bytes;
  2714. if (num_dirty > thresh) {
  2715. balance_dirty_pages_ratelimited_nr(
  2716. root->fs_info->btree_inode->i_mapping, 1);
  2717. }
  2718. return;
  2719. }
  2720. void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2721. {
  2722. /*
  2723. * looks as though older kernels can get into trouble with
  2724. * this code, they end up stuck in balance_dirty_pages forever
  2725. */
  2726. u64 num_dirty;
  2727. unsigned long thresh = 32 * 1024 * 1024;
  2728. if (current->flags & PF_MEMALLOC)
  2729. return;
  2730. num_dirty = root->fs_info->dirty_metadata_bytes;
  2731. if (num_dirty > thresh) {
  2732. balance_dirty_pages_ratelimited_nr(
  2733. root->fs_info->btree_inode->i_mapping, 1);
  2734. }
  2735. return;
  2736. }
  2737. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2738. {
  2739. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2740. int ret;
  2741. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2742. if (ret == 0)
  2743. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  2744. return ret;
  2745. }
  2746. static int btree_lock_page_hook(struct page *page, void *data,
  2747. void (*flush_fn)(void *))
  2748. {
  2749. struct inode *inode = page->mapping->host;
  2750. struct btrfs_root *root = BTRFS_I(inode)->root;
  2751. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2752. struct extent_buffer *eb;
  2753. unsigned long len;
  2754. u64 bytenr = page_offset(page);
  2755. if (page->private == EXTENT_PAGE_PRIVATE)
  2756. goto out;
  2757. len = page->private >> 2;
  2758. eb = find_extent_buffer(io_tree, bytenr, len);
  2759. if (!eb)
  2760. goto out;
  2761. if (!btrfs_try_tree_write_lock(eb)) {
  2762. flush_fn(data);
  2763. btrfs_tree_lock(eb);
  2764. }
  2765. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2766. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2767. spin_lock(&root->fs_info->delalloc_lock);
  2768. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2769. root->fs_info->dirty_metadata_bytes -= eb->len;
  2770. else
  2771. WARN_ON(1);
  2772. spin_unlock(&root->fs_info->delalloc_lock);
  2773. }
  2774. btrfs_tree_unlock(eb);
  2775. free_extent_buffer(eb);
  2776. out:
  2777. if (!trylock_page(page)) {
  2778. flush_fn(data);
  2779. lock_page(page);
  2780. }
  2781. return 0;
  2782. }
  2783. static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  2784. int read_only)
  2785. {
  2786. if (read_only)
  2787. return;
  2788. if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
  2789. printk(KERN_WARNING "warning: mount fs with errors, "
  2790. "running btrfsck is recommended\n");
  2791. }
  2792. int btrfs_error_commit_super(struct btrfs_root *root)
  2793. {
  2794. int ret;
  2795. mutex_lock(&root->fs_info->cleaner_mutex);
  2796. btrfs_run_delayed_iputs(root);
  2797. mutex_unlock(&root->fs_info->cleaner_mutex);
  2798. down_write(&root->fs_info->cleanup_work_sem);
  2799. up_write(&root->fs_info->cleanup_work_sem);
  2800. /* cleanup FS via transaction */
  2801. btrfs_cleanup_transaction(root);
  2802. ret = write_ctree_super(NULL, root, 0);
  2803. return ret;
  2804. }
  2805. static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
  2806. {
  2807. struct btrfs_inode *btrfs_inode;
  2808. struct list_head splice;
  2809. INIT_LIST_HEAD(&splice);
  2810. mutex_lock(&root->fs_info->ordered_operations_mutex);
  2811. spin_lock(&root->fs_info->ordered_extent_lock);
  2812. list_splice_init(&root->fs_info->ordered_operations, &splice);
  2813. while (!list_empty(&splice)) {
  2814. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2815. ordered_operations);
  2816. list_del_init(&btrfs_inode->ordered_operations);
  2817. btrfs_invalidate_inodes(btrfs_inode->root);
  2818. }
  2819. spin_unlock(&root->fs_info->ordered_extent_lock);
  2820. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  2821. return 0;
  2822. }
  2823. static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
  2824. {
  2825. struct list_head splice;
  2826. struct btrfs_ordered_extent *ordered;
  2827. struct inode *inode;
  2828. INIT_LIST_HEAD(&splice);
  2829. spin_lock(&root->fs_info->ordered_extent_lock);
  2830. list_splice_init(&root->fs_info->ordered_extents, &splice);
  2831. while (!list_empty(&splice)) {
  2832. ordered = list_entry(splice.next, struct btrfs_ordered_extent,
  2833. root_extent_list);
  2834. list_del_init(&ordered->root_extent_list);
  2835. atomic_inc(&ordered->refs);
  2836. /* the inode may be getting freed (in sys_unlink path). */
  2837. inode = igrab(ordered->inode);
  2838. spin_unlock(&root->fs_info->ordered_extent_lock);
  2839. if (inode)
  2840. iput(inode);
  2841. atomic_set(&ordered->refs, 1);
  2842. btrfs_put_ordered_extent(ordered);
  2843. spin_lock(&root->fs_info->ordered_extent_lock);
  2844. }
  2845. spin_unlock(&root->fs_info->ordered_extent_lock);
  2846. return 0;
  2847. }
  2848. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  2849. struct btrfs_root *root)
  2850. {
  2851. struct rb_node *node;
  2852. struct btrfs_delayed_ref_root *delayed_refs;
  2853. struct btrfs_delayed_ref_node *ref;
  2854. int ret = 0;
  2855. delayed_refs = &trans->delayed_refs;
  2856. spin_lock(&delayed_refs->lock);
  2857. if (delayed_refs->num_entries == 0) {
  2858. spin_unlock(&delayed_refs->lock);
  2859. printk(KERN_INFO "delayed_refs has NO entry\n");
  2860. return ret;
  2861. }
  2862. node = rb_first(&delayed_refs->root);
  2863. while (node) {
  2864. ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
  2865. node = rb_next(node);
  2866. ref->in_tree = 0;
  2867. rb_erase(&ref->rb_node, &delayed_refs->root);
  2868. delayed_refs->num_entries--;
  2869. atomic_set(&ref->refs, 1);
  2870. if (btrfs_delayed_ref_is_head(ref)) {
  2871. struct btrfs_delayed_ref_head *head;
  2872. head = btrfs_delayed_node_to_head(ref);
  2873. mutex_lock(&head->mutex);
  2874. kfree(head->extent_op);
  2875. delayed_refs->num_heads--;
  2876. if (list_empty(&head->cluster))
  2877. delayed_refs->num_heads_ready--;
  2878. list_del_init(&head->cluster);
  2879. mutex_unlock(&head->mutex);
  2880. }
  2881. spin_unlock(&delayed_refs->lock);
  2882. btrfs_put_delayed_ref(ref);
  2883. cond_resched();
  2884. spin_lock(&delayed_refs->lock);
  2885. }
  2886. spin_unlock(&delayed_refs->lock);
  2887. return ret;
  2888. }
  2889. static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
  2890. {
  2891. struct btrfs_pending_snapshot *snapshot;
  2892. struct list_head splice;
  2893. INIT_LIST_HEAD(&splice);
  2894. list_splice_init(&t->pending_snapshots, &splice);
  2895. while (!list_empty(&splice)) {
  2896. snapshot = list_entry(splice.next,
  2897. struct btrfs_pending_snapshot,
  2898. list);
  2899. list_del_init(&snapshot->list);
  2900. kfree(snapshot);
  2901. }
  2902. return 0;
  2903. }
  2904. static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  2905. {
  2906. struct btrfs_inode *btrfs_inode;
  2907. struct list_head splice;
  2908. INIT_LIST_HEAD(&splice);
  2909. spin_lock(&root->fs_info->delalloc_lock);
  2910. list_splice_init(&root->fs_info->delalloc_inodes, &splice);
  2911. while (!list_empty(&splice)) {
  2912. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  2913. delalloc_inodes);
  2914. list_del_init(&btrfs_inode->delalloc_inodes);
  2915. btrfs_invalidate_inodes(btrfs_inode->root);
  2916. }
  2917. spin_unlock(&root->fs_info->delalloc_lock);
  2918. return 0;
  2919. }
  2920. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  2921. struct extent_io_tree *dirty_pages,
  2922. int mark)
  2923. {
  2924. int ret;
  2925. struct page *page;
  2926. struct inode *btree_inode = root->fs_info->btree_inode;
  2927. struct extent_buffer *eb;
  2928. u64 start = 0;
  2929. u64 end;
  2930. u64 offset;
  2931. unsigned long index;
  2932. while (1) {
  2933. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  2934. mark);
  2935. if (ret)
  2936. break;
  2937. clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
  2938. while (start <= end) {
  2939. index = start >> PAGE_CACHE_SHIFT;
  2940. start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
  2941. page = find_get_page(btree_inode->i_mapping, index);
  2942. if (!page)
  2943. continue;
  2944. offset = page_offset(page);
  2945. spin_lock(&dirty_pages->buffer_lock);
  2946. eb = radix_tree_lookup(
  2947. &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
  2948. offset >> PAGE_CACHE_SHIFT);
  2949. spin_unlock(&dirty_pages->buffer_lock);
  2950. if (eb) {
  2951. ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  2952. &eb->bflags);
  2953. atomic_set(&eb->refs, 1);
  2954. }
  2955. if (PageWriteback(page))
  2956. end_page_writeback(page);
  2957. lock_page(page);
  2958. if (PageDirty(page)) {
  2959. clear_page_dirty_for_io(page);
  2960. spin_lock_irq(&page->mapping->tree_lock);
  2961. radix_tree_tag_clear(&page->mapping->page_tree,
  2962. page_index(page),
  2963. PAGECACHE_TAG_DIRTY);
  2964. spin_unlock_irq(&page->mapping->tree_lock);
  2965. }
  2966. page->mapping->a_ops->invalidatepage(page, 0);
  2967. unlock_page(page);
  2968. }
  2969. }
  2970. return ret;
  2971. }
  2972. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  2973. struct extent_io_tree *pinned_extents)
  2974. {
  2975. struct extent_io_tree *unpin;
  2976. u64 start;
  2977. u64 end;
  2978. int ret;
  2979. unpin = pinned_extents;
  2980. while (1) {
  2981. ret = find_first_extent_bit(unpin, 0, &start, &end,
  2982. EXTENT_DIRTY);
  2983. if (ret)
  2984. break;
  2985. /* opt_discard */
  2986. if (btrfs_test_opt(root, DISCARD))
  2987. ret = btrfs_error_discard_extent(root, start,
  2988. end + 1 - start,
  2989. NULL);
  2990. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  2991. btrfs_error_unpin_extent_range(root, start, end);
  2992. cond_resched();
  2993. }
  2994. return 0;
  2995. }
  2996. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  2997. {
  2998. struct btrfs_transaction *t;
  2999. LIST_HEAD(list);
  3000. WARN_ON(1);
  3001. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3002. spin_lock(&root->fs_info->trans_lock);
  3003. list_splice_init(&root->fs_info->trans_list, &list);
  3004. root->fs_info->trans_no_join = 1;
  3005. spin_unlock(&root->fs_info->trans_lock);
  3006. while (!list_empty(&list)) {
  3007. t = list_entry(list.next, struct btrfs_transaction, list);
  3008. if (!t)
  3009. break;
  3010. btrfs_destroy_ordered_operations(root);
  3011. btrfs_destroy_ordered_extents(root);
  3012. btrfs_destroy_delayed_refs(t, root);
  3013. btrfs_block_rsv_release(root,
  3014. &root->fs_info->trans_block_rsv,
  3015. t->dirty_pages.dirty_bytes);
  3016. /* FIXME: cleanup wait for commit */
  3017. t->in_commit = 1;
  3018. t->blocked = 1;
  3019. if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
  3020. wake_up(&root->fs_info->transaction_blocked_wait);
  3021. t->blocked = 0;
  3022. if (waitqueue_active(&root->fs_info->transaction_wait))
  3023. wake_up(&root->fs_info->transaction_wait);
  3024. t->commit_done = 1;
  3025. if (waitqueue_active(&t->commit_wait))
  3026. wake_up(&t->commit_wait);
  3027. btrfs_destroy_pending_snapshots(t);
  3028. btrfs_destroy_delalloc_inodes(root);
  3029. spin_lock(&root->fs_info->trans_lock);
  3030. root->fs_info->running_transaction = NULL;
  3031. spin_unlock(&root->fs_info->trans_lock);
  3032. btrfs_destroy_marked_extents(root, &t->dirty_pages,
  3033. EXTENT_DIRTY);
  3034. btrfs_destroy_pinned_extent(root,
  3035. root->fs_info->pinned_extents);
  3036. atomic_set(&t->use_count, 0);
  3037. list_del_init(&t->list);
  3038. memset(t, 0, sizeof(*t));
  3039. kmem_cache_free(btrfs_transaction_cachep, t);
  3040. }
  3041. spin_lock(&root->fs_info->trans_lock);
  3042. root->fs_info->trans_no_join = 0;
  3043. spin_unlock(&root->fs_info->trans_lock);
  3044. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3045. return 0;
  3046. }
  3047. static struct extent_io_ops btree_extent_io_ops = {
  3048. .write_cache_pages_lock_hook = btree_lock_page_hook,
  3049. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3050. .readpage_io_failed_hook = btree_io_failed_hook,
  3051. .submit_bio_hook = btree_submit_bio_hook,
  3052. /* note we're sharing with inode.c for the merge bio hook */
  3053. .merge_bio_hook = btrfs_merge_bio_hook,
  3054. };