ctree.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209
  1. #include <stdio.h>
  2. #include <stdlib.h>
  3. #include "kerncompat.h"
  4. #include "radix-tree.h"
  5. #include "ctree.h"
  6. #include "disk-io.h"
  7. #include "print-tree.h"
  8. int split_node(struct ctree_root *root, struct ctree_path *path, int level);
  9. int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size);
  10. int push_node_left(struct ctree_root *root, struct ctree_path *path, int level);
  11. int push_node_right(struct ctree_root *root,
  12. struct ctree_path *path, int level);
  13. int del_ptr(struct ctree_root *root, struct ctree_path *path, int level);
  14. inline void init_path(struct ctree_path *p)
  15. {
  16. memset(p, 0, sizeof(*p));
  17. }
  18. void release_path(struct ctree_root *root, struct ctree_path *p)
  19. {
  20. int i;
  21. for (i = 0; i < MAX_LEVEL; i++) {
  22. if (!p->nodes[i])
  23. break;
  24. tree_block_release(root, p->nodes[i]);
  25. }
  26. }
  27. /*
  28. * The leaf data grows from end-to-front in the node.
  29. * this returns the address of the start of the last item,
  30. * which is the stop of the leaf data stack
  31. */
  32. static inline unsigned int leaf_data_end(struct leaf *leaf)
  33. {
  34. unsigned int nr = leaf->header.nritems;
  35. if (nr == 0)
  36. return sizeof(leaf->data);
  37. return leaf->items[nr-1].offset;
  38. }
  39. /*
  40. * The space between the end of the leaf items and
  41. * the start of the leaf data. IOW, how much room
  42. * the leaf has left for both items and data
  43. */
  44. int leaf_free_space(struct leaf *leaf)
  45. {
  46. int data_end = leaf_data_end(leaf);
  47. int nritems = leaf->header.nritems;
  48. char *items_end = (char *)(leaf->items + nritems + 1);
  49. return (char *)(leaf->data + data_end) - (char *)items_end;
  50. }
  51. /*
  52. * compare two keys in a memcmp fashion
  53. */
  54. int comp_keys(struct key *k1, struct key *k2)
  55. {
  56. if (k1->objectid > k2->objectid)
  57. return 1;
  58. if (k1->objectid < k2->objectid)
  59. return -1;
  60. if (k1->flags > k2->flags)
  61. return 1;
  62. if (k1->flags < k2->flags)
  63. return -1;
  64. if (k1->offset > k2->offset)
  65. return 1;
  66. if (k1->offset < k2->offset)
  67. return -1;
  68. return 0;
  69. }
  70. /*
  71. * search for key in the array p. items p are item_size apart
  72. * and there are 'max' items in p
  73. * the slot in the array is returned via slot, and it points to
  74. * the place where you would insert key if it is not found in
  75. * the array.
  76. *
  77. * slot may point to max if the key is bigger than all of the keys
  78. */
  79. int generic_bin_search(char *p, int item_size, struct key *key,
  80. int max, int *slot)
  81. {
  82. int low = 0;
  83. int high = max;
  84. int mid;
  85. int ret;
  86. struct key *tmp;
  87. while(low < high) {
  88. mid = (low + high) / 2;
  89. tmp = (struct key *)(p + mid * item_size);
  90. ret = comp_keys(tmp, key);
  91. if (ret < 0)
  92. low = mid + 1;
  93. else if (ret > 0)
  94. high = mid;
  95. else {
  96. *slot = mid;
  97. return 0;
  98. }
  99. }
  100. *slot = low;
  101. return 1;
  102. }
  103. /*
  104. * simple bin_search frontend that does the right thing for
  105. * leaves vs nodes
  106. */
  107. int bin_search(struct node *c, struct key *key, int *slot)
  108. {
  109. if (is_leaf(c->header.flags)) {
  110. struct leaf *l = (struct leaf *)c;
  111. return generic_bin_search((void *)l->items, sizeof(struct item),
  112. key, c->header.nritems, slot);
  113. } else {
  114. return generic_bin_search((void *)c->keys, sizeof(struct key),
  115. key, c->header.nritems, slot);
  116. }
  117. return -1;
  118. }
  119. /*
  120. * look for key in the tree. path is filled in with nodes along the way
  121. * if key is found, we return zero and you can find the item in the leaf
  122. * level of the path (level 0)
  123. *
  124. * If the key isn't found, the path points to the slot where it should
  125. * be inserted.
  126. *
  127. * if ins_len > 0, nodes and leaves will be split as we walk down the
  128. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  129. * possible)
  130. */
  131. int search_slot(struct ctree_root *root, struct key *key,
  132. struct ctree_path *p, int ins_len)
  133. {
  134. struct tree_buffer *b = root->node;
  135. struct node *c;
  136. int slot;
  137. int ret;
  138. int level;
  139. b->count++;
  140. while (b) {
  141. c = &b->node;
  142. level = node_level(c->header.flags);
  143. p->nodes[level] = b;
  144. ret = bin_search(c, key, &slot);
  145. if (!is_leaf(c->header.flags)) {
  146. if (ret && slot > 0)
  147. slot -= 1;
  148. p->slots[level] = slot;
  149. if (ins_len > 0 &&
  150. c->header.nritems == NODEPTRS_PER_BLOCK) {
  151. int sret = split_node(root, p, level);
  152. BUG_ON(sret > 0);
  153. if (sret)
  154. return sret;
  155. b = p->nodes[level];
  156. c = &b->node;
  157. slot = p->slots[level];
  158. } else if (ins_len < 0 &&
  159. c->header.nritems <= NODEPTRS_PER_BLOCK/4) {
  160. u64 blocknr = b->blocknr;
  161. slot = p->slots[level +1];
  162. b->count++;
  163. if (push_node_left(root, p, level))
  164. push_node_right(root, p, level);
  165. if (c->header.nritems == 0 &&
  166. level < MAX_LEVEL - 1 &&
  167. p->nodes[level + 1]) {
  168. int tslot = p->slots[level + 1];
  169. p->slots[level + 1] = slot;
  170. del_ptr(root, p, level + 1);
  171. p->slots[level + 1] = tslot;
  172. tree_block_release(root, b);
  173. free_extent(root, blocknr, 1);
  174. } else {
  175. tree_block_release(root, b);
  176. }
  177. b = p->nodes[level];
  178. c = &b->node;
  179. slot = p->slots[level];
  180. }
  181. b = read_tree_block(root, c->blockptrs[slot]);
  182. continue;
  183. } else {
  184. struct leaf *l = (struct leaf *)c;
  185. p->slots[level] = slot;
  186. if (ins_len > 0 && leaf_free_space(l) <
  187. sizeof(struct item) + ins_len) {
  188. int sret = split_leaf(root, p, ins_len);
  189. BUG_ON(sret > 0);
  190. if (sret)
  191. return sret;
  192. }
  193. return ret;
  194. }
  195. }
  196. return -1;
  197. }
  198. /*
  199. * adjust the pointers going up the tree, starting at level
  200. * making sure the right key of each node is points to 'key'.
  201. * This is used after shifting pointers to the left, so it stops
  202. * fixing up pointers when a given leaf/node is not in slot 0 of the
  203. * higher levels
  204. */
  205. static void fixup_low_keys(struct ctree_root *root,
  206. struct ctree_path *path, struct key *key,
  207. int level)
  208. {
  209. int i;
  210. for (i = level; i < MAX_LEVEL; i++) {
  211. struct node *t;
  212. int tslot = path->slots[i];
  213. if (!path->nodes[i])
  214. break;
  215. t = &path->nodes[i]->node;
  216. memcpy(t->keys + tslot, key, sizeof(*key));
  217. write_tree_block(root, path->nodes[i]);
  218. if (tslot != 0)
  219. break;
  220. }
  221. }
  222. /*
  223. * try to push data from one node into the next node left in the
  224. * tree. The src node is found at specified level in the path.
  225. * If some bytes were pushed, return 0, otherwise return 1.
  226. *
  227. * Lower nodes/leaves in the path are not touched, higher nodes may
  228. * be modified to reflect the push.
  229. *
  230. * The path is altered to reflect the push.
  231. */
  232. int push_node_left(struct ctree_root *root, struct ctree_path *path, int level)
  233. {
  234. int slot;
  235. struct node *left;
  236. struct node *right;
  237. int push_items = 0;
  238. int left_nritems;
  239. int right_nritems;
  240. struct tree_buffer *t;
  241. struct tree_buffer *right_buf;
  242. if (level == MAX_LEVEL - 1 || path->nodes[level + 1] == 0)
  243. return 1;
  244. slot = path->slots[level + 1];
  245. if (slot == 0)
  246. return 1;
  247. t = read_tree_block(root,
  248. path->nodes[level + 1]->node.blockptrs[slot - 1]);
  249. left = &t->node;
  250. right_buf = path->nodes[level];
  251. right = &right_buf->node;
  252. left_nritems = left->header.nritems;
  253. right_nritems = right->header.nritems;
  254. push_items = NODEPTRS_PER_BLOCK - (left_nritems + 1);
  255. if (push_items <= 0) {
  256. tree_block_release(root, t);
  257. return 1;
  258. }
  259. if (right_nritems < push_items)
  260. push_items = right_nritems;
  261. memcpy(left->keys + left_nritems, right->keys,
  262. push_items * sizeof(struct key));
  263. memcpy(left->blockptrs + left_nritems, right->blockptrs,
  264. push_items * sizeof(u64));
  265. memmove(right->keys, right->keys + push_items,
  266. (right_nritems - push_items) * sizeof(struct key));
  267. memmove(right->blockptrs, right->blockptrs + push_items,
  268. (right_nritems - push_items) * sizeof(u64));
  269. right->header.nritems -= push_items;
  270. left->header.nritems += push_items;
  271. /* adjust the pointers going up the tree */
  272. fixup_low_keys(root, path, right->keys, level + 1);
  273. write_tree_block(root, t);
  274. write_tree_block(root, right_buf);
  275. /* then fixup the leaf pointer in the path */
  276. if (path->slots[level] < push_items) {
  277. path->slots[level] += left_nritems;
  278. tree_block_release(root, path->nodes[level]);
  279. path->nodes[level] = t;
  280. path->slots[level + 1] -= 1;
  281. } else {
  282. path->slots[level] -= push_items;
  283. tree_block_release(root, t);
  284. }
  285. return 0;
  286. }
  287. /*
  288. * try to push data from one node into the next node right in the
  289. * tree. The src node is found at specified level in the path.
  290. * If some bytes were pushed, return 0, otherwise return 1.
  291. *
  292. * Lower nodes/leaves in the path are not touched, higher nodes may
  293. * be modified to reflect the push.
  294. *
  295. * The path is altered to reflect the push.
  296. */
  297. int push_node_right(struct ctree_root *root, struct ctree_path *path, int level)
  298. {
  299. int slot;
  300. struct tree_buffer *t;
  301. struct tree_buffer *src_buffer;
  302. struct node *dst;
  303. struct node *src;
  304. int push_items = 0;
  305. int dst_nritems;
  306. int src_nritems;
  307. /* can't push from the root */
  308. if (level == MAX_LEVEL - 1 || path->nodes[level + 1] == 0)
  309. return 1;
  310. /* only try to push inside the node higher up */
  311. slot = path->slots[level + 1];
  312. if (slot == NODEPTRS_PER_BLOCK - 1)
  313. return 1;
  314. if (slot >= path->nodes[level + 1]->node.header.nritems -1)
  315. return 1;
  316. t = read_tree_block(root,
  317. path->nodes[level + 1]->node.blockptrs[slot + 1]);
  318. dst = &t->node;
  319. src_buffer = path->nodes[level];
  320. src = &src_buffer->node;
  321. dst_nritems = dst->header.nritems;
  322. src_nritems = src->header.nritems;
  323. push_items = NODEPTRS_PER_BLOCK - (dst_nritems + 1);
  324. if (push_items <= 0) {
  325. tree_block_release(root, t);
  326. return 1;
  327. }
  328. if (src_nritems < push_items)
  329. push_items = src_nritems;
  330. memmove(dst->keys + push_items, dst->keys,
  331. dst_nritems * sizeof(struct key));
  332. memcpy(dst->keys, src->keys + src_nritems - push_items,
  333. push_items * sizeof(struct key));
  334. memmove(dst->blockptrs + push_items, dst->blockptrs,
  335. dst_nritems * sizeof(u64));
  336. memcpy(dst->blockptrs, src->blockptrs + src_nritems - push_items,
  337. push_items * sizeof(u64));
  338. src->header.nritems -= push_items;
  339. dst->header.nritems += push_items;
  340. /* adjust the pointers going up the tree */
  341. memcpy(path->nodes[level + 1]->node.keys + path->slots[level + 1] + 1,
  342. dst->keys, sizeof(struct key));
  343. write_tree_block(root, path->nodes[level + 1]);
  344. write_tree_block(root, t);
  345. write_tree_block(root, src_buffer);
  346. /* then fixup the pointers in the path */
  347. if (path->slots[level] >= src->header.nritems) {
  348. path->slots[level] -= src->header.nritems;
  349. tree_block_release(root, path->nodes[level]);
  350. path->nodes[level] = t;
  351. path->slots[level + 1] += 1;
  352. } else {
  353. tree_block_release(root, t);
  354. }
  355. return 0;
  356. }
  357. /*
  358. * helper function to insert a new root level in the tree.
  359. * A new node is allocated, and a single item is inserted to
  360. * point to the existing root
  361. */
  362. static int insert_new_root(struct ctree_root *root,
  363. struct ctree_path *path, int level)
  364. {
  365. struct tree_buffer *t;
  366. struct node *lower;
  367. struct node *c;
  368. struct key *lower_key;
  369. BUG_ON(path->nodes[level]);
  370. BUG_ON(path->nodes[level-1] != root->node);
  371. t = alloc_free_block(root);
  372. c = &t->node;
  373. memset(c, 0, sizeof(c));
  374. c->header.nritems = 1;
  375. c->header.flags = node_level(level);
  376. c->header.blocknr = t->blocknr;
  377. c->header.parentid = root->node->node.header.parentid;
  378. lower = &path->nodes[level-1]->node;
  379. if (is_leaf(lower->header.flags))
  380. lower_key = &((struct leaf *)lower)->items[0].key;
  381. else
  382. lower_key = lower->keys;
  383. memcpy(c->keys, lower_key, sizeof(struct key));
  384. c->blockptrs[0] = path->nodes[level-1]->blocknr;
  385. /* the super has an extra ref to root->node */
  386. tree_block_release(root, root->node);
  387. root->node = t;
  388. t->count++;
  389. write_tree_block(root, t);
  390. path->nodes[level] = t;
  391. path->slots[level] = 0;
  392. return 0;
  393. }
  394. /*
  395. * worker function to insert a single pointer in a node.
  396. * the node should have enough room for the pointer already
  397. *
  398. * slot and level indicate where you want the key to go, and
  399. * blocknr is the block the key points to.
  400. */
  401. int insert_ptr(struct ctree_root *root,
  402. struct ctree_path *path, struct key *key,
  403. u64 blocknr, int slot, int level)
  404. {
  405. struct node *lower;
  406. int nritems;
  407. BUG_ON(!path->nodes[level]);
  408. lower = &path->nodes[level]->node;
  409. nritems = lower->header.nritems;
  410. if (slot > nritems)
  411. BUG();
  412. if (nritems == NODEPTRS_PER_BLOCK)
  413. BUG();
  414. if (slot != nritems) {
  415. memmove(lower->keys + slot + 1, lower->keys + slot,
  416. (nritems - slot) * sizeof(struct key));
  417. memmove(lower->blockptrs + slot + 1, lower->blockptrs + slot,
  418. (nritems - slot) * sizeof(u64));
  419. }
  420. memcpy(lower->keys + slot, key, sizeof(struct key));
  421. lower->blockptrs[slot] = blocknr;
  422. lower->header.nritems++;
  423. if (lower->keys[1].objectid == 0)
  424. BUG();
  425. write_tree_block(root, path->nodes[level]);
  426. return 0;
  427. }
  428. /*
  429. * split the node at the specified level in path in two.
  430. * The path is corrected to point to the appropriate node after the split
  431. *
  432. * Before splitting this tries to make some room in the node by pushing
  433. * left and right, if either one works, it returns right away.
  434. */
  435. int split_node(struct ctree_root *root, struct ctree_path *path, int level)
  436. {
  437. struct tree_buffer *t;
  438. struct node *c;
  439. struct tree_buffer *split_buffer;
  440. struct node *split;
  441. int mid;
  442. int ret;
  443. ret = push_node_left(root, path, level);
  444. if (!ret)
  445. return 0;
  446. ret = push_node_right(root, path, level);
  447. if (!ret)
  448. return 0;
  449. t = path->nodes[level];
  450. c = &t->node;
  451. if (t == root->node) {
  452. /* trying to split the root, lets make a new one */
  453. ret = insert_new_root(root, path, level + 1);
  454. if (ret)
  455. return ret;
  456. }
  457. split_buffer = alloc_free_block(root);
  458. split = &split_buffer->node;
  459. split->header.flags = c->header.flags;
  460. split->header.blocknr = split_buffer->blocknr;
  461. split->header.parentid = root->node->node.header.parentid;
  462. mid = (c->header.nritems + 1) / 2;
  463. memcpy(split->keys, c->keys + mid,
  464. (c->header.nritems - mid) * sizeof(struct key));
  465. memcpy(split->blockptrs, c->blockptrs + mid,
  466. (c->header.nritems - mid) * sizeof(u64));
  467. split->header.nritems = c->header.nritems - mid;
  468. c->header.nritems = mid;
  469. write_tree_block(root, t);
  470. write_tree_block(root, split_buffer);
  471. insert_ptr(root, path, split->keys, split_buffer->blocknr,
  472. path->slots[level + 1] + 1, level + 1);
  473. if (path->slots[level] >= mid) {
  474. path->slots[level] -= mid;
  475. tree_block_release(root, t);
  476. path->nodes[level] = split_buffer;
  477. path->slots[level + 1] += 1;
  478. } else {
  479. tree_block_release(root, split_buffer);
  480. }
  481. return 0;
  482. }
  483. /*
  484. * how many bytes are required to store the items in a leaf. start
  485. * and nr indicate which items in the leaf to check. This totals up the
  486. * space used both by the item structs and the item data
  487. */
  488. int leaf_space_used(struct leaf *l, int start, int nr)
  489. {
  490. int data_len;
  491. int end = start + nr - 1;
  492. if (!nr)
  493. return 0;
  494. data_len = l->items[start].offset + l->items[start].size;
  495. data_len = data_len - l->items[end].offset;
  496. data_len += sizeof(struct item) * nr;
  497. return data_len;
  498. }
  499. /*
  500. * push some data in the path leaf to the right, trying to free up at
  501. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  502. */
  503. int push_leaf_right(struct ctree_root *root, struct ctree_path *path,
  504. int data_size)
  505. {
  506. struct tree_buffer *left_buf = path->nodes[0];
  507. struct leaf *left = &left_buf->leaf;
  508. struct leaf *right;
  509. struct tree_buffer *right_buf;
  510. struct tree_buffer *upper;
  511. int slot;
  512. int i;
  513. int free_space;
  514. int push_space = 0;
  515. int push_items = 0;
  516. struct item *item;
  517. slot = path->slots[1];
  518. if (!path->nodes[1]) {
  519. return 1;
  520. }
  521. upper = path->nodes[1];
  522. if (slot >= upper->node.header.nritems - 1) {
  523. return 1;
  524. }
  525. right_buf = read_tree_block(root, upper->node.blockptrs[slot + 1]);
  526. right = &right_buf->leaf;
  527. free_space = leaf_free_space(right);
  528. if (free_space < data_size + sizeof(struct item)) {
  529. tree_block_release(root, right_buf);
  530. return 1;
  531. }
  532. for (i = left->header.nritems - 1; i >= 0; i--) {
  533. item = left->items + i;
  534. if (path->slots[0] == i)
  535. push_space += data_size + sizeof(*item);
  536. if (item->size + sizeof(*item) + push_space > free_space)
  537. break;
  538. push_items++;
  539. push_space += item->size + sizeof(*item);
  540. }
  541. if (push_items == 0) {
  542. tree_block_release(root, right_buf);
  543. return 1;
  544. }
  545. /* push left to right */
  546. push_space = left->items[left->header.nritems - push_items].offset +
  547. left->items[left->header.nritems - push_items].size;
  548. push_space -= leaf_data_end(left);
  549. /* make room in the right data area */
  550. memmove(right->data + leaf_data_end(right) - push_space,
  551. right->data + leaf_data_end(right),
  552. LEAF_DATA_SIZE - leaf_data_end(right));
  553. /* copy from the left data area */
  554. memcpy(right->data + LEAF_DATA_SIZE - push_space,
  555. left->data + leaf_data_end(left),
  556. push_space);
  557. memmove(right->items + push_items, right->items,
  558. right->header.nritems * sizeof(struct item));
  559. /* copy the items from left to right */
  560. memcpy(right->items, left->items + left->header.nritems - push_items,
  561. push_items * sizeof(struct item));
  562. /* update the item pointers */
  563. right->header.nritems += push_items;
  564. push_space = LEAF_DATA_SIZE;
  565. for (i = 0; i < right->header.nritems; i++) {
  566. right->items[i].offset = push_space - right->items[i].size;
  567. push_space = right->items[i].offset;
  568. }
  569. left->header.nritems -= push_items;
  570. write_tree_block(root, left_buf);
  571. write_tree_block(root, right_buf);
  572. memcpy(upper->node.keys + slot + 1,
  573. &right->items[0].key, sizeof(struct key));
  574. write_tree_block(root, upper);
  575. /* then fixup the leaf pointer in the path */
  576. // FIXME use nritems in here somehow
  577. if (path->slots[0] >= left->header.nritems) {
  578. path->slots[0] -= left->header.nritems;
  579. tree_block_release(root, path->nodes[0]);
  580. path->nodes[0] = right_buf;
  581. path->slots[1] += 1;
  582. } else {
  583. tree_block_release(root, right_buf);
  584. }
  585. return 0;
  586. }
  587. /*
  588. * push some data in the path leaf to the left, trying to free up at
  589. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  590. */
  591. int push_leaf_left(struct ctree_root *root, struct ctree_path *path,
  592. int data_size)
  593. {
  594. struct tree_buffer *right_buf = path->nodes[0];
  595. struct leaf *right = &right_buf->leaf;
  596. struct tree_buffer *t;
  597. struct leaf *left;
  598. int slot;
  599. int i;
  600. int free_space;
  601. int push_space = 0;
  602. int push_items = 0;
  603. struct item *item;
  604. int old_left_nritems;
  605. slot = path->slots[1];
  606. if (slot == 0) {
  607. return 1;
  608. }
  609. if (!path->nodes[1]) {
  610. return 1;
  611. }
  612. t = read_tree_block(root, path->nodes[1]->node.blockptrs[slot - 1]);
  613. left = &t->leaf;
  614. free_space = leaf_free_space(left);
  615. if (free_space < data_size + sizeof(struct item)) {
  616. tree_block_release(root, t);
  617. return 1;
  618. }
  619. for (i = 0; i < right->header.nritems; i++) {
  620. item = right->items + i;
  621. if (path->slots[0] == i)
  622. push_space += data_size + sizeof(*item);
  623. if (item->size + sizeof(*item) + push_space > free_space)
  624. break;
  625. push_items++;
  626. push_space += item->size + sizeof(*item);
  627. }
  628. if (push_items == 0) {
  629. tree_block_release(root, t);
  630. return 1;
  631. }
  632. /* push data from right to left */
  633. memcpy(left->items + left->header.nritems,
  634. right->items, push_items * sizeof(struct item));
  635. push_space = LEAF_DATA_SIZE - right->items[push_items -1].offset;
  636. memcpy(left->data + leaf_data_end(left) - push_space,
  637. right->data + right->items[push_items - 1].offset,
  638. push_space);
  639. old_left_nritems = left->header.nritems;
  640. BUG_ON(old_left_nritems < 0);
  641. for(i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  642. left->items[i].offset -= LEAF_DATA_SIZE -
  643. left->items[old_left_nritems -1].offset;
  644. }
  645. left->header.nritems += push_items;
  646. /* fixup right node */
  647. push_space = right->items[push_items-1].offset - leaf_data_end(right);
  648. memmove(right->data + LEAF_DATA_SIZE - push_space, right->data +
  649. leaf_data_end(right), push_space);
  650. memmove(right->items, right->items + push_items,
  651. (right->header.nritems - push_items) * sizeof(struct item));
  652. right->header.nritems -= push_items;
  653. push_space = LEAF_DATA_SIZE;
  654. for (i = 0; i < right->header.nritems; i++) {
  655. right->items[i].offset = push_space - right->items[i].size;
  656. push_space = right->items[i].offset;
  657. }
  658. write_tree_block(root, t);
  659. write_tree_block(root, right_buf);
  660. fixup_low_keys(root, path, &right->items[0].key, 1);
  661. /* then fixup the leaf pointer in the path */
  662. if (path->slots[0] < push_items) {
  663. path->slots[0] += old_left_nritems;
  664. tree_block_release(root, path->nodes[0]);
  665. path->nodes[0] = t;
  666. path->slots[1] -= 1;
  667. } else {
  668. tree_block_release(root, t);
  669. path->slots[0] -= push_items;
  670. }
  671. BUG_ON(path->slots[0] < 0);
  672. return 0;
  673. }
  674. /*
  675. * split the path's leaf in two, making sure there is at least data_size
  676. * available for the resulting leaf level of the path.
  677. */
  678. int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size)
  679. {
  680. struct tree_buffer *l_buf = path->nodes[0];
  681. struct leaf *l = &l_buf->leaf;
  682. int nritems;
  683. int mid;
  684. int slot;
  685. struct leaf *right;
  686. struct tree_buffer *right_buffer;
  687. int space_needed = data_size + sizeof(struct item);
  688. int data_copy_size;
  689. int rt_data_off;
  690. int i;
  691. int ret;
  692. if (push_leaf_left(root, path, data_size) == 0 ||
  693. push_leaf_right(root, path, data_size) == 0) {
  694. l_buf = path->nodes[0];
  695. l = &l_buf->leaf;
  696. if (leaf_free_space(l) >= sizeof(struct item) + data_size)
  697. return 0;
  698. }
  699. if (!path->nodes[1]) {
  700. ret = insert_new_root(root, path, 1);
  701. if (ret)
  702. return ret;
  703. }
  704. slot = path->slots[0];
  705. nritems = l->header.nritems;
  706. mid = (nritems + 1)/ 2;
  707. right_buffer = alloc_free_block(root);
  708. BUG_ON(!right_buffer);
  709. BUG_ON(mid == nritems);
  710. right = &right_buffer->leaf;
  711. memset(right, 0, sizeof(*right));
  712. if (mid <= slot) {
  713. /* FIXME, just alloc a new leaf here */
  714. if (leaf_space_used(l, mid, nritems - mid) + space_needed >
  715. LEAF_DATA_SIZE)
  716. BUG();
  717. } else {
  718. /* FIXME, just alloc a new leaf here */
  719. if (leaf_space_used(l, 0, mid + 1) + space_needed >
  720. LEAF_DATA_SIZE)
  721. BUG();
  722. }
  723. right->header.nritems = nritems - mid;
  724. right->header.blocknr = right_buffer->blocknr;
  725. right->header.flags = node_level(0);
  726. right->header.parentid = root->node->node.header.parentid;
  727. data_copy_size = l->items[mid].offset + l->items[mid].size -
  728. leaf_data_end(l);
  729. memcpy(right->items, l->items + mid,
  730. (nritems - mid) * sizeof(struct item));
  731. memcpy(right->data + LEAF_DATA_SIZE - data_copy_size,
  732. l->data + leaf_data_end(l), data_copy_size);
  733. rt_data_off = LEAF_DATA_SIZE -
  734. (l->items[mid].offset + l->items[mid].size);
  735. for (i = 0; i < right->header.nritems; i++)
  736. right->items[i].offset += rt_data_off;
  737. l->header.nritems = mid;
  738. ret = insert_ptr(root, path, &right->items[0].key,
  739. right_buffer->blocknr, path->slots[1] + 1, 1);
  740. write_tree_block(root, right_buffer);
  741. write_tree_block(root, l_buf);
  742. BUG_ON(path->slots[0] != slot);
  743. if (mid <= slot) {
  744. tree_block_release(root, path->nodes[0]);
  745. path->nodes[0] = right_buffer;
  746. path->slots[0] -= mid;
  747. path->slots[1] += 1;
  748. } else
  749. tree_block_release(root, right_buffer);
  750. BUG_ON(path->slots[0] < 0);
  751. return ret;
  752. }
  753. /*
  754. * Given a key and some data, insert an item into the tree.
  755. * This does all the path init required, making room in the tree if needed.
  756. */
  757. int insert_item(struct ctree_root *root, struct key *key,
  758. void *data, int data_size)
  759. {
  760. int ret;
  761. int slot;
  762. int slot_orig;
  763. struct leaf *leaf;
  764. struct tree_buffer *leaf_buf;
  765. unsigned int nritems;
  766. unsigned int data_end;
  767. struct ctree_path path;
  768. /* create a root if there isn't one */
  769. if (!root->node)
  770. BUG();
  771. init_path(&path);
  772. ret = search_slot(root, key, &path, data_size);
  773. if (ret == 0) {
  774. release_path(root, &path);
  775. return -EEXIST;
  776. }
  777. slot_orig = path.slots[0];
  778. leaf_buf = path.nodes[0];
  779. leaf = &leaf_buf->leaf;
  780. nritems = leaf->header.nritems;
  781. data_end = leaf_data_end(leaf);
  782. if (leaf_free_space(leaf) < sizeof(struct item) + data_size)
  783. BUG();
  784. slot = path.slots[0];
  785. BUG_ON(slot < 0);
  786. if (slot == 0)
  787. fixup_low_keys(root, &path, key, 1);
  788. if (slot != nritems) {
  789. int i;
  790. unsigned int old_data = leaf->items[slot].offset +
  791. leaf->items[slot].size;
  792. /*
  793. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  794. */
  795. /* first correct the data pointers */
  796. for (i = slot; i < nritems; i++)
  797. leaf->items[i].offset -= data_size;
  798. /* shift the items */
  799. memmove(leaf->items + slot + 1, leaf->items + slot,
  800. (nritems - slot) * sizeof(struct item));
  801. /* shift the data */
  802. memmove(leaf->data + data_end - data_size, leaf->data +
  803. data_end, old_data - data_end);
  804. data_end = old_data;
  805. }
  806. /* copy the new data in */
  807. memcpy(&leaf->items[slot].key, key, sizeof(struct key));
  808. leaf->items[slot].offset = data_end - data_size;
  809. leaf->items[slot].size = data_size;
  810. memcpy(leaf->data + data_end - data_size, data, data_size);
  811. leaf->header.nritems += 1;
  812. write_tree_block(root, leaf_buf);
  813. if (leaf_free_space(leaf) < 0)
  814. BUG();
  815. release_path(root, &path);
  816. return 0;
  817. }
  818. /*
  819. * delete the pointer from a given node.
  820. *
  821. * If the delete empties a node, the node is removed from the tree,
  822. * continuing all the way the root if required. The root is converted into
  823. * a leaf if all the nodes are emptied.
  824. */
  825. int del_ptr(struct ctree_root *root, struct ctree_path *path, int level)
  826. {
  827. int slot;
  828. struct tree_buffer *t;
  829. struct node *node;
  830. int nritems;
  831. u64 blocknr;
  832. while(1) {
  833. t = path->nodes[level];
  834. if (!t)
  835. break;
  836. node = &t->node;
  837. slot = path->slots[level];
  838. nritems = node->header.nritems;
  839. if (slot != nritems -1) {
  840. memmove(node->keys + slot, node->keys + slot + 1,
  841. sizeof(struct key) * (nritems - slot - 1));
  842. memmove(node->blockptrs + slot,
  843. node->blockptrs + slot + 1,
  844. sizeof(u64) * (nritems - slot - 1));
  845. }
  846. node->header.nritems--;
  847. write_tree_block(root, t);
  848. blocknr = t->blocknr;
  849. if (node->header.nritems != 0) {
  850. if (slot == 0)
  851. fixup_low_keys(root, path, node->keys,
  852. level + 1);
  853. break;
  854. }
  855. if (t == root->node) {
  856. /* just turn the root into a leaf and break */
  857. root->node->node.header.flags = node_level(0);
  858. write_tree_block(root, t);
  859. break;
  860. }
  861. level++;
  862. free_extent(root, blocknr, 1);
  863. if (!path->nodes[level])
  864. BUG();
  865. }
  866. return 0;
  867. }
  868. /*
  869. * delete the item at the leaf level in path. If that empties
  870. * the leaf, remove it from the tree
  871. */
  872. int del_item(struct ctree_root *root, struct ctree_path *path)
  873. {
  874. int slot;
  875. struct leaf *leaf;
  876. struct tree_buffer *leaf_buf;
  877. int doff;
  878. int dsize;
  879. leaf_buf = path->nodes[0];
  880. leaf = &leaf_buf->leaf;
  881. slot = path->slots[0];
  882. doff = leaf->items[slot].offset;
  883. dsize = leaf->items[slot].size;
  884. if (slot != leaf->header.nritems - 1) {
  885. int i;
  886. int data_end = leaf_data_end(leaf);
  887. memmove(leaf->data + data_end + dsize,
  888. leaf->data + data_end,
  889. doff - data_end);
  890. for (i = slot + 1; i < leaf->header.nritems; i++)
  891. leaf->items[i].offset += dsize;
  892. memmove(leaf->items + slot, leaf->items + slot + 1,
  893. sizeof(struct item) *
  894. (leaf->header.nritems - slot - 1));
  895. }
  896. leaf->header.nritems -= 1;
  897. /* delete the leaf if we've emptied it */
  898. if (leaf->header.nritems == 0) {
  899. if (leaf_buf == root->node) {
  900. leaf->header.flags = node_level(0);
  901. write_tree_block(root, leaf_buf);
  902. } else {
  903. del_ptr(root, path, 1);
  904. free_extent(root, leaf_buf->blocknr, 1);
  905. }
  906. } else {
  907. int used = leaf_space_used(leaf, 0, leaf->header.nritems);
  908. if (slot == 0)
  909. fixup_low_keys(root, path, &leaf->items[0].key, 1);
  910. write_tree_block(root, leaf_buf);
  911. /* delete the leaf if it is mostly empty */
  912. if (used < LEAF_DATA_SIZE / 3) {
  913. /* push_leaf_left fixes the path.
  914. * make sure the path still points to our leaf
  915. * for possible call to del_ptr below
  916. */
  917. slot = path->slots[1];
  918. leaf_buf->count++;
  919. push_leaf_left(root, path, 1);
  920. if (leaf->header.nritems)
  921. push_leaf_right(root, path, 1);
  922. if (leaf->header.nritems == 0) {
  923. u64 blocknr = leaf_buf->blocknr;
  924. path->slots[1] = slot;
  925. del_ptr(root, path, 1);
  926. tree_block_release(root, leaf_buf);
  927. free_extent(root, blocknr, 1);
  928. } else {
  929. tree_block_release(root, leaf_buf);
  930. }
  931. }
  932. }
  933. return 0;
  934. }
  935. /*
  936. * walk up the tree as far as required to find the next leaf.
  937. * returns 0 if it found something or -1 if there are no greater leaves.
  938. */
  939. int next_leaf(struct ctree_root *root, struct ctree_path *path)
  940. {
  941. int slot;
  942. int level = 1;
  943. u64 blocknr;
  944. struct tree_buffer *c;
  945. struct tree_buffer *next = NULL;
  946. while(level < MAX_LEVEL) {
  947. if (!path->nodes[level])
  948. return -1;
  949. slot = path->slots[level] + 1;
  950. c = path->nodes[level];
  951. if (slot >= c->node.header.nritems) {
  952. level++;
  953. continue;
  954. }
  955. blocknr = c->node.blockptrs[slot];
  956. if (next)
  957. tree_block_release(root, next);
  958. next = read_tree_block(root, blocknr);
  959. break;
  960. }
  961. path->slots[level] = slot;
  962. while(1) {
  963. level--;
  964. c = path->nodes[level];
  965. tree_block_release(root, c);
  966. path->nodes[level] = next;
  967. path->slots[level] = 0;
  968. if (!level)
  969. break;
  970. next = read_tree_block(root, next->node.blockptrs[0]);
  971. }
  972. return 0;
  973. }
  974. /* for testing only */
  975. int next_key(int i, int max_key) {
  976. return rand() % max_key;
  977. //return i;
  978. }
  979. int main() {
  980. struct ctree_root *root;
  981. struct key ins;
  982. struct key last = { (u64)-1, 0, 0};
  983. char *buf;
  984. int i;
  985. int num;
  986. int ret;
  987. int run_size = 20000000;
  988. int max_key = 100000000;
  989. int tree_size = 0;
  990. struct ctree_path path;
  991. struct ctree_super_block super;
  992. radix_tree_init();
  993. root = open_ctree("dbfile", &super);
  994. srand(55);
  995. for (i = 0; i < run_size; i++) {
  996. buf = malloc(64);
  997. num = next_key(i, max_key);
  998. // num = i;
  999. sprintf(buf, "string-%d", num);
  1000. if (i % 10000 == 0)
  1001. fprintf(stderr, "insert %d:%d\n", num, i);
  1002. ins.objectid = num;
  1003. ins.offset = 0;
  1004. ins.flags = 0;
  1005. ret = insert_item(root, &ins, buf, strlen(buf));
  1006. if (!ret)
  1007. tree_size++;
  1008. free(buf);
  1009. }
  1010. write_ctree_super(root, &super);
  1011. close_ctree(root);
  1012. root = open_ctree("dbfile", &super);
  1013. printf("starting search\n");
  1014. srand(55);
  1015. for (i = 0; i < run_size; i++) {
  1016. num = next_key(i, max_key);
  1017. ins.objectid = num;
  1018. init_path(&path);
  1019. if (i % 10000 == 0)
  1020. fprintf(stderr, "search %d:%d\n", num, i);
  1021. ret = search_slot(root, &ins, &path, 0);
  1022. if (ret) {
  1023. print_tree(root, root->node);
  1024. printf("unable to find %d\n", num);
  1025. exit(1);
  1026. }
  1027. release_path(root, &path);
  1028. }
  1029. write_ctree_super(root, &super);
  1030. close_ctree(root);
  1031. root = open_ctree("dbfile", &super);
  1032. printf("node %p level %d total ptrs %d free spc %lu\n", root->node,
  1033. node_level(root->node->node.header.flags),
  1034. root->node->node.header.nritems,
  1035. NODEPTRS_PER_BLOCK - root->node->node.header.nritems);
  1036. printf("all searches good, deleting some items\n");
  1037. i = 0;
  1038. srand(55);
  1039. for (i = 0 ; i < run_size/4; i++) {
  1040. num = next_key(i, max_key);
  1041. ins.objectid = num;
  1042. init_path(&path);
  1043. ret = search_slot(root, &ins, &path, -1);
  1044. if (!ret) {
  1045. if (i % 10000 == 0)
  1046. fprintf(stderr, "del %d:%d\n", num, i);
  1047. ret = del_item(root, &path);
  1048. if (ret != 0)
  1049. BUG();
  1050. tree_size--;
  1051. }
  1052. release_path(root, &path);
  1053. }
  1054. write_ctree_super(root, &super);
  1055. close_ctree(root);
  1056. root = open_ctree("dbfile", &super);
  1057. srand(128);
  1058. for (i = 0; i < run_size; i++) {
  1059. buf = malloc(64);
  1060. num = next_key(i, max_key);
  1061. sprintf(buf, "string-%d", num);
  1062. ins.objectid = num;
  1063. if (i % 10000 == 0)
  1064. fprintf(stderr, "insert %d:%d\n", num, i);
  1065. ret = insert_item(root, &ins, buf, strlen(buf));
  1066. if (!ret)
  1067. tree_size++;
  1068. free(buf);
  1069. }
  1070. write_ctree_super(root, &super);
  1071. close_ctree(root);
  1072. root = open_ctree("dbfile", &super);
  1073. srand(128);
  1074. printf("starting search2\n");
  1075. for (i = 0; i < run_size; i++) {
  1076. num = next_key(i, max_key);
  1077. ins.objectid = num;
  1078. init_path(&path);
  1079. if (i % 10000 == 0)
  1080. fprintf(stderr, "search %d:%d\n", num, i);
  1081. ret = search_slot(root, &ins, &path, 0);
  1082. if (ret) {
  1083. print_tree(root, root->node);
  1084. printf("unable to find %d\n", num);
  1085. exit(1);
  1086. }
  1087. release_path(root, &path);
  1088. }
  1089. printf("starting big long delete run\n");
  1090. while(root->node && root->node->node.header.nritems > 0) {
  1091. struct leaf *leaf;
  1092. int slot;
  1093. ins.objectid = (u64)-1;
  1094. init_path(&path);
  1095. ret = search_slot(root, &ins, &path, -1);
  1096. if (ret == 0)
  1097. BUG();
  1098. leaf = &path.nodes[0]->leaf;
  1099. slot = path.slots[0];
  1100. if (slot != leaf->header.nritems)
  1101. BUG();
  1102. while(path.slots[0] > 0) {
  1103. path.slots[0] -= 1;
  1104. slot = path.slots[0];
  1105. leaf = &path.nodes[0]->leaf;
  1106. if (comp_keys(&last, &leaf->items[slot].key) <= 0)
  1107. BUG();
  1108. memcpy(&last, &leaf->items[slot].key, sizeof(last));
  1109. if (tree_size % 10000 == 0)
  1110. printf("big del %d:%d\n", tree_size, i);
  1111. ret = del_item(root, &path);
  1112. if (ret != 0) {
  1113. printf("del_item returned %d\n", ret);
  1114. BUG();
  1115. }
  1116. tree_size--;
  1117. }
  1118. release_path(root, &path);
  1119. }
  1120. printf("tree size is now %d\n", tree_size);
  1121. printf("map tree\n");
  1122. print_tree(root->extent_root, root->extent_root->node);
  1123. write_ctree_super(root, &super);
  1124. close_ctree(root);
  1125. return 0;
  1126. }