huge_memory.c 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <linux/freezer.h>
  18. #include <asm/tlb.h>
  19. #include <asm/pgalloc.h>
  20. #include "internal.h"
  21. /*
  22. * By default transparent hugepage support is enabled for all mappings
  23. * and khugepaged scans all mappings. Defrag is only invoked by
  24. * khugepaged hugepage allocations and by page faults inside
  25. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  26. * allocations.
  27. */
  28. unsigned long transparent_hugepage_flags __read_mostly =
  29. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  30. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  31. #endif
  32. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  33. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  34. #endif
  35. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  36. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  37. /* default scan 8*512 pte (or vmas) every 30 second */
  38. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  39. static unsigned int khugepaged_pages_collapsed;
  40. static unsigned int khugepaged_full_scans;
  41. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  42. /* during fragmentation poll the hugepage allocator once every minute */
  43. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  44. static struct task_struct *khugepaged_thread __read_mostly;
  45. static DEFINE_MUTEX(khugepaged_mutex);
  46. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  47. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  48. /*
  49. * default collapse hugepages if there is at least one pte mapped like
  50. * it would have happened if the vma was large enough during page
  51. * fault.
  52. */
  53. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  54. static int khugepaged(void *none);
  55. static int mm_slots_hash_init(void);
  56. static int khugepaged_slab_init(void);
  57. static void khugepaged_slab_free(void);
  58. #define MM_SLOTS_HASH_HEADS 1024
  59. static struct hlist_head *mm_slots_hash __read_mostly;
  60. static struct kmem_cache *mm_slot_cache __read_mostly;
  61. /**
  62. * struct mm_slot - hash lookup from mm to mm_slot
  63. * @hash: hash collision list
  64. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  65. * @mm: the mm that this information is valid for
  66. */
  67. struct mm_slot {
  68. struct hlist_node hash;
  69. struct list_head mm_node;
  70. struct mm_struct *mm;
  71. };
  72. /**
  73. * struct khugepaged_scan - cursor for scanning
  74. * @mm_head: the head of the mm list to scan
  75. * @mm_slot: the current mm_slot we are scanning
  76. * @address: the next address inside that to be scanned
  77. *
  78. * There is only the one khugepaged_scan instance of this cursor structure.
  79. */
  80. struct khugepaged_scan {
  81. struct list_head mm_head;
  82. struct mm_slot *mm_slot;
  83. unsigned long address;
  84. } khugepaged_scan = {
  85. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  86. };
  87. static int set_recommended_min_free_kbytes(void)
  88. {
  89. struct zone *zone;
  90. int nr_zones = 0;
  91. unsigned long recommended_min;
  92. extern int min_free_kbytes;
  93. if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
  94. &transparent_hugepage_flags) &&
  95. !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  96. &transparent_hugepage_flags))
  97. return 0;
  98. for_each_populated_zone(zone)
  99. nr_zones++;
  100. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  101. recommended_min = pageblock_nr_pages * nr_zones * 2;
  102. /*
  103. * Make sure that on average at least two pageblocks are almost free
  104. * of another type, one for a migratetype to fall back to and a
  105. * second to avoid subsequent fallbacks of other types There are 3
  106. * MIGRATE_TYPES we care about.
  107. */
  108. recommended_min += pageblock_nr_pages * nr_zones *
  109. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  110. /* don't ever allow to reserve more than 5% of the lowmem */
  111. recommended_min = min(recommended_min,
  112. (unsigned long) nr_free_buffer_pages() / 20);
  113. recommended_min <<= (PAGE_SHIFT-10);
  114. if (recommended_min > min_free_kbytes)
  115. min_free_kbytes = recommended_min;
  116. setup_per_zone_wmarks();
  117. return 0;
  118. }
  119. late_initcall(set_recommended_min_free_kbytes);
  120. static int start_khugepaged(void)
  121. {
  122. int err = 0;
  123. if (khugepaged_enabled()) {
  124. int wakeup;
  125. if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
  126. err = -ENOMEM;
  127. goto out;
  128. }
  129. mutex_lock(&khugepaged_mutex);
  130. if (!khugepaged_thread)
  131. khugepaged_thread = kthread_run(khugepaged, NULL,
  132. "khugepaged");
  133. if (unlikely(IS_ERR(khugepaged_thread))) {
  134. printk(KERN_ERR
  135. "khugepaged: kthread_run(khugepaged) failed\n");
  136. err = PTR_ERR(khugepaged_thread);
  137. khugepaged_thread = NULL;
  138. }
  139. wakeup = !list_empty(&khugepaged_scan.mm_head);
  140. mutex_unlock(&khugepaged_mutex);
  141. if (wakeup)
  142. wake_up_interruptible(&khugepaged_wait);
  143. set_recommended_min_free_kbytes();
  144. } else
  145. /* wakeup to exit */
  146. wake_up_interruptible(&khugepaged_wait);
  147. out:
  148. return err;
  149. }
  150. #ifdef CONFIG_SYSFS
  151. static ssize_t double_flag_show(struct kobject *kobj,
  152. struct kobj_attribute *attr, char *buf,
  153. enum transparent_hugepage_flag enabled,
  154. enum transparent_hugepage_flag req_madv)
  155. {
  156. if (test_bit(enabled, &transparent_hugepage_flags)) {
  157. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  158. return sprintf(buf, "[always] madvise never\n");
  159. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  160. return sprintf(buf, "always [madvise] never\n");
  161. else
  162. return sprintf(buf, "always madvise [never]\n");
  163. }
  164. static ssize_t double_flag_store(struct kobject *kobj,
  165. struct kobj_attribute *attr,
  166. const char *buf, size_t count,
  167. enum transparent_hugepage_flag enabled,
  168. enum transparent_hugepage_flag req_madv)
  169. {
  170. if (!memcmp("always", buf,
  171. min(sizeof("always")-1, count))) {
  172. set_bit(enabled, &transparent_hugepage_flags);
  173. clear_bit(req_madv, &transparent_hugepage_flags);
  174. } else if (!memcmp("madvise", buf,
  175. min(sizeof("madvise")-1, count))) {
  176. clear_bit(enabled, &transparent_hugepage_flags);
  177. set_bit(req_madv, &transparent_hugepage_flags);
  178. } else if (!memcmp("never", buf,
  179. min(sizeof("never")-1, count))) {
  180. clear_bit(enabled, &transparent_hugepage_flags);
  181. clear_bit(req_madv, &transparent_hugepage_flags);
  182. } else
  183. return -EINVAL;
  184. return count;
  185. }
  186. static ssize_t enabled_show(struct kobject *kobj,
  187. struct kobj_attribute *attr, char *buf)
  188. {
  189. return double_flag_show(kobj, attr, buf,
  190. TRANSPARENT_HUGEPAGE_FLAG,
  191. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  192. }
  193. static ssize_t enabled_store(struct kobject *kobj,
  194. struct kobj_attribute *attr,
  195. const char *buf, size_t count)
  196. {
  197. ssize_t ret;
  198. ret = double_flag_store(kobj, attr, buf, count,
  199. TRANSPARENT_HUGEPAGE_FLAG,
  200. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  201. if (ret > 0) {
  202. int err = start_khugepaged();
  203. if (err)
  204. ret = err;
  205. }
  206. if (ret > 0 &&
  207. (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
  208. &transparent_hugepage_flags) ||
  209. test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  210. &transparent_hugepage_flags)))
  211. set_recommended_min_free_kbytes();
  212. return ret;
  213. }
  214. static struct kobj_attribute enabled_attr =
  215. __ATTR(enabled, 0644, enabled_show, enabled_store);
  216. static ssize_t single_flag_show(struct kobject *kobj,
  217. struct kobj_attribute *attr, char *buf,
  218. enum transparent_hugepage_flag flag)
  219. {
  220. if (test_bit(flag, &transparent_hugepage_flags))
  221. return sprintf(buf, "[yes] no\n");
  222. else
  223. return sprintf(buf, "yes [no]\n");
  224. }
  225. static ssize_t single_flag_store(struct kobject *kobj,
  226. struct kobj_attribute *attr,
  227. const char *buf, size_t count,
  228. enum transparent_hugepage_flag flag)
  229. {
  230. if (!memcmp("yes", buf,
  231. min(sizeof("yes")-1, count))) {
  232. set_bit(flag, &transparent_hugepage_flags);
  233. } else if (!memcmp("no", buf,
  234. min(sizeof("no")-1, count))) {
  235. clear_bit(flag, &transparent_hugepage_flags);
  236. } else
  237. return -EINVAL;
  238. return count;
  239. }
  240. /*
  241. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  242. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  243. * memory just to allocate one more hugepage.
  244. */
  245. static ssize_t defrag_show(struct kobject *kobj,
  246. struct kobj_attribute *attr, char *buf)
  247. {
  248. return double_flag_show(kobj, attr, buf,
  249. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  250. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  251. }
  252. static ssize_t defrag_store(struct kobject *kobj,
  253. struct kobj_attribute *attr,
  254. const char *buf, size_t count)
  255. {
  256. return double_flag_store(kobj, attr, buf, count,
  257. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  258. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  259. }
  260. static struct kobj_attribute defrag_attr =
  261. __ATTR(defrag, 0644, defrag_show, defrag_store);
  262. #ifdef CONFIG_DEBUG_VM
  263. static ssize_t debug_cow_show(struct kobject *kobj,
  264. struct kobj_attribute *attr, char *buf)
  265. {
  266. return single_flag_show(kobj, attr, buf,
  267. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  268. }
  269. static ssize_t debug_cow_store(struct kobject *kobj,
  270. struct kobj_attribute *attr,
  271. const char *buf, size_t count)
  272. {
  273. return single_flag_store(kobj, attr, buf, count,
  274. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  275. }
  276. static struct kobj_attribute debug_cow_attr =
  277. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  278. #endif /* CONFIG_DEBUG_VM */
  279. static struct attribute *hugepage_attr[] = {
  280. &enabled_attr.attr,
  281. &defrag_attr.attr,
  282. #ifdef CONFIG_DEBUG_VM
  283. &debug_cow_attr.attr,
  284. #endif
  285. NULL,
  286. };
  287. static struct attribute_group hugepage_attr_group = {
  288. .attrs = hugepage_attr,
  289. };
  290. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  291. struct kobj_attribute *attr,
  292. char *buf)
  293. {
  294. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  295. }
  296. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  297. struct kobj_attribute *attr,
  298. const char *buf, size_t count)
  299. {
  300. unsigned long msecs;
  301. int err;
  302. err = strict_strtoul(buf, 10, &msecs);
  303. if (err || msecs > UINT_MAX)
  304. return -EINVAL;
  305. khugepaged_scan_sleep_millisecs = msecs;
  306. wake_up_interruptible(&khugepaged_wait);
  307. return count;
  308. }
  309. static struct kobj_attribute scan_sleep_millisecs_attr =
  310. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  311. scan_sleep_millisecs_store);
  312. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  313. struct kobj_attribute *attr,
  314. char *buf)
  315. {
  316. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  317. }
  318. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  319. struct kobj_attribute *attr,
  320. const char *buf, size_t count)
  321. {
  322. unsigned long msecs;
  323. int err;
  324. err = strict_strtoul(buf, 10, &msecs);
  325. if (err || msecs > UINT_MAX)
  326. return -EINVAL;
  327. khugepaged_alloc_sleep_millisecs = msecs;
  328. wake_up_interruptible(&khugepaged_wait);
  329. return count;
  330. }
  331. static struct kobj_attribute alloc_sleep_millisecs_attr =
  332. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  333. alloc_sleep_millisecs_store);
  334. static ssize_t pages_to_scan_show(struct kobject *kobj,
  335. struct kobj_attribute *attr,
  336. char *buf)
  337. {
  338. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  339. }
  340. static ssize_t pages_to_scan_store(struct kobject *kobj,
  341. struct kobj_attribute *attr,
  342. const char *buf, size_t count)
  343. {
  344. int err;
  345. unsigned long pages;
  346. err = strict_strtoul(buf, 10, &pages);
  347. if (err || !pages || pages > UINT_MAX)
  348. return -EINVAL;
  349. khugepaged_pages_to_scan = pages;
  350. return count;
  351. }
  352. static struct kobj_attribute pages_to_scan_attr =
  353. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  354. pages_to_scan_store);
  355. static ssize_t pages_collapsed_show(struct kobject *kobj,
  356. struct kobj_attribute *attr,
  357. char *buf)
  358. {
  359. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  360. }
  361. static struct kobj_attribute pages_collapsed_attr =
  362. __ATTR_RO(pages_collapsed);
  363. static ssize_t full_scans_show(struct kobject *kobj,
  364. struct kobj_attribute *attr,
  365. char *buf)
  366. {
  367. return sprintf(buf, "%u\n", khugepaged_full_scans);
  368. }
  369. static struct kobj_attribute full_scans_attr =
  370. __ATTR_RO(full_scans);
  371. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  372. struct kobj_attribute *attr, char *buf)
  373. {
  374. return single_flag_show(kobj, attr, buf,
  375. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  376. }
  377. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  378. struct kobj_attribute *attr,
  379. const char *buf, size_t count)
  380. {
  381. return single_flag_store(kobj, attr, buf, count,
  382. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  383. }
  384. static struct kobj_attribute khugepaged_defrag_attr =
  385. __ATTR(defrag, 0644, khugepaged_defrag_show,
  386. khugepaged_defrag_store);
  387. /*
  388. * max_ptes_none controls if khugepaged should collapse hugepages over
  389. * any unmapped ptes in turn potentially increasing the memory
  390. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  391. * reduce the available free memory in the system as it
  392. * runs. Increasing max_ptes_none will instead potentially reduce the
  393. * free memory in the system during the khugepaged scan.
  394. */
  395. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  396. struct kobj_attribute *attr,
  397. char *buf)
  398. {
  399. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  400. }
  401. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  402. struct kobj_attribute *attr,
  403. const char *buf, size_t count)
  404. {
  405. int err;
  406. unsigned long max_ptes_none;
  407. err = strict_strtoul(buf, 10, &max_ptes_none);
  408. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  409. return -EINVAL;
  410. khugepaged_max_ptes_none = max_ptes_none;
  411. return count;
  412. }
  413. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  414. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  415. khugepaged_max_ptes_none_store);
  416. static struct attribute *khugepaged_attr[] = {
  417. &khugepaged_defrag_attr.attr,
  418. &khugepaged_max_ptes_none_attr.attr,
  419. &pages_to_scan_attr.attr,
  420. &pages_collapsed_attr.attr,
  421. &full_scans_attr.attr,
  422. &scan_sleep_millisecs_attr.attr,
  423. &alloc_sleep_millisecs_attr.attr,
  424. NULL,
  425. };
  426. static struct attribute_group khugepaged_attr_group = {
  427. .attrs = khugepaged_attr,
  428. .name = "khugepaged",
  429. };
  430. #endif /* CONFIG_SYSFS */
  431. static int __init hugepage_init(void)
  432. {
  433. int err;
  434. #ifdef CONFIG_SYSFS
  435. static struct kobject *hugepage_kobj;
  436. #endif
  437. err = -EINVAL;
  438. if (!has_transparent_hugepage()) {
  439. transparent_hugepage_flags = 0;
  440. goto out;
  441. }
  442. #ifdef CONFIG_SYSFS
  443. err = -ENOMEM;
  444. hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  445. if (unlikely(!hugepage_kobj)) {
  446. printk(KERN_ERR "hugepage: failed kobject create\n");
  447. goto out;
  448. }
  449. err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
  450. if (err) {
  451. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  452. goto out;
  453. }
  454. err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
  455. if (err) {
  456. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  457. goto out;
  458. }
  459. #endif
  460. err = khugepaged_slab_init();
  461. if (err)
  462. goto out;
  463. err = mm_slots_hash_init();
  464. if (err) {
  465. khugepaged_slab_free();
  466. goto out;
  467. }
  468. /*
  469. * By default disable transparent hugepages on smaller systems,
  470. * where the extra memory used could hurt more than TLB overhead
  471. * is likely to save. The admin can still enable it through /sys.
  472. */
  473. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  474. transparent_hugepage_flags = 0;
  475. start_khugepaged();
  476. set_recommended_min_free_kbytes();
  477. out:
  478. return err;
  479. }
  480. module_init(hugepage_init)
  481. static int __init setup_transparent_hugepage(char *str)
  482. {
  483. int ret = 0;
  484. if (!str)
  485. goto out;
  486. if (!strcmp(str, "always")) {
  487. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  488. &transparent_hugepage_flags);
  489. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  490. &transparent_hugepage_flags);
  491. ret = 1;
  492. } else if (!strcmp(str, "madvise")) {
  493. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  494. &transparent_hugepage_flags);
  495. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  496. &transparent_hugepage_flags);
  497. ret = 1;
  498. } else if (!strcmp(str, "never")) {
  499. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  500. &transparent_hugepage_flags);
  501. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  502. &transparent_hugepage_flags);
  503. ret = 1;
  504. }
  505. out:
  506. if (!ret)
  507. printk(KERN_WARNING
  508. "transparent_hugepage= cannot parse, ignored\n");
  509. return ret;
  510. }
  511. __setup("transparent_hugepage=", setup_transparent_hugepage);
  512. static void prepare_pmd_huge_pte(pgtable_t pgtable,
  513. struct mm_struct *mm)
  514. {
  515. assert_spin_locked(&mm->page_table_lock);
  516. /* FIFO */
  517. if (!mm->pmd_huge_pte)
  518. INIT_LIST_HEAD(&pgtable->lru);
  519. else
  520. list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
  521. mm->pmd_huge_pte = pgtable;
  522. }
  523. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  524. {
  525. if (likely(vma->vm_flags & VM_WRITE))
  526. pmd = pmd_mkwrite(pmd);
  527. return pmd;
  528. }
  529. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  530. struct vm_area_struct *vma,
  531. unsigned long haddr, pmd_t *pmd,
  532. struct page *page)
  533. {
  534. int ret = 0;
  535. pgtable_t pgtable;
  536. VM_BUG_ON(!PageCompound(page));
  537. pgtable = pte_alloc_one(mm, haddr);
  538. if (unlikely(!pgtable)) {
  539. mem_cgroup_uncharge_page(page);
  540. put_page(page);
  541. return VM_FAULT_OOM;
  542. }
  543. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  544. __SetPageUptodate(page);
  545. spin_lock(&mm->page_table_lock);
  546. if (unlikely(!pmd_none(*pmd))) {
  547. spin_unlock(&mm->page_table_lock);
  548. mem_cgroup_uncharge_page(page);
  549. put_page(page);
  550. pte_free(mm, pgtable);
  551. } else {
  552. pmd_t entry;
  553. entry = mk_pmd(page, vma->vm_page_prot);
  554. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  555. entry = pmd_mkhuge(entry);
  556. /*
  557. * The spinlocking to take the lru_lock inside
  558. * page_add_new_anon_rmap() acts as a full memory
  559. * barrier to be sure clear_huge_page writes become
  560. * visible after the set_pmd_at() write.
  561. */
  562. page_add_new_anon_rmap(page, vma, haddr);
  563. set_pmd_at(mm, haddr, pmd, entry);
  564. prepare_pmd_huge_pte(pgtable, mm);
  565. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  566. spin_unlock(&mm->page_table_lock);
  567. }
  568. return ret;
  569. }
  570. static inline gfp_t alloc_hugepage_gfpmask(int defrag)
  571. {
  572. return GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT);
  573. }
  574. static inline struct page *alloc_hugepage_vma(int defrag,
  575. struct vm_area_struct *vma,
  576. unsigned long haddr)
  577. {
  578. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag),
  579. HPAGE_PMD_ORDER, vma, haddr);
  580. }
  581. #ifndef CONFIG_NUMA
  582. static inline struct page *alloc_hugepage(int defrag)
  583. {
  584. return alloc_pages(alloc_hugepage_gfpmask(defrag),
  585. HPAGE_PMD_ORDER);
  586. }
  587. #endif
  588. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  589. unsigned long address, pmd_t *pmd,
  590. unsigned int flags)
  591. {
  592. struct page *page;
  593. unsigned long haddr = address & HPAGE_PMD_MASK;
  594. pte_t *pte;
  595. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  596. if (unlikely(anon_vma_prepare(vma)))
  597. return VM_FAULT_OOM;
  598. if (unlikely(khugepaged_enter(vma)))
  599. return VM_FAULT_OOM;
  600. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  601. vma, haddr);
  602. if (unlikely(!page))
  603. goto out;
  604. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  605. put_page(page);
  606. goto out;
  607. }
  608. return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
  609. }
  610. out:
  611. /*
  612. * Use __pte_alloc instead of pte_alloc_map, because we can't
  613. * run pte_offset_map on the pmd, if an huge pmd could
  614. * materialize from under us from a different thread.
  615. */
  616. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  617. return VM_FAULT_OOM;
  618. /* if an huge pmd materialized from under us just retry later */
  619. if (unlikely(pmd_trans_huge(*pmd)))
  620. return 0;
  621. /*
  622. * A regular pmd is established and it can't morph into a huge pmd
  623. * from under us anymore at this point because we hold the mmap_sem
  624. * read mode and khugepaged takes it in write mode. So now it's
  625. * safe to run pte_offset_map().
  626. */
  627. pte = pte_offset_map(pmd, address);
  628. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  629. }
  630. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  631. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  632. struct vm_area_struct *vma)
  633. {
  634. struct page *src_page;
  635. pmd_t pmd;
  636. pgtable_t pgtable;
  637. int ret;
  638. ret = -ENOMEM;
  639. pgtable = pte_alloc_one(dst_mm, addr);
  640. if (unlikely(!pgtable))
  641. goto out;
  642. spin_lock(&dst_mm->page_table_lock);
  643. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  644. ret = -EAGAIN;
  645. pmd = *src_pmd;
  646. if (unlikely(!pmd_trans_huge(pmd))) {
  647. pte_free(dst_mm, pgtable);
  648. goto out_unlock;
  649. }
  650. if (unlikely(pmd_trans_splitting(pmd))) {
  651. /* split huge page running from under us */
  652. spin_unlock(&src_mm->page_table_lock);
  653. spin_unlock(&dst_mm->page_table_lock);
  654. pte_free(dst_mm, pgtable);
  655. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  656. goto out;
  657. }
  658. src_page = pmd_page(pmd);
  659. VM_BUG_ON(!PageHead(src_page));
  660. get_page(src_page);
  661. page_dup_rmap(src_page);
  662. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  663. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  664. pmd = pmd_mkold(pmd_wrprotect(pmd));
  665. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  666. prepare_pmd_huge_pte(pgtable, dst_mm);
  667. ret = 0;
  668. out_unlock:
  669. spin_unlock(&src_mm->page_table_lock);
  670. spin_unlock(&dst_mm->page_table_lock);
  671. out:
  672. return ret;
  673. }
  674. /* no "address" argument so destroys page coloring of some arch */
  675. pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
  676. {
  677. pgtable_t pgtable;
  678. assert_spin_locked(&mm->page_table_lock);
  679. /* FIFO */
  680. pgtable = mm->pmd_huge_pte;
  681. if (list_empty(&pgtable->lru))
  682. mm->pmd_huge_pte = NULL;
  683. else {
  684. mm->pmd_huge_pte = list_entry(pgtable->lru.next,
  685. struct page, lru);
  686. list_del(&pgtable->lru);
  687. }
  688. return pgtable;
  689. }
  690. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  691. struct vm_area_struct *vma,
  692. unsigned long address,
  693. pmd_t *pmd, pmd_t orig_pmd,
  694. struct page *page,
  695. unsigned long haddr)
  696. {
  697. pgtable_t pgtable;
  698. pmd_t _pmd;
  699. int ret = 0, i;
  700. struct page **pages;
  701. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  702. GFP_KERNEL);
  703. if (unlikely(!pages)) {
  704. ret |= VM_FAULT_OOM;
  705. goto out;
  706. }
  707. for (i = 0; i < HPAGE_PMD_NR; i++) {
  708. pages[i] = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  709. vma, address);
  710. if (unlikely(!pages[i] ||
  711. mem_cgroup_newpage_charge(pages[i], mm,
  712. GFP_KERNEL))) {
  713. if (pages[i])
  714. put_page(pages[i]);
  715. mem_cgroup_uncharge_start();
  716. while (--i >= 0) {
  717. mem_cgroup_uncharge_page(pages[i]);
  718. put_page(pages[i]);
  719. }
  720. mem_cgroup_uncharge_end();
  721. kfree(pages);
  722. ret |= VM_FAULT_OOM;
  723. goto out;
  724. }
  725. }
  726. for (i = 0; i < HPAGE_PMD_NR; i++) {
  727. copy_user_highpage(pages[i], page + i,
  728. haddr + PAGE_SHIFT*i, vma);
  729. __SetPageUptodate(pages[i]);
  730. cond_resched();
  731. }
  732. spin_lock(&mm->page_table_lock);
  733. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  734. goto out_free_pages;
  735. VM_BUG_ON(!PageHead(page));
  736. pmdp_clear_flush_notify(vma, haddr, pmd);
  737. /* leave pmd empty until pte is filled */
  738. pgtable = get_pmd_huge_pte(mm);
  739. pmd_populate(mm, &_pmd, pgtable);
  740. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  741. pte_t *pte, entry;
  742. entry = mk_pte(pages[i], vma->vm_page_prot);
  743. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  744. page_add_new_anon_rmap(pages[i], vma, haddr);
  745. pte = pte_offset_map(&_pmd, haddr);
  746. VM_BUG_ON(!pte_none(*pte));
  747. set_pte_at(mm, haddr, pte, entry);
  748. pte_unmap(pte);
  749. }
  750. kfree(pages);
  751. mm->nr_ptes++;
  752. smp_wmb(); /* make pte visible before pmd */
  753. pmd_populate(mm, pmd, pgtable);
  754. page_remove_rmap(page);
  755. spin_unlock(&mm->page_table_lock);
  756. ret |= VM_FAULT_WRITE;
  757. put_page(page);
  758. out:
  759. return ret;
  760. out_free_pages:
  761. spin_unlock(&mm->page_table_lock);
  762. mem_cgroup_uncharge_start();
  763. for (i = 0; i < HPAGE_PMD_NR; i++) {
  764. mem_cgroup_uncharge_page(pages[i]);
  765. put_page(pages[i]);
  766. }
  767. mem_cgroup_uncharge_end();
  768. kfree(pages);
  769. goto out;
  770. }
  771. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  772. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  773. {
  774. int ret = 0;
  775. struct page *page, *new_page;
  776. unsigned long haddr;
  777. VM_BUG_ON(!vma->anon_vma);
  778. spin_lock(&mm->page_table_lock);
  779. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  780. goto out_unlock;
  781. page = pmd_page(orig_pmd);
  782. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  783. haddr = address & HPAGE_PMD_MASK;
  784. if (page_mapcount(page) == 1) {
  785. pmd_t entry;
  786. entry = pmd_mkyoung(orig_pmd);
  787. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  788. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  789. update_mmu_cache(vma, address, entry);
  790. ret |= VM_FAULT_WRITE;
  791. goto out_unlock;
  792. }
  793. get_page(page);
  794. spin_unlock(&mm->page_table_lock);
  795. if (transparent_hugepage_enabled(vma) &&
  796. !transparent_hugepage_debug_cow())
  797. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  798. vma, haddr);
  799. else
  800. new_page = NULL;
  801. if (unlikely(!new_page)) {
  802. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  803. pmd, orig_pmd, page, haddr);
  804. put_page(page);
  805. goto out;
  806. }
  807. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  808. put_page(new_page);
  809. put_page(page);
  810. ret |= VM_FAULT_OOM;
  811. goto out;
  812. }
  813. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  814. __SetPageUptodate(new_page);
  815. spin_lock(&mm->page_table_lock);
  816. put_page(page);
  817. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  818. mem_cgroup_uncharge_page(new_page);
  819. put_page(new_page);
  820. } else {
  821. pmd_t entry;
  822. VM_BUG_ON(!PageHead(page));
  823. entry = mk_pmd(new_page, vma->vm_page_prot);
  824. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  825. entry = pmd_mkhuge(entry);
  826. pmdp_clear_flush_notify(vma, haddr, pmd);
  827. page_add_new_anon_rmap(new_page, vma, haddr);
  828. set_pmd_at(mm, haddr, pmd, entry);
  829. update_mmu_cache(vma, address, entry);
  830. page_remove_rmap(page);
  831. put_page(page);
  832. ret |= VM_FAULT_WRITE;
  833. }
  834. out_unlock:
  835. spin_unlock(&mm->page_table_lock);
  836. out:
  837. return ret;
  838. }
  839. struct page *follow_trans_huge_pmd(struct mm_struct *mm,
  840. unsigned long addr,
  841. pmd_t *pmd,
  842. unsigned int flags)
  843. {
  844. struct page *page = NULL;
  845. assert_spin_locked(&mm->page_table_lock);
  846. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  847. goto out;
  848. page = pmd_page(*pmd);
  849. VM_BUG_ON(!PageHead(page));
  850. if (flags & FOLL_TOUCH) {
  851. pmd_t _pmd;
  852. /*
  853. * We should set the dirty bit only for FOLL_WRITE but
  854. * for now the dirty bit in the pmd is meaningless.
  855. * And if the dirty bit will become meaningful and
  856. * we'll only set it with FOLL_WRITE, an atomic
  857. * set_bit will be required on the pmd to set the
  858. * young bit, instead of the current set_pmd_at.
  859. */
  860. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  861. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  862. }
  863. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  864. VM_BUG_ON(!PageCompound(page));
  865. if (flags & FOLL_GET)
  866. get_page(page);
  867. out:
  868. return page;
  869. }
  870. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  871. pmd_t *pmd)
  872. {
  873. int ret = 0;
  874. spin_lock(&tlb->mm->page_table_lock);
  875. if (likely(pmd_trans_huge(*pmd))) {
  876. if (unlikely(pmd_trans_splitting(*pmd))) {
  877. spin_unlock(&tlb->mm->page_table_lock);
  878. wait_split_huge_page(vma->anon_vma,
  879. pmd);
  880. } else {
  881. struct page *page;
  882. pgtable_t pgtable;
  883. pgtable = get_pmd_huge_pte(tlb->mm);
  884. page = pmd_page(*pmd);
  885. pmd_clear(pmd);
  886. page_remove_rmap(page);
  887. VM_BUG_ON(page_mapcount(page) < 0);
  888. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  889. VM_BUG_ON(!PageHead(page));
  890. spin_unlock(&tlb->mm->page_table_lock);
  891. tlb_remove_page(tlb, page);
  892. pte_free(tlb->mm, pgtable);
  893. ret = 1;
  894. }
  895. } else
  896. spin_unlock(&tlb->mm->page_table_lock);
  897. return ret;
  898. }
  899. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  900. unsigned long addr, unsigned long end,
  901. unsigned char *vec)
  902. {
  903. int ret = 0;
  904. spin_lock(&vma->vm_mm->page_table_lock);
  905. if (likely(pmd_trans_huge(*pmd))) {
  906. ret = !pmd_trans_splitting(*pmd);
  907. spin_unlock(&vma->vm_mm->page_table_lock);
  908. if (unlikely(!ret))
  909. wait_split_huge_page(vma->anon_vma, pmd);
  910. else {
  911. /*
  912. * All logical pages in the range are present
  913. * if backed by a huge page.
  914. */
  915. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  916. }
  917. } else
  918. spin_unlock(&vma->vm_mm->page_table_lock);
  919. return ret;
  920. }
  921. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  922. unsigned long addr, pgprot_t newprot)
  923. {
  924. struct mm_struct *mm = vma->vm_mm;
  925. int ret = 0;
  926. spin_lock(&mm->page_table_lock);
  927. if (likely(pmd_trans_huge(*pmd))) {
  928. if (unlikely(pmd_trans_splitting(*pmd))) {
  929. spin_unlock(&mm->page_table_lock);
  930. wait_split_huge_page(vma->anon_vma, pmd);
  931. } else {
  932. pmd_t entry;
  933. entry = pmdp_get_and_clear(mm, addr, pmd);
  934. entry = pmd_modify(entry, newprot);
  935. set_pmd_at(mm, addr, pmd, entry);
  936. spin_unlock(&vma->vm_mm->page_table_lock);
  937. flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
  938. ret = 1;
  939. }
  940. } else
  941. spin_unlock(&vma->vm_mm->page_table_lock);
  942. return ret;
  943. }
  944. pmd_t *page_check_address_pmd(struct page *page,
  945. struct mm_struct *mm,
  946. unsigned long address,
  947. enum page_check_address_pmd_flag flag)
  948. {
  949. pgd_t *pgd;
  950. pud_t *pud;
  951. pmd_t *pmd, *ret = NULL;
  952. if (address & ~HPAGE_PMD_MASK)
  953. goto out;
  954. pgd = pgd_offset(mm, address);
  955. if (!pgd_present(*pgd))
  956. goto out;
  957. pud = pud_offset(pgd, address);
  958. if (!pud_present(*pud))
  959. goto out;
  960. pmd = pmd_offset(pud, address);
  961. if (pmd_none(*pmd))
  962. goto out;
  963. if (pmd_page(*pmd) != page)
  964. goto out;
  965. /*
  966. * split_vma() may create temporary aliased mappings. There is
  967. * no risk as long as all huge pmd are found and have their
  968. * splitting bit set before __split_huge_page_refcount
  969. * runs. Finding the same huge pmd more than once during the
  970. * same rmap walk is not a problem.
  971. */
  972. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  973. pmd_trans_splitting(*pmd))
  974. goto out;
  975. if (pmd_trans_huge(*pmd)) {
  976. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  977. !pmd_trans_splitting(*pmd));
  978. ret = pmd;
  979. }
  980. out:
  981. return ret;
  982. }
  983. static int __split_huge_page_splitting(struct page *page,
  984. struct vm_area_struct *vma,
  985. unsigned long address)
  986. {
  987. struct mm_struct *mm = vma->vm_mm;
  988. pmd_t *pmd;
  989. int ret = 0;
  990. spin_lock(&mm->page_table_lock);
  991. pmd = page_check_address_pmd(page, mm, address,
  992. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  993. if (pmd) {
  994. /*
  995. * We can't temporarily set the pmd to null in order
  996. * to split it, the pmd must remain marked huge at all
  997. * times or the VM won't take the pmd_trans_huge paths
  998. * and it won't wait on the anon_vma->root->lock to
  999. * serialize against split_huge_page*.
  1000. */
  1001. pmdp_splitting_flush_notify(vma, address, pmd);
  1002. ret = 1;
  1003. }
  1004. spin_unlock(&mm->page_table_lock);
  1005. return ret;
  1006. }
  1007. static void __split_huge_page_refcount(struct page *page)
  1008. {
  1009. int i;
  1010. unsigned long head_index = page->index;
  1011. struct zone *zone = page_zone(page);
  1012. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1013. spin_lock_irq(&zone->lru_lock);
  1014. compound_lock(page);
  1015. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1016. struct page *page_tail = page + i;
  1017. /* tail_page->_count cannot change */
  1018. atomic_sub(atomic_read(&page_tail->_count), &page->_count);
  1019. BUG_ON(page_count(page) <= 0);
  1020. atomic_add(page_mapcount(page) + 1, &page_tail->_count);
  1021. BUG_ON(atomic_read(&page_tail->_count) <= 0);
  1022. /* after clearing PageTail the gup refcount can be released */
  1023. smp_mb();
  1024. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  1025. page_tail->flags |= (page->flags &
  1026. ((1L << PG_referenced) |
  1027. (1L << PG_swapbacked) |
  1028. (1L << PG_mlocked) |
  1029. (1L << PG_uptodate)));
  1030. page_tail->flags |= (1L << PG_dirty);
  1031. /*
  1032. * 1) clear PageTail before overwriting first_page
  1033. * 2) clear PageTail before clearing PageHead for VM_BUG_ON
  1034. */
  1035. smp_wmb();
  1036. /*
  1037. * __split_huge_page_splitting() already set the
  1038. * splitting bit in all pmd that could map this
  1039. * hugepage, that will ensure no CPU can alter the
  1040. * mapcount on the head page. The mapcount is only
  1041. * accounted in the head page and it has to be
  1042. * transferred to all tail pages in the below code. So
  1043. * for this code to be safe, the split the mapcount
  1044. * can't change. But that doesn't mean userland can't
  1045. * keep changing and reading the page contents while
  1046. * we transfer the mapcount, so the pmd splitting
  1047. * status is achieved setting a reserved bit in the
  1048. * pmd, not by clearing the present bit.
  1049. */
  1050. BUG_ON(page_mapcount(page_tail));
  1051. page_tail->_mapcount = page->_mapcount;
  1052. BUG_ON(page_tail->mapping);
  1053. page_tail->mapping = page->mapping;
  1054. page_tail->index = ++head_index;
  1055. BUG_ON(!PageAnon(page_tail));
  1056. BUG_ON(!PageUptodate(page_tail));
  1057. BUG_ON(!PageDirty(page_tail));
  1058. BUG_ON(!PageSwapBacked(page_tail));
  1059. lru_add_page_tail(zone, page, page_tail);
  1060. }
  1061. __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  1062. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1063. ClearPageCompound(page);
  1064. compound_unlock(page);
  1065. spin_unlock_irq(&zone->lru_lock);
  1066. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1067. struct page *page_tail = page + i;
  1068. BUG_ON(page_count(page_tail) <= 0);
  1069. /*
  1070. * Tail pages may be freed if there wasn't any mapping
  1071. * like if add_to_swap() is running on a lru page that
  1072. * had its mapping zapped. And freeing these pages
  1073. * requires taking the lru_lock so we do the put_page
  1074. * of the tail pages after the split is complete.
  1075. */
  1076. put_page(page_tail);
  1077. }
  1078. /*
  1079. * Only the head page (now become a regular page) is required
  1080. * to be pinned by the caller.
  1081. */
  1082. BUG_ON(page_count(page) <= 0);
  1083. }
  1084. static int __split_huge_page_map(struct page *page,
  1085. struct vm_area_struct *vma,
  1086. unsigned long address)
  1087. {
  1088. struct mm_struct *mm = vma->vm_mm;
  1089. pmd_t *pmd, _pmd;
  1090. int ret = 0, i;
  1091. pgtable_t pgtable;
  1092. unsigned long haddr;
  1093. spin_lock(&mm->page_table_lock);
  1094. pmd = page_check_address_pmd(page, mm, address,
  1095. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1096. if (pmd) {
  1097. pgtable = get_pmd_huge_pte(mm);
  1098. pmd_populate(mm, &_pmd, pgtable);
  1099. for (i = 0, haddr = address; i < HPAGE_PMD_NR;
  1100. i++, haddr += PAGE_SIZE) {
  1101. pte_t *pte, entry;
  1102. BUG_ON(PageCompound(page+i));
  1103. entry = mk_pte(page + i, vma->vm_page_prot);
  1104. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1105. if (!pmd_write(*pmd))
  1106. entry = pte_wrprotect(entry);
  1107. else
  1108. BUG_ON(page_mapcount(page) != 1);
  1109. if (!pmd_young(*pmd))
  1110. entry = pte_mkold(entry);
  1111. pte = pte_offset_map(&_pmd, haddr);
  1112. BUG_ON(!pte_none(*pte));
  1113. set_pte_at(mm, haddr, pte, entry);
  1114. pte_unmap(pte);
  1115. }
  1116. mm->nr_ptes++;
  1117. smp_wmb(); /* make pte visible before pmd */
  1118. /*
  1119. * Up to this point the pmd is present and huge and
  1120. * userland has the whole access to the hugepage
  1121. * during the split (which happens in place). If we
  1122. * overwrite the pmd with the not-huge version
  1123. * pointing to the pte here (which of course we could
  1124. * if all CPUs were bug free), userland could trigger
  1125. * a small page size TLB miss on the small sized TLB
  1126. * while the hugepage TLB entry is still established
  1127. * in the huge TLB. Some CPU doesn't like that. See
  1128. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1129. * Erratum 383 on page 93. Intel should be safe but is
  1130. * also warns that it's only safe if the permission
  1131. * and cache attributes of the two entries loaded in
  1132. * the two TLB is identical (which should be the case
  1133. * here). But it is generally safer to never allow
  1134. * small and huge TLB entries for the same virtual
  1135. * address to be loaded simultaneously. So instead of
  1136. * doing "pmd_populate(); flush_tlb_range();" we first
  1137. * mark the current pmd notpresent (atomically because
  1138. * here the pmd_trans_huge and pmd_trans_splitting
  1139. * must remain set at all times on the pmd until the
  1140. * split is complete for this pmd), then we flush the
  1141. * SMP TLB and finally we write the non-huge version
  1142. * of the pmd entry with pmd_populate.
  1143. */
  1144. set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
  1145. flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
  1146. pmd_populate(mm, pmd, pgtable);
  1147. ret = 1;
  1148. }
  1149. spin_unlock(&mm->page_table_lock);
  1150. return ret;
  1151. }
  1152. /* must be called with anon_vma->root->lock hold */
  1153. static void __split_huge_page(struct page *page,
  1154. struct anon_vma *anon_vma)
  1155. {
  1156. int mapcount, mapcount2;
  1157. struct anon_vma_chain *avc;
  1158. BUG_ON(!PageHead(page));
  1159. BUG_ON(PageTail(page));
  1160. mapcount = 0;
  1161. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1162. struct vm_area_struct *vma = avc->vma;
  1163. unsigned long addr = vma_address(page, vma);
  1164. BUG_ON(is_vma_temporary_stack(vma));
  1165. if (addr == -EFAULT)
  1166. continue;
  1167. mapcount += __split_huge_page_splitting(page, vma, addr);
  1168. }
  1169. /*
  1170. * It is critical that new vmas are added to the tail of the
  1171. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1172. * and establishes a child pmd before
  1173. * __split_huge_page_splitting() freezes the parent pmd (so if
  1174. * we fail to prevent copy_huge_pmd() from running until the
  1175. * whole __split_huge_page() is complete), we will still see
  1176. * the newly established pmd of the child later during the
  1177. * walk, to be able to set it as pmd_trans_splitting too.
  1178. */
  1179. if (mapcount != page_mapcount(page))
  1180. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1181. mapcount, page_mapcount(page));
  1182. BUG_ON(mapcount != page_mapcount(page));
  1183. __split_huge_page_refcount(page);
  1184. mapcount2 = 0;
  1185. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1186. struct vm_area_struct *vma = avc->vma;
  1187. unsigned long addr = vma_address(page, vma);
  1188. BUG_ON(is_vma_temporary_stack(vma));
  1189. if (addr == -EFAULT)
  1190. continue;
  1191. mapcount2 += __split_huge_page_map(page, vma, addr);
  1192. }
  1193. if (mapcount != mapcount2)
  1194. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1195. mapcount, mapcount2, page_mapcount(page));
  1196. BUG_ON(mapcount != mapcount2);
  1197. }
  1198. int split_huge_page(struct page *page)
  1199. {
  1200. struct anon_vma *anon_vma;
  1201. int ret = 1;
  1202. BUG_ON(!PageAnon(page));
  1203. anon_vma = page_lock_anon_vma(page);
  1204. if (!anon_vma)
  1205. goto out;
  1206. ret = 0;
  1207. if (!PageCompound(page))
  1208. goto out_unlock;
  1209. BUG_ON(!PageSwapBacked(page));
  1210. __split_huge_page(page, anon_vma);
  1211. BUG_ON(PageCompound(page));
  1212. out_unlock:
  1213. page_unlock_anon_vma(anon_vma);
  1214. out:
  1215. return ret;
  1216. }
  1217. int hugepage_madvise(unsigned long *vm_flags)
  1218. {
  1219. /*
  1220. * Be somewhat over-protective like KSM for now!
  1221. */
  1222. if (*vm_flags & (VM_HUGEPAGE | VM_SHARED | VM_MAYSHARE |
  1223. VM_PFNMAP | VM_IO | VM_DONTEXPAND |
  1224. VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
  1225. VM_MIXEDMAP | VM_SAO))
  1226. return -EINVAL;
  1227. *vm_flags |= VM_HUGEPAGE;
  1228. return 0;
  1229. }
  1230. static int __init khugepaged_slab_init(void)
  1231. {
  1232. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1233. sizeof(struct mm_slot),
  1234. __alignof__(struct mm_slot), 0, NULL);
  1235. if (!mm_slot_cache)
  1236. return -ENOMEM;
  1237. return 0;
  1238. }
  1239. static void __init khugepaged_slab_free(void)
  1240. {
  1241. kmem_cache_destroy(mm_slot_cache);
  1242. mm_slot_cache = NULL;
  1243. }
  1244. static inline struct mm_slot *alloc_mm_slot(void)
  1245. {
  1246. if (!mm_slot_cache) /* initialization failed */
  1247. return NULL;
  1248. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1249. }
  1250. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1251. {
  1252. kmem_cache_free(mm_slot_cache, mm_slot);
  1253. }
  1254. static int __init mm_slots_hash_init(void)
  1255. {
  1256. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1257. GFP_KERNEL);
  1258. if (!mm_slots_hash)
  1259. return -ENOMEM;
  1260. return 0;
  1261. }
  1262. #if 0
  1263. static void __init mm_slots_hash_free(void)
  1264. {
  1265. kfree(mm_slots_hash);
  1266. mm_slots_hash = NULL;
  1267. }
  1268. #endif
  1269. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1270. {
  1271. struct mm_slot *mm_slot;
  1272. struct hlist_head *bucket;
  1273. struct hlist_node *node;
  1274. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1275. % MM_SLOTS_HASH_HEADS];
  1276. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1277. if (mm == mm_slot->mm)
  1278. return mm_slot;
  1279. }
  1280. return NULL;
  1281. }
  1282. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1283. struct mm_slot *mm_slot)
  1284. {
  1285. struct hlist_head *bucket;
  1286. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1287. % MM_SLOTS_HASH_HEADS];
  1288. mm_slot->mm = mm;
  1289. hlist_add_head(&mm_slot->hash, bucket);
  1290. }
  1291. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1292. {
  1293. return atomic_read(&mm->mm_users) == 0;
  1294. }
  1295. int __khugepaged_enter(struct mm_struct *mm)
  1296. {
  1297. struct mm_slot *mm_slot;
  1298. int wakeup;
  1299. mm_slot = alloc_mm_slot();
  1300. if (!mm_slot)
  1301. return -ENOMEM;
  1302. /* __khugepaged_exit() must not run from under us */
  1303. VM_BUG_ON(khugepaged_test_exit(mm));
  1304. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1305. free_mm_slot(mm_slot);
  1306. return 0;
  1307. }
  1308. spin_lock(&khugepaged_mm_lock);
  1309. insert_to_mm_slots_hash(mm, mm_slot);
  1310. /*
  1311. * Insert just behind the scanning cursor, to let the area settle
  1312. * down a little.
  1313. */
  1314. wakeup = list_empty(&khugepaged_scan.mm_head);
  1315. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1316. spin_unlock(&khugepaged_mm_lock);
  1317. atomic_inc(&mm->mm_count);
  1318. if (wakeup)
  1319. wake_up_interruptible(&khugepaged_wait);
  1320. return 0;
  1321. }
  1322. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1323. {
  1324. unsigned long hstart, hend;
  1325. if (!vma->anon_vma)
  1326. /*
  1327. * Not yet faulted in so we will register later in the
  1328. * page fault if needed.
  1329. */
  1330. return 0;
  1331. if (vma->vm_file || vma->vm_ops)
  1332. /* khugepaged not yet working on file or special mappings */
  1333. return 0;
  1334. VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
  1335. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1336. hend = vma->vm_end & HPAGE_PMD_MASK;
  1337. if (hstart < hend)
  1338. return khugepaged_enter(vma);
  1339. return 0;
  1340. }
  1341. void __khugepaged_exit(struct mm_struct *mm)
  1342. {
  1343. struct mm_slot *mm_slot;
  1344. int free = 0;
  1345. spin_lock(&khugepaged_mm_lock);
  1346. mm_slot = get_mm_slot(mm);
  1347. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1348. hlist_del(&mm_slot->hash);
  1349. list_del(&mm_slot->mm_node);
  1350. free = 1;
  1351. }
  1352. if (free) {
  1353. spin_unlock(&khugepaged_mm_lock);
  1354. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1355. free_mm_slot(mm_slot);
  1356. mmdrop(mm);
  1357. } else if (mm_slot) {
  1358. spin_unlock(&khugepaged_mm_lock);
  1359. /*
  1360. * This is required to serialize against
  1361. * khugepaged_test_exit() (which is guaranteed to run
  1362. * under mmap sem read mode). Stop here (after we
  1363. * return all pagetables will be destroyed) until
  1364. * khugepaged has finished working on the pagetables
  1365. * under the mmap_sem.
  1366. */
  1367. down_write(&mm->mmap_sem);
  1368. up_write(&mm->mmap_sem);
  1369. } else
  1370. spin_unlock(&khugepaged_mm_lock);
  1371. }
  1372. static void release_pte_page(struct page *page)
  1373. {
  1374. /* 0 stands for page_is_file_cache(page) == false */
  1375. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1376. unlock_page(page);
  1377. putback_lru_page(page);
  1378. }
  1379. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1380. {
  1381. while (--_pte >= pte) {
  1382. pte_t pteval = *_pte;
  1383. if (!pte_none(pteval))
  1384. release_pte_page(pte_page(pteval));
  1385. }
  1386. }
  1387. static void release_all_pte_pages(pte_t *pte)
  1388. {
  1389. release_pte_pages(pte, pte + HPAGE_PMD_NR);
  1390. }
  1391. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1392. unsigned long address,
  1393. pte_t *pte)
  1394. {
  1395. struct page *page;
  1396. pte_t *_pte;
  1397. int referenced = 0, isolated = 0, none = 0;
  1398. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1399. _pte++, address += PAGE_SIZE) {
  1400. pte_t pteval = *_pte;
  1401. if (pte_none(pteval)) {
  1402. if (++none <= khugepaged_max_ptes_none)
  1403. continue;
  1404. else {
  1405. release_pte_pages(pte, _pte);
  1406. goto out;
  1407. }
  1408. }
  1409. if (!pte_present(pteval) || !pte_write(pteval)) {
  1410. release_pte_pages(pte, _pte);
  1411. goto out;
  1412. }
  1413. page = vm_normal_page(vma, address, pteval);
  1414. if (unlikely(!page)) {
  1415. release_pte_pages(pte, _pte);
  1416. goto out;
  1417. }
  1418. VM_BUG_ON(PageCompound(page));
  1419. BUG_ON(!PageAnon(page));
  1420. VM_BUG_ON(!PageSwapBacked(page));
  1421. /* cannot use mapcount: can't collapse if there's a gup pin */
  1422. if (page_count(page) != 1) {
  1423. release_pte_pages(pte, _pte);
  1424. goto out;
  1425. }
  1426. /*
  1427. * We can do it before isolate_lru_page because the
  1428. * page can't be freed from under us. NOTE: PG_lock
  1429. * is needed to serialize against split_huge_page
  1430. * when invoked from the VM.
  1431. */
  1432. if (!trylock_page(page)) {
  1433. release_pte_pages(pte, _pte);
  1434. goto out;
  1435. }
  1436. /*
  1437. * Isolate the page to avoid collapsing an hugepage
  1438. * currently in use by the VM.
  1439. */
  1440. if (isolate_lru_page(page)) {
  1441. unlock_page(page);
  1442. release_pte_pages(pte, _pte);
  1443. goto out;
  1444. }
  1445. /* 0 stands for page_is_file_cache(page) == false */
  1446. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1447. VM_BUG_ON(!PageLocked(page));
  1448. VM_BUG_ON(PageLRU(page));
  1449. /* If there is no mapped pte young don't collapse the page */
  1450. if (pte_young(pteval) || PageReferenced(page) ||
  1451. mmu_notifier_test_young(vma->vm_mm, address))
  1452. referenced = 1;
  1453. }
  1454. if (unlikely(!referenced))
  1455. release_all_pte_pages(pte);
  1456. else
  1457. isolated = 1;
  1458. out:
  1459. return isolated;
  1460. }
  1461. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1462. struct vm_area_struct *vma,
  1463. unsigned long address,
  1464. spinlock_t *ptl)
  1465. {
  1466. pte_t *_pte;
  1467. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1468. pte_t pteval = *_pte;
  1469. struct page *src_page;
  1470. if (pte_none(pteval)) {
  1471. clear_user_highpage(page, address);
  1472. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1473. } else {
  1474. src_page = pte_page(pteval);
  1475. copy_user_highpage(page, src_page, address, vma);
  1476. VM_BUG_ON(page_mapcount(src_page) != 1);
  1477. VM_BUG_ON(page_count(src_page) != 2);
  1478. release_pte_page(src_page);
  1479. /*
  1480. * ptl mostly unnecessary, but preempt has to
  1481. * be disabled to update the per-cpu stats
  1482. * inside page_remove_rmap().
  1483. */
  1484. spin_lock(ptl);
  1485. /*
  1486. * paravirt calls inside pte_clear here are
  1487. * superfluous.
  1488. */
  1489. pte_clear(vma->vm_mm, address, _pte);
  1490. page_remove_rmap(src_page);
  1491. spin_unlock(ptl);
  1492. free_page_and_swap_cache(src_page);
  1493. }
  1494. address += PAGE_SIZE;
  1495. page++;
  1496. }
  1497. }
  1498. static void collapse_huge_page(struct mm_struct *mm,
  1499. unsigned long address,
  1500. struct page **hpage,
  1501. struct vm_area_struct *vma)
  1502. {
  1503. pgd_t *pgd;
  1504. pud_t *pud;
  1505. pmd_t *pmd, _pmd;
  1506. pte_t *pte;
  1507. pgtable_t pgtable;
  1508. struct page *new_page;
  1509. spinlock_t *ptl;
  1510. int isolated;
  1511. unsigned long hstart, hend;
  1512. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1513. #ifndef CONFIG_NUMA
  1514. VM_BUG_ON(!*hpage);
  1515. new_page = *hpage;
  1516. #else
  1517. VM_BUG_ON(*hpage);
  1518. /*
  1519. * Allocate the page while the vma is still valid and under
  1520. * the mmap_sem read mode so there is no memory allocation
  1521. * later when we take the mmap_sem in write mode. This is more
  1522. * friendly behavior (OTOH it may actually hide bugs) to
  1523. * filesystems in userland with daemons allocating memory in
  1524. * the userland I/O paths. Allocating memory with the
  1525. * mmap_sem in read mode is good idea also to allow greater
  1526. * scalability.
  1527. */
  1528. new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address);
  1529. if (unlikely(!new_page)) {
  1530. up_read(&mm->mmap_sem);
  1531. *hpage = ERR_PTR(-ENOMEM);
  1532. return;
  1533. }
  1534. #endif
  1535. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  1536. up_read(&mm->mmap_sem);
  1537. put_page(new_page);
  1538. return;
  1539. }
  1540. /* after allocating the hugepage upgrade to mmap_sem write mode */
  1541. up_read(&mm->mmap_sem);
  1542. /*
  1543. * Prevent all access to pagetables with the exception of
  1544. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1545. * handled by the anon_vma lock + PG_lock.
  1546. */
  1547. down_write(&mm->mmap_sem);
  1548. if (unlikely(khugepaged_test_exit(mm)))
  1549. goto out;
  1550. vma = find_vma(mm, address);
  1551. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1552. hend = vma->vm_end & HPAGE_PMD_MASK;
  1553. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1554. goto out;
  1555. if (!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always())
  1556. goto out;
  1557. /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
  1558. if (!vma->anon_vma || vma->vm_ops || vma->vm_file)
  1559. goto out;
  1560. VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
  1561. pgd = pgd_offset(mm, address);
  1562. if (!pgd_present(*pgd))
  1563. goto out;
  1564. pud = pud_offset(pgd, address);
  1565. if (!pud_present(*pud))
  1566. goto out;
  1567. pmd = pmd_offset(pud, address);
  1568. /* pmd can't go away or become huge under us */
  1569. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1570. goto out;
  1571. anon_vma_lock(vma->anon_vma);
  1572. pte = pte_offset_map(pmd, address);
  1573. ptl = pte_lockptr(mm, pmd);
  1574. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1575. /*
  1576. * After this gup_fast can't run anymore. This also removes
  1577. * any huge TLB entry from the CPU so we won't allow
  1578. * huge and small TLB entries for the same virtual address
  1579. * to avoid the risk of CPU bugs in that area.
  1580. */
  1581. _pmd = pmdp_clear_flush_notify(vma, address, pmd);
  1582. spin_unlock(&mm->page_table_lock);
  1583. spin_lock(ptl);
  1584. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1585. spin_unlock(ptl);
  1586. pte_unmap(pte);
  1587. if (unlikely(!isolated)) {
  1588. spin_lock(&mm->page_table_lock);
  1589. BUG_ON(!pmd_none(*pmd));
  1590. set_pmd_at(mm, address, pmd, _pmd);
  1591. spin_unlock(&mm->page_table_lock);
  1592. anon_vma_unlock(vma->anon_vma);
  1593. mem_cgroup_uncharge_page(new_page);
  1594. goto out;
  1595. }
  1596. /*
  1597. * All pages are isolated and locked so anon_vma rmap
  1598. * can't run anymore.
  1599. */
  1600. anon_vma_unlock(vma->anon_vma);
  1601. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1602. __SetPageUptodate(new_page);
  1603. pgtable = pmd_pgtable(_pmd);
  1604. VM_BUG_ON(page_count(pgtable) != 1);
  1605. VM_BUG_ON(page_mapcount(pgtable) != 0);
  1606. _pmd = mk_pmd(new_page, vma->vm_page_prot);
  1607. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  1608. _pmd = pmd_mkhuge(_pmd);
  1609. /*
  1610. * spin_lock() below is not the equivalent of smp_wmb(), so
  1611. * this is needed to avoid the copy_huge_page writes to become
  1612. * visible after the set_pmd_at() write.
  1613. */
  1614. smp_wmb();
  1615. spin_lock(&mm->page_table_lock);
  1616. BUG_ON(!pmd_none(*pmd));
  1617. page_add_new_anon_rmap(new_page, vma, address);
  1618. set_pmd_at(mm, address, pmd, _pmd);
  1619. update_mmu_cache(vma, address, entry);
  1620. prepare_pmd_huge_pte(pgtable, mm);
  1621. mm->nr_ptes--;
  1622. spin_unlock(&mm->page_table_lock);
  1623. #ifndef CONFIG_NUMA
  1624. *hpage = NULL;
  1625. #endif
  1626. khugepaged_pages_collapsed++;
  1627. out_up_write:
  1628. up_write(&mm->mmap_sem);
  1629. return;
  1630. out:
  1631. #ifdef CONFIG_NUMA
  1632. put_page(new_page);
  1633. #endif
  1634. goto out_up_write;
  1635. }
  1636. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1637. struct vm_area_struct *vma,
  1638. unsigned long address,
  1639. struct page **hpage)
  1640. {
  1641. pgd_t *pgd;
  1642. pud_t *pud;
  1643. pmd_t *pmd;
  1644. pte_t *pte, *_pte;
  1645. int ret = 0, referenced = 0, none = 0;
  1646. struct page *page;
  1647. unsigned long _address;
  1648. spinlock_t *ptl;
  1649. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1650. pgd = pgd_offset(mm, address);
  1651. if (!pgd_present(*pgd))
  1652. goto out;
  1653. pud = pud_offset(pgd, address);
  1654. if (!pud_present(*pud))
  1655. goto out;
  1656. pmd = pmd_offset(pud, address);
  1657. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1658. goto out;
  1659. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1660. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1661. _pte++, _address += PAGE_SIZE) {
  1662. pte_t pteval = *_pte;
  1663. if (pte_none(pteval)) {
  1664. if (++none <= khugepaged_max_ptes_none)
  1665. continue;
  1666. else
  1667. goto out_unmap;
  1668. }
  1669. if (!pte_present(pteval) || !pte_write(pteval))
  1670. goto out_unmap;
  1671. page = vm_normal_page(vma, _address, pteval);
  1672. if (unlikely(!page))
  1673. goto out_unmap;
  1674. VM_BUG_ON(PageCompound(page));
  1675. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1676. goto out_unmap;
  1677. /* cannot use mapcount: can't collapse if there's a gup pin */
  1678. if (page_count(page) != 1)
  1679. goto out_unmap;
  1680. if (pte_young(pteval) || PageReferenced(page) ||
  1681. mmu_notifier_test_young(vma->vm_mm, address))
  1682. referenced = 1;
  1683. }
  1684. if (referenced)
  1685. ret = 1;
  1686. out_unmap:
  1687. pte_unmap_unlock(pte, ptl);
  1688. if (ret)
  1689. /* collapse_huge_page will return with the mmap_sem released */
  1690. collapse_huge_page(mm, address, hpage, vma);
  1691. out:
  1692. return ret;
  1693. }
  1694. static void collect_mm_slot(struct mm_slot *mm_slot)
  1695. {
  1696. struct mm_struct *mm = mm_slot->mm;
  1697. VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
  1698. if (khugepaged_test_exit(mm)) {
  1699. /* free mm_slot */
  1700. hlist_del(&mm_slot->hash);
  1701. list_del(&mm_slot->mm_node);
  1702. /*
  1703. * Not strictly needed because the mm exited already.
  1704. *
  1705. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1706. */
  1707. /* khugepaged_mm_lock actually not necessary for the below */
  1708. free_mm_slot(mm_slot);
  1709. mmdrop(mm);
  1710. }
  1711. }
  1712. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1713. struct page **hpage)
  1714. {
  1715. struct mm_slot *mm_slot;
  1716. struct mm_struct *mm;
  1717. struct vm_area_struct *vma;
  1718. int progress = 0;
  1719. VM_BUG_ON(!pages);
  1720. VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
  1721. if (khugepaged_scan.mm_slot)
  1722. mm_slot = khugepaged_scan.mm_slot;
  1723. else {
  1724. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1725. struct mm_slot, mm_node);
  1726. khugepaged_scan.address = 0;
  1727. khugepaged_scan.mm_slot = mm_slot;
  1728. }
  1729. spin_unlock(&khugepaged_mm_lock);
  1730. mm = mm_slot->mm;
  1731. down_read(&mm->mmap_sem);
  1732. if (unlikely(khugepaged_test_exit(mm)))
  1733. vma = NULL;
  1734. else
  1735. vma = find_vma(mm, khugepaged_scan.address);
  1736. progress++;
  1737. for (; vma; vma = vma->vm_next) {
  1738. unsigned long hstart, hend;
  1739. cond_resched();
  1740. if (unlikely(khugepaged_test_exit(mm))) {
  1741. progress++;
  1742. break;
  1743. }
  1744. if (!(vma->vm_flags & VM_HUGEPAGE) &&
  1745. !khugepaged_always()) {
  1746. progress++;
  1747. continue;
  1748. }
  1749. /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
  1750. if (!vma->anon_vma || vma->vm_ops || vma->vm_file) {
  1751. khugepaged_scan.address = vma->vm_end;
  1752. progress++;
  1753. continue;
  1754. }
  1755. VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
  1756. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1757. hend = vma->vm_end & HPAGE_PMD_MASK;
  1758. if (hstart >= hend) {
  1759. progress++;
  1760. continue;
  1761. }
  1762. if (khugepaged_scan.address < hstart)
  1763. khugepaged_scan.address = hstart;
  1764. if (khugepaged_scan.address > hend) {
  1765. khugepaged_scan.address = hend + HPAGE_PMD_SIZE;
  1766. progress++;
  1767. continue;
  1768. }
  1769. BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  1770. while (khugepaged_scan.address < hend) {
  1771. int ret;
  1772. cond_resched();
  1773. if (unlikely(khugepaged_test_exit(mm)))
  1774. goto breakouterloop;
  1775. VM_BUG_ON(khugepaged_scan.address < hstart ||
  1776. khugepaged_scan.address + HPAGE_PMD_SIZE >
  1777. hend);
  1778. ret = khugepaged_scan_pmd(mm, vma,
  1779. khugepaged_scan.address,
  1780. hpage);
  1781. /* move to next address */
  1782. khugepaged_scan.address += HPAGE_PMD_SIZE;
  1783. progress += HPAGE_PMD_NR;
  1784. if (ret)
  1785. /* we released mmap_sem so break loop */
  1786. goto breakouterloop_mmap_sem;
  1787. if (progress >= pages)
  1788. goto breakouterloop;
  1789. }
  1790. }
  1791. breakouterloop:
  1792. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  1793. breakouterloop_mmap_sem:
  1794. spin_lock(&khugepaged_mm_lock);
  1795. BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  1796. /*
  1797. * Release the current mm_slot if this mm is about to die, or
  1798. * if we scanned all vmas of this mm.
  1799. */
  1800. if (khugepaged_test_exit(mm) || !vma) {
  1801. /*
  1802. * Make sure that if mm_users is reaching zero while
  1803. * khugepaged runs here, khugepaged_exit will find
  1804. * mm_slot not pointing to the exiting mm.
  1805. */
  1806. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  1807. khugepaged_scan.mm_slot = list_entry(
  1808. mm_slot->mm_node.next,
  1809. struct mm_slot, mm_node);
  1810. khugepaged_scan.address = 0;
  1811. } else {
  1812. khugepaged_scan.mm_slot = NULL;
  1813. khugepaged_full_scans++;
  1814. }
  1815. collect_mm_slot(mm_slot);
  1816. }
  1817. return progress;
  1818. }
  1819. static int khugepaged_has_work(void)
  1820. {
  1821. return !list_empty(&khugepaged_scan.mm_head) &&
  1822. khugepaged_enabled();
  1823. }
  1824. static int khugepaged_wait_event(void)
  1825. {
  1826. return !list_empty(&khugepaged_scan.mm_head) ||
  1827. !khugepaged_enabled();
  1828. }
  1829. static void khugepaged_do_scan(struct page **hpage)
  1830. {
  1831. unsigned int progress = 0, pass_through_head = 0;
  1832. unsigned int pages = khugepaged_pages_to_scan;
  1833. barrier(); /* write khugepaged_pages_to_scan to local stack */
  1834. while (progress < pages) {
  1835. cond_resched();
  1836. #ifndef CONFIG_NUMA
  1837. if (!*hpage) {
  1838. *hpage = alloc_hugepage(khugepaged_defrag());
  1839. if (unlikely(!*hpage))
  1840. break;
  1841. }
  1842. #else
  1843. if (IS_ERR(*hpage))
  1844. break;
  1845. #endif
  1846. if (unlikely(kthread_should_stop() || freezing(current)))
  1847. break;
  1848. spin_lock(&khugepaged_mm_lock);
  1849. if (!khugepaged_scan.mm_slot)
  1850. pass_through_head++;
  1851. if (khugepaged_has_work() &&
  1852. pass_through_head < 2)
  1853. progress += khugepaged_scan_mm_slot(pages - progress,
  1854. hpage);
  1855. else
  1856. progress = pages;
  1857. spin_unlock(&khugepaged_mm_lock);
  1858. }
  1859. }
  1860. static void khugepaged_alloc_sleep(void)
  1861. {
  1862. DEFINE_WAIT(wait);
  1863. add_wait_queue(&khugepaged_wait, &wait);
  1864. schedule_timeout_interruptible(
  1865. msecs_to_jiffies(
  1866. khugepaged_alloc_sleep_millisecs));
  1867. remove_wait_queue(&khugepaged_wait, &wait);
  1868. }
  1869. #ifndef CONFIG_NUMA
  1870. static struct page *khugepaged_alloc_hugepage(void)
  1871. {
  1872. struct page *hpage;
  1873. do {
  1874. hpage = alloc_hugepage(khugepaged_defrag());
  1875. if (!hpage)
  1876. khugepaged_alloc_sleep();
  1877. } while (unlikely(!hpage) &&
  1878. likely(khugepaged_enabled()));
  1879. return hpage;
  1880. }
  1881. #endif
  1882. static void khugepaged_loop(void)
  1883. {
  1884. struct page *hpage;
  1885. #ifdef CONFIG_NUMA
  1886. hpage = NULL;
  1887. #endif
  1888. while (likely(khugepaged_enabled())) {
  1889. #ifndef CONFIG_NUMA
  1890. hpage = khugepaged_alloc_hugepage();
  1891. if (unlikely(!hpage))
  1892. break;
  1893. #else
  1894. if (IS_ERR(hpage)) {
  1895. khugepaged_alloc_sleep();
  1896. hpage = NULL;
  1897. }
  1898. #endif
  1899. khugepaged_do_scan(&hpage);
  1900. #ifndef CONFIG_NUMA
  1901. if (hpage)
  1902. put_page(hpage);
  1903. #endif
  1904. try_to_freeze();
  1905. if (unlikely(kthread_should_stop()))
  1906. break;
  1907. if (khugepaged_has_work()) {
  1908. DEFINE_WAIT(wait);
  1909. if (!khugepaged_scan_sleep_millisecs)
  1910. continue;
  1911. add_wait_queue(&khugepaged_wait, &wait);
  1912. schedule_timeout_interruptible(
  1913. msecs_to_jiffies(
  1914. khugepaged_scan_sleep_millisecs));
  1915. remove_wait_queue(&khugepaged_wait, &wait);
  1916. } else if (khugepaged_enabled())
  1917. wait_event_freezable(khugepaged_wait,
  1918. khugepaged_wait_event());
  1919. }
  1920. }
  1921. static int khugepaged(void *none)
  1922. {
  1923. struct mm_slot *mm_slot;
  1924. set_freezable();
  1925. set_user_nice(current, 19);
  1926. /* serialize with start_khugepaged() */
  1927. mutex_lock(&khugepaged_mutex);
  1928. for (;;) {
  1929. mutex_unlock(&khugepaged_mutex);
  1930. BUG_ON(khugepaged_thread != current);
  1931. khugepaged_loop();
  1932. BUG_ON(khugepaged_thread != current);
  1933. mutex_lock(&khugepaged_mutex);
  1934. if (!khugepaged_enabled())
  1935. break;
  1936. if (unlikely(kthread_should_stop()))
  1937. break;
  1938. }
  1939. spin_lock(&khugepaged_mm_lock);
  1940. mm_slot = khugepaged_scan.mm_slot;
  1941. khugepaged_scan.mm_slot = NULL;
  1942. if (mm_slot)
  1943. collect_mm_slot(mm_slot);
  1944. spin_unlock(&khugepaged_mm_lock);
  1945. khugepaged_thread = NULL;
  1946. mutex_unlock(&khugepaged_mutex);
  1947. return 0;
  1948. }
  1949. void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
  1950. {
  1951. struct page *page;
  1952. spin_lock(&mm->page_table_lock);
  1953. if (unlikely(!pmd_trans_huge(*pmd))) {
  1954. spin_unlock(&mm->page_table_lock);
  1955. return;
  1956. }
  1957. page = pmd_page(*pmd);
  1958. VM_BUG_ON(!page_count(page));
  1959. get_page(page);
  1960. spin_unlock(&mm->page_table_lock);
  1961. split_huge_page(page);
  1962. put_page(page);
  1963. BUG_ON(pmd_trans_huge(*pmd));
  1964. }
  1965. static void split_huge_page_address(struct mm_struct *mm,
  1966. unsigned long address)
  1967. {
  1968. pgd_t *pgd;
  1969. pud_t *pud;
  1970. pmd_t *pmd;
  1971. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  1972. pgd = pgd_offset(mm, address);
  1973. if (!pgd_present(*pgd))
  1974. return;
  1975. pud = pud_offset(pgd, address);
  1976. if (!pud_present(*pud))
  1977. return;
  1978. pmd = pmd_offset(pud, address);
  1979. if (!pmd_present(*pmd))
  1980. return;
  1981. /*
  1982. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  1983. * materialize from under us.
  1984. */
  1985. split_huge_page_pmd(mm, pmd);
  1986. }
  1987. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  1988. unsigned long start,
  1989. unsigned long end,
  1990. long adjust_next)
  1991. {
  1992. /*
  1993. * If the new start address isn't hpage aligned and it could
  1994. * previously contain an hugepage: check if we need to split
  1995. * an huge pmd.
  1996. */
  1997. if (start & ~HPAGE_PMD_MASK &&
  1998. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  1999. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2000. split_huge_page_address(vma->vm_mm, start);
  2001. /*
  2002. * If the new end address isn't hpage aligned and it could
  2003. * previously contain an hugepage: check if we need to split
  2004. * an huge pmd.
  2005. */
  2006. if (end & ~HPAGE_PMD_MASK &&
  2007. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2008. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2009. split_huge_page_address(vma->vm_mm, end);
  2010. /*
  2011. * If we're also updating the vma->vm_next->vm_start, if the new
  2012. * vm_next->vm_start isn't page aligned and it could previously
  2013. * contain an hugepage: check if we need to split an huge pmd.
  2014. */
  2015. if (adjust_next > 0) {
  2016. struct vm_area_struct *next = vma->vm_next;
  2017. unsigned long nstart = next->vm_start;
  2018. nstart += adjust_next << PAGE_SHIFT;
  2019. if (nstart & ~HPAGE_PMD_MASK &&
  2020. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2021. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2022. split_huge_page_address(next->vm_mm, nstart);
  2023. }
  2024. }