page_alloc.c 133 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/suspend.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/slab.h>
  30. #include <linux/oom.h>
  31. #include <linux/notifier.h>
  32. #include <linux/topology.h>
  33. #include <linux/sysctl.h>
  34. #include <linux/cpu.h>
  35. #include <linux/cpuset.h>
  36. #include <linux/memory_hotplug.h>
  37. #include <linux/nodemask.h>
  38. #include <linux/vmalloc.h>
  39. #include <linux/mempolicy.h>
  40. #include <linux/stop_machine.h>
  41. #include <linux/sort.h>
  42. #include <linux/pfn.h>
  43. #include <linux/backing-dev.h>
  44. #include <linux/fault-inject.h>
  45. #include <linux/page-isolation.h>
  46. #include <linux/page_cgroup.h>
  47. #include <linux/debugobjects.h>
  48. #include <linux/kmemleak.h>
  49. #include <asm/tlbflush.h>
  50. #include <asm/div64.h>
  51. #include "internal.h"
  52. /*
  53. * Array of node states.
  54. */
  55. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  56. [N_POSSIBLE] = NODE_MASK_ALL,
  57. [N_ONLINE] = { { [0] = 1UL } },
  58. #ifndef CONFIG_NUMA
  59. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  60. #ifdef CONFIG_HIGHMEM
  61. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  62. #endif
  63. [N_CPU] = { { [0] = 1UL } },
  64. #endif /* NUMA */
  65. };
  66. EXPORT_SYMBOL(node_states);
  67. unsigned long totalram_pages __read_mostly;
  68. unsigned long totalreserve_pages __read_mostly;
  69. unsigned long highest_memmap_pfn __read_mostly;
  70. int percpu_pagelist_fraction;
  71. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  72. int pageblock_order __read_mostly;
  73. #endif
  74. static void __free_pages_ok(struct page *page, unsigned int order);
  75. /*
  76. * results with 256, 32 in the lowmem_reserve sysctl:
  77. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  78. * 1G machine -> (16M dma, 784M normal, 224M high)
  79. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  80. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  81. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  82. *
  83. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  84. * don't need any ZONE_NORMAL reservation
  85. */
  86. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  87. #ifdef CONFIG_ZONE_DMA
  88. 256,
  89. #endif
  90. #ifdef CONFIG_ZONE_DMA32
  91. 256,
  92. #endif
  93. #ifdef CONFIG_HIGHMEM
  94. 32,
  95. #endif
  96. 32,
  97. };
  98. EXPORT_SYMBOL(totalram_pages);
  99. static char * const zone_names[MAX_NR_ZONES] = {
  100. #ifdef CONFIG_ZONE_DMA
  101. "DMA",
  102. #endif
  103. #ifdef CONFIG_ZONE_DMA32
  104. "DMA32",
  105. #endif
  106. "Normal",
  107. #ifdef CONFIG_HIGHMEM
  108. "HighMem",
  109. #endif
  110. "Movable",
  111. };
  112. int min_free_kbytes = 1024;
  113. unsigned long __meminitdata nr_kernel_pages;
  114. unsigned long __meminitdata nr_all_pages;
  115. static unsigned long __meminitdata dma_reserve;
  116. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  117. /*
  118. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  119. * ranges of memory (RAM) that may be registered with add_active_range().
  120. * Ranges passed to add_active_range() will be merged if possible
  121. * so the number of times add_active_range() can be called is
  122. * related to the number of nodes and the number of holes
  123. */
  124. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  125. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  126. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  127. #else
  128. #if MAX_NUMNODES >= 32
  129. /* If there can be many nodes, allow up to 50 holes per node */
  130. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  131. #else
  132. /* By default, allow up to 256 distinct regions */
  133. #define MAX_ACTIVE_REGIONS 256
  134. #endif
  135. #endif
  136. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  137. static int __meminitdata nr_nodemap_entries;
  138. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  139. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  140. static unsigned long __initdata required_kernelcore;
  141. static unsigned long __initdata required_movablecore;
  142. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  143. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  144. int movable_zone;
  145. EXPORT_SYMBOL(movable_zone);
  146. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  147. #if MAX_NUMNODES > 1
  148. int nr_node_ids __read_mostly = MAX_NUMNODES;
  149. EXPORT_SYMBOL(nr_node_ids);
  150. #endif
  151. int page_group_by_mobility_disabled __read_mostly;
  152. static void set_pageblock_migratetype(struct page *page, int migratetype)
  153. {
  154. if (unlikely(page_group_by_mobility_disabled))
  155. migratetype = MIGRATE_UNMOVABLE;
  156. set_pageblock_flags_group(page, (unsigned long)migratetype,
  157. PB_migrate, PB_migrate_end);
  158. }
  159. #ifdef CONFIG_DEBUG_VM
  160. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  161. {
  162. int ret = 0;
  163. unsigned seq;
  164. unsigned long pfn = page_to_pfn(page);
  165. do {
  166. seq = zone_span_seqbegin(zone);
  167. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  168. ret = 1;
  169. else if (pfn < zone->zone_start_pfn)
  170. ret = 1;
  171. } while (zone_span_seqretry(zone, seq));
  172. return ret;
  173. }
  174. static int page_is_consistent(struct zone *zone, struct page *page)
  175. {
  176. if (!pfn_valid_within(page_to_pfn(page)))
  177. return 0;
  178. if (zone != page_zone(page))
  179. return 0;
  180. return 1;
  181. }
  182. /*
  183. * Temporary debugging check for pages not lying within a given zone.
  184. */
  185. static int bad_range(struct zone *zone, struct page *page)
  186. {
  187. if (page_outside_zone_boundaries(zone, page))
  188. return 1;
  189. if (!page_is_consistent(zone, page))
  190. return 1;
  191. return 0;
  192. }
  193. #else
  194. static inline int bad_range(struct zone *zone, struct page *page)
  195. {
  196. return 0;
  197. }
  198. #endif
  199. static void bad_page(struct page *page)
  200. {
  201. static unsigned long resume;
  202. static unsigned long nr_shown;
  203. static unsigned long nr_unshown;
  204. /*
  205. * Allow a burst of 60 reports, then keep quiet for that minute;
  206. * or allow a steady drip of one report per second.
  207. */
  208. if (nr_shown == 60) {
  209. if (time_before(jiffies, resume)) {
  210. nr_unshown++;
  211. goto out;
  212. }
  213. if (nr_unshown) {
  214. printk(KERN_ALERT
  215. "BUG: Bad page state: %lu messages suppressed\n",
  216. nr_unshown);
  217. nr_unshown = 0;
  218. }
  219. nr_shown = 0;
  220. }
  221. if (nr_shown++ == 0)
  222. resume = jiffies + 60 * HZ;
  223. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  224. current->comm, page_to_pfn(page));
  225. printk(KERN_ALERT
  226. "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
  227. page, (void *)page->flags, page_count(page),
  228. page_mapcount(page), page->mapping, page->index);
  229. dump_stack();
  230. out:
  231. /* Leave bad fields for debug, except PageBuddy could make trouble */
  232. __ClearPageBuddy(page);
  233. add_taint(TAINT_BAD_PAGE);
  234. }
  235. /*
  236. * Higher-order pages are called "compound pages". They are structured thusly:
  237. *
  238. * The first PAGE_SIZE page is called the "head page".
  239. *
  240. * The remaining PAGE_SIZE pages are called "tail pages".
  241. *
  242. * All pages have PG_compound set. All pages have their ->private pointing at
  243. * the head page (even the head page has this).
  244. *
  245. * The first tail page's ->lru.next holds the address of the compound page's
  246. * put_page() function. Its ->lru.prev holds the order of allocation.
  247. * This usage means that zero-order pages may not be compound.
  248. */
  249. static void free_compound_page(struct page *page)
  250. {
  251. __free_pages_ok(page, compound_order(page));
  252. }
  253. void prep_compound_page(struct page *page, unsigned long order)
  254. {
  255. int i;
  256. int nr_pages = 1 << order;
  257. set_compound_page_dtor(page, free_compound_page);
  258. set_compound_order(page, order);
  259. __SetPageHead(page);
  260. for (i = 1; i < nr_pages; i++) {
  261. struct page *p = page + i;
  262. __SetPageTail(p);
  263. p->first_page = page;
  264. }
  265. }
  266. #ifdef CONFIG_HUGETLBFS
  267. void prep_compound_gigantic_page(struct page *page, unsigned long order)
  268. {
  269. int i;
  270. int nr_pages = 1 << order;
  271. struct page *p = page + 1;
  272. set_compound_page_dtor(page, free_compound_page);
  273. set_compound_order(page, order);
  274. __SetPageHead(page);
  275. for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
  276. __SetPageTail(p);
  277. p->first_page = page;
  278. }
  279. }
  280. #endif
  281. static int destroy_compound_page(struct page *page, unsigned long order)
  282. {
  283. int i;
  284. int nr_pages = 1 << order;
  285. int bad = 0;
  286. if (unlikely(compound_order(page) != order) ||
  287. unlikely(!PageHead(page))) {
  288. bad_page(page);
  289. bad++;
  290. }
  291. __ClearPageHead(page);
  292. for (i = 1; i < nr_pages; i++) {
  293. struct page *p = page + i;
  294. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  295. bad_page(page);
  296. bad++;
  297. }
  298. __ClearPageTail(p);
  299. }
  300. return bad;
  301. }
  302. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  303. {
  304. int i;
  305. /*
  306. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  307. * and __GFP_HIGHMEM from hard or soft interrupt context.
  308. */
  309. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  310. for (i = 0; i < (1 << order); i++)
  311. clear_highpage(page + i);
  312. }
  313. static inline void set_page_order(struct page *page, int order)
  314. {
  315. set_page_private(page, order);
  316. __SetPageBuddy(page);
  317. }
  318. static inline void rmv_page_order(struct page *page)
  319. {
  320. __ClearPageBuddy(page);
  321. set_page_private(page, 0);
  322. }
  323. /*
  324. * Locate the struct page for both the matching buddy in our
  325. * pair (buddy1) and the combined O(n+1) page they form (page).
  326. *
  327. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  328. * the following equation:
  329. * B2 = B1 ^ (1 << O)
  330. * For example, if the starting buddy (buddy2) is #8 its order
  331. * 1 buddy is #10:
  332. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  333. *
  334. * 2) Any buddy B will have an order O+1 parent P which
  335. * satisfies the following equation:
  336. * P = B & ~(1 << O)
  337. *
  338. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  339. */
  340. static inline struct page *
  341. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  342. {
  343. unsigned long buddy_idx = page_idx ^ (1 << order);
  344. return page + (buddy_idx - page_idx);
  345. }
  346. static inline unsigned long
  347. __find_combined_index(unsigned long page_idx, unsigned int order)
  348. {
  349. return (page_idx & ~(1 << order));
  350. }
  351. /*
  352. * This function checks whether a page is free && is the buddy
  353. * we can do coalesce a page and its buddy if
  354. * (a) the buddy is not in a hole &&
  355. * (b) the buddy is in the buddy system &&
  356. * (c) a page and its buddy have the same order &&
  357. * (d) a page and its buddy are in the same zone.
  358. *
  359. * For recording whether a page is in the buddy system, we use PG_buddy.
  360. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  361. *
  362. * For recording page's order, we use page_private(page).
  363. */
  364. static inline int page_is_buddy(struct page *page, struct page *buddy,
  365. int order)
  366. {
  367. if (!pfn_valid_within(page_to_pfn(buddy)))
  368. return 0;
  369. if (page_zone_id(page) != page_zone_id(buddy))
  370. return 0;
  371. if (PageBuddy(buddy) && page_order(buddy) == order) {
  372. VM_BUG_ON(page_count(buddy) != 0);
  373. return 1;
  374. }
  375. return 0;
  376. }
  377. /*
  378. * Freeing function for a buddy system allocator.
  379. *
  380. * The concept of a buddy system is to maintain direct-mapped table
  381. * (containing bit values) for memory blocks of various "orders".
  382. * The bottom level table contains the map for the smallest allocatable
  383. * units of memory (here, pages), and each level above it describes
  384. * pairs of units from the levels below, hence, "buddies".
  385. * At a high level, all that happens here is marking the table entry
  386. * at the bottom level available, and propagating the changes upward
  387. * as necessary, plus some accounting needed to play nicely with other
  388. * parts of the VM system.
  389. * At each level, we keep a list of pages, which are heads of continuous
  390. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  391. * order is recorded in page_private(page) field.
  392. * So when we are allocating or freeing one, we can derive the state of the
  393. * other. That is, if we allocate a small block, and both were
  394. * free, the remainder of the region must be split into blocks.
  395. * If a block is freed, and its buddy is also free, then this
  396. * triggers coalescing into a block of larger size.
  397. *
  398. * -- wli
  399. */
  400. static inline void __free_one_page(struct page *page,
  401. struct zone *zone, unsigned int order,
  402. int migratetype)
  403. {
  404. unsigned long page_idx;
  405. if (unlikely(PageCompound(page)))
  406. if (unlikely(destroy_compound_page(page, order)))
  407. return;
  408. VM_BUG_ON(migratetype == -1);
  409. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  410. VM_BUG_ON(page_idx & ((1 << order) - 1));
  411. VM_BUG_ON(bad_range(zone, page));
  412. while (order < MAX_ORDER-1) {
  413. unsigned long combined_idx;
  414. struct page *buddy;
  415. buddy = __page_find_buddy(page, page_idx, order);
  416. if (!page_is_buddy(page, buddy, order))
  417. break;
  418. /* Our buddy is free, merge with it and move up one order. */
  419. list_del(&buddy->lru);
  420. zone->free_area[order].nr_free--;
  421. rmv_page_order(buddy);
  422. combined_idx = __find_combined_index(page_idx, order);
  423. page = page + (combined_idx - page_idx);
  424. page_idx = combined_idx;
  425. order++;
  426. }
  427. set_page_order(page, order);
  428. list_add(&page->lru,
  429. &zone->free_area[order].free_list[migratetype]);
  430. zone->free_area[order].nr_free++;
  431. }
  432. static inline int free_pages_check(struct page *page)
  433. {
  434. if (unlikely(page_mapcount(page) |
  435. (page->mapping != NULL) |
  436. (atomic_read(&page->_count) != 0) |
  437. (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
  438. bad_page(page);
  439. return 1;
  440. }
  441. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  442. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  443. return 0;
  444. }
  445. /*
  446. * Frees a list of pages.
  447. * Assumes all pages on list are in same zone, and of same order.
  448. * count is the number of pages to free.
  449. *
  450. * If the zone was previously in an "all pages pinned" state then look to
  451. * see if this freeing clears that state.
  452. *
  453. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  454. * pinned" detection logic.
  455. */
  456. static void free_pages_bulk(struct zone *zone, int count,
  457. struct list_head *list, int order)
  458. {
  459. spin_lock(&zone->lock);
  460. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  461. zone->pages_scanned = 0;
  462. __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
  463. while (count--) {
  464. struct page *page;
  465. VM_BUG_ON(list_empty(list));
  466. page = list_entry(list->prev, struct page, lru);
  467. /* have to delete it as __free_one_page list manipulates */
  468. list_del(&page->lru);
  469. __free_one_page(page, zone, order, page_private(page));
  470. }
  471. spin_unlock(&zone->lock);
  472. }
  473. static void free_one_page(struct zone *zone, struct page *page, int order,
  474. int migratetype)
  475. {
  476. spin_lock(&zone->lock);
  477. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  478. zone->pages_scanned = 0;
  479. __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
  480. __free_one_page(page, zone, order, migratetype);
  481. spin_unlock(&zone->lock);
  482. }
  483. static void __free_pages_ok(struct page *page, unsigned int order)
  484. {
  485. unsigned long flags;
  486. int i;
  487. int bad = 0;
  488. int clearMlocked = PageMlocked(page);
  489. for (i = 0 ; i < (1 << order) ; ++i)
  490. bad += free_pages_check(page + i);
  491. if (bad)
  492. return;
  493. if (!PageHighMem(page)) {
  494. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  495. debug_check_no_obj_freed(page_address(page),
  496. PAGE_SIZE << order);
  497. }
  498. arch_free_page(page, order);
  499. kernel_map_pages(page, 1 << order, 0);
  500. local_irq_save(flags);
  501. if (unlikely(clearMlocked))
  502. free_page_mlock(page);
  503. __count_vm_events(PGFREE, 1 << order);
  504. free_one_page(page_zone(page), page, order,
  505. get_pageblock_migratetype(page));
  506. local_irq_restore(flags);
  507. }
  508. /*
  509. * permit the bootmem allocator to evade page validation on high-order frees
  510. */
  511. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  512. {
  513. if (order == 0) {
  514. __ClearPageReserved(page);
  515. set_page_count(page, 0);
  516. set_page_refcounted(page);
  517. __free_page(page);
  518. } else {
  519. int loop;
  520. prefetchw(page);
  521. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  522. struct page *p = &page[loop];
  523. if (loop + 1 < BITS_PER_LONG)
  524. prefetchw(p + 1);
  525. __ClearPageReserved(p);
  526. set_page_count(p, 0);
  527. }
  528. set_page_refcounted(page);
  529. __free_pages(page, order);
  530. }
  531. }
  532. /*
  533. * The order of subdivision here is critical for the IO subsystem.
  534. * Please do not alter this order without good reasons and regression
  535. * testing. Specifically, as large blocks of memory are subdivided,
  536. * the order in which smaller blocks are delivered depends on the order
  537. * they're subdivided in this function. This is the primary factor
  538. * influencing the order in which pages are delivered to the IO
  539. * subsystem according to empirical testing, and this is also justified
  540. * by considering the behavior of a buddy system containing a single
  541. * large block of memory acted on by a series of small allocations.
  542. * This behavior is a critical factor in sglist merging's success.
  543. *
  544. * -- wli
  545. */
  546. static inline void expand(struct zone *zone, struct page *page,
  547. int low, int high, struct free_area *area,
  548. int migratetype)
  549. {
  550. unsigned long size = 1 << high;
  551. while (high > low) {
  552. area--;
  553. high--;
  554. size >>= 1;
  555. VM_BUG_ON(bad_range(zone, &page[size]));
  556. list_add(&page[size].lru, &area->free_list[migratetype]);
  557. area->nr_free++;
  558. set_page_order(&page[size], high);
  559. }
  560. }
  561. /*
  562. * This page is about to be returned from the page allocator
  563. */
  564. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  565. {
  566. if (unlikely(page_mapcount(page) |
  567. (page->mapping != NULL) |
  568. (atomic_read(&page->_count) != 0) |
  569. (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
  570. bad_page(page);
  571. return 1;
  572. }
  573. set_page_private(page, 0);
  574. set_page_refcounted(page);
  575. arch_alloc_page(page, order);
  576. kernel_map_pages(page, 1 << order, 1);
  577. if (gfp_flags & __GFP_ZERO)
  578. prep_zero_page(page, order, gfp_flags);
  579. if (order && (gfp_flags & __GFP_COMP))
  580. prep_compound_page(page, order);
  581. return 0;
  582. }
  583. /*
  584. * Go through the free lists for the given migratetype and remove
  585. * the smallest available page from the freelists
  586. */
  587. static inline
  588. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  589. int migratetype)
  590. {
  591. unsigned int current_order;
  592. struct free_area * area;
  593. struct page *page;
  594. /* Find a page of the appropriate size in the preferred list */
  595. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  596. area = &(zone->free_area[current_order]);
  597. if (list_empty(&area->free_list[migratetype]))
  598. continue;
  599. page = list_entry(area->free_list[migratetype].next,
  600. struct page, lru);
  601. list_del(&page->lru);
  602. rmv_page_order(page);
  603. area->nr_free--;
  604. expand(zone, page, order, current_order, area, migratetype);
  605. return page;
  606. }
  607. return NULL;
  608. }
  609. /*
  610. * This array describes the order lists are fallen back to when
  611. * the free lists for the desirable migrate type are depleted
  612. */
  613. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  614. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  615. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  616. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  617. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  618. };
  619. /*
  620. * Move the free pages in a range to the free lists of the requested type.
  621. * Note that start_page and end_pages are not aligned on a pageblock
  622. * boundary. If alignment is required, use move_freepages_block()
  623. */
  624. static int move_freepages(struct zone *zone,
  625. struct page *start_page, struct page *end_page,
  626. int migratetype)
  627. {
  628. struct page *page;
  629. unsigned long order;
  630. int pages_moved = 0;
  631. #ifndef CONFIG_HOLES_IN_ZONE
  632. /*
  633. * page_zone is not safe to call in this context when
  634. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  635. * anyway as we check zone boundaries in move_freepages_block().
  636. * Remove at a later date when no bug reports exist related to
  637. * grouping pages by mobility
  638. */
  639. BUG_ON(page_zone(start_page) != page_zone(end_page));
  640. #endif
  641. for (page = start_page; page <= end_page;) {
  642. /* Make sure we are not inadvertently changing nodes */
  643. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  644. if (!pfn_valid_within(page_to_pfn(page))) {
  645. page++;
  646. continue;
  647. }
  648. if (!PageBuddy(page)) {
  649. page++;
  650. continue;
  651. }
  652. order = page_order(page);
  653. list_del(&page->lru);
  654. list_add(&page->lru,
  655. &zone->free_area[order].free_list[migratetype]);
  656. page += 1 << order;
  657. pages_moved += 1 << order;
  658. }
  659. return pages_moved;
  660. }
  661. static int move_freepages_block(struct zone *zone, struct page *page,
  662. int migratetype)
  663. {
  664. unsigned long start_pfn, end_pfn;
  665. struct page *start_page, *end_page;
  666. start_pfn = page_to_pfn(page);
  667. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  668. start_page = pfn_to_page(start_pfn);
  669. end_page = start_page + pageblock_nr_pages - 1;
  670. end_pfn = start_pfn + pageblock_nr_pages - 1;
  671. /* Do not cross zone boundaries */
  672. if (start_pfn < zone->zone_start_pfn)
  673. start_page = page;
  674. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  675. return 0;
  676. return move_freepages(zone, start_page, end_page, migratetype);
  677. }
  678. /* Remove an element from the buddy allocator from the fallback list */
  679. static inline struct page *
  680. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  681. {
  682. struct free_area * area;
  683. int current_order;
  684. struct page *page;
  685. int migratetype, i;
  686. /* Find the largest possible block of pages in the other list */
  687. for (current_order = MAX_ORDER-1; current_order >= order;
  688. --current_order) {
  689. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  690. migratetype = fallbacks[start_migratetype][i];
  691. /* MIGRATE_RESERVE handled later if necessary */
  692. if (migratetype == MIGRATE_RESERVE)
  693. continue;
  694. area = &(zone->free_area[current_order]);
  695. if (list_empty(&area->free_list[migratetype]))
  696. continue;
  697. page = list_entry(area->free_list[migratetype].next,
  698. struct page, lru);
  699. area->nr_free--;
  700. /*
  701. * If breaking a large block of pages, move all free
  702. * pages to the preferred allocation list. If falling
  703. * back for a reclaimable kernel allocation, be more
  704. * agressive about taking ownership of free pages
  705. */
  706. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  707. start_migratetype == MIGRATE_RECLAIMABLE) {
  708. unsigned long pages;
  709. pages = move_freepages_block(zone, page,
  710. start_migratetype);
  711. /* Claim the whole block if over half of it is free */
  712. if (pages >= (1 << (pageblock_order-1)))
  713. set_pageblock_migratetype(page,
  714. start_migratetype);
  715. migratetype = start_migratetype;
  716. }
  717. /* Remove the page from the freelists */
  718. list_del(&page->lru);
  719. rmv_page_order(page);
  720. if (current_order == pageblock_order)
  721. set_pageblock_migratetype(page,
  722. start_migratetype);
  723. expand(zone, page, order, current_order, area, migratetype);
  724. return page;
  725. }
  726. }
  727. return NULL;
  728. }
  729. /*
  730. * Do the hard work of removing an element from the buddy allocator.
  731. * Call me with the zone->lock already held.
  732. */
  733. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  734. int migratetype)
  735. {
  736. struct page *page;
  737. retry_reserve:
  738. page = __rmqueue_smallest(zone, order, migratetype);
  739. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  740. page = __rmqueue_fallback(zone, order, migratetype);
  741. /*
  742. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  743. * is used because __rmqueue_smallest is an inline function
  744. * and we want just one call site
  745. */
  746. if (!page) {
  747. migratetype = MIGRATE_RESERVE;
  748. goto retry_reserve;
  749. }
  750. }
  751. return page;
  752. }
  753. /*
  754. * Obtain a specified number of elements from the buddy allocator, all under
  755. * a single hold of the lock, for efficiency. Add them to the supplied list.
  756. * Returns the number of new pages which were placed at *list.
  757. */
  758. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  759. unsigned long count, struct list_head *list,
  760. int migratetype)
  761. {
  762. int i;
  763. spin_lock(&zone->lock);
  764. for (i = 0; i < count; ++i) {
  765. struct page *page = __rmqueue(zone, order, migratetype);
  766. if (unlikely(page == NULL))
  767. break;
  768. /*
  769. * Split buddy pages returned by expand() are received here
  770. * in physical page order. The page is added to the callers and
  771. * list and the list head then moves forward. From the callers
  772. * perspective, the linked list is ordered by page number in
  773. * some conditions. This is useful for IO devices that can
  774. * merge IO requests if the physical pages are ordered
  775. * properly.
  776. */
  777. list_add(&page->lru, list);
  778. set_page_private(page, migratetype);
  779. list = &page->lru;
  780. }
  781. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  782. spin_unlock(&zone->lock);
  783. return i;
  784. }
  785. #ifdef CONFIG_NUMA
  786. /*
  787. * Called from the vmstat counter updater to drain pagesets of this
  788. * currently executing processor on remote nodes after they have
  789. * expired.
  790. *
  791. * Note that this function must be called with the thread pinned to
  792. * a single processor.
  793. */
  794. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  795. {
  796. unsigned long flags;
  797. int to_drain;
  798. local_irq_save(flags);
  799. if (pcp->count >= pcp->batch)
  800. to_drain = pcp->batch;
  801. else
  802. to_drain = pcp->count;
  803. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  804. pcp->count -= to_drain;
  805. local_irq_restore(flags);
  806. }
  807. #endif
  808. /*
  809. * Drain pages of the indicated processor.
  810. *
  811. * The processor must either be the current processor and the
  812. * thread pinned to the current processor or a processor that
  813. * is not online.
  814. */
  815. static void drain_pages(unsigned int cpu)
  816. {
  817. unsigned long flags;
  818. struct zone *zone;
  819. for_each_populated_zone(zone) {
  820. struct per_cpu_pageset *pset;
  821. struct per_cpu_pages *pcp;
  822. pset = zone_pcp(zone, cpu);
  823. pcp = &pset->pcp;
  824. local_irq_save(flags);
  825. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  826. pcp->count = 0;
  827. local_irq_restore(flags);
  828. }
  829. }
  830. /*
  831. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  832. */
  833. void drain_local_pages(void *arg)
  834. {
  835. drain_pages(smp_processor_id());
  836. }
  837. /*
  838. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  839. */
  840. void drain_all_pages(void)
  841. {
  842. on_each_cpu(drain_local_pages, NULL, 1);
  843. }
  844. #ifdef CONFIG_HIBERNATION
  845. void mark_free_pages(struct zone *zone)
  846. {
  847. unsigned long pfn, max_zone_pfn;
  848. unsigned long flags;
  849. int order, t;
  850. struct list_head *curr;
  851. if (!zone->spanned_pages)
  852. return;
  853. spin_lock_irqsave(&zone->lock, flags);
  854. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  855. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  856. if (pfn_valid(pfn)) {
  857. struct page *page = pfn_to_page(pfn);
  858. if (!swsusp_page_is_forbidden(page))
  859. swsusp_unset_page_free(page);
  860. }
  861. for_each_migratetype_order(order, t) {
  862. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  863. unsigned long i;
  864. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  865. for (i = 0; i < (1UL << order); i++)
  866. swsusp_set_page_free(pfn_to_page(pfn + i));
  867. }
  868. }
  869. spin_unlock_irqrestore(&zone->lock, flags);
  870. }
  871. #endif /* CONFIG_PM */
  872. /*
  873. * Free a 0-order page
  874. */
  875. static void free_hot_cold_page(struct page *page, int cold)
  876. {
  877. struct zone *zone = page_zone(page);
  878. struct per_cpu_pages *pcp;
  879. unsigned long flags;
  880. int clearMlocked = PageMlocked(page);
  881. if (PageAnon(page))
  882. page->mapping = NULL;
  883. if (free_pages_check(page))
  884. return;
  885. if (!PageHighMem(page)) {
  886. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  887. debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
  888. }
  889. arch_free_page(page, 0);
  890. kernel_map_pages(page, 1, 0);
  891. pcp = &zone_pcp(zone, get_cpu())->pcp;
  892. set_page_private(page, get_pageblock_migratetype(page));
  893. local_irq_save(flags);
  894. if (unlikely(clearMlocked))
  895. free_page_mlock(page);
  896. __count_vm_event(PGFREE);
  897. if (cold)
  898. list_add_tail(&page->lru, &pcp->list);
  899. else
  900. list_add(&page->lru, &pcp->list);
  901. pcp->count++;
  902. if (pcp->count >= pcp->high) {
  903. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  904. pcp->count -= pcp->batch;
  905. }
  906. local_irq_restore(flags);
  907. put_cpu();
  908. }
  909. void free_hot_page(struct page *page)
  910. {
  911. free_hot_cold_page(page, 0);
  912. }
  913. void free_cold_page(struct page *page)
  914. {
  915. free_hot_cold_page(page, 1);
  916. }
  917. /*
  918. * split_page takes a non-compound higher-order page, and splits it into
  919. * n (1<<order) sub-pages: page[0..n]
  920. * Each sub-page must be freed individually.
  921. *
  922. * Note: this is probably too low level an operation for use in drivers.
  923. * Please consult with lkml before using this in your driver.
  924. */
  925. void split_page(struct page *page, unsigned int order)
  926. {
  927. int i;
  928. VM_BUG_ON(PageCompound(page));
  929. VM_BUG_ON(!page_count(page));
  930. for (i = 1; i < (1 << order); i++)
  931. set_page_refcounted(page + i);
  932. }
  933. /*
  934. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  935. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  936. * or two.
  937. */
  938. static inline
  939. struct page *buffered_rmqueue(struct zone *preferred_zone,
  940. struct zone *zone, int order, gfp_t gfp_flags,
  941. int migratetype)
  942. {
  943. unsigned long flags;
  944. struct page *page;
  945. int cold = !!(gfp_flags & __GFP_COLD);
  946. int cpu;
  947. again:
  948. cpu = get_cpu();
  949. if (likely(order == 0)) {
  950. struct per_cpu_pages *pcp;
  951. pcp = &zone_pcp(zone, cpu)->pcp;
  952. local_irq_save(flags);
  953. if (!pcp->count) {
  954. pcp->count = rmqueue_bulk(zone, 0,
  955. pcp->batch, &pcp->list, migratetype);
  956. if (unlikely(!pcp->count))
  957. goto failed;
  958. }
  959. /* Find a page of the appropriate migrate type */
  960. if (cold) {
  961. list_for_each_entry_reverse(page, &pcp->list, lru)
  962. if (page_private(page) == migratetype)
  963. break;
  964. } else {
  965. list_for_each_entry(page, &pcp->list, lru)
  966. if (page_private(page) == migratetype)
  967. break;
  968. }
  969. /* Allocate more to the pcp list if necessary */
  970. if (unlikely(&page->lru == &pcp->list)) {
  971. pcp->count += rmqueue_bulk(zone, 0,
  972. pcp->batch, &pcp->list, migratetype);
  973. page = list_entry(pcp->list.next, struct page, lru);
  974. }
  975. list_del(&page->lru);
  976. pcp->count--;
  977. } else {
  978. spin_lock_irqsave(&zone->lock, flags);
  979. page = __rmqueue(zone, order, migratetype);
  980. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
  981. spin_unlock(&zone->lock);
  982. if (!page)
  983. goto failed;
  984. }
  985. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  986. zone_statistics(preferred_zone, zone);
  987. local_irq_restore(flags);
  988. put_cpu();
  989. VM_BUG_ON(bad_range(zone, page));
  990. if (prep_new_page(page, order, gfp_flags))
  991. goto again;
  992. return page;
  993. failed:
  994. local_irq_restore(flags);
  995. put_cpu();
  996. return NULL;
  997. }
  998. /* The ALLOC_WMARK bits are used as an index to zone->watermark */
  999. #define ALLOC_WMARK_MIN WMARK_MIN
  1000. #define ALLOC_WMARK_LOW WMARK_LOW
  1001. #define ALLOC_WMARK_HIGH WMARK_HIGH
  1002. #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
  1003. /* Mask to get the watermark bits */
  1004. #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
  1005. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  1006. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  1007. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  1008. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1009. static struct fail_page_alloc_attr {
  1010. struct fault_attr attr;
  1011. u32 ignore_gfp_highmem;
  1012. u32 ignore_gfp_wait;
  1013. u32 min_order;
  1014. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1015. struct dentry *ignore_gfp_highmem_file;
  1016. struct dentry *ignore_gfp_wait_file;
  1017. struct dentry *min_order_file;
  1018. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1019. } fail_page_alloc = {
  1020. .attr = FAULT_ATTR_INITIALIZER,
  1021. .ignore_gfp_wait = 1,
  1022. .ignore_gfp_highmem = 1,
  1023. .min_order = 1,
  1024. };
  1025. static int __init setup_fail_page_alloc(char *str)
  1026. {
  1027. return setup_fault_attr(&fail_page_alloc.attr, str);
  1028. }
  1029. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1030. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1031. {
  1032. if (order < fail_page_alloc.min_order)
  1033. return 0;
  1034. if (gfp_mask & __GFP_NOFAIL)
  1035. return 0;
  1036. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1037. return 0;
  1038. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1039. return 0;
  1040. return should_fail(&fail_page_alloc.attr, 1 << order);
  1041. }
  1042. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1043. static int __init fail_page_alloc_debugfs(void)
  1044. {
  1045. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1046. struct dentry *dir;
  1047. int err;
  1048. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1049. "fail_page_alloc");
  1050. if (err)
  1051. return err;
  1052. dir = fail_page_alloc.attr.dentries.dir;
  1053. fail_page_alloc.ignore_gfp_wait_file =
  1054. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1055. &fail_page_alloc.ignore_gfp_wait);
  1056. fail_page_alloc.ignore_gfp_highmem_file =
  1057. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1058. &fail_page_alloc.ignore_gfp_highmem);
  1059. fail_page_alloc.min_order_file =
  1060. debugfs_create_u32("min-order", mode, dir,
  1061. &fail_page_alloc.min_order);
  1062. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1063. !fail_page_alloc.ignore_gfp_highmem_file ||
  1064. !fail_page_alloc.min_order_file) {
  1065. err = -ENOMEM;
  1066. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1067. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1068. debugfs_remove(fail_page_alloc.min_order_file);
  1069. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1070. }
  1071. return err;
  1072. }
  1073. late_initcall(fail_page_alloc_debugfs);
  1074. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1075. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1076. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1077. {
  1078. return 0;
  1079. }
  1080. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1081. /*
  1082. * Return 1 if free pages are above 'mark'. This takes into account the order
  1083. * of the allocation.
  1084. */
  1085. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1086. int classzone_idx, int alloc_flags)
  1087. {
  1088. /* free_pages my go negative - that's OK */
  1089. long min = mark;
  1090. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1091. int o;
  1092. if (alloc_flags & ALLOC_HIGH)
  1093. min -= min / 2;
  1094. if (alloc_flags & ALLOC_HARDER)
  1095. min -= min / 4;
  1096. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1097. return 0;
  1098. for (o = 0; o < order; o++) {
  1099. /* At the next order, this order's pages become unavailable */
  1100. free_pages -= z->free_area[o].nr_free << o;
  1101. /* Require fewer higher order pages to be free */
  1102. min >>= 1;
  1103. if (free_pages <= min)
  1104. return 0;
  1105. }
  1106. return 1;
  1107. }
  1108. #ifdef CONFIG_NUMA
  1109. /*
  1110. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1111. * skip over zones that are not allowed by the cpuset, or that have
  1112. * been recently (in last second) found to be nearly full. See further
  1113. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1114. * that have to skip over a lot of full or unallowed zones.
  1115. *
  1116. * If the zonelist cache is present in the passed in zonelist, then
  1117. * returns a pointer to the allowed node mask (either the current
  1118. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1119. *
  1120. * If the zonelist cache is not available for this zonelist, does
  1121. * nothing and returns NULL.
  1122. *
  1123. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1124. * a second since last zap'd) then we zap it out (clear its bits.)
  1125. *
  1126. * We hold off even calling zlc_setup, until after we've checked the
  1127. * first zone in the zonelist, on the theory that most allocations will
  1128. * be satisfied from that first zone, so best to examine that zone as
  1129. * quickly as we can.
  1130. */
  1131. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1132. {
  1133. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1134. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1135. zlc = zonelist->zlcache_ptr;
  1136. if (!zlc)
  1137. return NULL;
  1138. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1139. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1140. zlc->last_full_zap = jiffies;
  1141. }
  1142. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1143. &cpuset_current_mems_allowed :
  1144. &node_states[N_HIGH_MEMORY];
  1145. return allowednodes;
  1146. }
  1147. /*
  1148. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1149. * if it is worth looking at further for free memory:
  1150. * 1) Check that the zone isn't thought to be full (doesn't have its
  1151. * bit set in the zonelist_cache fullzones BITMAP).
  1152. * 2) Check that the zones node (obtained from the zonelist_cache
  1153. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1154. * Return true (non-zero) if zone is worth looking at further, or
  1155. * else return false (zero) if it is not.
  1156. *
  1157. * This check -ignores- the distinction between various watermarks,
  1158. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1159. * found to be full for any variation of these watermarks, it will
  1160. * be considered full for up to one second by all requests, unless
  1161. * we are so low on memory on all allowed nodes that we are forced
  1162. * into the second scan of the zonelist.
  1163. *
  1164. * In the second scan we ignore this zonelist cache and exactly
  1165. * apply the watermarks to all zones, even it is slower to do so.
  1166. * We are low on memory in the second scan, and should leave no stone
  1167. * unturned looking for a free page.
  1168. */
  1169. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1170. nodemask_t *allowednodes)
  1171. {
  1172. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1173. int i; /* index of *z in zonelist zones */
  1174. int n; /* node that zone *z is on */
  1175. zlc = zonelist->zlcache_ptr;
  1176. if (!zlc)
  1177. return 1;
  1178. i = z - zonelist->_zonerefs;
  1179. n = zlc->z_to_n[i];
  1180. /* This zone is worth trying if it is allowed but not full */
  1181. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1182. }
  1183. /*
  1184. * Given 'z' scanning a zonelist, set the corresponding bit in
  1185. * zlc->fullzones, so that subsequent attempts to allocate a page
  1186. * from that zone don't waste time re-examining it.
  1187. */
  1188. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1189. {
  1190. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1191. int i; /* index of *z in zonelist zones */
  1192. zlc = zonelist->zlcache_ptr;
  1193. if (!zlc)
  1194. return;
  1195. i = z - zonelist->_zonerefs;
  1196. set_bit(i, zlc->fullzones);
  1197. }
  1198. #else /* CONFIG_NUMA */
  1199. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1200. {
  1201. return NULL;
  1202. }
  1203. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1204. nodemask_t *allowednodes)
  1205. {
  1206. return 1;
  1207. }
  1208. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1209. {
  1210. }
  1211. #endif /* CONFIG_NUMA */
  1212. /*
  1213. * get_page_from_freelist goes through the zonelist trying to allocate
  1214. * a page.
  1215. */
  1216. static struct page *
  1217. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1218. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1219. struct zone *preferred_zone, int migratetype)
  1220. {
  1221. struct zoneref *z;
  1222. struct page *page = NULL;
  1223. int classzone_idx;
  1224. struct zone *zone;
  1225. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1226. int zlc_active = 0; /* set if using zonelist_cache */
  1227. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1228. if (WARN_ON_ONCE(order >= MAX_ORDER))
  1229. return NULL;
  1230. classzone_idx = zone_idx(preferred_zone);
  1231. zonelist_scan:
  1232. /*
  1233. * Scan zonelist, looking for a zone with enough free.
  1234. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1235. */
  1236. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1237. high_zoneidx, nodemask) {
  1238. if (NUMA_BUILD && zlc_active &&
  1239. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1240. continue;
  1241. if ((alloc_flags & ALLOC_CPUSET) &&
  1242. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1243. goto try_next_zone;
  1244. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1245. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1246. unsigned long mark;
  1247. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1248. if (!zone_watermark_ok(zone, order, mark,
  1249. classzone_idx, alloc_flags)) {
  1250. if (!zone_reclaim_mode ||
  1251. !zone_reclaim(zone, gfp_mask, order))
  1252. goto this_zone_full;
  1253. }
  1254. }
  1255. page = buffered_rmqueue(preferred_zone, zone, order,
  1256. gfp_mask, migratetype);
  1257. if (page)
  1258. break;
  1259. this_zone_full:
  1260. if (NUMA_BUILD)
  1261. zlc_mark_zone_full(zonelist, z);
  1262. try_next_zone:
  1263. if (NUMA_BUILD && !did_zlc_setup && num_online_nodes() > 1) {
  1264. /*
  1265. * we do zlc_setup after the first zone is tried but only
  1266. * if there are multiple nodes make it worthwhile
  1267. */
  1268. allowednodes = zlc_setup(zonelist, alloc_flags);
  1269. zlc_active = 1;
  1270. did_zlc_setup = 1;
  1271. }
  1272. }
  1273. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1274. /* Disable zlc cache for second zonelist scan */
  1275. zlc_active = 0;
  1276. goto zonelist_scan;
  1277. }
  1278. return page;
  1279. }
  1280. static inline int
  1281. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1282. unsigned long pages_reclaimed)
  1283. {
  1284. /* Do not loop if specifically requested */
  1285. if (gfp_mask & __GFP_NORETRY)
  1286. return 0;
  1287. /*
  1288. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1289. * means __GFP_NOFAIL, but that may not be true in other
  1290. * implementations.
  1291. */
  1292. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1293. return 1;
  1294. /*
  1295. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1296. * specified, then we retry until we no longer reclaim any pages
  1297. * (above), or we've reclaimed an order of pages at least as
  1298. * large as the allocation's order. In both cases, if the
  1299. * allocation still fails, we stop retrying.
  1300. */
  1301. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1302. return 1;
  1303. /*
  1304. * Don't let big-order allocations loop unless the caller
  1305. * explicitly requests that.
  1306. */
  1307. if (gfp_mask & __GFP_NOFAIL)
  1308. return 1;
  1309. return 0;
  1310. }
  1311. static inline struct page *
  1312. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1313. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1314. nodemask_t *nodemask, struct zone *preferred_zone,
  1315. int migratetype)
  1316. {
  1317. struct page *page;
  1318. /* Acquire the OOM killer lock for the zones in zonelist */
  1319. if (!try_set_zone_oom(zonelist, gfp_mask)) {
  1320. schedule_timeout_uninterruptible(1);
  1321. return NULL;
  1322. }
  1323. /*
  1324. * Go through the zonelist yet one more time, keep very high watermark
  1325. * here, this is only to catch a parallel oom killing, we must fail if
  1326. * we're still under heavy pressure.
  1327. */
  1328. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1329. order, zonelist, high_zoneidx,
  1330. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1331. preferred_zone, migratetype);
  1332. if (page)
  1333. goto out;
  1334. /* The OOM killer will not help higher order allocs */
  1335. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1336. goto out;
  1337. /* Exhausted what can be done so it's blamo time */
  1338. out_of_memory(zonelist, gfp_mask, order);
  1339. out:
  1340. clear_zonelist_oom(zonelist, gfp_mask);
  1341. return page;
  1342. }
  1343. /* The really slow allocator path where we enter direct reclaim */
  1344. static inline struct page *
  1345. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1346. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1347. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1348. int migratetype, unsigned long *did_some_progress)
  1349. {
  1350. struct page *page = NULL;
  1351. struct reclaim_state reclaim_state;
  1352. struct task_struct *p = current;
  1353. cond_resched();
  1354. /* We now go into synchronous reclaim */
  1355. cpuset_memory_pressure_bump();
  1356. /*
  1357. * The task's cpuset might have expanded its set of allowable nodes
  1358. */
  1359. p->flags |= PF_MEMALLOC;
  1360. lockdep_set_current_reclaim_state(gfp_mask);
  1361. reclaim_state.reclaimed_slab = 0;
  1362. p->reclaim_state = &reclaim_state;
  1363. *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1364. p->reclaim_state = NULL;
  1365. lockdep_clear_current_reclaim_state();
  1366. p->flags &= ~PF_MEMALLOC;
  1367. cond_resched();
  1368. if (order != 0)
  1369. drain_all_pages();
  1370. if (likely(*did_some_progress))
  1371. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1372. zonelist, high_zoneidx,
  1373. alloc_flags, preferred_zone,
  1374. migratetype);
  1375. return page;
  1376. }
  1377. /*
  1378. * This is called in the allocator slow-path if the allocation request is of
  1379. * sufficient urgency to ignore watermarks and take other desperate measures
  1380. */
  1381. static inline struct page *
  1382. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1383. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1384. nodemask_t *nodemask, struct zone *preferred_zone,
  1385. int migratetype)
  1386. {
  1387. struct page *page;
  1388. do {
  1389. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1390. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1391. preferred_zone, migratetype);
  1392. if (!page && gfp_mask & __GFP_NOFAIL)
  1393. congestion_wait(WRITE, HZ/50);
  1394. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1395. return page;
  1396. }
  1397. static inline
  1398. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1399. enum zone_type high_zoneidx)
  1400. {
  1401. struct zoneref *z;
  1402. struct zone *zone;
  1403. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1404. wakeup_kswapd(zone, order);
  1405. }
  1406. static inline int
  1407. gfp_to_alloc_flags(gfp_t gfp_mask)
  1408. {
  1409. struct task_struct *p = current;
  1410. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  1411. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1412. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  1413. BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
  1414. /*
  1415. * The caller may dip into page reserves a bit more if the caller
  1416. * cannot run direct reclaim, or if the caller has realtime scheduling
  1417. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1418. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1419. */
  1420. alloc_flags |= (gfp_mask & __GFP_HIGH);
  1421. if (!wait) {
  1422. alloc_flags |= ALLOC_HARDER;
  1423. /*
  1424. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1425. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1426. */
  1427. alloc_flags &= ~ALLOC_CPUSET;
  1428. } else if (unlikely(rt_task(p)))
  1429. alloc_flags |= ALLOC_HARDER;
  1430. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  1431. if (!in_interrupt() &&
  1432. ((p->flags & PF_MEMALLOC) ||
  1433. unlikely(test_thread_flag(TIF_MEMDIE))))
  1434. alloc_flags |= ALLOC_NO_WATERMARKS;
  1435. }
  1436. return alloc_flags;
  1437. }
  1438. static inline struct page *
  1439. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  1440. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1441. nodemask_t *nodemask, struct zone *preferred_zone,
  1442. int migratetype)
  1443. {
  1444. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1445. struct page *page = NULL;
  1446. int alloc_flags;
  1447. unsigned long pages_reclaimed = 0;
  1448. unsigned long did_some_progress;
  1449. struct task_struct *p = current;
  1450. /*
  1451. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1452. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1453. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1454. * using a larger set of nodes after it has established that the
  1455. * allowed per node queues are empty and that nodes are
  1456. * over allocated.
  1457. */
  1458. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1459. goto nopage;
  1460. wake_all_kswapd(order, zonelist, high_zoneidx);
  1461. /*
  1462. * OK, we're below the kswapd watermark and have kicked background
  1463. * reclaim. Now things get more complex, so set up alloc_flags according
  1464. * to how we want to proceed.
  1465. */
  1466. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  1467. restart:
  1468. /* This is the last chance, in general, before the goto nopage. */
  1469. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1470. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  1471. preferred_zone, migratetype);
  1472. if (page)
  1473. goto got_pg;
  1474. rebalance:
  1475. /* Allocate without watermarks if the context allows */
  1476. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  1477. page = __alloc_pages_high_priority(gfp_mask, order,
  1478. zonelist, high_zoneidx, nodemask,
  1479. preferred_zone, migratetype);
  1480. if (page)
  1481. goto got_pg;
  1482. }
  1483. /* Atomic allocations - we can't balance anything */
  1484. if (!wait)
  1485. goto nopage;
  1486. /* Avoid recursion of direct reclaim */
  1487. if (p->flags & PF_MEMALLOC)
  1488. goto nopage;
  1489. /* Try direct reclaim and then allocating */
  1490. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  1491. zonelist, high_zoneidx,
  1492. nodemask,
  1493. alloc_flags, preferred_zone,
  1494. migratetype, &did_some_progress);
  1495. if (page)
  1496. goto got_pg;
  1497. /*
  1498. * If we failed to make any progress reclaiming, then we are
  1499. * running out of options and have to consider going OOM
  1500. */
  1501. if (!did_some_progress) {
  1502. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1503. page = __alloc_pages_may_oom(gfp_mask, order,
  1504. zonelist, high_zoneidx,
  1505. nodemask, preferred_zone,
  1506. migratetype);
  1507. if (page)
  1508. goto got_pg;
  1509. /*
  1510. * The OOM killer does not trigger for high-order allocations
  1511. * but if no progress is being made, there are no other
  1512. * options and retrying is unlikely to help
  1513. */
  1514. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1515. goto nopage;
  1516. goto restart;
  1517. }
  1518. }
  1519. /* Check if we should retry the allocation */
  1520. pages_reclaimed += did_some_progress;
  1521. if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
  1522. /* Wait for some write requests to complete then retry */
  1523. congestion_wait(WRITE, HZ/50);
  1524. goto rebalance;
  1525. }
  1526. nopage:
  1527. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1528. printk(KERN_WARNING "%s: page allocation failure."
  1529. " order:%d, mode:0x%x\n",
  1530. p->comm, order, gfp_mask);
  1531. dump_stack();
  1532. show_mem();
  1533. }
  1534. got_pg:
  1535. return page;
  1536. }
  1537. /*
  1538. * This is the 'heart' of the zoned buddy allocator.
  1539. */
  1540. struct page *
  1541. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  1542. struct zonelist *zonelist, nodemask_t *nodemask)
  1543. {
  1544. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1545. struct zone *preferred_zone;
  1546. struct page *page;
  1547. int migratetype = allocflags_to_migratetype(gfp_mask);
  1548. lockdep_trace_alloc(gfp_mask);
  1549. might_sleep_if(gfp_mask & __GFP_WAIT);
  1550. if (should_fail_alloc_page(gfp_mask, order))
  1551. return NULL;
  1552. /*
  1553. * Check the zones suitable for the gfp_mask contain at least one
  1554. * valid zone. It's possible to have an empty zonelist as a result
  1555. * of GFP_THISNODE and a memoryless node
  1556. */
  1557. if (unlikely(!zonelist->_zonerefs->zone))
  1558. return NULL;
  1559. /* The preferred zone is used for statistics later */
  1560. first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
  1561. if (!preferred_zone)
  1562. return NULL;
  1563. /* First allocation attempt */
  1564. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1565. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
  1566. preferred_zone, migratetype);
  1567. if (unlikely(!page))
  1568. page = __alloc_pages_slowpath(gfp_mask, order,
  1569. zonelist, high_zoneidx, nodemask,
  1570. preferred_zone, migratetype);
  1571. return page;
  1572. }
  1573. EXPORT_SYMBOL(__alloc_pages_nodemask);
  1574. /*
  1575. * Common helper functions.
  1576. */
  1577. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1578. {
  1579. struct page * page;
  1580. page = alloc_pages(gfp_mask, order);
  1581. if (!page)
  1582. return 0;
  1583. return (unsigned long) page_address(page);
  1584. }
  1585. EXPORT_SYMBOL(__get_free_pages);
  1586. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1587. {
  1588. struct page * page;
  1589. /*
  1590. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1591. * a highmem page
  1592. */
  1593. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1594. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1595. if (page)
  1596. return (unsigned long) page_address(page);
  1597. return 0;
  1598. }
  1599. EXPORT_SYMBOL(get_zeroed_page);
  1600. void __pagevec_free(struct pagevec *pvec)
  1601. {
  1602. int i = pagevec_count(pvec);
  1603. while (--i >= 0)
  1604. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1605. }
  1606. void __free_pages(struct page *page, unsigned int order)
  1607. {
  1608. if (put_page_testzero(page)) {
  1609. if (order == 0)
  1610. free_hot_page(page);
  1611. else
  1612. __free_pages_ok(page, order);
  1613. }
  1614. }
  1615. EXPORT_SYMBOL(__free_pages);
  1616. void free_pages(unsigned long addr, unsigned int order)
  1617. {
  1618. if (addr != 0) {
  1619. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1620. __free_pages(virt_to_page((void *)addr), order);
  1621. }
  1622. }
  1623. EXPORT_SYMBOL(free_pages);
  1624. /**
  1625. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  1626. * @size: the number of bytes to allocate
  1627. * @gfp_mask: GFP flags for the allocation
  1628. *
  1629. * This function is similar to alloc_pages(), except that it allocates the
  1630. * minimum number of pages to satisfy the request. alloc_pages() can only
  1631. * allocate memory in power-of-two pages.
  1632. *
  1633. * This function is also limited by MAX_ORDER.
  1634. *
  1635. * Memory allocated by this function must be released by free_pages_exact().
  1636. */
  1637. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  1638. {
  1639. unsigned int order = get_order(size);
  1640. unsigned long addr;
  1641. addr = __get_free_pages(gfp_mask, order);
  1642. if (addr) {
  1643. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  1644. unsigned long used = addr + PAGE_ALIGN(size);
  1645. split_page(virt_to_page(addr), order);
  1646. while (used < alloc_end) {
  1647. free_page(used);
  1648. used += PAGE_SIZE;
  1649. }
  1650. }
  1651. return (void *)addr;
  1652. }
  1653. EXPORT_SYMBOL(alloc_pages_exact);
  1654. /**
  1655. * free_pages_exact - release memory allocated via alloc_pages_exact()
  1656. * @virt: the value returned by alloc_pages_exact.
  1657. * @size: size of allocation, same value as passed to alloc_pages_exact().
  1658. *
  1659. * Release the memory allocated by a previous call to alloc_pages_exact.
  1660. */
  1661. void free_pages_exact(void *virt, size_t size)
  1662. {
  1663. unsigned long addr = (unsigned long)virt;
  1664. unsigned long end = addr + PAGE_ALIGN(size);
  1665. while (addr < end) {
  1666. free_page(addr);
  1667. addr += PAGE_SIZE;
  1668. }
  1669. }
  1670. EXPORT_SYMBOL(free_pages_exact);
  1671. static unsigned int nr_free_zone_pages(int offset)
  1672. {
  1673. struct zoneref *z;
  1674. struct zone *zone;
  1675. /* Just pick one node, since fallback list is circular */
  1676. unsigned int sum = 0;
  1677. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  1678. for_each_zone_zonelist(zone, z, zonelist, offset) {
  1679. unsigned long size = zone->present_pages;
  1680. unsigned long high = high_wmark_pages(zone);
  1681. if (size > high)
  1682. sum += size - high;
  1683. }
  1684. return sum;
  1685. }
  1686. /*
  1687. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1688. */
  1689. unsigned int nr_free_buffer_pages(void)
  1690. {
  1691. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1692. }
  1693. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1694. /*
  1695. * Amount of free RAM allocatable within all zones
  1696. */
  1697. unsigned int nr_free_pagecache_pages(void)
  1698. {
  1699. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1700. }
  1701. static inline void show_node(struct zone *zone)
  1702. {
  1703. if (NUMA_BUILD)
  1704. printk("Node %d ", zone_to_nid(zone));
  1705. }
  1706. void si_meminfo(struct sysinfo *val)
  1707. {
  1708. val->totalram = totalram_pages;
  1709. val->sharedram = 0;
  1710. val->freeram = global_page_state(NR_FREE_PAGES);
  1711. val->bufferram = nr_blockdev_pages();
  1712. val->totalhigh = totalhigh_pages;
  1713. val->freehigh = nr_free_highpages();
  1714. val->mem_unit = PAGE_SIZE;
  1715. }
  1716. EXPORT_SYMBOL(si_meminfo);
  1717. #ifdef CONFIG_NUMA
  1718. void si_meminfo_node(struct sysinfo *val, int nid)
  1719. {
  1720. pg_data_t *pgdat = NODE_DATA(nid);
  1721. val->totalram = pgdat->node_present_pages;
  1722. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1723. #ifdef CONFIG_HIGHMEM
  1724. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1725. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1726. NR_FREE_PAGES);
  1727. #else
  1728. val->totalhigh = 0;
  1729. val->freehigh = 0;
  1730. #endif
  1731. val->mem_unit = PAGE_SIZE;
  1732. }
  1733. #endif
  1734. #define K(x) ((x) << (PAGE_SHIFT-10))
  1735. /*
  1736. * Show free area list (used inside shift_scroll-lock stuff)
  1737. * We also calculate the percentage fragmentation. We do this by counting the
  1738. * memory on each free list with the exception of the first item on the list.
  1739. */
  1740. void show_free_areas(void)
  1741. {
  1742. int cpu;
  1743. struct zone *zone;
  1744. for_each_populated_zone(zone) {
  1745. show_node(zone);
  1746. printk("%s per-cpu:\n", zone->name);
  1747. for_each_online_cpu(cpu) {
  1748. struct per_cpu_pageset *pageset;
  1749. pageset = zone_pcp(zone, cpu);
  1750. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1751. cpu, pageset->pcp.high,
  1752. pageset->pcp.batch, pageset->pcp.count);
  1753. }
  1754. }
  1755. printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
  1756. " inactive_file:%lu"
  1757. //TODO: check/adjust line lengths
  1758. #ifdef CONFIG_UNEVICTABLE_LRU
  1759. " unevictable:%lu"
  1760. #endif
  1761. " dirty:%lu writeback:%lu unstable:%lu\n"
  1762. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1763. global_page_state(NR_ACTIVE_ANON),
  1764. global_page_state(NR_ACTIVE_FILE),
  1765. global_page_state(NR_INACTIVE_ANON),
  1766. global_page_state(NR_INACTIVE_FILE),
  1767. #ifdef CONFIG_UNEVICTABLE_LRU
  1768. global_page_state(NR_UNEVICTABLE),
  1769. #endif
  1770. global_page_state(NR_FILE_DIRTY),
  1771. global_page_state(NR_WRITEBACK),
  1772. global_page_state(NR_UNSTABLE_NFS),
  1773. global_page_state(NR_FREE_PAGES),
  1774. global_page_state(NR_SLAB_RECLAIMABLE) +
  1775. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1776. global_page_state(NR_FILE_MAPPED),
  1777. global_page_state(NR_PAGETABLE),
  1778. global_page_state(NR_BOUNCE));
  1779. for_each_populated_zone(zone) {
  1780. int i;
  1781. show_node(zone);
  1782. printk("%s"
  1783. " free:%lukB"
  1784. " min:%lukB"
  1785. " low:%lukB"
  1786. " high:%lukB"
  1787. " active_anon:%lukB"
  1788. " inactive_anon:%lukB"
  1789. " active_file:%lukB"
  1790. " inactive_file:%lukB"
  1791. #ifdef CONFIG_UNEVICTABLE_LRU
  1792. " unevictable:%lukB"
  1793. #endif
  1794. " present:%lukB"
  1795. " pages_scanned:%lu"
  1796. " all_unreclaimable? %s"
  1797. "\n",
  1798. zone->name,
  1799. K(zone_page_state(zone, NR_FREE_PAGES)),
  1800. K(min_wmark_pages(zone)),
  1801. K(low_wmark_pages(zone)),
  1802. K(high_wmark_pages(zone)),
  1803. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  1804. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  1805. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  1806. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  1807. #ifdef CONFIG_UNEVICTABLE_LRU
  1808. K(zone_page_state(zone, NR_UNEVICTABLE)),
  1809. #endif
  1810. K(zone->present_pages),
  1811. zone->pages_scanned,
  1812. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1813. );
  1814. printk("lowmem_reserve[]:");
  1815. for (i = 0; i < MAX_NR_ZONES; i++)
  1816. printk(" %lu", zone->lowmem_reserve[i]);
  1817. printk("\n");
  1818. }
  1819. for_each_populated_zone(zone) {
  1820. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1821. show_node(zone);
  1822. printk("%s: ", zone->name);
  1823. spin_lock_irqsave(&zone->lock, flags);
  1824. for (order = 0; order < MAX_ORDER; order++) {
  1825. nr[order] = zone->free_area[order].nr_free;
  1826. total += nr[order] << order;
  1827. }
  1828. spin_unlock_irqrestore(&zone->lock, flags);
  1829. for (order = 0; order < MAX_ORDER; order++)
  1830. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1831. printk("= %lukB\n", K(total));
  1832. }
  1833. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1834. show_swap_cache_info();
  1835. }
  1836. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  1837. {
  1838. zoneref->zone = zone;
  1839. zoneref->zone_idx = zone_idx(zone);
  1840. }
  1841. /*
  1842. * Builds allocation fallback zone lists.
  1843. *
  1844. * Add all populated zones of a node to the zonelist.
  1845. */
  1846. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1847. int nr_zones, enum zone_type zone_type)
  1848. {
  1849. struct zone *zone;
  1850. BUG_ON(zone_type >= MAX_NR_ZONES);
  1851. zone_type++;
  1852. do {
  1853. zone_type--;
  1854. zone = pgdat->node_zones + zone_type;
  1855. if (populated_zone(zone)) {
  1856. zoneref_set_zone(zone,
  1857. &zonelist->_zonerefs[nr_zones++]);
  1858. check_highest_zone(zone_type);
  1859. }
  1860. } while (zone_type);
  1861. return nr_zones;
  1862. }
  1863. /*
  1864. * zonelist_order:
  1865. * 0 = automatic detection of better ordering.
  1866. * 1 = order by ([node] distance, -zonetype)
  1867. * 2 = order by (-zonetype, [node] distance)
  1868. *
  1869. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1870. * the same zonelist. So only NUMA can configure this param.
  1871. */
  1872. #define ZONELIST_ORDER_DEFAULT 0
  1873. #define ZONELIST_ORDER_NODE 1
  1874. #define ZONELIST_ORDER_ZONE 2
  1875. /* zonelist order in the kernel.
  1876. * set_zonelist_order() will set this to NODE or ZONE.
  1877. */
  1878. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1879. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1880. #ifdef CONFIG_NUMA
  1881. /* The value user specified ....changed by config */
  1882. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1883. /* string for sysctl */
  1884. #define NUMA_ZONELIST_ORDER_LEN 16
  1885. char numa_zonelist_order[16] = "default";
  1886. /*
  1887. * interface for configure zonelist ordering.
  1888. * command line option "numa_zonelist_order"
  1889. * = "[dD]efault - default, automatic configuration.
  1890. * = "[nN]ode - order by node locality, then by zone within node
  1891. * = "[zZ]one - order by zone, then by locality within zone
  1892. */
  1893. static int __parse_numa_zonelist_order(char *s)
  1894. {
  1895. if (*s == 'd' || *s == 'D') {
  1896. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1897. } else if (*s == 'n' || *s == 'N') {
  1898. user_zonelist_order = ZONELIST_ORDER_NODE;
  1899. } else if (*s == 'z' || *s == 'Z') {
  1900. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1901. } else {
  1902. printk(KERN_WARNING
  1903. "Ignoring invalid numa_zonelist_order value: "
  1904. "%s\n", s);
  1905. return -EINVAL;
  1906. }
  1907. return 0;
  1908. }
  1909. static __init int setup_numa_zonelist_order(char *s)
  1910. {
  1911. if (s)
  1912. return __parse_numa_zonelist_order(s);
  1913. return 0;
  1914. }
  1915. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1916. /*
  1917. * sysctl handler for numa_zonelist_order
  1918. */
  1919. int numa_zonelist_order_handler(ctl_table *table, int write,
  1920. struct file *file, void __user *buffer, size_t *length,
  1921. loff_t *ppos)
  1922. {
  1923. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1924. int ret;
  1925. if (write)
  1926. strncpy(saved_string, (char*)table->data,
  1927. NUMA_ZONELIST_ORDER_LEN);
  1928. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1929. if (ret)
  1930. return ret;
  1931. if (write) {
  1932. int oldval = user_zonelist_order;
  1933. if (__parse_numa_zonelist_order((char*)table->data)) {
  1934. /*
  1935. * bogus value. restore saved string
  1936. */
  1937. strncpy((char*)table->data, saved_string,
  1938. NUMA_ZONELIST_ORDER_LEN);
  1939. user_zonelist_order = oldval;
  1940. } else if (oldval != user_zonelist_order)
  1941. build_all_zonelists();
  1942. }
  1943. return 0;
  1944. }
  1945. #define MAX_NODE_LOAD (num_online_nodes())
  1946. static int node_load[MAX_NUMNODES];
  1947. /**
  1948. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1949. * @node: node whose fallback list we're appending
  1950. * @used_node_mask: nodemask_t of already used nodes
  1951. *
  1952. * We use a number of factors to determine which is the next node that should
  1953. * appear on a given node's fallback list. The node should not have appeared
  1954. * already in @node's fallback list, and it should be the next closest node
  1955. * according to the distance array (which contains arbitrary distance values
  1956. * from each node to each node in the system), and should also prefer nodes
  1957. * with no CPUs, since presumably they'll have very little allocation pressure
  1958. * on them otherwise.
  1959. * It returns -1 if no node is found.
  1960. */
  1961. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1962. {
  1963. int n, val;
  1964. int min_val = INT_MAX;
  1965. int best_node = -1;
  1966. const struct cpumask *tmp = cpumask_of_node(0);
  1967. /* Use the local node if we haven't already */
  1968. if (!node_isset(node, *used_node_mask)) {
  1969. node_set(node, *used_node_mask);
  1970. return node;
  1971. }
  1972. for_each_node_state(n, N_HIGH_MEMORY) {
  1973. /* Don't want a node to appear more than once */
  1974. if (node_isset(n, *used_node_mask))
  1975. continue;
  1976. /* Use the distance array to find the distance */
  1977. val = node_distance(node, n);
  1978. /* Penalize nodes under us ("prefer the next node") */
  1979. val += (n < node);
  1980. /* Give preference to headless and unused nodes */
  1981. tmp = cpumask_of_node(n);
  1982. if (!cpumask_empty(tmp))
  1983. val += PENALTY_FOR_NODE_WITH_CPUS;
  1984. /* Slight preference for less loaded node */
  1985. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1986. val += node_load[n];
  1987. if (val < min_val) {
  1988. min_val = val;
  1989. best_node = n;
  1990. }
  1991. }
  1992. if (best_node >= 0)
  1993. node_set(best_node, *used_node_mask);
  1994. return best_node;
  1995. }
  1996. /*
  1997. * Build zonelists ordered by node and zones within node.
  1998. * This results in maximum locality--normal zone overflows into local
  1999. * DMA zone, if any--but risks exhausting DMA zone.
  2000. */
  2001. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2002. {
  2003. int j;
  2004. struct zonelist *zonelist;
  2005. zonelist = &pgdat->node_zonelists[0];
  2006. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2007. ;
  2008. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2009. MAX_NR_ZONES - 1);
  2010. zonelist->_zonerefs[j].zone = NULL;
  2011. zonelist->_zonerefs[j].zone_idx = 0;
  2012. }
  2013. /*
  2014. * Build gfp_thisnode zonelists
  2015. */
  2016. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2017. {
  2018. int j;
  2019. struct zonelist *zonelist;
  2020. zonelist = &pgdat->node_zonelists[1];
  2021. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2022. zonelist->_zonerefs[j].zone = NULL;
  2023. zonelist->_zonerefs[j].zone_idx = 0;
  2024. }
  2025. /*
  2026. * Build zonelists ordered by zone and nodes within zones.
  2027. * This results in conserving DMA zone[s] until all Normal memory is
  2028. * exhausted, but results in overflowing to remote node while memory
  2029. * may still exist in local DMA zone.
  2030. */
  2031. static int node_order[MAX_NUMNODES];
  2032. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2033. {
  2034. int pos, j, node;
  2035. int zone_type; /* needs to be signed */
  2036. struct zone *z;
  2037. struct zonelist *zonelist;
  2038. zonelist = &pgdat->node_zonelists[0];
  2039. pos = 0;
  2040. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2041. for (j = 0; j < nr_nodes; j++) {
  2042. node = node_order[j];
  2043. z = &NODE_DATA(node)->node_zones[zone_type];
  2044. if (populated_zone(z)) {
  2045. zoneref_set_zone(z,
  2046. &zonelist->_zonerefs[pos++]);
  2047. check_highest_zone(zone_type);
  2048. }
  2049. }
  2050. }
  2051. zonelist->_zonerefs[pos].zone = NULL;
  2052. zonelist->_zonerefs[pos].zone_idx = 0;
  2053. }
  2054. static int default_zonelist_order(void)
  2055. {
  2056. int nid, zone_type;
  2057. unsigned long low_kmem_size,total_size;
  2058. struct zone *z;
  2059. int average_size;
  2060. /*
  2061. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  2062. * If they are really small and used heavily, the system can fall
  2063. * into OOM very easily.
  2064. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  2065. */
  2066. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2067. low_kmem_size = 0;
  2068. total_size = 0;
  2069. for_each_online_node(nid) {
  2070. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2071. z = &NODE_DATA(nid)->node_zones[zone_type];
  2072. if (populated_zone(z)) {
  2073. if (zone_type < ZONE_NORMAL)
  2074. low_kmem_size += z->present_pages;
  2075. total_size += z->present_pages;
  2076. }
  2077. }
  2078. }
  2079. if (!low_kmem_size || /* there are no DMA area. */
  2080. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2081. return ZONELIST_ORDER_NODE;
  2082. /*
  2083. * look into each node's config.
  2084. * If there is a node whose DMA/DMA32 memory is very big area on
  2085. * local memory, NODE_ORDER may be suitable.
  2086. */
  2087. average_size = total_size /
  2088. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  2089. for_each_online_node(nid) {
  2090. low_kmem_size = 0;
  2091. total_size = 0;
  2092. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2093. z = &NODE_DATA(nid)->node_zones[zone_type];
  2094. if (populated_zone(z)) {
  2095. if (zone_type < ZONE_NORMAL)
  2096. low_kmem_size += z->present_pages;
  2097. total_size += z->present_pages;
  2098. }
  2099. }
  2100. if (low_kmem_size &&
  2101. total_size > average_size && /* ignore small node */
  2102. low_kmem_size > total_size * 70/100)
  2103. return ZONELIST_ORDER_NODE;
  2104. }
  2105. return ZONELIST_ORDER_ZONE;
  2106. }
  2107. static void set_zonelist_order(void)
  2108. {
  2109. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2110. current_zonelist_order = default_zonelist_order();
  2111. else
  2112. current_zonelist_order = user_zonelist_order;
  2113. }
  2114. static void build_zonelists(pg_data_t *pgdat)
  2115. {
  2116. int j, node, load;
  2117. enum zone_type i;
  2118. nodemask_t used_mask;
  2119. int local_node, prev_node;
  2120. struct zonelist *zonelist;
  2121. int order = current_zonelist_order;
  2122. /* initialize zonelists */
  2123. for (i = 0; i < MAX_ZONELISTS; i++) {
  2124. zonelist = pgdat->node_zonelists + i;
  2125. zonelist->_zonerefs[0].zone = NULL;
  2126. zonelist->_zonerefs[0].zone_idx = 0;
  2127. }
  2128. /* NUMA-aware ordering of nodes */
  2129. local_node = pgdat->node_id;
  2130. load = num_online_nodes();
  2131. prev_node = local_node;
  2132. nodes_clear(used_mask);
  2133. memset(node_load, 0, sizeof(node_load));
  2134. memset(node_order, 0, sizeof(node_order));
  2135. j = 0;
  2136. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2137. int distance = node_distance(local_node, node);
  2138. /*
  2139. * If another node is sufficiently far away then it is better
  2140. * to reclaim pages in a zone before going off node.
  2141. */
  2142. if (distance > RECLAIM_DISTANCE)
  2143. zone_reclaim_mode = 1;
  2144. /*
  2145. * We don't want to pressure a particular node.
  2146. * So adding penalty to the first node in same
  2147. * distance group to make it round-robin.
  2148. */
  2149. if (distance != node_distance(local_node, prev_node))
  2150. node_load[node] = load;
  2151. prev_node = node;
  2152. load--;
  2153. if (order == ZONELIST_ORDER_NODE)
  2154. build_zonelists_in_node_order(pgdat, node);
  2155. else
  2156. node_order[j++] = node; /* remember order */
  2157. }
  2158. if (order == ZONELIST_ORDER_ZONE) {
  2159. /* calculate node order -- i.e., DMA last! */
  2160. build_zonelists_in_zone_order(pgdat, j);
  2161. }
  2162. build_thisnode_zonelists(pgdat);
  2163. }
  2164. /* Construct the zonelist performance cache - see further mmzone.h */
  2165. static void build_zonelist_cache(pg_data_t *pgdat)
  2166. {
  2167. struct zonelist *zonelist;
  2168. struct zonelist_cache *zlc;
  2169. struct zoneref *z;
  2170. zonelist = &pgdat->node_zonelists[0];
  2171. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2172. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2173. for (z = zonelist->_zonerefs; z->zone; z++)
  2174. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2175. }
  2176. #else /* CONFIG_NUMA */
  2177. static void set_zonelist_order(void)
  2178. {
  2179. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2180. }
  2181. static void build_zonelists(pg_data_t *pgdat)
  2182. {
  2183. int node, local_node;
  2184. enum zone_type j;
  2185. struct zonelist *zonelist;
  2186. local_node = pgdat->node_id;
  2187. zonelist = &pgdat->node_zonelists[0];
  2188. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2189. /*
  2190. * Now we build the zonelist so that it contains the zones
  2191. * of all the other nodes.
  2192. * We don't want to pressure a particular node, so when
  2193. * building the zones for node N, we make sure that the
  2194. * zones coming right after the local ones are those from
  2195. * node N+1 (modulo N)
  2196. */
  2197. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2198. if (!node_online(node))
  2199. continue;
  2200. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2201. MAX_NR_ZONES - 1);
  2202. }
  2203. for (node = 0; node < local_node; node++) {
  2204. if (!node_online(node))
  2205. continue;
  2206. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2207. MAX_NR_ZONES - 1);
  2208. }
  2209. zonelist->_zonerefs[j].zone = NULL;
  2210. zonelist->_zonerefs[j].zone_idx = 0;
  2211. }
  2212. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2213. static void build_zonelist_cache(pg_data_t *pgdat)
  2214. {
  2215. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2216. }
  2217. #endif /* CONFIG_NUMA */
  2218. /* return values int ....just for stop_machine() */
  2219. static int __build_all_zonelists(void *dummy)
  2220. {
  2221. int nid;
  2222. for_each_online_node(nid) {
  2223. pg_data_t *pgdat = NODE_DATA(nid);
  2224. build_zonelists(pgdat);
  2225. build_zonelist_cache(pgdat);
  2226. }
  2227. return 0;
  2228. }
  2229. void build_all_zonelists(void)
  2230. {
  2231. set_zonelist_order();
  2232. if (system_state == SYSTEM_BOOTING) {
  2233. __build_all_zonelists(NULL);
  2234. mminit_verify_zonelist();
  2235. cpuset_init_current_mems_allowed();
  2236. } else {
  2237. /* we have to stop all cpus to guarantee there is no user
  2238. of zonelist */
  2239. stop_machine(__build_all_zonelists, NULL, NULL);
  2240. /* cpuset refresh routine should be here */
  2241. }
  2242. vm_total_pages = nr_free_pagecache_pages();
  2243. /*
  2244. * Disable grouping by mobility if the number of pages in the
  2245. * system is too low to allow the mechanism to work. It would be
  2246. * more accurate, but expensive to check per-zone. This check is
  2247. * made on memory-hotadd so a system can start with mobility
  2248. * disabled and enable it later
  2249. */
  2250. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2251. page_group_by_mobility_disabled = 1;
  2252. else
  2253. page_group_by_mobility_disabled = 0;
  2254. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2255. "Total pages: %ld\n",
  2256. num_online_nodes(),
  2257. zonelist_order_name[current_zonelist_order],
  2258. page_group_by_mobility_disabled ? "off" : "on",
  2259. vm_total_pages);
  2260. #ifdef CONFIG_NUMA
  2261. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2262. #endif
  2263. }
  2264. /*
  2265. * Helper functions to size the waitqueue hash table.
  2266. * Essentially these want to choose hash table sizes sufficiently
  2267. * large so that collisions trying to wait on pages are rare.
  2268. * But in fact, the number of active page waitqueues on typical
  2269. * systems is ridiculously low, less than 200. So this is even
  2270. * conservative, even though it seems large.
  2271. *
  2272. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2273. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2274. */
  2275. #define PAGES_PER_WAITQUEUE 256
  2276. #ifndef CONFIG_MEMORY_HOTPLUG
  2277. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2278. {
  2279. unsigned long size = 1;
  2280. pages /= PAGES_PER_WAITQUEUE;
  2281. while (size < pages)
  2282. size <<= 1;
  2283. /*
  2284. * Once we have dozens or even hundreds of threads sleeping
  2285. * on IO we've got bigger problems than wait queue collision.
  2286. * Limit the size of the wait table to a reasonable size.
  2287. */
  2288. size = min(size, 4096UL);
  2289. return max(size, 4UL);
  2290. }
  2291. #else
  2292. /*
  2293. * A zone's size might be changed by hot-add, so it is not possible to determine
  2294. * a suitable size for its wait_table. So we use the maximum size now.
  2295. *
  2296. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2297. *
  2298. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2299. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2300. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2301. *
  2302. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2303. * or more by the traditional way. (See above). It equals:
  2304. *
  2305. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2306. * ia64(16K page size) : = ( 8G + 4M)byte.
  2307. * powerpc (64K page size) : = (32G +16M)byte.
  2308. */
  2309. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2310. {
  2311. return 4096UL;
  2312. }
  2313. #endif
  2314. /*
  2315. * This is an integer logarithm so that shifts can be used later
  2316. * to extract the more random high bits from the multiplicative
  2317. * hash function before the remainder is taken.
  2318. */
  2319. static inline unsigned long wait_table_bits(unsigned long size)
  2320. {
  2321. return ffz(~size);
  2322. }
  2323. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2324. /*
  2325. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2326. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  2327. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2328. * higher will lead to a bigger reserve which will get freed as contiguous
  2329. * blocks as reclaim kicks in
  2330. */
  2331. static void setup_zone_migrate_reserve(struct zone *zone)
  2332. {
  2333. unsigned long start_pfn, pfn, end_pfn;
  2334. struct page *page;
  2335. unsigned long reserve, block_migratetype;
  2336. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2337. start_pfn = zone->zone_start_pfn;
  2338. end_pfn = start_pfn + zone->spanned_pages;
  2339. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  2340. pageblock_order;
  2341. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2342. if (!pfn_valid(pfn))
  2343. continue;
  2344. page = pfn_to_page(pfn);
  2345. /* Watch out for overlapping nodes */
  2346. if (page_to_nid(page) != zone_to_nid(zone))
  2347. continue;
  2348. /* Blocks with reserved pages will never free, skip them. */
  2349. if (PageReserved(page))
  2350. continue;
  2351. block_migratetype = get_pageblock_migratetype(page);
  2352. /* If this block is reserved, account for it */
  2353. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2354. reserve--;
  2355. continue;
  2356. }
  2357. /* Suitable for reserving if this block is movable */
  2358. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2359. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2360. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2361. reserve--;
  2362. continue;
  2363. }
  2364. /*
  2365. * If the reserve is met and this is a previous reserved block,
  2366. * take it back
  2367. */
  2368. if (block_migratetype == MIGRATE_RESERVE) {
  2369. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2370. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2371. }
  2372. }
  2373. }
  2374. /*
  2375. * Initially all pages are reserved - free ones are freed
  2376. * up by free_all_bootmem() once the early boot process is
  2377. * done. Non-atomic initialization, single-pass.
  2378. */
  2379. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2380. unsigned long start_pfn, enum memmap_context context)
  2381. {
  2382. struct page *page;
  2383. unsigned long end_pfn = start_pfn + size;
  2384. unsigned long pfn;
  2385. struct zone *z;
  2386. if (highest_memmap_pfn < end_pfn - 1)
  2387. highest_memmap_pfn = end_pfn - 1;
  2388. z = &NODE_DATA(nid)->node_zones[zone];
  2389. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2390. /*
  2391. * There can be holes in boot-time mem_map[]s
  2392. * handed to this function. They do not
  2393. * exist on hotplugged memory.
  2394. */
  2395. if (context == MEMMAP_EARLY) {
  2396. if (!early_pfn_valid(pfn))
  2397. continue;
  2398. if (!early_pfn_in_nid(pfn, nid))
  2399. continue;
  2400. }
  2401. page = pfn_to_page(pfn);
  2402. set_page_links(page, zone, nid, pfn);
  2403. mminit_verify_page_links(page, zone, nid, pfn);
  2404. init_page_count(page);
  2405. reset_page_mapcount(page);
  2406. SetPageReserved(page);
  2407. /*
  2408. * Mark the block movable so that blocks are reserved for
  2409. * movable at startup. This will force kernel allocations
  2410. * to reserve their blocks rather than leaking throughout
  2411. * the address space during boot when many long-lived
  2412. * kernel allocations are made. Later some blocks near
  2413. * the start are marked MIGRATE_RESERVE by
  2414. * setup_zone_migrate_reserve()
  2415. *
  2416. * bitmap is created for zone's valid pfn range. but memmap
  2417. * can be created for invalid pages (for alignment)
  2418. * check here not to call set_pageblock_migratetype() against
  2419. * pfn out of zone.
  2420. */
  2421. if ((z->zone_start_pfn <= pfn)
  2422. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2423. && !(pfn & (pageblock_nr_pages - 1)))
  2424. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2425. INIT_LIST_HEAD(&page->lru);
  2426. #ifdef WANT_PAGE_VIRTUAL
  2427. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2428. if (!is_highmem_idx(zone))
  2429. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2430. #endif
  2431. }
  2432. }
  2433. static void __meminit zone_init_free_lists(struct zone *zone)
  2434. {
  2435. int order, t;
  2436. for_each_migratetype_order(order, t) {
  2437. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2438. zone->free_area[order].nr_free = 0;
  2439. }
  2440. }
  2441. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2442. #define memmap_init(size, nid, zone, start_pfn) \
  2443. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2444. #endif
  2445. static int zone_batchsize(struct zone *zone)
  2446. {
  2447. #ifdef CONFIG_MMU
  2448. int batch;
  2449. /*
  2450. * The per-cpu-pages pools are set to around 1000th of the
  2451. * size of the zone. But no more than 1/2 of a meg.
  2452. *
  2453. * OK, so we don't know how big the cache is. So guess.
  2454. */
  2455. batch = zone->present_pages / 1024;
  2456. if (batch * PAGE_SIZE > 512 * 1024)
  2457. batch = (512 * 1024) / PAGE_SIZE;
  2458. batch /= 4; /* We effectively *= 4 below */
  2459. if (batch < 1)
  2460. batch = 1;
  2461. /*
  2462. * Clamp the batch to a 2^n - 1 value. Having a power
  2463. * of 2 value was found to be more likely to have
  2464. * suboptimal cache aliasing properties in some cases.
  2465. *
  2466. * For example if 2 tasks are alternately allocating
  2467. * batches of pages, one task can end up with a lot
  2468. * of pages of one half of the possible page colors
  2469. * and the other with pages of the other colors.
  2470. */
  2471. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  2472. return batch;
  2473. #else
  2474. /* The deferral and batching of frees should be suppressed under NOMMU
  2475. * conditions.
  2476. *
  2477. * The problem is that NOMMU needs to be able to allocate large chunks
  2478. * of contiguous memory as there's no hardware page translation to
  2479. * assemble apparent contiguous memory from discontiguous pages.
  2480. *
  2481. * Queueing large contiguous runs of pages for batching, however,
  2482. * causes the pages to actually be freed in smaller chunks. As there
  2483. * can be a significant delay between the individual batches being
  2484. * recycled, this leads to the once large chunks of space being
  2485. * fragmented and becoming unavailable for high-order allocations.
  2486. */
  2487. return 0;
  2488. #endif
  2489. }
  2490. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2491. {
  2492. struct per_cpu_pages *pcp;
  2493. memset(p, 0, sizeof(*p));
  2494. pcp = &p->pcp;
  2495. pcp->count = 0;
  2496. pcp->high = 6 * batch;
  2497. pcp->batch = max(1UL, 1 * batch);
  2498. INIT_LIST_HEAD(&pcp->list);
  2499. }
  2500. /*
  2501. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2502. * to the value high for the pageset p.
  2503. */
  2504. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2505. unsigned long high)
  2506. {
  2507. struct per_cpu_pages *pcp;
  2508. pcp = &p->pcp;
  2509. pcp->high = high;
  2510. pcp->batch = max(1UL, high/4);
  2511. if ((high/4) > (PAGE_SHIFT * 8))
  2512. pcp->batch = PAGE_SHIFT * 8;
  2513. }
  2514. #ifdef CONFIG_NUMA
  2515. /*
  2516. * Boot pageset table. One per cpu which is going to be used for all
  2517. * zones and all nodes. The parameters will be set in such a way
  2518. * that an item put on a list will immediately be handed over to
  2519. * the buddy list. This is safe since pageset manipulation is done
  2520. * with interrupts disabled.
  2521. *
  2522. * Some NUMA counter updates may also be caught by the boot pagesets.
  2523. *
  2524. * The boot_pagesets must be kept even after bootup is complete for
  2525. * unused processors and/or zones. They do play a role for bootstrapping
  2526. * hotplugged processors.
  2527. *
  2528. * zoneinfo_show() and maybe other functions do
  2529. * not check if the processor is online before following the pageset pointer.
  2530. * Other parts of the kernel may not check if the zone is available.
  2531. */
  2532. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2533. /*
  2534. * Dynamically allocate memory for the
  2535. * per cpu pageset array in struct zone.
  2536. */
  2537. static int __cpuinit process_zones(int cpu)
  2538. {
  2539. struct zone *zone, *dzone;
  2540. int node = cpu_to_node(cpu);
  2541. node_set_state(node, N_CPU); /* this node has a cpu */
  2542. for_each_populated_zone(zone) {
  2543. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2544. GFP_KERNEL, node);
  2545. if (!zone_pcp(zone, cpu))
  2546. goto bad;
  2547. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2548. if (percpu_pagelist_fraction)
  2549. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2550. (zone->present_pages / percpu_pagelist_fraction));
  2551. }
  2552. return 0;
  2553. bad:
  2554. for_each_zone(dzone) {
  2555. if (!populated_zone(dzone))
  2556. continue;
  2557. if (dzone == zone)
  2558. break;
  2559. kfree(zone_pcp(dzone, cpu));
  2560. zone_pcp(dzone, cpu) = NULL;
  2561. }
  2562. return -ENOMEM;
  2563. }
  2564. static inline void free_zone_pagesets(int cpu)
  2565. {
  2566. struct zone *zone;
  2567. for_each_zone(zone) {
  2568. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2569. /* Free per_cpu_pageset if it is slab allocated */
  2570. if (pset != &boot_pageset[cpu])
  2571. kfree(pset);
  2572. zone_pcp(zone, cpu) = NULL;
  2573. }
  2574. }
  2575. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2576. unsigned long action,
  2577. void *hcpu)
  2578. {
  2579. int cpu = (long)hcpu;
  2580. int ret = NOTIFY_OK;
  2581. switch (action) {
  2582. case CPU_UP_PREPARE:
  2583. case CPU_UP_PREPARE_FROZEN:
  2584. if (process_zones(cpu))
  2585. ret = NOTIFY_BAD;
  2586. break;
  2587. case CPU_UP_CANCELED:
  2588. case CPU_UP_CANCELED_FROZEN:
  2589. case CPU_DEAD:
  2590. case CPU_DEAD_FROZEN:
  2591. free_zone_pagesets(cpu);
  2592. break;
  2593. default:
  2594. break;
  2595. }
  2596. return ret;
  2597. }
  2598. static struct notifier_block __cpuinitdata pageset_notifier =
  2599. { &pageset_cpuup_callback, NULL, 0 };
  2600. void __init setup_per_cpu_pageset(void)
  2601. {
  2602. int err;
  2603. /* Initialize per_cpu_pageset for cpu 0.
  2604. * A cpuup callback will do this for every cpu
  2605. * as it comes online
  2606. */
  2607. err = process_zones(smp_processor_id());
  2608. BUG_ON(err);
  2609. register_cpu_notifier(&pageset_notifier);
  2610. }
  2611. #endif
  2612. static noinline __init_refok
  2613. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2614. {
  2615. int i;
  2616. struct pglist_data *pgdat = zone->zone_pgdat;
  2617. size_t alloc_size;
  2618. /*
  2619. * The per-page waitqueue mechanism uses hashed waitqueues
  2620. * per zone.
  2621. */
  2622. zone->wait_table_hash_nr_entries =
  2623. wait_table_hash_nr_entries(zone_size_pages);
  2624. zone->wait_table_bits =
  2625. wait_table_bits(zone->wait_table_hash_nr_entries);
  2626. alloc_size = zone->wait_table_hash_nr_entries
  2627. * sizeof(wait_queue_head_t);
  2628. if (!slab_is_available()) {
  2629. zone->wait_table = (wait_queue_head_t *)
  2630. alloc_bootmem_node(pgdat, alloc_size);
  2631. } else {
  2632. /*
  2633. * This case means that a zone whose size was 0 gets new memory
  2634. * via memory hot-add.
  2635. * But it may be the case that a new node was hot-added. In
  2636. * this case vmalloc() will not be able to use this new node's
  2637. * memory - this wait_table must be initialized to use this new
  2638. * node itself as well.
  2639. * To use this new node's memory, further consideration will be
  2640. * necessary.
  2641. */
  2642. zone->wait_table = vmalloc(alloc_size);
  2643. }
  2644. if (!zone->wait_table)
  2645. return -ENOMEM;
  2646. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2647. init_waitqueue_head(zone->wait_table + i);
  2648. return 0;
  2649. }
  2650. static __meminit void zone_pcp_init(struct zone *zone)
  2651. {
  2652. int cpu;
  2653. unsigned long batch = zone_batchsize(zone);
  2654. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2655. #ifdef CONFIG_NUMA
  2656. /* Early boot. Slab allocator not functional yet */
  2657. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2658. setup_pageset(&boot_pageset[cpu],0);
  2659. #else
  2660. setup_pageset(zone_pcp(zone,cpu), batch);
  2661. #endif
  2662. }
  2663. if (zone->present_pages)
  2664. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2665. zone->name, zone->present_pages, batch);
  2666. }
  2667. __meminit int init_currently_empty_zone(struct zone *zone,
  2668. unsigned long zone_start_pfn,
  2669. unsigned long size,
  2670. enum memmap_context context)
  2671. {
  2672. struct pglist_data *pgdat = zone->zone_pgdat;
  2673. int ret;
  2674. ret = zone_wait_table_init(zone, size);
  2675. if (ret)
  2676. return ret;
  2677. pgdat->nr_zones = zone_idx(zone) + 1;
  2678. zone->zone_start_pfn = zone_start_pfn;
  2679. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  2680. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  2681. pgdat->node_id,
  2682. (unsigned long)zone_idx(zone),
  2683. zone_start_pfn, (zone_start_pfn + size));
  2684. zone_init_free_lists(zone);
  2685. return 0;
  2686. }
  2687. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2688. /*
  2689. * Basic iterator support. Return the first range of PFNs for a node
  2690. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2691. */
  2692. static int __meminit first_active_region_index_in_nid(int nid)
  2693. {
  2694. int i;
  2695. for (i = 0; i < nr_nodemap_entries; i++)
  2696. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2697. return i;
  2698. return -1;
  2699. }
  2700. /*
  2701. * Basic iterator support. Return the next active range of PFNs for a node
  2702. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2703. */
  2704. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2705. {
  2706. for (index = index + 1; index < nr_nodemap_entries; index++)
  2707. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2708. return index;
  2709. return -1;
  2710. }
  2711. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2712. /*
  2713. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2714. * Architectures may implement their own version but if add_active_range()
  2715. * was used and there are no special requirements, this is a convenient
  2716. * alternative
  2717. */
  2718. int __meminit __early_pfn_to_nid(unsigned long pfn)
  2719. {
  2720. int i;
  2721. for (i = 0; i < nr_nodemap_entries; i++) {
  2722. unsigned long start_pfn = early_node_map[i].start_pfn;
  2723. unsigned long end_pfn = early_node_map[i].end_pfn;
  2724. if (start_pfn <= pfn && pfn < end_pfn)
  2725. return early_node_map[i].nid;
  2726. }
  2727. /* This is a memory hole */
  2728. return -1;
  2729. }
  2730. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2731. int __meminit early_pfn_to_nid(unsigned long pfn)
  2732. {
  2733. int nid;
  2734. nid = __early_pfn_to_nid(pfn);
  2735. if (nid >= 0)
  2736. return nid;
  2737. /* just returns 0 */
  2738. return 0;
  2739. }
  2740. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  2741. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  2742. {
  2743. int nid;
  2744. nid = __early_pfn_to_nid(pfn);
  2745. if (nid >= 0 && nid != node)
  2746. return false;
  2747. return true;
  2748. }
  2749. #endif
  2750. /* Basic iterator support to walk early_node_map[] */
  2751. #define for_each_active_range_index_in_nid(i, nid) \
  2752. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2753. i = next_active_region_index_in_nid(i, nid))
  2754. /**
  2755. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2756. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2757. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2758. *
  2759. * If an architecture guarantees that all ranges registered with
  2760. * add_active_ranges() contain no holes and may be freed, this
  2761. * this function may be used instead of calling free_bootmem() manually.
  2762. */
  2763. void __init free_bootmem_with_active_regions(int nid,
  2764. unsigned long max_low_pfn)
  2765. {
  2766. int i;
  2767. for_each_active_range_index_in_nid(i, nid) {
  2768. unsigned long size_pages = 0;
  2769. unsigned long end_pfn = early_node_map[i].end_pfn;
  2770. if (early_node_map[i].start_pfn >= max_low_pfn)
  2771. continue;
  2772. if (end_pfn > max_low_pfn)
  2773. end_pfn = max_low_pfn;
  2774. size_pages = end_pfn - early_node_map[i].start_pfn;
  2775. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2776. PFN_PHYS(early_node_map[i].start_pfn),
  2777. size_pages << PAGE_SHIFT);
  2778. }
  2779. }
  2780. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  2781. {
  2782. int i;
  2783. int ret;
  2784. for_each_active_range_index_in_nid(i, nid) {
  2785. ret = work_fn(early_node_map[i].start_pfn,
  2786. early_node_map[i].end_pfn, data);
  2787. if (ret)
  2788. break;
  2789. }
  2790. }
  2791. /**
  2792. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2793. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2794. *
  2795. * If an architecture guarantees that all ranges registered with
  2796. * add_active_ranges() contain no holes and may be freed, this
  2797. * function may be used instead of calling memory_present() manually.
  2798. */
  2799. void __init sparse_memory_present_with_active_regions(int nid)
  2800. {
  2801. int i;
  2802. for_each_active_range_index_in_nid(i, nid)
  2803. memory_present(early_node_map[i].nid,
  2804. early_node_map[i].start_pfn,
  2805. early_node_map[i].end_pfn);
  2806. }
  2807. /**
  2808. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2809. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2810. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2811. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2812. *
  2813. * It returns the start and end page frame of a node based on information
  2814. * provided by an arch calling add_active_range(). If called for a node
  2815. * with no available memory, a warning is printed and the start and end
  2816. * PFNs will be 0.
  2817. */
  2818. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2819. unsigned long *start_pfn, unsigned long *end_pfn)
  2820. {
  2821. int i;
  2822. *start_pfn = -1UL;
  2823. *end_pfn = 0;
  2824. for_each_active_range_index_in_nid(i, nid) {
  2825. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2826. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2827. }
  2828. if (*start_pfn == -1UL)
  2829. *start_pfn = 0;
  2830. }
  2831. /*
  2832. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2833. * assumption is made that zones within a node are ordered in monotonic
  2834. * increasing memory addresses so that the "highest" populated zone is used
  2835. */
  2836. static void __init find_usable_zone_for_movable(void)
  2837. {
  2838. int zone_index;
  2839. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2840. if (zone_index == ZONE_MOVABLE)
  2841. continue;
  2842. if (arch_zone_highest_possible_pfn[zone_index] >
  2843. arch_zone_lowest_possible_pfn[zone_index])
  2844. break;
  2845. }
  2846. VM_BUG_ON(zone_index == -1);
  2847. movable_zone = zone_index;
  2848. }
  2849. /*
  2850. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2851. * because it is sized independant of architecture. Unlike the other zones,
  2852. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2853. * in each node depending on the size of each node and how evenly kernelcore
  2854. * is distributed. This helper function adjusts the zone ranges
  2855. * provided by the architecture for a given node by using the end of the
  2856. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2857. * zones within a node are in order of monotonic increases memory addresses
  2858. */
  2859. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  2860. unsigned long zone_type,
  2861. unsigned long node_start_pfn,
  2862. unsigned long node_end_pfn,
  2863. unsigned long *zone_start_pfn,
  2864. unsigned long *zone_end_pfn)
  2865. {
  2866. /* Only adjust if ZONE_MOVABLE is on this node */
  2867. if (zone_movable_pfn[nid]) {
  2868. /* Size ZONE_MOVABLE */
  2869. if (zone_type == ZONE_MOVABLE) {
  2870. *zone_start_pfn = zone_movable_pfn[nid];
  2871. *zone_end_pfn = min(node_end_pfn,
  2872. arch_zone_highest_possible_pfn[movable_zone]);
  2873. /* Adjust for ZONE_MOVABLE starting within this range */
  2874. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2875. *zone_end_pfn > zone_movable_pfn[nid]) {
  2876. *zone_end_pfn = zone_movable_pfn[nid];
  2877. /* Check if this whole range is within ZONE_MOVABLE */
  2878. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2879. *zone_start_pfn = *zone_end_pfn;
  2880. }
  2881. }
  2882. /*
  2883. * Return the number of pages a zone spans in a node, including holes
  2884. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2885. */
  2886. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2887. unsigned long zone_type,
  2888. unsigned long *ignored)
  2889. {
  2890. unsigned long node_start_pfn, node_end_pfn;
  2891. unsigned long zone_start_pfn, zone_end_pfn;
  2892. /* Get the start and end of the node and zone */
  2893. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2894. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2895. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2896. adjust_zone_range_for_zone_movable(nid, zone_type,
  2897. node_start_pfn, node_end_pfn,
  2898. &zone_start_pfn, &zone_end_pfn);
  2899. /* Check that this node has pages within the zone's required range */
  2900. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2901. return 0;
  2902. /* Move the zone boundaries inside the node if necessary */
  2903. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2904. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2905. /* Return the spanned pages */
  2906. return zone_end_pfn - zone_start_pfn;
  2907. }
  2908. /*
  2909. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2910. * then all holes in the requested range will be accounted for.
  2911. */
  2912. static unsigned long __meminit __absent_pages_in_range(int nid,
  2913. unsigned long range_start_pfn,
  2914. unsigned long range_end_pfn)
  2915. {
  2916. int i = 0;
  2917. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2918. unsigned long start_pfn;
  2919. /* Find the end_pfn of the first active range of pfns in the node */
  2920. i = first_active_region_index_in_nid(nid);
  2921. if (i == -1)
  2922. return 0;
  2923. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2924. /* Account for ranges before physical memory on this node */
  2925. if (early_node_map[i].start_pfn > range_start_pfn)
  2926. hole_pages = prev_end_pfn - range_start_pfn;
  2927. /* Find all holes for the zone within the node */
  2928. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2929. /* No need to continue if prev_end_pfn is outside the zone */
  2930. if (prev_end_pfn >= range_end_pfn)
  2931. break;
  2932. /* Make sure the end of the zone is not within the hole */
  2933. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2934. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2935. /* Update the hole size cound and move on */
  2936. if (start_pfn > range_start_pfn) {
  2937. BUG_ON(prev_end_pfn > start_pfn);
  2938. hole_pages += start_pfn - prev_end_pfn;
  2939. }
  2940. prev_end_pfn = early_node_map[i].end_pfn;
  2941. }
  2942. /* Account for ranges past physical memory on this node */
  2943. if (range_end_pfn > prev_end_pfn)
  2944. hole_pages += range_end_pfn -
  2945. max(range_start_pfn, prev_end_pfn);
  2946. return hole_pages;
  2947. }
  2948. /**
  2949. * absent_pages_in_range - Return number of page frames in holes within a range
  2950. * @start_pfn: The start PFN to start searching for holes
  2951. * @end_pfn: The end PFN to stop searching for holes
  2952. *
  2953. * It returns the number of pages frames in memory holes within a range.
  2954. */
  2955. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2956. unsigned long end_pfn)
  2957. {
  2958. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2959. }
  2960. /* Return the number of page frames in holes in a zone on a node */
  2961. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2962. unsigned long zone_type,
  2963. unsigned long *ignored)
  2964. {
  2965. unsigned long node_start_pfn, node_end_pfn;
  2966. unsigned long zone_start_pfn, zone_end_pfn;
  2967. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2968. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2969. node_start_pfn);
  2970. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2971. node_end_pfn);
  2972. adjust_zone_range_for_zone_movable(nid, zone_type,
  2973. node_start_pfn, node_end_pfn,
  2974. &zone_start_pfn, &zone_end_pfn);
  2975. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2976. }
  2977. #else
  2978. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2979. unsigned long zone_type,
  2980. unsigned long *zones_size)
  2981. {
  2982. return zones_size[zone_type];
  2983. }
  2984. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2985. unsigned long zone_type,
  2986. unsigned long *zholes_size)
  2987. {
  2988. if (!zholes_size)
  2989. return 0;
  2990. return zholes_size[zone_type];
  2991. }
  2992. #endif
  2993. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  2994. unsigned long *zones_size, unsigned long *zholes_size)
  2995. {
  2996. unsigned long realtotalpages, totalpages = 0;
  2997. enum zone_type i;
  2998. for (i = 0; i < MAX_NR_ZONES; i++)
  2999. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3000. zones_size);
  3001. pgdat->node_spanned_pages = totalpages;
  3002. realtotalpages = totalpages;
  3003. for (i = 0; i < MAX_NR_ZONES; i++)
  3004. realtotalpages -=
  3005. zone_absent_pages_in_node(pgdat->node_id, i,
  3006. zholes_size);
  3007. pgdat->node_present_pages = realtotalpages;
  3008. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3009. realtotalpages);
  3010. }
  3011. #ifndef CONFIG_SPARSEMEM
  3012. /*
  3013. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3014. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3015. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3016. * round what is now in bits to nearest long in bits, then return it in
  3017. * bytes.
  3018. */
  3019. static unsigned long __init usemap_size(unsigned long zonesize)
  3020. {
  3021. unsigned long usemapsize;
  3022. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3023. usemapsize = usemapsize >> pageblock_order;
  3024. usemapsize *= NR_PAGEBLOCK_BITS;
  3025. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3026. return usemapsize / 8;
  3027. }
  3028. static void __init setup_usemap(struct pglist_data *pgdat,
  3029. struct zone *zone, unsigned long zonesize)
  3030. {
  3031. unsigned long usemapsize = usemap_size(zonesize);
  3032. zone->pageblock_flags = NULL;
  3033. if (usemapsize)
  3034. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  3035. }
  3036. #else
  3037. static void inline setup_usemap(struct pglist_data *pgdat,
  3038. struct zone *zone, unsigned long zonesize) {}
  3039. #endif /* CONFIG_SPARSEMEM */
  3040. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3041. /* Return a sensible default order for the pageblock size. */
  3042. static inline int pageblock_default_order(void)
  3043. {
  3044. if (HPAGE_SHIFT > PAGE_SHIFT)
  3045. return HUGETLB_PAGE_ORDER;
  3046. return MAX_ORDER-1;
  3047. }
  3048. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3049. static inline void __init set_pageblock_order(unsigned int order)
  3050. {
  3051. /* Check that pageblock_nr_pages has not already been setup */
  3052. if (pageblock_order)
  3053. return;
  3054. /*
  3055. * Assume the largest contiguous order of interest is a huge page.
  3056. * This value may be variable depending on boot parameters on IA64
  3057. */
  3058. pageblock_order = order;
  3059. }
  3060. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3061. /*
  3062. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3063. * and pageblock_default_order() are unused as pageblock_order is set
  3064. * at compile-time. See include/linux/pageblock-flags.h for the values of
  3065. * pageblock_order based on the kernel config
  3066. */
  3067. static inline int pageblock_default_order(unsigned int order)
  3068. {
  3069. return MAX_ORDER-1;
  3070. }
  3071. #define set_pageblock_order(x) do {} while (0)
  3072. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3073. /*
  3074. * Set up the zone data structures:
  3075. * - mark all pages reserved
  3076. * - mark all memory queues empty
  3077. * - clear the memory bitmaps
  3078. */
  3079. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3080. unsigned long *zones_size, unsigned long *zholes_size)
  3081. {
  3082. enum zone_type j;
  3083. int nid = pgdat->node_id;
  3084. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3085. int ret;
  3086. pgdat_resize_init(pgdat);
  3087. pgdat->nr_zones = 0;
  3088. init_waitqueue_head(&pgdat->kswapd_wait);
  3089. pgdat->kswapd_max_order = 0;
  3090. pgdat_page_cgroup_init(pgdat);
  3091. for (j = 0; j < MAX_NR_ZONES; j++) {
  3092. struct zone *zone = pgdat->node_zones + j;
  3093. unsigned long size, realsize, memmap_pages;
  3094. enum lru_list l;
  3095. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3096. realsize = size - zone_absent_pages_in_node(nid, j,
  3097. zholes_size);
  3098. /*
  3099. * Adjust realsize so that it accounts for how much memory
  3100. * is used by this zone for memmap. This affects the watermark
  3101. * and per-cpu initialisations
  3102. */
  3103. memmap_pages =
  3104. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3105. if (realsize >= memmap_pages) {
  3106. realsize -= memmap_pages;
  3107. if (memmap_pages)
  3108. printk(KERN_DEBUG
  3109. " %s zone: %lu pages used for memmap\n",
  3110. zone_names[j], memmap_pages);
  3111. } else
  3112. printk(KERN_WARNING
  3113. " %s zone: %lu pages exceeds realsize %lu\n",
  3114. zone_names[j], memmap_pages, realsize);
  3115. /* Account for reserved pages */
  3116. if (j == 0 && realsize > dma_reserve) {
  3117. realsize -= dma_reserve;
  3118. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3119. zone_names[0], dma_reserve);
  3120. }
  3121. if (!is_highmem_idx(j))
  3122. nr_kernel_pages += realsize;
  3123. nr_all_pages += realsize;
  3124. zone->spanned_pages = size;
  3125. zone->present_pages = realsize;
  3126. #ifdef CONFIG_NUMA
  3127. zone->node = nid;
  3128. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3129. / 100;
  3130. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3131. #endif
  3132. zone->name = zone_names[j];
  3133. spin_lock_init(&zone->lock);
  3134. spin_lock_init(&zone->lru_lock);
  3135. zone_seqlock_init(zone);
  3136. zone->zone_pgdat = pgdat;
  3137. zone->prev_priority = DEF_PRIORITY;
  3138. zone_pcp_init(zone);
  3139. for_each_lru(l) {
  3140. INIT_LIST_HEAD(&zone->lru[l].list);
  3141. zone->lru[l].nr_scan = 0;
  3142. }
  3143. zone->reclaim_stat.recent_rotated[0] = 0;
  3144. zone->reclaim_stat.recent_rotated[1] = 0;
  3145. zone->reclaim_stat.recent_scanned[0] = 0;
  3146. zone->reclaim_stat.recent_scanned[1] = 0;
  3147. zap_zone_vm_stats(zone);
  3148. zone->flags = 0;
  3149. if (!size)
  3150. continue;
  3151. set_pageblock_order(pageblock_default_order());
  3152. setup_usemap(pgdat, zone, size);
  3153. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3154. size, MEMMAP_EARLY);
  3155. BUG_ON(ret);
  3156. memmap_init(size, nid, j, zone_start_pfn);
  3157. zone_start_pfn += size;
  3158. }
  3159. }
  3160. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3161. {
  3162. /* Skip empty nodes */
  3163. if (!pgdat->node_spanned_pages)
  3164. return;
  3165. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3166. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3167. if (!pgdat->node_mem_map) {
  3168. unsigned long size, start, end;
  3169. struct page *map;
  3170. /*
  3171. * The zone's endpoints aren't required to be MAX_ORDER
  3172. * aligned but the node_mem_map endpoints must be in order
  3173. * for the buddy allocator to function correctly.
  3174. */
  3175. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3176. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3177. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3178. size = (end - start) * sizeof(struct page);
  3179. map = alloc_remap(pgdat->node_id, size);
  3180. if (!map)
  3181. map = alloc_bootmem_node(pgdat, size);
  3182. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3183. }
  3184. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3185. /*
  3186. * With no DISCONTIG, the global mem_map is just set as node 0's
  3187. */
  3188. if (pgdat == NODE_DATA(0)) {
  3189. mem_map = NODE_DATA(0)->node_mem_map;
  3190. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3191. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3192. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3193. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3194. }
  3195. #endif
  3196. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3197. }
  3198. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3199. unsigned long node_start_pfn, unsigned long *zholes_size)
  3200. {
  3201. pg_data_t *pgdat = NODE_DATA(nid);
  3202. pgdat->node_id = nid;
  3203. pgdat->node_start_pfn = node_start_pfn;
  3204. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3205. alloc_node_mem_map(pgdat);
  3206. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3207. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3208. nid, (unsigned long)pgdat,
  3209. (unsigned long)pgdat->node_mem_map);
  3210. #endif
  3211. free_area_init_core(pgdat, zones_size, zholes_size);
  3212. }
  3213. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3214. #if MAX_NUMNODES > 1
  3215. /*
  3216. * Figure out the number of possible node ids.
  3217. */
  3218. static void __init setup_nr_node_ids(void)
  3219. {
  3220. unsigned int node;
  3221. unsigned int highest = 0;
  3222. for_each_node_mask(node, node_possible_map)
  3223. highest = node;
  3224. nr_node_ids = highest + 1;
  3225. }
  3226. #else
  3227. static inline void setup_nr_node_ids(void)
  3228. {
  3229. }
  3230. #endif
  3231. /**
  3232. * add_active_range - Register a range of PFNs backed by physical memory
  3233. * @nid: The node ID the range resides on
  3234. * @start_pfn: The start PFN of the available physical memory
  3235. * @end_pfn: The end PFN of the available physical memory
  3236. *
  3237. * These ranges are stored in an early_node_map[] and later used by
  3238. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3239. * range spans a memory hole, it is up to the architecture to ensure
  3240. * the memory is not freed by the bootmem allocator. If possible
  3241. * the range being registered will be merged with existing ranges.
  3242. */
  3243. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3244. unsigned long end_pfn)
  3245. {
  3246. int i;
  3247. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3248. "Entering add_active_range(%d, %#lx, %#lx) "
  3249. "%d entries of %d used\n",
  3250. nid, start_pfn, end_pfn,
  3251. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3252. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3253. /* Merge with existing active regions if possible */
  3254. for (i = 0; i < nr_nodemap_entries; i++) {
  3255. if (early_node_map[i].nid != nid)
  3256. continue;
  3257. /* Skip if an existing region covers this new one */
  3258. if (start_pfn >= early_node_map[i].start_pfn &&
  3259. end_pfn <= early_node_map[i].end_pfn)
  3260. return;
  3261. /* Merge forward if suitable */
  3262. if (start_pfn <= early_node_map[i].end_pfn &&
  3263. end_pfn > early_node_map[i].end_pfn) {
  3264. early_node_map[i].end_pfn = end_pfn;
  3265. return;
  3266. }
  3267. /* Merge backward if suitable */
  3268. if (start_pfn < early_node_map[i].end_pfn &&
  3269. end_pfn >= early_node_map[i].start_pfn) {
  3270. early_node_map[i].start_pfn = start_pfn;
  3271. return;
  3272. }
  3273. }
  3274. /* Check that early_node_map is large enough */
  3275. if (i >= MAX_ACTIVE_REGIONS) {
  3276. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3277. MAX_ACTIVE_REGIONS);
  3278. return;
  3279. }
  3280. early_node_map[i].nid = nid;
  3281. early_node_map[i].start_pfn = start_pfn;
  3282. early_node_map[i].end_pfn = end_pfn;
  3283. nr_nodemap_entries = i + 1;
  3284. }
  3285. /**
  3286. * remove_active_range - Shrink an existing registered range of PFNs
  3287. * @nid: The node id the range is on that should be shrunk
  3288. * @start_pfn: The new PFN of the range
  3289. * @end_pfn: The new PFN of the range
  3290. *
  3291. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3292. * The map is kept near the end physical page range that has already been
  3293. * registered. This function allows an arch to shrink an existing registered
  3294. * range.
  3295. */
  3296. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3297. unsigned long end_pfn)
  3298. {
  3299. int i, j;
  3300. int removed = 0;
  3301. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3302. nid, start_pfn, end_pfn);
  3303. /* Find the old active region end and shrink */
  3304. for_each_active_range_index_in_nid(i, nid) {
  3305. if (early_node_map[i].start_pfn >= start_pfn &&
  3306. early_node_map[i].end_pfn <= end_pfn) {
  3307. /* clear it */
  3308. early_node_map[i].start_pfn = 0;
  3309. early_node_map[i].end_pfn = 0;
  3310. removed = 1;
  3311. continue;
  3312. }
  3313. if (early_node_map[i].start_pfn < start_pfn &&
  3314. early_node_map[i].end_pfn > start_pfn) {
  3315. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3316. early_node_map[i].end_pfn = start_pfn;
  3317. if (temp_end_pfn > end_pfn)
  3318. add_active_range(nid, end_pfn, temp_end_pfn);
  3319. continue;
  3320. }
  3321. if (early_node_map[i].start_pfn >= start_pfn &&
  3322. early_node_map[i].end_pfn > end_pfn &&
  3323. early_node_map[i].start_pfn < end_pfn) {
  3324. early_node_map[i].start_pfn = end_pfn;
  3325. continue;
  3326. }
  3327. }
  3328. if (!removed)
  3329. return;
  3330. /* remove the blank ones */
  3331. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3332. if (early_node_map[i].nid != nid)
  3333. continue;
  3334. if (early_node_map[i].end_pfn)
  3335. continue;
  3336. /* we found it, get rid of it */
  3337. for (j = i; j < nr_nodemap_entries - 1; j++)
  3338. memcpy(&early_node_map[j], &early_node_map[j+1],
  3339. sizeof(early_node_map[j]));
  3340. j = nr_nodemap_entries - 1;
  3341. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3342. nr_nodemap_entries--;
  3343. }
  3344. }
  3345. /**
  3346. * remove_all_active_ranges - Remove all currently registered regions
  3347. *
  3348. * During discovery, it may be found that a table like SRAT is invalid
  3349. * and an alternative discovery method must be used. This function removes
  3350. * all currently registered regions.
  3351. */
  3352. void __init remove_all_active_ranges(void)
  3353. {
  3354. memset(early_node_map, 0, sizeof(early_node_map));
  3355. nr_nodemap_entries = 0;
  3356. }
  3357. /* Compare two active node_active_regions */
  3358. static int __init cmp_node_active_region(const void *a, const void *b)
  3359. {
  3360. struct node_active_region *arange = (struct node_active_region *)a;
  3361. struct node_active_region *brange = (struct node_active_region *)b;
  3362. /* Done this way to avoid overflows */
  3363. if (arange->start_pfn > brange->start_pfn)
  3364. return 1;
  3365. if (arange->start_pfn < brange->start_pfn)
  3366. return -1;
  3367. return 0;
  3368. }
  3369. /* sort the node_map by start_pfn */
  3370. static void __init sort_node_map(void)
  3371. {
  3372. sort(early_node_map, (size_t)nr_nodemap_entries,
  3373. sizeof(struct node_active_region),
  3374. cmp_node_active_region, NULL);
  3375. }
  3376. /* Find the lowest pfn for a node */
  3377. static unsigned long __init find_min_pfn_for_node(int nid)
  3378. {
  3379. int i;
  3380. unsigned long min_pfn = ULONG_MAX;
  3381. /* Assuming a sorted map, the first range found has the starting pfn */
  3382. for_each_active_range_index_in_nid(i, nid)
  3383. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3384. if (min_pfn == ULONG_MAX) {
  3385. printk(KERN_WARNING
  3386. "Could not find start_pfn for node %d\n", nid);
  3387. return 0;
  3388. }
  3389. return min_pfn;
  3390. }
  3391. /**
  3392. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3393. *
  3394. * It returns the minimum PFN based on information provided via
  3395. * add_active_range().
  3396. */
  3397. unsigned long __init find_min_pfn_with_active_regions(void)
  3398. {
  3399. return find_min_pfn_for_node(MAX_NUMNODES);
  3400. }
  3401. /*
  3402. * early_calculate_totalpages()
  3403. * Sum pages in active regions for movable zone.
  3404. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3405. */
  3406. static unsigned long __init early_calculate_totalpages(void)
  3407. {
  3408. int i;
  3409. unsigned long totalpages = 0;
  3410. for (i = 0; i < nr_nodemap_entries; i++) {
  3411. unsigned long pages = early_node_map[i].end_pfn -
  3412. early_node_map[i].start_pfn;
  3413. totalpages += pages;
  3414. if (pages)
  3415. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3416. }
  3417. return totalpages;
  3418. }
  3419. /*
  3420. * Find the PFN the Movable zone begins in each node. Kernel memory
  3421. * is spread evenly between nodes as long as the nodes have enough
  3422. * memory. When they don't, some nodes will have more kernelcore than
  3423. * others
  3424. */
  3425. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3426. {
  3427. int i, nid;
  3428. unsigned long usable_startpfn;
  3429. unsigned long kernelcore_node, kernelcore_remaining;
  3430. unsigned long totalpages = early_calculate_totalpages();
  3431. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3432. /*
  3433. * If movablecore was specified, calculate what size of
  3434. * kernelcore that corresponds so that memory usable for
  3435. * any allocation type is evenly spread. If both kernelcore
  3436. * and movablecore are specified, then the value of kernelcore
  3437. * will be used for required_kernelcore if it's greater than
  3438. * what movablecore would have allowed.
  3439. */
  3440. if (required_movablecore) {
  3441. unsigned long corepages;
  3442. /*
  3443. * Round-up so that ZONE_MOVABLE is at least as large as what
  3444. * was requested by the user
  3445. */
  3446. required_movablecore =
  3447. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3448. corepages = totalpages - required_movablecore;
  3449. required_kernelcore = max(required_kernelcore, corepages);
  3450. }
  3451. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3452. if (!required_kernelcore)
  3453. return;
  3454. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3455. find_usable_zone_for_movable();
  3456. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3457. restart:
  3458. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3459. kernelcore_node = required_kernelcore / usable_nodes;
  3460. for_each_node_state(nid, N_HIGH_MEMORY) {
  3461. /*
  3462. * Recalculate kernelcore_node if the division per node
  3463. * now exceeds what is necessary to satisfy the requested
  3464. * amount of memory for the kernel
  3465. */
  3466. if (required_kernelcore < kernelcore_node)
  3467. kernelcore_node = required_kernelcore / usable_nodes;
  3468. /*
  3469. * As the map is walked, we track how much memory is usable
  3470. * by the kernel using kernelcore_remaining. When it is
  3471. * 0, the rest of the node is usable by ZONE_MOVABLE
  3472. */
  3473. kernelcore_remaining = kernelcore_node;
  3474. /* Go through each range of PFNs within this node */
  3475. for_each_active_range_index_in_nid(i, nid) {
  3476. unsigned long start_pfn, end_pfn;
  3477. unsigned long size_pages;
  3478. start_pfn = max(early_node_map[i].start_pfn,
  3479. zone_movable_pfn[nid]);
  3480. end_pfn = early_node_map[i].end_pfn;
  3481. if (start_pfn >= end_pfn)
  3482. continue;
  3483. /* Account for what is only usable for kernelcore */
  3484. if (start_pfn < usable_startpfn) {
  3485. unsigned long kernel_pages;
  3486. kernel_pages = min(end_pfn, usable_startpfn)
  3487. - start_pfn;
  3488. kernelcore_remaining -= min(kernel_pages,
  3489. kernelcore_remaining);
  3490. required_kernelcore -= min(kernel_pages,
  3491. required_kernelcore);
  3492. /* Continue if range is now fully accounted */
  3493. if (end_pfn <= usable_startpfn) {
  3494. /*
  3495. * Push zone_movable_pfn to the end so
  3496. * that if we have to rebalance
  3497. * kernelcore across nodes, we will
  3498. * not double account here
  3499. */
  3500. zone_movable_pfn[nid] = end_pfn;
  3501. continue;
  3502. }
  3503. start_pfn = usable_startpfn;
  3504. }
  3505. /*
  3506. * The usable PFN range for ZONE_MOVABLE is from
  3507. * start_pfn->end_pfn. Calculate size_pages as the
  3508. * number of pages used as kernelcore
  3509. */
  3510. size_pages = end_pfn - start_pfn;
  3511. if (size_pages > kernelcore_remaining)
  3512. size_pages = kernelcore_remaining;
  3513. zone_movable_pfn[nid] = start_pfn + size_pages;
  3514. /*
  3515. * Some kernelcore has been met, update counts and
  3516. * break if the kernelcore for this node has been
  3517. * satisified
  3518. */
  3519. required_kernelcore -= min(required_kernelcore,
  3520. size_pages);
  3521. kernelcore_remaining -= size_pages;
  3522. if (!kernelcore_remaining)
  3523. break;
  3524. }
  3525. }
  3526. /*
  3527. * If there is still required_kernelcore, we do another pass with one
  3528. * less node in the count. This will push zone_movable_pfn[nid] further
  3529. * along on the nodes that still have memory until kernelcore is
  3530. * satisified
  3531. */
  3532. usable_nodes--;
  3533. if (usable_nodes && required_kernelcore > usable_nodes)
  3534. goto restart;
  3535. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3536. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3537. zone_movable_pfn[nid] =
  3538. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3539. }
  3540. /* Any regular memory on that node ? */
  3541. static void check_for_regular_memory(pg_data_t *pgdat)
  3542. {
  3543. #ifdef CONFIG_HIGHMEM
  3544. enum zone_type zone_type;
  3545. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3546. struct zone *zone = &pgdat->node_zones[zone_type];
  3547. if (zone->present_pages)
  3548. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3549. }
  3550. #endif
  3551. }
  3552. /**
  3553. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3554. * @max_zone_pfn: an array of max PFNs for each zone
  3555. *
  3556. * This will call free_area_init_node() for each active node in the system.
  3557. * Using the page ranges provided by add_active_range(), the size of each
  3558. * zone in each node and their holes is calculated. If the maximum PFN
  3559. * between two adjacent zones match, it is assumed that the zone is empty.
  3560. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3561. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3562. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3563. * at arch_max_dma_pfn.
  3564. */
  3565. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3566. {
  3567. unsigned long nid;
  3568. int i;
  3569. /* Sort early_node_map as initialisation assumes it is sorted */
  3570. sort_node_map();
  3571. /* Record where the zone boundaries are */
  3572. memset(arch_zone_lowest_possible_pfn, 0,
  3573. sizeof(arch_zone_lowest_possible_pfn));
  3574. memset(arch_zone_highest_possible_pfn, 0,
  3575. sizeof(arch_zone_highest_possible_pfn));
  3576. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3577. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3578. for (i = 1; i < MAX_NR_ZONES; i++) {
  3579. if (i == ZONE_MOVABLE)
  3580. continue;
  3581. arch_zone_lowest_possible_pfn[i] =
  3582. arch_zone_highest_possible_pfn[i-1];
  3583. arch_zone_highest_possible_pfn[i] =
  3584. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3585. }
  3586. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3587. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3588. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3589. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3590. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3591. /* Print out the zone ranges */
  3592. printk("Zone PFN ranges:\n");
  3593. for (i = 0; i < MAX_NR_ZONES; i++) {
  3594. if (i == ZONE_MOVABLE)
  3595. continue;
  3596. printk(" %-8s %0#10lx -> %0#10lx\n",
  3597. zone_names[i],
  3598. arch_zone_lowest_possible_pfn[i],
  3599. arch_zone_highest_possible_pfn[i]);
  3600. }
  3601. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3602. printk("Movable zone start PFN for each node\n");
  3603. for (i = 0; i < MAX_NUMNODES; i++) {
  3604. if (zone_movable_pfn[i])
  3605. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3606. }
  3607. /* Print out the early_node_map[] */
  3608. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3609. for (i = 0; i < nr_nodemap_entries; i++)
  3610. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  3611. early_node_map[i].start_pfn,
  3612. early_node_map[i].end_pfn);
  3613. /* Initialise every node */
  3614. mminit_verify_pageflags_layout();
  3615. setup_nr_node_ids();
  3616. for_each_online_node(nid) {
  3617. pg_data_t *pgdat = NODE_DATA(nid);
  3618. free_area_init_node(nid, NULL,
  3619. find_min_pfn_for_node(nid), NULL);
  3620. /* Any memory on that node */
  3621. if (pgdat->node_present_pages)
  3622. node_set_state(nid, N_HIGH_MEMORY);
  3623. check_for_regular_memory(pgdat);
  3624. }
  3625. }
  3626. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3627. {
  3628. unsigned long long coremem;
  3629. if (!p)
  3630. return -EINVAL;
  3631. coremem = memparse(p, &p);
  3632. *core = coremem >> PAGE_SHIFT;
  3633. /* Paranoid check that UL is enough for the coremem value */
  3634. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3635. return 0;
  3636. }
  3637. /*
  3638. * kernelcore=size sets the amount of memory for use for allocations that
  3639. * cannot be reclaimed or migrated.
  3640. */
  3641. static int __init cmdline_parse_kernelcore(char *p)
  3642. {
  3643. return cmdline_parse_core(p, &required_kernelcore);
  3644. }
  3645. /*
  3646. * movablecore=size sets the amount of memory for use for allocations that
  3647. * can be reclaimed or migrated.
  3648. */
  3649. static int __init cmdline_parse_movablecore(char *p)
  3650. {
  3651. return cmdline_parse_core(p, &required_movablecore);
  3652. }
  3653. early_param("kernelcore", cmdline_parse_kernelcore);
  3654. early_param("movablecore", cmdline_parse_movablecore);
  3655. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3656. /**
  3657. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3658. * @new_dma_reserve: The number of pages to mark reserved
  3659. *
  3660. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3661. * In the DMA zone, a significant percentage may be consumed by kernel image
  3662. * and other unfreeable allocations which can skew the watermarks badly. This
  3663. * function may optionally be used to account for unfreeable pages in the
  3664. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3665. * smaller per-cpu batchsize.
  3666. */
  3667. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3668. {
  3669. dma_reserve = new_dma_reserve;
  3670. }
  3671. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3672. struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
  3673. EXPORT_SYMBOL(contig_page_data);
  3674. #endif
  3675. void __init free_area_init(unsigned long *zones_size)
  3676. {
  3677. free_area_init_node(0, zones_size,
  3678. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3679. }
  3680. static int page_alloc_cpu_notify(struct notifier_block *self,
  3681. unsigned long action, void *hcpu)
  3682. {
  3683. int cpu = (unsigned long)hcpu;
  3684. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3685. drain_pages(cpu);
  3686. /*
  3687. * Spill the event counters of the dead processor
  3688. * into the current processors event counters.
  3689. * This artificially elevates the count of the current
  3690. * processor.
  3691. */
  3692. vm_events_fold_cpu(cpu);
  3693. /*
  3694. * Zero the differential counters of the dead processor
  3695. * so that the vm statistics are consistent.
  3696. *
  3697. * This is only okay since the processor is dead and cannot
  3698. * race with what we are doing.
  3699. */
  3700. refresh_cpu_vm_stats(cpu);
  3701. }
  3702. return NOTIFY_OK;
  3703. }
  3704. void __init page_alloc_init(void)
  3705. {
  3706. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3707. }
  3708. /*
  3709. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3710. * or min_free_kbytes changes.
  3711. */
  3712. static void calculate_totalreserve_pages(void)
  3713. {
  3714. struct pglist_data *pgdat;
  3715. unsigned long reserve_pages = 0;
  3716. enum zone_type i, j;
  3717. for_each_online_pgdat(pgdat) {
  3718. for (i = 0; i < MAX_NR_ZONES; i++) {
  3719. struct zone *zone = pgdat->node_zones + i;
  3720. unsigned long max = 0;
  3721. /* Find valid and maximum lowmem_reserve in the zone */
  3722. for (j = i; j < MAX_NR_ZONES; j++) {
  3723. if (zone->lowmem_reserve[j] > max)
  3724. max = zone->lowmem_reserve[j];
  3725. }
  3726. /* we treat the high watermark as reserved pages. */
  3727. max += high_wmark_pages(zone);
  3728. if (max > zone->present_pages)
  3729. max = zone->present_pages;
  3730. reserve_pages += max;
  3731. }
  3732. }
  3733. totalreserve_pages = reserve_pages;
  3734. }
  3735. /*
  3736. * setup_per_zone_lowmem_reserve - called whenever
  3737. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3738. * has a correct pages reserved value, so an adequate number of
  3739. * pages are left in the zone after a successful __alloc_pages().
  3740. */
  3741. static void setup_per_zone_lowmem_reserve(void)
  3742. {
  3743. struct pglist_data *pgdat;
  3744. enum zone_type j, idx;
  3745. for_each_online_pgdat(pgdat) {
  3746. for (j = 0; j < MAX_NR_ZONES; j++) {
  3747. struct zone *zone = pgdat->node_zones + j;
  3748. unsigned long present_pages = zone->present_pages;
  3749. zone->lowmem_reserve[j] = 0;
  3750. idx = j;
  3751. while (idx) {
  3752. struct zone *lower_zone;
  3753. idx--;
  3754. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3755. sysctl_lowmem_reserve_ratio[idx] = 1;
  3756. lower_zone = pgdat->node_zones + idx;
  3757. lower_zone->lowmem_reserve[j] = present_pages /
  3758. sysctl_lowmem_reserve_ratio[idx];
  3759. present_pages += lower_zone->present_pages;
  3760. }
  3761. }
  3762. }
  3763. /* update totalreserve_pages */
  3764. calculate_totalreserve_pages();
  3765. }
  3766. /**
  3767. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3768. *
  3769. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3770. * with respect to min_free_kbytes.
  3771. */
  3772. void setup_per_zone_pages_min(void)
  3773. {
  3774. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3775. unsigned long lowmem_pages = 0;
  3776. struct zone *zone;
  3777. unsigned long flags;
  3778. /* Calculate total number of !ZONE_HIGHMEM pages */
  3779. for_each_zone(zone) {
  3780. if (!is_highmem(zone))
  3781. lowmem_pages += zone->present_pages;
  3782. }
  3783. for_each_zone(zone) {
  3784. u64 tmp;
  3785. spin_lock_irqsave(&zone->lock, flags);
  3786. tmp = (u64)pages_min * zone->present_pages;
  3787. do_div(tmp, lowmem_pages);
  3788. if (is_highmem(zone)) {
  3789. /*
  3790. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3791. * need highmem pages, so cap pages_min to a small
  3792. * value here.
  3793. *
  3794. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  3795. * deltas controls asynch page reclaim, and so should
  3796. * not be capped for highmem.
  3797. */
  3798. int min_pages;
  3799. min_pages = zone->present_pages / 1024;
  3800. if (min_pages < SWAP_CLUSTER_MAX)
  3801. min_pages = SWAP_CLUSTER_MAX;
  3802. if (min_pages > 128)
  3803. min_pages = 128;
  3804. zone->watermark[WMARK_MIN] = min_pages;
  3805. } else {
  3806. /*
  3807. * If it's a lowmem zone, reserve a number of pages
  3808. * proportionate to the zone's size.
  3809. */
  3810. zone->watermark[WMARK_MIN] = tmp;
  3811. }
  3812. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  3813. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  3814. setup_zone_migrate_reserve(zone);
  3815. spin_unlock_irqrestore(&zone->lock, flags);
  3816. }
  3817. /* update totalreserve_pages */
  3818. calculate_totalreserve_pages();
  3819. }
  3820. /**
  3821. * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
  3822. *
  3823. * The inactive anon list should be small enough that the VM never has to
  3824. * do too much work, but large enough that each inactive page has a chance
  3825. * to be referenced again before it is swapped out.
  3826. *
  3827. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  3828. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  3829. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  3830. * the anonymous pages are kept on the inactive list.
  3831. *
  3832. * total target max
  3833. * memory ratio inactive anon
  3834. * -------------------------------------
  3835. * 10MB 1 5MB
  3836. * 100MB 1 50MB
  3837. * 1GB 3 250MB
  3838. * 10GB 10 0.9GB
  3839. * 100GB 31 3GB
  3840. * 1TB 101 10GB
  3841. * 10TB 320 32GB
  3842. */
  3843. static void setup_per_zone_inactive_ratio(void)
  3844. {
  3845. struct zone *zone;
  3846. for_each_zone(zone) {
  3847. unsigned int gb, ratio;
  3848. /* Zone size in gigabytes */
  3849. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  3850. ratio = int_sqrt(10 * gb);
  3851. if (!ratio)
  3852. ratio = 1;
  3853. zone->inactive_ratio = ratio;
  3854. }
  3855. }
  3856. /*
  3857. * Initialise min_free_kbytes.
  3858. *
  3859. * For small machines we want it small (128k min). For large machines
  3860. * we want it large (64MB max). But it is not linear, because network
  3861. * bandwidth does not increase linearly with machine size. We use
  3862. *
  3863. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3864. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3865. *
  3866. * which yields
  3867. *
  3868. * 16MB: 512k
  3869. * 32MB: 724k
  3870. * 64MB: 1024k
  3871. * 128MB: 1448k
  3872. * 256MB: 2048k
  3873. * 512MB: 2896k
  3874. * 1024MB: 4096k
  3875. * 2048MB: 5792k
  3876. * 4096MB: 8192k
  3877. * 8192MB: 11584k
  3878. * 16384MB: 16384k
  3879. */
  3880. static int __init init_per_zone_pages_min(void)
  3881. {
  3882. unsigned long lowmem_kbytes;
  3883. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3884. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3885. if (min_free_kbytes < 128)
  3886. min_free_kbytes = 128;
  3887. if (min_free_kbytes > 65536)
  3888. min_free_kbytes = 65536;
  3889. setup_per_zone_pages_min();
  3890. setup_per_zone_lowmem_reserve();
  3891. setup_per_zone_inactive_ratio();
  3892. return 0;
  3893. }
  3894. module_init(init_per_zone_pages_min)
  3895. /*
  3896. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3897. * that we can call two helper functions whenever min_free_kbytes
  3898. * changes.
  3899. */
  3900. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3901. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3902. {
  3903. proc_dointvec(table, write, file, buffer, length, ppos);
  3904. if (write)
  3905. setup_per_zone_pages_min();
  3906. return 0;
  3907. }
  3908. #ifdef CONFIG_NUMA
  3909. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3910. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3911. {
  3912. struct zone *zone;
  3913. int rc;
  3914. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3915. if (rc)
  3916. return rc;
  3917. for_each_zone(zone)
  3918. zone->min_unmapped_pages = (zone->present_pages *
  3919. sysctl_min_unmapped_ratio) / 100;
  3920. return 0;
  3921. }
  3922. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3923. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3924. {
  3925. struct zone *zone;
  3926. int rc;
  3927. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3928. if (rc)
  3929. return rc;
  3930. for_each_zone(zone)
  3931. zone->min_slab_pages = (zone->present_pages *
  3932. sysctl_min_slab_ratio) / 100;
  3933. return 0;
  3934. }
  3935. #endif
  3936. /*
  3937. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3938. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3939. * whenever sysctl_lowmem_reserve_ratio changes.
  3940. *
  3941. * The reserve ratio obviously has absolutely no relation with the
  3942. * minimum watermarks. The lowmem reserve ratio can only make sense
  3943. * if in function of the boot time zone sizes.
  3944. */
  3945. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3946. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3947. {
  3948. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3949. setup_per_zone_lowmem_reserve();
  3950. return 0;
  3951. }
  3952. /*
  3953. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3954. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3955. * can have before it gets flushed back to buddy allocator.
  3956. */
  3957. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3958. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3959. {
  3960. struct zone *zone;
  3961. unsigned int cpu;
  3962. int ret;
  3963. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3964. if (!write || (ret == -EINVAL))
  3965. return ret;
  3966. for_each_zone(zone) {
  3967. for_each_online_cpu(cpu) {
  3968. unsigned long high;
  3969. high = zone->present_pages / percpu_pagelist_fraction;
  3970. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3971. }
  3972. }
  3973. return 0;
  3974. }
  3975. int hashdist = HASHDIST_DEFAULT;
  3976. #ifdef CONFIG_NUMA
  3977. static int __init set_hashdist(char *str)
  3978. {
  3979. if (!str)
  3980. return 0;
  3981. hashdist = simple_strtoul(str, &str, 0);
  3982. return 1;
  3983. }
  3984. __setup("hashdist=", set_hashdist);
  3985. #endif
  3986. /*
  3987. * allocate a large system hash table from bootmem
  3988. * - it is assumed that the hash table must contain an exact power-of-2
  3989. * quantity of entries
  3990. * - limit is the number of hash buckets, not the total allocation size
  3991. */
  3992. void *__init alloc_large_system_hash(const char *tablename,
  3993. unsigned long bucketsize,
  3994. unsigned long numentries,
  3995. int scale,
  3996. int flags,
  3997. unsigned int *_hash_shift,
  3998. unsigned int *_hash_mask,
  3999. unsigned long limit)
  4000. {
  4001. unsigned long long max = limit;
  4002. unsigned long log2qty, size;
  4003. void *table = NULL;
  4004. /* allow the kernel cmdline to have a say */
  4005. if (!numentries) {
  4006. /* round applicable memory size up to nearest megabyte */
  4007. numentries = nr_kernel_pages;
  4008. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4009. numentries >>= 20 - PAGE_SHIFT;
  4010. numentries <<= 20 - PAGE_SHIFT;
  4011. /* limit to 1 bucket per 2^scale bytes of low memory */
  4012. if (scale > PAGE_SHIFT)
  4013. numentries >>= (scale - PAGE_SHIFT);
  4014. else
  4015. numentries <<= (PAGE_SHIFT - scale);
  4016. /* Make sure we've got at least a 0-order allocation.. */
  4017. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4018. numentries = PAGE_SIZE / bucketsize;
  4019. }
  4020. numentries = roundup_pow_of_two(numentries);
  4021. /* limit allocation size to 1/16 total memory by default */
  4022. if (max == 0) {
  4023. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4024. do_div(max, bucketsize);
  4025. }
  4026. if (numentries > max)
  4027. numentries = max;
  4028. log2qty = ilog2(numentries);
  4029. do {
  4030. size = bucketsize << log2qty;
  4031. if (flags & HASH_EARLY)
  4032. table = alloc_bootmem_nopanic(size);
  4033. else if (hashdist)
  4034. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4035. else {
  4036. unsigned long order = get_order(size);
  4037. if (order < MAX_ORDER)
  4038. table = (void *)__get_free_pages(GFP_ATOMIC,
  4039. order);
  4040. /*
  4041. * If bucketsize is not a power-of-two, we may free
  4042. * some pages at the end of hash table.
  4043. */
  4044. if (table) {
  4045. unsigned long alloc_end = (unsigned long)table +
  4046. (PAGE_SIZE << order);
  4047. unsigned long used = (unsigned long)table +
  4048. PAGE_ALIGN(size);
  4049. split_page(virt_to_page(table), order);
  4050. while (used < alloc_end) {
  4051. free_page(used);
  4052. used += PAGE_SIZE;
  4053. }
  4054. }
  4055. }
  4056. } while (!table && size > PAGE_SIZE && --log2qty);
  4057. if (!table)
  4058. panic("Failed to allocate %s hash table\n", tablename);
  4059. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  4060. tablename,
  4061. (1U << log2qty),
  4062. ilog2(size) - PAGE_SHIFT,
  4063. size);
  4064. if (_hash_shift)
  4065. *_hash_shift = log2qty;
  4066. if (_hash_mask)
  4067. *_hash_mask = (1 << log2qty) - 1;
  4068. /*
  4069. * If hashdist is set, the table allocation is done with __vmalloc()
  4070. * which invokes the kmemleak_alloc() callback. This function may also
  4071. * be called before the slab and kmemleak are initialised when
  4072. * kmemleak simply buffers the request to be executed later
  4073. * (GFP_ATOMIC flag ignored in this case).
  4074. */
  4075. if (!hashdist)
  4076. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4077. return table;
  4078. }
  4079. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4080. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4081. unsigned long pfn)
  4082. {
  4083. #ifdef CONFIG_SPARSEMEM
  4084. return __pfn_to_section(pfn)->pageblock_flags;
  4085. #else
  4086. return zone->pageblock_flags;
  4087. #endif /* CONFIG_SPARSEMEM */
  4088. }
  4089. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4090. {
  4091. #ifdef CONFIG_SPARSEMEM
  4092. pfn &= (PAGES_PER_SECTION-1);
  4093. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4094. #else
  4095. pfn = pfn - zone->zone_start_pfn;
  4096. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4097. #endif /* CONFIG_SPARSEMEM */
  4098. }
  4099. /**
  4100. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4101. * @page: The page within the block of interest
  4102. * @start_bitidx: The first bit of interest to retrieve
  4103. * @end_bitidx: The last bit of interest
  4104. * returns pageblock_bits flags
  4105. */
  4106. unsigned long get_pageblock_flags_group(struct page *page,
  4107. int start_bitidx, int end_bitidx)
  4108. {
  4109. struct zone *zone;
  4110. unsigned long *bitmap;
  4111. unsigned long pfn, bitidx;
  4112. unsigned long flags = 0;
  4113. unsigned long value = 1;
  4114. zone = page_zone(page);
  4115. pfn = page_to_pfn(page);
  4116. bitmap = get_pageblock_bitmap(zone, pfn);
  4117. bitidx = pfn_to_bitidx(zone, pfn);
  4118. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4119. if (test_bit(bitidx + start_bitidx, bitmap))
  4120. flags |= value;
  4121. return flags;
  4122. }
  4123. /**
  4124. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4125. * @page: The page within the block of interest
  4126. * @start_bitidx: The first bit of interest
  4127. * @end_bitidx: The last bit of interest
  4128. * @flags: The flags to set
  4129. */
  4130. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4131. int start_bitidx, int end_bitidx)
  4132. {
  4133. struct zone *zone;
  4134. unsigned long *bitmap;
  4135. unsigned long pfn, bitidx;
  4136. unsigned long value = 1;
  4137. zone = page_zone(page);
  4138. pfn = page_to_pfn(page);
  4139. bitmap = get_pageblock_bitmap(zone, pfn);
  4140. bitidx = pfn_to_bitidx(zone, pfn);
  4141. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4142. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4143. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4144. if (flags & value)
  4145. __set_bit(bitidx + start_bitidx, bitmap);
  4146. else
  4147. __clear_bit(bitidx + start_bitidx, bitmap);
  4148. }
  4149. /*
  4150. * This is designed as sub function...plz see page_isolation.c also.
  4151. * set/clear page block's type to be ISOLATE.
  4152. * page allocater never alloc memory from ISOLATE block.
  4153. */
  4154. int set_migratetype_isolate(struct page *page)
  4155. {
  4156. struct zone *zone;
  4157. unsigned long flags;
  4158. int ret = -EBUSY;
  4159. zone = page_zone(page);
  4160. spin_lock_irqsave(&zone->lock, flags);
  4161. /*
  4162. * In future, more migrate types will be able to be isolation target.
  4163. */
  4164. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
  4165. goto out;
  4166. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4167. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4168. ret = 0;
  4169. out:
  4170. spin_unlock_irqrestore(&zone->lock, flags);
  4171. if (!ret)
  4172. drain_all_pages();
  4173. return ret;
  4174. }
  4175. void unset_migratetype_isolate(struct page *page)
  4176. {
  4177. struct zone *zone;
  4178. unsigned long flags;
  4179. zone = page_zone(page);
  4180. spin_lock_irqsave(&zone->lock, flags);
  4181. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4182. goto out;
  4183. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4184. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4185. out:
  4186. spin_unlock_irqrestore(&zone->lock, flags);
  4187. }
  4188. #ifdef CONFIG_MEMORY_HOTREMOVE
  4189. /*
  4190. * All pages in the range must be isolated before calling this.
  4191. */
  4192. void
  4193. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4194. {
  4195. struct page *page;
  4196. struct zone *zone;
  4197. int order, i;
  4198. unsigned long pfn;
  4199. unsigned long flags;
  4200. /* find the first valid pfn */
  4201. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4202. if (pfn_valid(pfn))
  4203. break;
  4204. if (pfn == end_pfn)
  4205. return;
  4206. zone = page_zone(pfn_to_page(pfn));
  4207. spin_lock_irqsave(&zone->lock, flags);
  4208. pfn = start_pfn;
  4209. while (pfn < end_pfn) {
  4210. if (!pfn_valid(pfn)) {
  4211. pfn++;
  4212. continue;
  4213. }
  4214. page = pfn_to_page(pfn);
  4215. BUG_ON(page_count(page));
  4216. BUG_ON(!PageBuddy(page));
  4217. order = page_order(page);
  4218. #ifdef CONFIG_DEBUG_VM
  4219. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4220. pfn, 1 << order, end_pfn);
  4221. #endif
  4222. list_del(&page->lru);
  4223. rmv_page_order(page);
  4224. zone->free_area[order].nr_free--;
  4225. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4226. - (1UL << order));
  4227. for (i = 0; i < (1 << order); i++)
  4228. SetPageReserved((page+i));
  4229. pfn += (1 << order);
  4230. }
  4231. spin_unlock_irqrestore(&zone->lock, flags);
  4232. }
  4233. #endif