init_64.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@ucw.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/proc_fs.h>
  25. #include <linux/pci.h>
  26. #include <linux/pfn.h>
  27. #include <linux/poison.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/module.h>
  30. #include <linux/memory.h>
  31. #include <linux/memory_hotplug.h>
  32. #include <linux/nmi.h>
  33. #include <linux/gfp.h>
  34. #include <asm/processor.h>
  35. #include <asm/bios_ebda.h>
  36. #include <asm/uaccess.h>
  37. #include <asm/pgtable.h>
  38. #include <asm/pgalloc.h>
  39. #include <asm/dma.h>
  40. #include <asm/fixmap.h>
  41. #include <asm/e820.h>
  42. #include <asm/apic.h>
  43. #include <asm/tlb.h>
  44. #include <asm/mmu_context.h>
  45. #include <asm/proto.h>
  46. #include <asm/smp.h>
  47. #include <asm/sections.h>
  48. #include <asm/kdebug.h>
  49. #include <asm/numa.h>
  50. #include <asm/cacheflush.h>
  51. #include <asm/init.h>
  52. #include <asm/uv/uv.h>
  53. #include <asm/setup.h>
  54. static int __init parse_direct_gbpages_off(char *arg)
  55. {
  56. direct_gbpages = 0;
  57. return 0;
  58. }
  59. early_param("nogbpages", parse_direct_gbpages_off);
  60. static int __init parse_direct_gbpages_on(char *arg)
  61. {
  62. direct_gbpages = 1;
  63. return 0;
  64. }
  65. early_param("gbpages", parse_direct_gbpages_on);
  66. /*
  67. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  68. * physical space so we can cache the place of the first one and move
  69. * around without checking the pgd every time.
  70. */
  71. pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
  72. EXPORT_SYMBOL_GPL(__supported_pte_mask);
  73. int force_personality32;
  74. /*
  75. * noexec32=on|off
  76. * Control non executable heap for 32bit processes.
  77. * To control the stack too use noexec=off
  78. *
  79. * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
  80. * off PROT_READ implies PROT_EXEC
  81. */
  82. static int __init nonx32_setup(char *str)
  83. {
  84. if (!strcmp(str, "on"))
  85. force_personality32 &= ~READ_IMPLIES_EXEC;
  86. else if (!strcmp(str, "off"))
  87. force_personality32 |= READ_IMPLIES_EXEC;
  88. return 1;
  89. }
  90. __setup("noexec32=", nonx32_setup);
  91. /*
  92. * When memory was added/removed make sure all the processes MM have
  93. * suitable PGD entries in the local PGD level page.
  94. */
  95. void sync_global_pgds(unsigned long start, unsigned long end)
  96. {
  97. unsigned long address;
  98. for (address = start; address <= end; address += PGDIR_SIZE) {
  99. const pgd_t *pgd_ref = pgd_offset_k(address);
  100. struct page *page;
  101. if (pgd_none(*pgd_ref))
  102. continue;
  103. spin_lock(&pgd_lock);
  104. list_for_each_entry(page, &pgd_list, lru) {
  105. pgd_t *pgd;
  106. spinlock_t *pgt_lock;
  107. pgd = (pgd_t *)page_address(page) + pgd_index(address);
  108. /* the pgt_lock only for Xen */
  109. pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
  110. spin_lock(pgt_lock);
  111. if (pgd_none(*pgd))
  112. set_pgd(pgd, *pgd_ref);
  113. else
  114. BUG_ON(pgd_page_vaddr(*pgd)
  115. != pgd_page_vaddr(*pgd_ref));
  116. spin_unlock(pgt_lock);
  117. }
  118. spin_unlock(&pgd_lock);
  119. }
  120. }
  121. /*
  122. * NOTE: This function is marked __ref because it calls __init function
  123. * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
  124. */
  125. static __ref void *spp_getpage(void)
  126. {
  127. void *ptr;
  128. if (after_bootmem)
  129. ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
  130. else
  131. ptr = alloc_bootmem_pages(PAGE_SIZE);
  132. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  133. panic("set_pte_phys: cannot allocate page data %s\n",
  134. after_bootmem ? "after bootmem" : "");
  135. }
  136. pr_debug("spp_getpage %p\n", ptr);
  137. return ptr;
  138. }
  139. static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
  140. {
  141. if (pgd_none(*pgd)) {
  142. pud_t *pud = (pud_t *)spp_getpage();
  143. pgd_populate(&init_mm, pgd, pud);
  144. if (pud != pud_offset(pgd, 0))
  145. printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
  146. pud, pud_offset(pgd, 0));
  147. }
  148. return pud_offset(pgd, vaddr);
  149. }
  150. static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
  151. {
  152. if (pud_none(*pud)) {
  153. pmd_t *pmd = (pmd_t *) spp_getpage();
  154. pud_populate(&init_mm, pud, pmd);
  155. if (pmd != pmd_offset(pud, 0))
  156. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  157. pmd, pmd_offset(pud, 0));
  158. }
  159. return pmd_offset(pud, vaddr);
  160. }
  161. static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
  162. {
  163. if (pmd_none(*pmd)) {
  164. pte_t *pte = (pte_t *) spp_getpage();
  165. pmd_populate_kernel(&init_mm, pmd, pte);
  166. if (pte != pte_offset_kernel(pmd, 0))
  167. printk(KERN_ERR "PAGETABLE BUG #02!\n");
  168. }
  169. return pte_offset_kernel(pmd, vaddr);
  170. }
  171. void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  172. {
  173. pud_t *pud;
  174. pmd_t *pmd;
  175. pte_t *pte;
  176. pud = pud_page + pud_index(vaddr);
  177. pmd = fill_pmd(pud, vaddr);
  178. pte = fill_pte(pmd, vaddr);
  179. set_pte(pte, new_pte);
  180. /*
  181. * It's enough to flush this one mapping.
  182. * (PGE mappings get flushed as well)
  183. */
  184. __flush_tlb_one(vaddr);
  185. }
  186. void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  187. {
  188. pgd_t *pgd;
  189. pud_t *pud_page;
  190. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  191. pgd = pgd_offset_k(vaddr);
  192. if (pgd_none(*pgd)) {
  193. printk(KERN_ERR
  194. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  195. return;
  196. }
  197. pud_page = (pud_t*)pgd_page_vaddr(*pgd);
  198. set_pte_vaddr_pud(pud_page, vaddr, pteval);
  199. }
  200. pmd_t * __init populate_extra_pmd(unsigned long vaddr)
  201. {
  202. pgd_t *pgd;
  203. pud_t *pud;
  204. pgd = pgd_offset_k(vaddr);
  205. pud = fill_pud(pgd, vaddr);
  206. return fill_pmd(pud, vaddr);
  207. }
  208. pte_t * __init populate_extra_pte(unsigned long vaddr)
  209. {
  210. pmd_t *pmd;
  211. pmd = populate_extra_pmd(vaddr);
  212. return fill_pte(pmd, vaddr);
  213. }
  214. /*
  215. * Create large page table mappings for a range of physical addresses.
  216. */
  217. static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
  218. pgprot_t prot)
  219. {
  220. pgd_t *pgd;
  221. pud_t *pud;
  222. pmd_t *pmd;
  223. BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
  224. for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
  225. pgd = pgd_offset_k((unsigned long)__va(phys));
  226. if (pgd_none(*pgd)) {
  227. pud = (pud_t *) spp_getpage();
  228. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
  229. _PAGE_USER));
  230. }
  231. pud = pud_offset(pgd, (unsigned long)__va(phys));
  232. if (pud_none(*pud)) {
  233. pmd = (pmd_t *) spp_getpage();
  234. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
  235. _PAGE_USER));
  236. }
  237. pmd = pmd_offset(pud, phys);
  238. BUG_ON(!pmd_none(*pmd));
  239. set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
  240. }
  241. }
  242. void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
  243. {
  244. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
  245. }
  246. void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
  247. {
  248. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
  249. }
  250. /*
  251. * The head.S code sets up the kernel high mapping:
  252. *
  253. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  254. *
  255. * phys_addr holds the negative offset to the kernel, which is added
  256. * to the compile time generated pmds. This results in invalid pmds up
  257. * to the point where we hit the physaddr 0 mapping.
  258. *
  259. * We limit the mappings to the region from _text to _brk_end. _brk_end
  260. * is rounded up to the 2MB boundary. This catches the invalid pmds as
  261. * well, as they are located before _text:
  262. */
  263. void __init cleanup_highmap(void)
  264. {
  265. unsigned long vaddr = __START_KERNEL_map;
  266. unsigned long vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
  267. unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
  268. pmd_t *pmd = level2_kernel_pgt;
  269. for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
  270. if (pmd_none(*pmd))
  271. continue;
  272. if (vaddr < (unsigned long) _text || vaddr > end)
  273. set_pmd(pmd, __pmd(0));
  274. }
  275. }
  276. static __ref void *alloc_low_page(unsigned long *phys)
  277. {
  278. unsigned long pfn;
  279. void *adr;
  280. if (after_bootmem) {
  281. adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
  282. *phys = __pa(adr);
  283. return adr;
  284. }
  285. if ((pgt_buf_end + 1) >= pgt_buf_top) {
  286. unsigned long ret;
  287. if (min_pfn_mapped >= max_pfn_mapped)
  288. panic("alloc_low_page: ran out of memory");
  289. ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
  290. max_pfn_mapped << PAGE_SHIFT,
  291. PAGE_SIZE, PAGE_SIZE);
  292. if (!ret)
  293. panic("alloc_low_page: can not alloc memory");
  294. memblock_reserve(ret, PAGE_SIZE);
  295. pfn = ret >> PAGE_SHIFT;
  296. } else
  297. pfn = pgt_buf_end++;
  298. adr = __va(pfn * PAGE_SIZE);
  299. clear_page(adr);
  300. *phys = pfn * PAGE_SIZE;
  301. return adr;
  302. }
  303. static unsigned long __meminit
  304. phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
  305. pgprot_t prot)
  306. {
  307. unsigned long pages = 0, next;
  308. unsigned long last_map_addr = end;
  309. int i;
  310. pte_t *pte = pte_page + pte_index(addr);
  311. for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
  312. next = (addr & PAGE_MASK) + PAGE_SIZE;
  313. if (addr >= end) {
  314. if (!after_bootmem &&
  315. !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
  316. !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
  317. set_pte(pte, __pte(0));
  318. continue;
  319. }
  320. /*
  321. * We will re-use the existing mapping.
  322. * Xen for example has some special requirements, like mapping
  323. * pagetable pages as RO. So assume someone who pre-setup
  324. * these mappings are more intelligent.
  325. */
  326. if (pte_val(*pte)) {
  327. if (!after_bootmem)
  328. pages++;
  329. continue;
  330. }
  331. if (0)
  332. printk(" pte=%p addr=%lx pte=%016lx\n",
  333. pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  334. pages++;
  335. set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
  336. last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
  337. }
  338. update_page_count(PG_LEVEL_4K, pages);
  339. return last_map_addr;
  340. }
  341. static unsigned long __meminit
  342. phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
  343. unsigned long page_size_mask, pgprot_t prot)
  344. {
  345. unsigned long pages = 0, next;
  346. unsigned long last_map_addr = end;
  347. int i = pmd_index(address);
  348. for (; i < PTRS_PER_PMD; i++, address = next) {
  349. unsigned long pte_phys;
  350. pmd_t *pmd = pmd_page + pmd_index(address);
  351. pte_t *pte;
  352. pgprot_t new_prot = prot;
  353. next = (address & PMD_MASK) + PMD_SIZE;
  354. if (address >= end) {
  355. if (!after_bootmem &&
  356. !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
  357. !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
  358. set_pmd(pmd, __pmd(0));
  359. continue;
  360. }
  361. if (pmd_val(*pmd)) {
  362. if (!pmd_large(*pmd)) {
  363. spin_lock(&init_mm.page_table_lock);
  364. pte = (pte_t *)pmd_page_vaddr(*pmd);
  365. last_map_addr = phys_pte_init(pte, address,
  366. end, prot);
  367. spin_unlock(&init_mm.page_table_lock);
  368. continue;
  369. }
  370. /*
  371. * If we are ok with PG_LEVEL_2M mapping, then we will
  372. * use the existing mapping,
  373. *
  374. * Otherwise, we will split the large page mapping but
  375. * use the same existing protection bits except for
  376. * large page, so that we don't violate Intel's TLB
  377. * Application note (317080) which says, while changing
  378. * the page sizes, new and old translations should
  379. * not differ with respect to page frame and
  380. * attributes.
  381. */
  382. if (page_size_mask & (1 << PG_LEVEL_2M)) {
  383. if (!after_bootmem)
  384. pages++;
  385. last_map_addr = next;
  386. continue;
  387. }
  388. new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
  389. }
  390. if (page_size_mask & (1<<PG_LEVEL_2M)) {
  391. pages++;
  392. spin_lock(&init_mm.page_table_lock);
  393. set_pte((pte_t *)pmd,
  394. pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
  395. __pgprot(pgprot_val(prot) | _PAGE_PSE)));
  396. spin_unlock(&init_mm.page_table_lock);
  397. last_map_addr = next;
  398. continue;
  399. }
  400. pte = alloc_low_page(&pte_phys);
  401. last_map_addr = phys_pte_init(pte, address, end, new_prot);
  402. spin_lock(&init_mm.page_table_lock);
  403. pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
  404. spin_unlock(&init_mm.page_table_lock);
  405. }
  406. update_page_count(PG_LEVEL_2M, pages);
  407. return last_map_addr;
  408. }
  409. static unsigned long __meminit
  410. phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
  411. unsigned long page_size_mask)
  412. {
  413. unsigned long pages = 0, next;
  414. unsigned long last_map_addr = end;
  415. int i = pud_index(addr);
  416. for (; i < PTRS_PER_PUD; i++, addr = next) {
  417. unsigned long pmd_phys;
  418. pud_t *pud = pud_page + pud_index(addr);
  419. pmd_t *pmd;
  420. pgprot_t prot = PAGE_KERNEL;
  421. next = (addr & PUD_MASK) + PUD_SIZE;
  422. if (addr >= end) {
  423. if (!after_bootmem &&
  424. !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
  425. !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
  426. set_pud(pud, __pud(0));
  427. continue;
  428. }
  429. if (pud_val(*pud)) {
  430. if (!pud_large(*pud)) {
  431. pmd = pmd_offset(pud, 0);
  432. last_map_addr = phys_pmd_init(pmd, addr, end,
  433. page_size_mask, prot);
  434. __flush_tlb_all();
  435. continue;
  436. }
  437. /*
  438. * If we are ok with PG_LEVEL_1G mapping, then we will
  439. * use the existing mapping.
  440. *
  441. * Otherwise, we will split the gbpage mapping but use
  442. * the same existing protection bits except for large
  443. * page, so that we don't violate Intel's TLB
  444. * Application note (317080) which says, while changing
  445. * the page sizes, new and old translations should
  446. * not differ with respect to page frame and
  447. * attributes.
  448. */
  449. if (page_size_mask & (1 << PG_LEVEL_1G)) {
  450. if (!after_bootmem)
  451. pages++;
  452. last_map_addr = next;
  453. continue;
  454. }
  455. prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
  456. }
  457. if (page_size_mask & (1<<PG_LEVEL_1G)) {
  458. pages++;
  459. spin_lock(&init_mm.page_table_lock);
  460. set_pte((pte_t *)pud,
  461. pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
  462. PAGE_KERNEL_LARGE));
  463. spin_unlock(&init_mm.page_table_lock);
  464. last_map_addr = next;
  465. continue;
  466. }
  467. pmd = alloc_low_page(&pmd_phys);
  468. last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
  469. prot);
  470. spin_lock(&init_mm.page_table_lock);
  471. pud_populate(&init_mm, pud, __va(pmd_phys));
  472. spin_unlock(&init_mm.page_table_lock);
  473. }
  474. __flush_tlb_all();
  475. update_page_count(PG_LEVEL_1G, pages);
  476. return last_map_addr;
  477. }
  478. unsigned long __meminit
  479. kernel_physical_mapping_init(unsigned long start,
  480. unsigned long end,
  481. unsigned long page_size_mask)
  482. {
  483. bool pgd_changed = false;
  484. unsigned long next, last_map_addr = end;
  485. unsigned long addr;
  486. start = (unsigned long)__va(start);
  487. end = (unsigned long)__va(end);
  488. addr = start;
  489. for (; start < end; start = next) {
  490. pgd_t *pgd = pgd_offset_k(start);
  491. unsigned long pud_phys;
  492. pud_t *pud;
  493. next = (start + PGDIR_SIZE) & PGDIR_MASK;
  494. if (next > end)
  495. next = end;
  496. if (pgd_val(*pgd)) {
  497. pud = (pud_t *)pgd_page_vaddr(*pgd);
  498. last_map_addr = phys_pud_init(pud, __pa(start),
  499. __pa(end), page_size_mask);
  500. continue;
  501. }
  502. pud = alloc_low_page(&pud_phys);
  503. last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
  504. page_size_mask);
  505. spin_lock(&init_mm.page_table_lock);
  506. pgd_populate(&init_mm, pgd, __va(pud_phys));
  507. spin_unlock(&init_mm.page_table_lock);
  508. pgd_changed = true;
  509. }
  510. if (pgd_changed)
  511. sync_global_pgds(addr, end);
  512. __flush_tlb_all();
  513. return last_map_addr;
  514. }
  515. #ifndef CONFIG_NUMA
  516. void __init initmem_init(void)
  517. {
  518. memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
  519. }
  520. #endif
  521. void __init paging_init(void)
  522. {
  523. sparse_memory_present_with_active_regions(MAX_NUMNODES);
  524. sparse_init();
  525. /*
  526. * clear the default setting with node 0
  527. * note: don't use nodes_clear here, that is really clearing when
  528. * numa support is not compiled in, and later node_set_state
  529. * will not set it back.
  530. */
  531. node_clear_state(0, N_NORMAL_MEMORY);
  532. zone_sizes_init();
  533. }
  534. /*
  535. * Memory hotplug specific functions
  536. */
  537. #ifdef CONFIG_MEMORY_HOTPLUG
  538. /*
  539. * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
  540. * updating.
  541. */
  542. static void update_end_of_memory_vars(u64 start, u64 size)
  543. {
  544. unsigned long end_pfn = PFN_UP(start + size);
  545. if (end_pfn > max_pfn) {
  546. max_pfn = end_pfn;
  547. max_low_pfn = end_pfn;
  548. high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
  549. }
  550. }
  551. /*
  552. * Memory is added always to NORMAL zone. This means you will never get
  553. * additional DMA/DMA32 memory.
  554. */
  555. int arch_add_memory(int nid, u64 start, u64 size)
  556. {
  557. struct pglist_data *pgdat = NODE_DATA(nid);
  558. struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
  559. unsigned long start_pfn = start >> PAGE_SHIFT;
  560. unsigned long nr_pages = size >> PAGE_SHIFT;
  561. int ret;
  562. init_memory_mapping(start, start + size);
  563. ret = __add_pages(nid, zone, start_pfn, nr_pages);
  564. WARN_ON_ONCE(ret);
  565. /* update max_pfn, max_low_pfn and high_memory */
  566. update_end_of_memory_vars(start, size);
  567. return ret;
  568. }
  569. EXPORT_SYMBOL_GPL(arch_add_memory);
  570. #endif /* CONFIG_MEMORY_HOTPLUG */
  571. static struct kcore_list kcore_vsyscall;
  572. void __init mem_init(void)
  573. {
  574. long codesize, reservedpages, datasize, initsize;
  575. unsigned long absent_pages;
  576. pci_iommu_alloc();
  577. /* clear_bss() already clear the empty_zero_page */
  578. reservedpages = 0;
  579. /* this will put all low memory onto the freelists */
  580. #ifdef CONFIG_NUMA
  581. totalram_pages = numa_free_all_bootmem();
  582. #else
  583. totalram_pages = free_all_bootmem();
  584. #endif
  585. absent_pages = absent_pages_in_range(0, max_pfn);
  586. reservedpages = max_pfn - totalram_pages - absent_pages;
  587. after_bootmem = 1;
  588. codesize = (unsigned long) &_etext - (unsigned long) &_text;
  589. datasize = (unsigned long) &_edata - (unsigned long) &_etext;
  590. initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
  591. /* Register memory areas for /proc/kcore */
  592. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
  593. VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
  594. printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
  595. "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
  596. nr_free_pages() << (PAGE_SHIFT-10),
  597. max_pfn << (PAGE_SHIFT-10),
  598. codesize >> 10,
  599. absent_pages << (PAGE_SHIFT-10),
  600. reservedpages << (PAGE_SHIFT-10),
  601. datasize >> 10,
  602. initsize >> 10);
  603. }
  604. #ifdef CONFIG_DEBUG_RODATA
  605. const int rodata_test_data = 0xC3;
  606. EXPORT_SYMBOL_GPL(rodata_test_data);
  607. int kernel_set_to_readonly;
  608. void set_kernel_text_rw(void)
  609. {
  610. unsigned long start = PFN_ALIGN(_text);
  611. unsigned long end = PFN_ALIGN(__stop___ex_table);
  612. if (!kernel_set_to_readonly)
  613. return;
  614. pr_debug("Set kernel text: %lx - %lx for read write\n",
  615. start, end);
  616. /*
  617. * Make the kernel identity mapping for text RW. Kernel text
  618. * mapping will always be RO. Refer to the comment in
  619. * static_protections() in pageattr.c
  620. */
  621. set_memory_rw(start, (end - start) >> PAGE_SHIFT);
  622. }
  623. void set_kernel_text_ro(void)
  624. {
  625. unsigned long start = PFN_ALIGN(_text);
  626. unsigned long end = PFN_ALIGN(__stop___ex_table);
  627. if (!kernel_set_to_readonly)
  628. return;
  629. pr_debug("Set kernel text: %lx - %lx for read only\n",
  630. start, end);
  631. /*
  632. * Set the kernel identity mapping for text RO.
  633. */
  634. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  635. }
  636. void mark_rodata_ro(void)
  637. {
  638. unsigned long start = PFN_ALIGN(_text);
  639. unsigned long rodata_start =
  640. ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
  641. unsigned long end = (unsigned long) &__end_rodata_hpage_align;
  642. unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
  643. unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
  644. unsigned long data_start = (unsigned long) &_sdata;
  645. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  646. (end - start) >> 10);
  647. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  648. kernel_set_to_readonly = 1;
  649. /*
  650. * The rodata section (but not the kernel text!) should also be
  651. * not-executable.
  652. */
  653. set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
  654. rodata_test();
  655. #ifdef CONFIG_CPA_DEBUG
  656. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  657. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  658. printk(KERN_INFO "Testing CPA: again\n");
  659. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  660. #endif
  661. free_init_pages("unused kernel memory",
  662. (unsigned long) page_address(virt_to_page(text_end)),
  663. (unsigned long)
  664. page_address(virt_to_page(rodata_start)));
  665. free_init_pages("unused kernel memory",
  666. (unsigned long) page_address(virt_to_page(rodata_end)),
  667. (unsigned long) page_address(virt_to_page(data_start)));
  668. }
  669. #endif
  670. int kern_addr_valid(unsigned long addr)
  671. {
  672. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  673. pgd_t *pgd;
  674. pud_t *pud;
  675. pmd_t *pmd;
  676. pte_t *pte;
  677. if (above != 0 && above != -1UL)
  678. return 0;
  679. pgd = pgd_offset_k(addr);
  680. if (pgd_none(*pgd))
  681. return 0;
  682. pud = pud_offset(pgd, addr);
  683. if (pud_none(*pud))
  684. return 0;
  685. pmd = pmd_offset(pud, addr);
  686. if (pmd_none(*pmd))
  687. return 0;
  688. if (pmd_large(*pmd))
  689. return pfn_valid(pmd_pfn(*pmd));
  690. pte = pte_offset_kernel(pmd, addr);
  691. if (pte_none(*pte))
  692. return 0;
  693. return pfn_valid(pte_pfn(*pte));
  694. }
  695. /*
  696. * A pseudo VMA to allow ptrace access for the vsyscall page. This only
  697. * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
  698. * not need special handling anymore:
  699. */
  700. static struct vm_area_struct gate_vma = {
  701. .vm_start = VSYSCALL_START,
  702. .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
  703. .vm_page_prot = PAGE_READONLY_EXEC,
  704. .vm_flags = VM_READ | VM_EXEC
  705. };
  706. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  707. {
  708. #ifdef CONFIG_IA32_EMULATION
  709. if (!mm || mm->context.ia32_compat)
  710. return NULL;
  711. #endif
  712. return &gate_vma;
  713. }
  714. int in_gate_area(struct mm_struct *mm, unsigned long addr)
  715. {
  716. struct vm_area_struct *vma = get_gate_vma(mm);
  717. if (!vma)
  718. return 0;
  719. return (addr >= vma->vm_start) && (addr < vma->vm_end);
  720. }
  721. /*
  722. * Use this when you have no reliable mm, typically from interrupt
  723. * context. It is less reliable than using a task's mm and may give
  724. * false positives.
  725. */
  726. int in_gate_area_no_mm(unsigned long addr)
  727. {
  728. return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
  729. }
  730. const char *arch_vma_name(struct vm_area_struct *vma)
  731. {
  732. if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
  733. return "[vdso]";
  734. if (vma == &gate_vma)
  735. return "[vsyscall]";
  736. return NULL;
  737. }
  738. #ifdef CONFIG_X86_UV
  739. unsigned long memory_block_size_bytes(void)
  740. {
  741. if (is_uv_system()) {
  742. printk(KERN_INFO "UV: memory block size 2GB\n");
  743. return 2UL * 1024 * 1024 * 1024;
  744. }
  745. return MIN_MEMORY_BLOCK_SIZE;
  746. }
  747. #endif
  748. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  749. /*
  750. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  751. */
  752. static long __meminitdata addr_start, addr_end;
  753. static void __meminitdata *p_start, *p_end;
  754. static int __meminitdata node_start;
  755. int __meminit
  756. vmemmap_populate(struct page *start_page, unsigned long size, int node)
  757. {
  758. unsigned long addr = (unsigned long)start_page;
  759. unsigned long end = (unsigned long)(start_page + size);
  760. unsigned long next;
  761. pgd_t *pgd;
  762. pud_t *pud;
  763. pmd_t *pmd;
  764. for (; addr < end; addr = next) {
  765. void *p = NULL;
  766. pgd = vmemmap_pgd_populate(addr, node);
  767. if (!pgd)
  768. return -ENOMEM;
  769. pud = vmemmap_pud_populate(pgd, addr, node);
  770. if (!pud)
  771. return -ENOMEM;
  772. if (!cpu_has_pse) {
  773. next = (addr + PAGE_SIZE) & PAGE_MASK;
  774. pmd = vmemmap_pmd_populate(pud, addr, node);
  775. if (!pmd)
  776. return -ENOMEM;
  777. p = vmemmap_pte_populate(pmd, addr, node);
  778. if (!p)
  779. return -ENOMEM;
  780. addr_end = addr + PAGE_SIZE;
  781. p_end = p + PAGE_SIZE;
  782. } else {
  783. next = pmd_addr_end(addr, end);
  784. pmd = pmd_offset(pud, addr);
  785. if (pmd_none(*pmd)) {
  786. pte_t entry;
  787. p = vmemmap_alloc_block_buf(PMD_SIZE, node);
  788. if (!p)
  789. return -ENOMEM;
  790. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  791. PAGE_KERNEL_LARGE);
  792. set_pmd(pmd, __pmd(pte_val(entry)));
  793. /* check to see if we have contiguous blocks */
  794. if (p_end != p || node_start != node) {
  795. if (p_start)
  796. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  797. addr_start, addr_end-1, p_start, p_end-1, node_start);
  798. addr_start = addr;
  799. node_start = node;
  800. p_start = p;
  801. }
  802. addr_end = addr + PMD_SIZE;
  803. p_end = p + PMD_SIZE;
  804. } else
  805. vmemmap_verify((pte_t *)pmd, node, addr, next);
  806. }
  807. }
  808. sync_global_pgds((unsigned long)start_page, end);
  809. return 0;
  810. }
  811. void __meminit vmemmap_populate_print_last(void)
  812. {
  813. if (p_start) {
  814. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  815. addr_start, addr_end-1, p_start, p_end-1, node_start);
  816. p_start = NULL;
  817. p_end = NULL;
  818. node_start = 0;
  819. }
  820. }
  821. #endif