kvm_main.c 73 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86_emulate.h"
  19. #include "segment_descriptor.h"
  20. #include "irq.h"
  21. #include <linux/kvm.h>
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/mm.h>
  27. #include <linux/miscdevice.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/reboot.h>
  30. #include <linux/debugfs.h>
  31. #include <linux/highmem.h>
  32. #include <linux/file.h>
  33. #include <linux/sysdev.h>
  34. #include <linux/cpu.h>
  35. #include <linux/sched.h>
  36. #include <linux/cpumask.h>
  37. #include <linux/smp.h>
  38. #include <linux/anon_inodes.h>
  39. #include <asm/processor.h>
  40. #include <asm/msr.h>
  41. #include <asm/io.h>
  42. #include <asm/uaccess.h>
  43. #include <asm/desc.h>
  44. MODULE_AUTHOR("Qumranet");
  45. MODULE_LICENSE("GPL");
  46. static DEFINE_SPINLOCK(kvm_lock);
  47. static LIST_HEAD(vm_list);
  48. static cpumask_t cpus_hardware_enabled;
  49. struct kvm_arch_ops *kvm_arch_ops;
  50. struct kmem_cache *kvm_vcpu_cache;
  51. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  52. static __read_mostly struct preempt_ops kvm_preempt_ops;
  53. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  54. static struct kvm_stats_debugfs_item {
  55. const char *name;
  56. int offset;
  57. struct dentry *dentry;
  58. } debugfs_entries[] = {
  59. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  60. { "pf_guest", STAT_OFFSET(pf_guest) },
  61. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  62. { "invlpg", STAT_OFFSET(invlpg) },
  63. { "exits", STAT_OFFSET(exits) },
  64. { "io_exits", STAT_OFFSET(io_exits) },
  65. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  66. { "signal_exits", STAT_OFFSET(signal_exits) },
  67. { "irq_window", STAT_OFFSET(irq_window_exits) },
  68. { "halt_exits", STAT_OFFSET(halt_exits) },
  69. { "request_irq", STAT_OFFSET(request_irq_exits) },
  70. { "irq_exits", STAT_OFFSET(irq_exits) },
  71. { "light_exits", STAT_OFFSET(light_exits) },
  72. { "efer_reload", STAT_OFFSET(efer_reload) },
  73. { NULL }
  74. };
  75. static struct dentry *debugfs_dir;
  76. #define MAX_IO_MSRS 256
  77. #define CR0_RESERVED_BITS \
  78. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  79. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  80. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  81. #define CR4_RESERVED_BITS \
  82. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  83. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  84. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  85. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  86. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  87. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  88. #ifdef CONFIG_X86_64
  89. // LDT or TSS descriptor in the GDT. 16 bytes.
  90. struct segment_descriptor_64 {
  91. struct segment_descriptor s;
  92. u32 base_higher;
  93. u32 pad_zero;
  94. };
  95. #endif
  96. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  97. unsigned long arg);
  98. unsigned long segment_base(u16 selector)
  99. {
  100. struct descriptor_table gdt;
  101. struct segment_descriptor *d;
  102. unsigned long table_base;
  103. typedef unsigned long ul;
  104. unsigned long v;
  105. if (selector == 0)
  106. return 0;
  107. asm ("sgdt %0" : "=m"(gdt));
  108. table_base = gdt.base;
  109. if (selector & 4) { /* from ldt */
  110. u16 ldt_selector;
  111. asm ("sldt %0" : "=g"(ldt_selector));
  112. table_base = segment_base(ldt_selector);
  113. }
  114. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  115. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  116. #ifdef CONFIG_X86_64
  117. if (d->system == 0
  118. && (d->type == 2 || d->type == 9 || d->type == 11))
  119. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  120. #endif
  121. return v;
  122. }
  123. EXPORT_SYMBOL_GPL(segment_base);
  124. static inline int valid_vcpu(int n)
  125. {
  126. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  127. }
  128. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  129. {
  130. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  131. return;
  132. vcpu->guest_fpu_loaded = 1;
  133. fx_save(&vcpu->host_fx_image);
  134. fx_restore(&vcpu->guest_fx_image);
  135. }
  136. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  137. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  138. {
  139. if (!vcpu->guest_fpu_loaded)
  140. return;
  141. vcpu->guest_fpu_loaded = 0;
  142. fx_save(&vcpu->guest_fx_image);
  143. fx_restore(&vcpu->host_fx_image);
  144. }
  145. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  146. /*
  147. * Switches to specified vcpu, until a matching vcpu_put()
  148. */
  149. static void vcpu_load(struct kvm_vcpu *vcpu)
  150. {
  151. int cpu;
  152. mutex_lock(&vcpu->mutex);
  153. cpu = get_cpu();
  154. preempt_notifier_register(&vcpu->preempt_notifier);
  155. kvm_arch_ops->vcpu_load(vcpu, cpu);
  156. put_cpu();
  157. }
  158. static void vcpu_put(struct kvm_vcpu *vcpu)
  159. {
  160. preempt_disable();
  161. kvm_arch_ops->vcpu_put(vcpu);
  162. preempt_notifier_unregister(&vcpu->preempt_notifier);
  163. preempt_enable();
  164. mutex_unlock(&vcpu->mutex);
  165. }
  166. static void ack_flush(void *_completed)
  167. {
  168. atomic_t *completed = _completed;
  169. atomic_inc(completed);
  170. }
  171. void kvm_flush_remote_tlbs(struct kvm *kvm)
  172. {
  173. int i, cpu, needed;
  174. cpumask_t cpus;
  175. struct kvm_vcpu *vcpu;
  176. atomic_t completed;
  177. atomic_set(&completed, 0);
  178. cpus_clear(cpus);
  179. needed = 0;
  180. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  181. vcpu = kvm->vcpus[i];
  182. if (!vcpu)
  183. continue;
  184. if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
  185. continue;
  186. cpu = vcpu->cpu;
  187. if (cpu != -1 && cpu != raw_smp_processor_id())
  188. if (!cpu_isset(cpu, cpus)) {
  189. cpu_set(cpu, cpus);
  190. ++needed;
  191. }
  192. }
  193. /*
  194. * We really want smp_call_function_mask() here. But that's not
  195. * available, so ipi all cpus in parallel and wait for them
  196. * to complete.
  197. */
  198. for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
  199. smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
  200. while (atomic_read(&completed) != needed) {
  201. cpu_relax();
  202. barrier();
  203. }
  204. }
  205. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  206. {
  207. struct page *page;
  208. int r;
  209. mutex_init(&vcpu->mutex);
  210. vcpu->cpu = -1;
  211. vcpu->mmu.root_hpa = INVALID_PAGE;
  212. vcpu->kvm = kvm;
  213. vcpu->vcpu_id = id;
  214. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  215. if (!page) {
  216. r = -ENOMEM;
  217. goto fail;
  218. }
  219. vcpu->run = page_address(page);
  220. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  221. if (!page) {
  222. r = -ENOMEM;
  223. goto fail_free_run;
  224. }
  225. vcpu->pio_data = page_address(page);
  226. r = kvm_mmu_create(vcpu);
  227. if (r < 0)
  228. goto fail_free_pio_data;
  229. return 0;
  230. fail_free_pio_data:
  231. free_page((unsigned long)vcpu->pio_data);
  232. fail_free_run:
  233. free_page((unsigned long)vcpu->run);
  234. fail:
  235. return -ENOMEM;
  236. }
  237. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  238. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  239. {
  240. kvm_mmu_destroy(vcpu);
  241. kvm_free_apic(vcpu->apic);
  242. free_page((unsigned long)vcpu->pio_data);
  243. free_page((unsigned long)vcpu->run);
  244. }
  245. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  246. static struct kvm *kvm_create_vm(void)
  247. {
  248. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  249. if (!kvm)
  250. return ERR_PTR(-ENOMEM);
  251. kvm_io_bus_init(&kvm->pio_bus);
  252. mutex_init(&kvm->lock);
  253. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  254. kvm_io_bus_init(&kvm->mmio_bus);
  255. spin_lock(&kvm_lock);
  256. list_add(&kvm->vm_list, &vm_list);
  257. spin_unlock(&kvm_lock);
  258. return kvm;
  259. }
  260. /*
  261. * Free any memory in @free but not in @dont.
  262. */
  263. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  264. struct kvm_memory_slot *dont)
  265. {
  266. int i;
  267. if (!dont || free->phys_mem != dont->phys_mem)
  268. if (free->phys_mem) {
  269. for (i = 0; i < free->npages; ++i)
  270. if (free->phys_mem[i])
  271. __free_page(free->phys_mem[i]);
  272. vfree(free->phys_mem);
  273. }
  274. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  275. vfree(free->dirty_bitmap);
  276. free->phys_mem = NULL;
  277. free->npages = 0;
  278. free->dirty_bitmap = NULL;
  279. }
  280. static void kvm_free_physmem(struct kvm *kvm)
  281. {
  282. int i;
  283. for (i = 0; i < kvm->nmemslots; ++i)
  284. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  285. }
  286. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  287. {
  288. int i;
  289. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  290. if (vcpu->pio.guest_pages[i]) {
  291. __free_page(vcpu->pio.guest_pages[i]);
  292. vcpu->pio.guest_pages[i] = NULL;
  293. }
  294. }
  295. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  296. {
  297. vcpu_load(vcpu);
  298. kvm_mmu_unload(vcpu);
  299. vcpu_put(vcpu);
  300. }
  301. static void kvm_free_vcpus(struct kvm *kvm)
  302. {
  303. unsigned int i;
  304. /*
  305. * Unpin any mmu pages first.
  306. */
  307. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  308. if (kvm->vcpus[i])
  309. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  310. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  311. if (kvm->vcpus[i]) {
  312. kvm_arch_ops->vcpu_free(kvm->vcpus[i]);
  313. kvm->vcpus[i] = NULL;
  314. }
  315. }
  316. }
  317. static void kvm_destroy_vm(struct kvm *kvm)
  318. {
  319. spin_lock(&kvm_lock);
  320. list_del(&kvm->vm_list);
  321. spin_unlock(&kvm_lock);
  322. kvm_io_bus_destroy(&kvm->pio_bus);
  323. kvm_io_bus_destroy(&kvm->mmio_bus);
  324. kfree(kvm->vpic);
  325. kvm_free_vcpus(kvm);
  326. kvm_free_physmem(kvm);
  327. kfree(kvm);
  328. }
  329. static int kvm_vm_release(struct inode *inode, struct file *filp)
  330. {
  331. struct kvm *kvm = filp->private_data;
  332. kvm_destroy_vm(kvm);
  333. return 0;
  334. }
  335. static void inject_gp(struct kvm_vcpu *vcpu)
  336. {
  337. kvm_arch_ops->inject_gp(vcpu, 0);
  338. }
  339. /*
  340. * Load the pae pdptrs. Return true is they are all valid.
  341. */
  342. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  343. {
  344. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  345. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  346. int i;
  347. u64 *pdpt;
  348. int ret;
  349. struct page *page;
  350. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  351. mutex_lock(&vcpu->kvm->lock);
  352. page = gfn_to_page(vcpu->kvm, pdpt_gfn);
  353. if (!page) {
  354. ret = 0;
  355. goto out;
  356. }
  357. pdpt = kmap_atomic(page, KM_USER0);
  358. memcpy(pdpte, pdpt+offset, sizeof(pdpte));
  359. kunmap_atomic(pdpt, KM_USER0);
  360. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  361. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  362. ret = 0;
  363. goto out;
  364. }
  365. }
  366. ret = 1;
  367. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  368. out:
  369. mutex_unlock(&vcpu->kvm->lock);
  370. return ret;
  371. }
  372. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  373. {
  374. if (cr0 & CR0_RESERVED_BITS) {
  375. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  376. cr0, vcpu->cr0);
  377. inject_gp(vcpu);
  378. return;
  379. }
  380. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  381. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  382. inject_gp(vcpu);
  383. return;
  384. }
  385. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  386. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  387. "and a clear PE flag\n");
  388. inject_gp(vcpu);
  389. return;
  390. }
  391. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  392. #ifdef CONFIG_X86_64
  393. if ((vcpu->shadow_efer & EFER_LME)) {
  394. int cs_db, cs_l;
  395. if (!is_pae(vcpu)) {
  396. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  397. "in long mode while PAE is disabled\n");
  398. inject_gp(vcpu);
  399. return;
  400. }
  401. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  402. if (cs_l) {
  403. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  404. "in long mode while CS.L == 1\n");
  405. inject_gp(vcpu);
  406. return;
  407. }
  408. } else
  409. #endif
  410. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  411. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  412. "reserved bits\n");
  413. inject_gp(vcpu);
  414. return;
  415. }
  416. }
  417. kvm_arch_ops->set_cr0(vcpu, cr0);
  418. vcpu->cr0 = cr0;
  419. mutex_lock(&vcpu->kvm->lock);
  420. kvm_mmu_reset_context(vcpu);
  421. mutex_unlock(&vcpu->kvm->lock);
  422. return;
  423. }
  424. EXPORT_SYMBOL_GPL(set_cr0);
  425. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  426. {
  427. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  428. }
  429. EXPORT_SYMBOL_GPL(lmsw);
  430. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  431. {
  432. if (cr4 & CR4_RESERVED_BITS) {
  433. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  434. inject_gp(vcpu);
  435. return;
  436. }
  437. if (is_long_mode(vcpu)) {
  438. if (!(cr4 & X86_CR4_PAE)) {
  439. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  440. "in long mode\n");
  441. inject_gp(vcpu);
  442. return;
  443. }
  444. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  445. && !load_pdptrs(vcpu, vcpu->cr3)) {
  446. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  447. inject_gp(vcpu);
  448. return;
  449. }
  450. if (cr4 & X86_CR4_VMXE) {
  451. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  452. inject_gp(vcpu);
  453. return;
  454. }
  455. kvm_arch_ops->set_cr4(vcpu, cr4);
  456. mutex_lock(&vcpu->kvm->lock);
  457. kvm_mmu_reset_context(vcpu);
  458. mutex_unlock(&vcpu->kvm->lock);
  459. }
  460. EXPORT_SYMBOL_GPL(set_cr4);
  461. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  462. {
  463. if (is_long_mode(vcpu)) {
  464. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  465. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  466. inject_gp(vcpu);
  467. return;
  468. }
  469. } else {
  470. if (is_pae(vcpu)) {
  471. if (cr3 & CR3_PAE_RESERVED_BITS) {
  472. printk(KERN_DEBUG
  473. "set_cr3: #GP, reserved bits\n");
  474. inject_gp(vcpu);
  475. return;
  476. }
  477. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  478. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  479. "reserved bits\n");
  480. inject_gp(vcpu);
  481. return;
  482. }
  483. } else {
  484. if (cr3 & CR3_NONPAE_RESERVED_BITS) {
  485. printk(KERN_DEBUG
  486. "set_cr3: #GP, reserved bits\n");
  487. inject_gp(vcpu);
  488. return;
  489. }
  490. }
  491. }
  492. mutex_lock(&vcpu->kvm->lock);
  493. /*
  494. * Does the new cr3 value map to physical memory? (Note, we
  495. * catch an invalid cr3 even in real-mode, because it would
  496. * cause trouble later on when we turn on paging anyway.)
  497. *
  498. * A real CPU would silently accept an invalid cr3 and would
  499. * attempt to use it - with largely undefined (and often hard
  500. * to debug) behavior on the guest side.
  501. */
  502. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  503. inject_gp(vcpu);
  504. else {
  505. vcpu->cr3 = cr3;
  506. vcpu->mmu.new_cr3(vcpu);
  507. }
  508. mutex_unlock(&vcpu->kvm->lock);
  509. }
  510. EXPORT_SYMBOL_GPL(set_cr3);
  511. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  512. {
  513. if (cr8 & CR8_RESERVED_BITS) {
  514. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  515. inject_gp(vcpu);
  516. return;
  517. }
  518. if (irqchip_in_kernel(vcpu->kvm))
  519. kvm_lapic_set_tpr(vcpu, cr8);
  520. else
  521. vcpu->cr8 = cr8;
  522. }
  523. EXPORT_SYMBOL_GPL(set_cr8);
  524. unsigned long get_cr8(struct kvm_vcpu *vcpu)
  525. {
  526. if (irqchip_in_kernel(vcpu->kvm))
  527. return kvm_lapic_get_cr8(vcpu);
  528. else
  529. return vcpu->cr8;
  530. }
  531. EXPORT_SYMBOL_GPL(get_cr8);
  532. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  533. {
  534. if (irqchip_in_kernel(vcpu->kvm))
  535. return vcpu->apic_base;
  536. else
  537. return vcpu->apic_base;
  538. }
  539. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  540. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  541. {
  542. /* TODO: reserve bits check */
  543. if (irqchip_in_kernel(vcpu->kvm))
  544. kvm_lapic_set_base(vcpu, data);
  545. else
  546. vcpu->apic_base = data;
  547. }
  548. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  549. void fx_init(struct kvm_vcpu *vcpu)
  550. {
  551. unsigned after_mxcsr_mask;
  552. /* Initialize guest FPU by resetting ours and saving into guest's */
  553. preempt_disable();
  554. fx_save(&vcpu->host_fx_image);
  555. fpu_init();
  556. fx_save(&vcpu->guest_fx_image);
  557. fx_restore(&vcpu->host_fx_image);
  558. preempt_enable();
  559. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  560. vcpu->guest_fx_image.mxcsr = 0x1f80;
  561. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  562. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  563. }
  564. EXPORT_SYMBOL_GPL(fx_init);
  565. /*
  566. * Allocate some memory and give it an address in the guest physical address
  567. * space.
  568. *
  569. * Discontiguous memory is allowed, mostly for framebuffers.
  570. */
  571. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  572. struct kvm_memory_region *mem)
  573. {
  574. int r;
  575. gfn_t base_gfn;
  576. unsigned long npages;
  577. unsigned long i;
  578. struct kvm_memory_slot *memslot;
  579. struct kvm_memory_slot old, new;
  580. int memory_config_version;
  581. r = -EINVAL;
  582. /* General sanity checks */
  583. if (mem->memory_size & (PAGE_SIZE - 1))
  584. goto out;
  585. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  586. goto out;
  587. if (mem->slot >= KVM_MEMORY_SLOTS)
  588. goto out;
  589. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  590. goto out;
  591. memslot = &kvm->memslots[mem->slot];
  592. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  593. npages = mem->memory_size >> PAGE_SHIFT;
  594. if (!npages)
  595. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  596. raced:
  597. mutex_lock(&kvm->lock);
  598. memory_config_version = kvm->memory_config_version;
  599. new = old = *memslot;
  600. new.base_gfn = base_gfn;
  601. new.npages = npages;
  602. new.flags = mem->flags;
  603. /* Disallow changing a memory slot's size. */
  604. r = -EINVAL;
  605. if (npages && old.npages && npages != old.npages)
  606. goto out_unlock;
  607. /* Check for overlaps */
  608. r = -EEXIST;
  609. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  610. struct kvm_memory_slot *s = &kvm->memslots[i];
  611. if (s == memslot)
  612. continue;
  613. if (!((base_gfn + npages <= s->base_gfn) ||
  614. (base_gfn >= s->base_gfn + s->npages)))
  615. goto out_unlock;
  616. }
  617. /*
  618. * Do memory allocations outside lock. memory_config_version will
  619. * detect any races.
  620. */
  621. mutex_unlock(&kvm->lock);
  622. /* Deallocate if slot is being removed */
  623. if (!npages)
  624. new.phys_mem = NULL;
  625. /* Free page dirty bitmap if unneeded */
  626. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  627. new.dirty_bitmap = NULL;
  628. r = -ENOMEM;
  629. /* Allocate if a slot is being created */
  630. if (npages && !new.phys_mem) {
  631. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  632. if (!new.phys_mem)
  633. goto out_free;
  634. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  635. for (i = 0; i < npages; ++i) {
  636. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  637. | __GFP_ZERO);
  638. if (!new.phys_mem[i])
  639. goto out_free;
  640. set_page_private(new.phys_mem[i],0);
  641. }
  642. }
  643. /* Allocate page dirty bitmap if needed */
  644. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  645. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  646. new.dirty_bitmap = vmalloc(dirty_bytes);
  647. if (!new.dirty_bitmap)
  648. goto out_free;
  649. memset(new.dirty_bitmap, 0, dirty_bytes);
  650. }
  651. mutex_lock(&kvm->lock);
  652. if (memory_config_version != kvm->memory_config_version) {
  653. mutex_unlock(&kvm->lock);
  654. kvm_free_physmem_slot(&new, &old);
  655. goto raced;
  656. }
  657. r = -EAGAIN;
  658. if (kvm->busy)
  659. goto out_unlock;
  660. if (mem->slot >= kvm->nmemslots)
  661. kvm->nmemslots = mem->slot + 1;
  662. *memslot = new;
  663. ++kvm->memory_config_version;
  664. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  665. kvm_flush_remote_tlbs(kvm);
  666. mutex_unlock(&kvm->lock);
  667. kvm_free_physmem_slot(&old, &new);
  668. return 0;
  669. out_unlock:
  670. mutex_unlock(&kvm->lock);
  671. out_free:
  672. kvm_free_physmem_slot(&new, &old);
  673. out:
  674. return r;
  675. }
  676. /*
  677. * Get (and clear) the dirty memory log for a memory slot.
  678. */
  679. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  680. struct kvm_dirty_log *log)
  681. {
  682. struct kvm_memory_slot *memslot;
  683. int r, i;
  684. int n;
  685. unsigned long any = 0;
  686. mutex_lock(&kvm->lock);
  687. /*
  688. * Prevent changes to guest memory configuration even while the lock
  689. * is not taken.
  690. */
  691. ++kvm->busy;
  692. mutex_unlock(&kvm->lock);
  693. r = -EINVAL;
  694. if (log->slot >= KVM_MEMORY_SLOTS)
  695. goto out;
  696. memslot = &kvm->memslots[log->slot];
  697. r = -ENOENT;
  698. if (!memslot->dirty_bitmap)
  699. goto out;
  700. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  701. for (i = 0; !any && i < n/sizeof(long); ++i)
  702. any = memslot->dirty_bitmap[i];
  703. r = -EFAULT;
  704. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  705. goto out;
  706. /* If nothing is dirty, don't bother messing with page tables. */
  707. if (any) {
  708. mutex_lock(&kvm->lock);
  709. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  710. kvm_flush_remote_tlbs(kvm);
  711. memset(memslot->dirty_bitmap, 0, n);
  712. mutex_unlock(&kvm->lock);
  713. }
  714. r = 0;
  715. out:
  716. mutex_lock(&kvm->lock);
  717. --kvm->busy;
  718. mutex_unlock(&kvm->lock);
  719. return r;
  720. }
  721. /*
  722. * Set a new alias region. Aliases map a portion of physical memory into
  723. * another portion. This is useful for memory windows, for example the PC
  724. * VGA region.
  725. */
  726. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  727. struct kvm_memory_alias *alias)
  728. {
  729. int r, n;
  730. struct kvm_mem_alias *p;
  731. r = -EINVAL;
  732. /* General sanity checks */
  733. if (alias->memory_size & (PAGE_SIZE - 1))
  734. goto out;
  735. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  736. goto out;
  737. if (alias->slot >= KVM_ALIAS_SLOTS)
  738. goto out;
  739. if (alias->guest_phys_addr + alias->memory_size
  740. < alias->guest_phys_addr)
  741. goto out;
  742. if (alias->target_phys_addr + alias->memory_size
  743. < alias->target_phys_addr)
  744. goto out;
  745. mutex_lock(&kvm->lock);
  746. p = &kvm->aliases[alias->slot];
  747. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  748. p->npages = alias->memory_size >> PAGE_SHIFT;
  749. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  750. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  751. if (kvm->aliases[n - 1].npages)
  752. break;
  753. kvm->naliases = n;
  754. kvm_mmu_zap_all(kvm);
  755. mutex_unlock(&kvm->lock);
  756. return 0;
  757. out:
  758. return r;
  759. }
  760. static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  761. {
  762. int i;
  763. struct kvm_mem_alias *alias;
  764. for (i = 0; i < kvm->naliases; ++i) {
  765. alias = &kvm->aliases[i];
  766. if (gfn >= alias->base_gfn
  767. && gfn < alias->base_gfn + alias->npages)
  768. return alias->target_gfn + gfn - alias->base_gfn;
  769. }
  770. return gfn;
  771. }
  772. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  773. {
  774. int i;
  775. for (i = 0; i < kvm->nmemslots; ++i) {
  776. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  777. if (gfn >= memslot->base_gfn
  778. && gfn < memslot->base_gfn + memslot->npages)
  779. return memslot;
  780. }
  781. return NULL;
  782. }
  783. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  784. {
  785. gfn = unalias_gfn(kvm, gfn);
  786. return __gfn_to_memslot(kvm, gfn);
  787. }
  788. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  789. {
  790. struct kvm_memory_slot *slot;
  791. gfn = unalias_gfn(kvm, gfn);
  792. slot = __gfn_to_memslot(kvm, gfn);
  793. if (!slot)
  794. return NULL;
  795. return slot->phys_mem[gfn - slot->base_gfn];
  796. }
  797. EXPORT_SYMBOL_GPL(gfn_to_page);
  798. /* WARNING: Does not work on aliased pages. */
  799. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  800. {
  801. struct kvm_memory_slot *memslot;
  802. memslot = __gfn_to_memslot(kvm, gfn);
  803. if (memslot && memslot->dirty_bitmap) {
  804. unsigned long rel_gfn = gfn - memslot->base_gfn;
  805. /* avoid RMW */
  806. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  807. set_bit(rel_gfn, memslot->dirty_bitmap);
  808. }
  809. }
  810. int emulator_read_std(unsigned long addr,
  811. void *val,
  812. unsigned int bytes,
  813. struct kvm_vcpu *vcpu)
  814. {
  815. void *data = val;
  816. while (bytes) {
  817. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  818. unsigned offset = addr & (PAGE_SIZE-1);
  819. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  820. unsigned long pfn;
  821. struct page *page;
  822. void *page_virt;
  823. if (gpa == UNMAPPED_GVA)
  824. return X86EMUL_PROPAGATE_FAULT;
  825. pfn = gpa >> PAGE_SHIFT;
  826. page = gfn_to_page(vcpu->kvm, pfn);
  827. if (!page)
  828. return X86EMUL_UNHANDLEABLE;
  829. page_virt = kmap_atomic(page, KM_USER0);
  830. memcpy(data, page_virt + offset, tocopy);
  831. kunmap_atomic(page_virt, KM_USER0);
  832. bytes -= tocopy;
  833. data += tocopy;
  834. addr += tocopy;
  835. }
  836. return X86EMUL_CONTINUE;
  837. }
  838. EXPORT_SYMBOL_GPL(emulator_read_std);
  839. static int emulator_write_std(unsigned long addr,
  840. const void *val,
  841. unsigned int bytes,
  842. struct kvm_vcpu *vcpu)
  843. {
  844. pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
  845. return X86EMUL_UNHANDLEABLE;
  846. }
  847. /*
  848. * Only apic need an MMIO device hook, so shortcut now..
  849. */
  850. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  851. gpa_t addr)
  852. {
  853. struct kvm_io_device *dev;
  854. if (vcpu->apic) {
  855. dev = &vcpu->apic->dev;
  856. if (dev->in_range(dev, addr))
  857. return dev;
  858. }
  859. return NULL;
  860. }
  861. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  862. gpa_t addr)
  863. {
  864. struct kvm_io_device *dev;
  865. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  866. if (dev == NULL)
  867. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  868. return dev;
  869. }
  870. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  871. gpa_t addr)
  872. {
  873. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  874. }
  875. static int emulator_read_emulated(unsigned long addr,
  876. void *val,
  877. unsigned int bytes,
  878. struct kvm_vcpu *vcpu)
  879. {
  880. struct kvm_io_device *mmio_dev;
  881. gpa_t gpa;
  882. if (vcpu->mmio_read_completed) {
  883. memcpy(val, vcpu->mmio_data, bytes);
  884. vcpu->mmio_read_completed = 0;
  885. return X86EMUL_CONTINUE;
  886. } else if (emulator_read_std(addr, val, bytes, vcpu)
  887. == X86EMUL_CONTINUE)
  888. return X86EMUL_CONTINUE;
  889. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  890. if (gpa == UNMAPPED_GVA)
  891. return X86EMUL_PROPAGATE_FAULT;
  892. /*
  893. * Is this MMIO handled locally?
  894. */
  895. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  896. if (mmio_dev) {
  897. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  898. return X86EMUL_CONTINUE;
  899. }
  900. vcpu->mmio_needed = 1;
  901. vcpu->mmio_phys_addr = gpa;
  902. vcpu->mmio_size = bytes;
  903. vcpu->mmio_is_write = 0;
  904. return X86EMUL_UNHANDLEABLE;
  905. }
  906. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  907. const void *val, int bytes)
  908. {
  909. struct page *page;
  910. void *virt;
  911. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  912. return 0;
  913. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  914. if (!page)
  915. return 0;
  916. mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
  917. virt = kmap_atomic(page, KM_USER0);
  918. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  919. memcpy(virt + offset_in_page(gpa), val, bytes);
  920. kunmap_atomic(virt, KM_USER0);
  921. return 1;
  922. }
  923. static int emulator_write_emulated_onepage(unsigned long addr,
  924. const void *val,
  925. unsigned int bytes,
  926. struct kvm_vcpu *vcpu)
  927. {
  928. struct kvm_io_device *mmio_dev;
  929. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  930. if (gpa == UNMAPPED_GVA) {
  931. kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
  932. return X86EMUL_PROPAGATE_FAULT;
  933. }
  934. if (emulator_write_phys(vcpu, gpa, val, bytes))
  935. return X86EMUL_CONTINUE;
  936. /*
  937. * Is this MMIO handled locally?
  938. */
  939. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  940. if (mmio_dev) {
  941. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  942. return X86EMUL_CONTINUE;
  943. }
  944. vcpu->mmio_needed = 1;
  945. vcpu->mmio_phys_addr = gpa;
  946. vcpu->mmio_size = bytes;
  947. vcpu->mmio_is_write = 1;
  948. memcpy(vcpu->mmio_data, val, bytes);
  949. return X86EMUL_CONTINUE;
  950. }
  951. int emulator_write_emulated(unsigned long addr,
  952. const void *val,
  953. unsigned int bytes,
  954. struct kvm_vcpu *vcpu)
  955. {
  956. /* Crossing a page boundary? */
  957. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  958. int rc, now;
  959. now = -addr & ~PAGE_MASK;
  960. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  961. if (rc != X86EMUL_CONTINUE)
  962. return rc;
  963. addr += now;
  964. val += now;
  965. bytes -= now;
  966. }
  967. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  968. }
  969. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  970. static int emulator_cmpxchg_emulated(unsigned long addr,
  971. const void *old,
  972. const void *new,
  973. unsigned int bytes,
  974. struct kvm_vcpu *vcpu)
  975. {
  976. static int reported;
  977. if (!reported) {
  978. reported = 1;
  979. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  980. }
  981. return emulator_write_emulated(addr, new, bytes, vcpu);
  982. }
  983. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  984. {
  985. return kvm_arch_ops->get_segment_base(vcpu, seg);
  986. }
  987. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  988. {
  989. return X86EMUL_CONTINUE;
  990. }
  991. int emulate_clts(struct kvm_vcpu *vcpu)
  992. {
  993. unsigned long cr0;
  994. cr0 = vcpu->cr0 & ~X86_CR0_TS;
  995. kvm_arch_ops->set_cr0(vcpu, cr0);
  996. return X86EMUL_CONTINUE;
  997. }
  998. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  999. {
  1000. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1001. switch (dr) {
  1002. case 0 ... 3:
  1003. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  1004. return X86EMUL_CONTINUE;
  1005. default:
  1006. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  1007. return X86EMUL_UNHANDLEABLE;
  1008. }
  1009. }
  1010. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1011. {
  1012. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1013. int exception;
  1014. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1015. if (exception) {
  1016. /* FIXME: better handling */
  1017. return X86EMUL_UNHANDLEABLE;
  1018. }
  1019. return X86EMUL_CONTINUE;
  1020. }
  1021. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  1022. {
  1023. static int reported;
  1024. u8 opcodes[4];
  1025. unsigned long rip = ctxt->vcpu->rip;
  1026. unsigned long rip_linear;
  1027. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  1028. if (reported)
  1029. return;
  1030. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt->vcpu);
  1031. printk(KERN_ERR "emulation failed but !mmio_needed?"
  1032. " rip %lx %02x %02x %02x %02x\n",
  1033. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1034. reported = 1;
  1035. }
  1036. struct x86_emulate_ops emulate_ops = {
  1037. .read_std = emulator_read_std,
  1038. .write_std = emulator_write_std,
  1039. .read_emulated = emulator_read_emulated,
  1040. .write_emulated = emulator_write_emulated,
  1041. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1042. };
  1043. int emulate_instruction(struct kvm_vcpu *vcpu,
  1044. struct kvm_run *run,
  1045. unsigned long cr2,
  1046. u16 error_code)
  1047. {
  1048. struct x86_emulate_ctxt emulate_ctxt;
  1049. int r;
  1050. int cs_db, cs_l;
  1051. vcpu->mmio_fault_cr2 = cr2;
  1052. kvm_arch_ops->cache_regs(vcpu);
  1053. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1054. emulate_ctxt.vcpu = vcpu;
  1055. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  1056. emulate_ctxt.cr2 = cr2;
  1057. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  1058. ? X86EMUL_MODE_REAL : cs_l
  1059. ? X86EMUL_MODE_PROT64 : cs_db
  1060. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1061. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1062. emulate_ctxt.cs_base = 0;
  1063. emulate_ctxt.ds_base = 0;
  1064. emulate_ctxt.es_base = 0;
  1065. emulate_ctxt.ss_base = 0;
  1066. } else {
  1067. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  1068. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  1069. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  1070. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  1071. }
  1072. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  1073. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  1074. vcpu->mmio_is_write = 0;
  1075. vcpu->pio.string = 0;
  1076. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  1077. if (vcpu->pio.string)
  1078. return EMULATE_DO_MMIO;
  1079. if ((r || vcpu->mmio_is_write) && run) {
  1080. run->exit_reason = KVM_EXIT_MMIO;
  1081. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1082. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1083. run->mmio.len = vcpu->mmio_size;
  1084. run->mmio.is_write = vcpu->mmio_is_write;
  1085. }
  1086. if (r) {
  1087. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1088. return EMULATE_DONE;
  1089. if (!vcpu->mmio_needed) {
  1090. report_emulation_failure(&emulate_ctxt);
  1091. return EMULATE_FAIL;
  1092. }
  1093. return EMULATE_DO_MMIO;
  1094. }
  1095. kvm_arch_ops->decache_regs(vcpu);
  1096. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  1097. if (vcpu->mmio_is_write) {
  1098. vcpu->mmio_needed = 0;
  1099. return EMULATE_DO_MMIO;
  1100. }
  1101. return EMULATE_DONE;
  1102. }
  1103. EXPORT_SYMBOL_GPL(emulate_instruction);
  1104. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1105. {
  1106. if (vcpu->irq_summary ||
  1107. (irqchip_in_kernel(vcpu->kvm) && kvm_cpu_has_interrupt(vcpu)))
  1108. return 1;
  1109. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1110. ++vcpu->stat.halt_exits;
  1111. return 0;
  1112. }
  1113. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1114. int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1115. {
  1116. unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
  1117. kvm_arch_ops->cache_regs(vcpu);
  1118. ret = -KVM_EINVAL;
  1119. #ifdef CONFIG_X86_64
  1120. if (is_long_mode(vcpu)) {
  1121. nr = vcpu->regs[VCPU_REGS_RAX];
  1122. a0 = vcpu->regs[VCPU_REGS_RDI];
  1123. a1 = vcpu->regs[VCPU_REGS_RSI];
  1124. a2 = vcpu->regs[VCPU_REGS_RDX];
  1125. a3 = vcpu->regs[VCPU_REGS_RCX];
  1126. a4 = vcpu->regs[VCPU_REGS_R8];
  1127. a5 = vcpu->regs[VCPU_REGS_R9];
  1128. } else
  1129. #endif
  1130. {
  1131. nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
  1132. a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
  1133. a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
  1134. a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
  1135. a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
  1136. a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
  1137. a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
  1138. }
  1139. switch (nr) {
  1140. default:
  1141. run->hypercall.nr = nr;
  1142. run->hypercall.args[0] = a0;
  1143. run->hypercall.args[1] = a1;
  1144. run->hypercall.args[2] = a2;
  1145. run->hypercall.args[3] = a3;
  1146. run->hypercall.args[4] = a4;
  1147. run->hypercall.args[5] = a5;
  1148. run->hypercall.ret = ret;
  1149. run->hypercall.longmode = is_long_mode(vcpu);
  1150. kvm_arch_ops->decache_regs(vcpu);
  1151. return 0;
  1152. }
  1153. vcpu->regs[VCPU_REGS_RAX] = ret;
  1154. kvm_arch_ops->decache_regs(vcpu);
  1155. return 1;
  1156. }
  1157. EXPORT_SYMBOL_GPL(kvm_hypercall);
  1158. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1159. {
  1160. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1161. }
  1162. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1163. {
  1164. struct descriptor_table dt = { limit, base };
  1165. kvm_arch_ops->set_gdt(vcpu, &dt);
  1166. }
  1167. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1168. {
  1169. struct descriptor_table dt = { limit, base };
  1170. kvm_arch_ops->set_idt(vcpu, &dt);
  1171. }
  1172. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1173. unsigned long *rflags)
  1174. {
  1175. lmsw(vcpu, msw);
  1176. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1177. }
  1178. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1179. {
  1180. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1181. switch (cr) {
  1182. case 0:
  1183. return vcpu->cr0;
  1184. case 2:
  1185. return vcpu->cr2;
  1186. case 3:
  1187. return vcpu->cr3;
  1188. case 4:
  1189. return vcpu->cr4;
  1190. default:
  1191. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1192. return 0;
  1193. }
  1194. }
  1195. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1196. unsigned long *rflags)
  1197. {
  1198. switch (cr) {
  1199. case 0:
  1200. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1201. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1202. break;
  1203. case 2:
  1204. vcpu->cr2 = val;
  1205. break;
  1206. case 3:
  1207. set_cr3(vcpu, val);
  1208. break;
  1209. case 4:
  1210. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1211. break;
  1212. default:
  1213. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1214. }
  1215. }
  1216. /*
  1217. * Register the para guest with the host:
  1218. */
  1219. static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
  1220. {
  1221. struct kvm_vcpu_para_state *para_state;
  1222. hpa_t para_state_hpa, hypercall_hpa;
  1223. struct page *para_state_page;
  1224. unsigned char *hypercall;
  1225. gpa_t hypercall_gpa;
  1226. printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
  1227. printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
  1228. /*
  1229. * Needs to be page aligned:
  1230. */
  1231. if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
  1232. goto err_gp;
  1233. para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
  1234. printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
  1235. if (is_error_hpa(para_state_hpa))
  1236. goto err_gp;
  1237. mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
  1238. para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
  1239. para_state = kmap(para_state_page);
  1240. printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
  1241. printk(KERN_DEBUG ".... size: %d\n", para_state->size);
  1242. para_state->host_version = KVM_PARA_API_VERSION;
  1243. /*
  1244. * We cannot support guests that try to register themselves
  1245. * with a newer API version than the host supports:
  1246. */
  1247. if (para_state->guest_version > KVM_PARA_API_VERSION) {
  1248. para_state->ret = -KVM_EINVAL;
  1249. goto err_kunmap_skip;
  1250. }
  1251. hypercall_gpa = para_state->hypercall_gpa;
  1252. hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
  1253. printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
  1254. if (is_error_hpa(hypercall_hpa)) {
  1255. para_state->ret = -KVM_EINVAL;
  1256. goto err_kunmap_skip;
  1257. }
  1258. printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
  1259. vcpu->para_state_page = para_state_page;
  1260. vcpu->para_state_gpa = para_state_gpa;
  1261. vcpu->hypercall_gpa = hypercall_gpa;
  1262. mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
  1263. hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
  1264. KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
  1265. kvm_arch_ops->patch_hypercall(vcpu, hypercall);
  1266. kunmap_atomic(hypercall, KM_USER1);
  1267. para_state->ret = 0;
  1268. err_kunmap_skip:
  1269. kunmap(para_state_page);
  1270. return 0;
  1271. err_gp:
  1272. return 1;
  1273. }
  1274. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1275. {
  1276. u64 data;
  1277. switch (msr) {
  1278. case 0xc0010010: /* SYSCFG */
  1279. case 0xc0010015: /* HWCR */
  1280. case MSR_IA32_PLATFORM_ID:
  1281. case MSR_IA32_P5_MC_ADDR:
  1282. case MSR_IA32_P5_MC_TYPE:
  1283. case MSR_IA32_MC0_CTL:
  1284. case MSR_IA32_MCG_STATUS:
  1285. case MSR_IA32_MCG_CAP:
  1286. case MSR_IA32_MC0_MISC:
  1287. case MSR_IA32_MC0_MISC+4:
  1288. case MSR_IA32_MC0_MISC+8:
  1289. case MSR_IA32_MC0_MISC+12:
  1290. case MSR_IA32_MC0_MISC+16:
  1291. case MSR_IA32_UCODE_REV:
  1292. case MSR_IA32_PERF_STATUS:
  1293. case MSR_IA32_EBL_CR_POWERON:
  1294. /* MTRR registers */
  1295. case 0xfe:
  1296. case 0x200 ... 0x2ff:
  1297. data = 0;
  1298. break;
  1299. case 0xcd: /* fsb frequency */
  1300. data = 3;
  1301. break;
  1302. case MSR_IA32_APICBASE:
  1303. data = kvm_get_apic_base(vcpu);
  1304. break;
  1305. case MSR_IA32_MISC_ENABLE:
  1306. data = vcpu->ia32_misc_enable_msr;
  1307. break;
  1308. #ifdef CONFIG_X86_64
  1309. case MSR_EFER:
  1310. data = vcpu->shadow_efer;
  1311. break;
  1312. #endif
  1313. default:
  1314. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1315. return 1;
  1316. }
  1317. *pdata = data;
  1318. return 0;
  1319. }
  1320. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1321. /*
  1322. * Reads an msr value (of 'msr_index') into 'pdata'.
  1323. * Returns 0 on success, non-0 otherwise.
  1324. * Assumes vcpu_load() was already called.
  1325. */
  1326. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1327. {
  1328. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1329. }
  1330. #ifdef CONFIG_X86_64
  1331. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1332. {
  1333. if (efer & EFER_RESERVED_BITS) {
  1334. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1335. efer);
  1336. inject_gp(vcpu);
  1337. return;
  1338. }
  1339. if (is_paging(vcpu)
  1340. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1341. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1342. inject_gp(vcpu);
  1343. return;
  1344. }
  1345. kvm_arch_ops->set_efer(vcpu, efer);
  1346. efer &= ~EFER_LMA;
  1347. efer |= vcpu->shadow_efer & EFER_LMA;
  1348. vcpu->shadow_efer = efer;
  1349. }
  1350. #endif
  1351. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1352. {
  1353. switch (msr) {
  1354. #ifdef CONFIG_X86_64
  1355. case MSR_EFER:
  1356. set_efer(vcpu, data);
  1357. break;
  1358. #endif
  1359. case MSR_IA32_MC0_STATUS:
  1360. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1361. __FUNCTION__, data);
  1362. break;
  1363. case MSR_IA32_MCG_STATUS:
  1364. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1365. __FUNCTION__, data);
  1366. break;
  1367. case MSR_IA32_UCODE_REV:
  1368. case MSR_IA32_UCODE_WRITE:
  1369. case 0x200 ... 0x2ff: /* MTRRs */
  1370. break;
  1371. case MSR_IA32_APICBASE:
  1372. kvm_set_apic_base(vcpu, data);
  1373. break;
  1374. case MSR_IA32_MISC_ENABLE:
  1375. vcpu->ia32_misc_enable_msr = data;
  1376. break;
  1377. /*
  1378. * This is the 'probe whether the host is KVM' logic:
  1379. */
  1380. case MSR_KVM_API_MAGIC:
  1381. return vcpu_register_para(vcpu, data);
  1382. default:
  1383. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
  1384. return 1;
  1385. }
  1386. return 0;
  1387. }
  1388. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1389. /*
  1390. * Writes msr value into into the appropriate "register".
  1391. * Returns 0 on success, non-0 otherwise.
  1392. * Assumes vcpu_load() was already called.
  1393. */
  1394. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1395. {
  1396. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1397. }
  1398. void kvm_resched(struct kvm_vcpu *vcpu)
  1399. {
  1400. if (!need_resched())
  1401. return;
  1402. cond_resched();
  1403. }
  1404. EXPORT_SYMBOL_GPL(kvm_resched);
  1405. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1406. {
  1407. int i;
  1408. u32 function;
  1409. struct kvm_cpuid_entry *e, *best;
  1410. kvm_arch_ops->cache_regs(vcpu);
  1411. function = vcpu->regs[VCPU_REGS_RAX];
  1412. vcpu->regs[VCPU_REGS_RAX] = 0;
  1413. vcpu->regs[VCPU_REGS_RBX] = 0;
  1414. vcpu->regs[VCPU_REGS_RCX] = 0;
  1415. vcpu->regs[VCPU_REGS_RDX] = 0;
  1416. best = NULL;
  1417. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1418. e = &vcpu->cpuid_entries[i];
  1419. if (e->function == function) {
  1420. best = e;
  1421. break;
  1422. }
  1423. /*
  1424. * Both basic or both extended?
  1425. */
  1426. if (((e->function ^ function) & 0x80000000) == 0)
  1427. if (!best || e->function > best->function)
  1428. best = e;
  1429. }
  1430. if (best) {
  1431. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1432. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1433. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1434. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1435. }
  1436. kvm_arch_ops->decache_regs(vcpu);
  1437. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1438. }
  1439. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1440. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1441. {
  1442. void *p = vcpu->pio_data;
  1443. void *q;
  1444. unsigned bytes;
  1445. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1446. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1447. PAGE_KERNEL);
  1448. if (!q) {
  1449. free_pio_guest_pages(vcpu);
  1450. return -ENOMEM;
  1451. }
  1452. q += vcpu->pio.guest_page_offset;
  1453. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1454. if (vcpu->pio.in)
  1455. memcpy(q, p, bytes);
  1456. else
  1457. memcpy(p, q, bytes);
  1458. q -= vcpu->pio.guest_page_offset;
  1459. vunmap(q);
  1460. free_pio_guest_pages(vcpu);
  1461. return 0;
  1462. }
  1463. static int complete_pio(struct kvm_vcpu *vcpu)
  1464. {
  1465. struct kvm_pio_request *io = &vcpu->pio;
  1466. long delta;
  1467. int r;
  1468. kvm_arch_ops->cache_regs(vcpu);
  1469. if (!io->string) {
  1470. if (io->in)
  1471. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1472. io->size);
  1473. } else {
  1474. if (io->in) {
  1475. r = pio_copy_data(vcpu);
  1476. if (r) {
  1477. kvm_arch_ops->cache_regs(vcpu);
  1478. return r;
  1479. }
  1480. }
  1481. delta = 1;
  1482. if (io->rep) {
  1483. delta *= io->cur_count;
  1484. /*
  1485. * The size of the register should really depend on
  1486. * current address size.
  1487. */
  1488. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1489. }
  1490. if (io->down)
  1491. delta = -delta;
  1492. delta *= io->size;
  1493. if (io->in)
  1494. vcpu->regs[VCPU_REGS_RDI] += delta;
  1495. else
  1496. vcpu->regs[VCPU_REGS_RSI] += delta;
  1497. }
  1498. kvm_arch_ops->decache_regs(vcpu);
  1499. io->count -= io->cur_count;
  1500. io->cur_count = 0;
  1501. if (!io->count)
  1502. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1503. return 0;
  1504. }
  1505. static void kernel_pio(struct kvm_io_device *pio_dev,
  1506. struct kvm_vcpu *vcpu,
  1507. void *pd)
  1508. {
  1509. /* TODO: String I/O for in kernel device */
  1510. if (vcpu->pio.in)
  1511. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1512. vcpu->pio.size,
  1513. pd);
  1514. else
  1515. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1516. vcpu->pio.size,
  1517. pd);
  1518. }
  1519. static void pio_string_write(struct kvm_io_device *pio_dev,
  1520. struct kvm_vcpu *vcpu)
  1521. {
  1522. struct kvm_pio_request *io = &vcpu->pio;
  1523. void *pd = vcpu->pio_data;
  1524. int i;
  1525. for (i = 0; i < io->cur_count; i++) {
  1526. kvm_iodevice_write(pio_dev, io->port,
  1527. io->size,
  1528. pd);
  1529. pd += io->size;
  1530. }
  1531. }
  1532. int kvm_emulate_pio (struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1533. int size, unsigned port)
  1534. {
  1535. struct kvm_io_device *pio_dev;
  1536. vcpu->run->exit_reason = KVM_EXIT_IO;
  1537. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1538. vcpu->run->io.size = vcpu->pio.size = size;
  1539. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1540. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
  1541. vcpu->run->io.port = vcpu->pio.port = port;
  1542. vcpu->pio.in = in;
  1543. vcpu->pio.string = 0;
  1544. vcpu->pio.down = 0;
  1545. vcpu->pio.guest_page_offset = 0;
  1546. vcpu->pio.rep = 0;
  1547. kvm_arch_ops->cache_regs(vcpu);
  1548. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1549. kvm_arch_ops->decache_regs(vcpu);
  1550. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1551. if (pio_dev) {
  1552. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1553. complete_pio(vcpu);
  1554. return 1;
  1555. }
  1556. return 0;
  1557. }
  1558. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1559. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1560. int size, unsigned long count, int down,
  1561. gva_t address, int rep, unsigned port)
  1562. {
  1563. unsigned now, in_page;
  1564. int i, ret = 0;
  1565. int nr_pages = 1;
  1566. struct page *page;
  1567. struct kvm_io_device *pio_dev;
  1568. vcpu->run->exit_reason = KVM_EXIT_IO;
  1569. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1570. vcpu->run->io.size = vcpu->pio.size = size;
  1571. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1572. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
  1573. vcpu->run->io.port = vcpu->pio.port = port;
  1574. vcpu->pio.in = in;
  1575. vcpu->pio.string = 1;
  1576. vcpu->pio.down = down;
  1577. vcpu->pio.guest_page_offset = offset_in_page(address);
  1578. vcpu->pio.rep = rep;
  1579. if (!count) {
  1580. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1581. return 1;
  1582. }
  1583. if (!down)
  1584. in_page = PAGE_SIZE - offset_in_page(address);
  1585. else
  1586. in_page = offset_in_page(address) + size;
  1587. now = min(count, (unsigned long)in_page / size);
  1588. if (!now) {
  1589. /*
  1590. * String I/O straddles page boundary. Pin two guest pages
  1591. * so that we satisfy atomicity constraints. Do just one
  1592. * transaction to avoid complexity.
  1593. */
  1594. nr_pages = 2;
  1595. now = 1;
  1596. }
  1597. if (down) {
  1598. /*
  1599. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1600. */
  1601. pr_unimpl(vcpu, "guest string pio down\n");
  1602. inject_gp(vcpu);
  1603. return 1;
  1604. }
  1605. vcpu->run->io.count = now;
  1606. vcpu->pio.cur_count = now;
  1607. for (i = 0; i < nr_pages; ++i) {
  1608. mutex_lock(&vcpu->kvm->lock);
  1609. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1610. if (page)
  1611. get_page(page);
  1612. vcpu->pio.guest_pages[i] = page;
  1613. mutex_unlock(&vcpu->kvm->lock);
  1614. if (!page) {
  1615. inject_gp(vcpu);
  1616. free_pio_guest_pages(vcpu);
  1617. return 1;
  1618. }
  1619. }
  1620. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1621. if (!vcpu->pio.in) {
  1622. /* string PIO write */
  1623. ret = pio_copy_data(vcpu);
  1624. if (ret >= 0 && pio_dev) {
  1625. pio_string_write(pio_dev, vcpu);
  1626. complete_pio(vcpu);
  1627. if (vcpu->pio.count == 0)
  1628. ret = 1;
  1629. }
  1630. } else if (pio_dev)
  1631. pr_unimpl(vcpu, "no string pio read support yet, "
  1632. "port %x size %d count %ld\n",
  1633. port, size, count);
  1634. return ret;
  1635. }
  1636. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  1637. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1638. {
  1639. int r;
  1640. sigset_t sigsaved;
  1641. vcpu_load(vcpu);
  1642. if (vcpu->sigset_active)
  1643. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1644. /* re-sync apic's tpr */
  1645. set_cr8(vcpu, kvm_run->cr8);
  1646. if (vcpu->pio.cur_count) {
  1647. r = complete_pio(vcpu);
  1648. if (r)
  1649. goto out;
  1650. }
  1651. if (vcpu->mmio_needed) {
  1652. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1653. vcpu->mmio_read_completed = 1;
  1654. vcpu->mmio_needed = 0;
  1655. r = emulate_instruction(vcpu, kvm_run,
  1656. vcpu->mmio_fault_cr2, 0);
  1657. if (r == EMULATE_DO_MMIO) {
  1658. /*
  1659. * Read-modify-write. Back to userspace.
  1660. */
  1661. r = 0;
  1662. goto out;
  1663. }
  1664. }
  1665. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1666. kvm_arch_ops->cache_regs(vcpu);
  1667. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1668. kvm_arch_ops->decache_regs(vcpu);
  1669. }
  1670. r = kvm_arch_ops->run(vcpu, kvm_run);
  1671. out:
  1672. if (vcpu->sigset_active)
  1673. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1674. vcpu_put(vcpu);
  1675. return r;
  1676. }
  1677. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1678. struct kvm_regs *regs)
  1679. {
  1680. vcpu_load(vcpu);
  1681. kvm_arch_ops->cache_regs(vcpu);
  1682. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1683. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1684. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1685. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1686. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1687. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1688. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1689. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1690. #ifdef CONFIG_X86_64
  1691. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1692. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1693. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1694. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1695. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1696. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1697. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1698. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1699. #endif
  1700. regs->rip = vcpu->rip;
  1701. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1702. /*
  1703. * Don't leak debug flags in case they were set for guest debugging
  1704. */
  1705. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1706. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1707. vcpu_put(vcpu);
  1708. return 0;
  1709. }
  1710. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1711. struct kvm_regs *regs)
  1712. {
  1713. vcpu_load(vcpu);
  1714. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1715. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1716. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1717. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1718. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1719. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1720. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1721. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1722. #ifdef CONFIG_X86_64
  1723. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1724. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1725. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1726. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1727. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1728. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1729. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1730. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1731. #endif
  1732. vcpu->rip = regs->rip;
  1733. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1734. kvm_arch_ops->decache_regs(vcpu);
  1735. vcpu_put(vcpu);
  1736. return 0;
  1737. }
  1738. static void get_segment(struct kvm_vcpu *vcpu,
  1739. struct kvm_segment *var, int seg)
  1740. {
  1741. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1742. }
  1743. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1744. struct kvm_sregs *sregs)
  1745. {
  1746. struct descriptor_table dt;
  1747. vcpu_load(vcpu);
  1748. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1749. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1750. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1751. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1752. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1753. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1754. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1755. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1756. kvm_arch_ops->get_idt(vcpu, &dt);
  1757. sregs->idt.limit = dt.limit;
  1758. sregs->idt.base = dt.base;
  1759. kvm_arch_ops->get_gdt(vcpu, &dt);
  1760. sregs->gdt.limit = dt.limit;
  1761. sregs->gdt.base = dt.base;
  1762. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1763. sregs->cr0 = vcpu->cr0;
  1764. sregs->cr2 = vcpu->cr2;
  1765. sregs->cr3 = vcpu->cr3;
  1766. sregs->cr4 = vcpu->cr4;
  1767. sregs->cr8 = get_cr8(vcpu);
  1768. sregs->efer = vcpu->shadow_efer;
  1769. sregs->apic_base = kvm_get_apic_base(vcpu);
  1770. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1771. sizeof sregs->interrupt_bitmap);
  1772. vcpu_put(vcpu);
  1773. return 0;
  1774. }
  1775. static void set_segment(struct kvm_vcpu *vcpu,
  1776. struct kvm_segment *var, int seg)
  1777. {
  1778. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1779. }
  1780. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1781. struct kvm_sregs *sregs)
  1782. {
  1783. int mmu_reset_needed = 0;
  1784. int i;
  1785. struct descriptor_table dt;
  1786. vcpu_load(vcpu);
  1787. dt.limit = sregs->idt.limit;
  1788. dt.base = sregs->idt.base;
  1789. kvm_arch_ops->set_idt(vcpu, &dt);
  1790. dt.limit = sregs->gdt.limit;
  1791. dt.base = sregs->gdt.base;
  1792. kvm_arch_ops->set_gdt(vcpu, &dt);
  1793. vcpu->cr2 = sregs->cr2;
  1794. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1795. vcpu->cr3 = sregs->cr3;
  1796. set_cr8(vcpu, sregs->cr8);
  1797. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1798. #ifdef CONFIG_X86_64
  1799. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1800. #endif
  1801. kvm_set_apic_base(vcpu, sregs->apic_base);
  1802. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1803. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1804. kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
  1805. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1806. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1807. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1808. load_pdptrs(vcpu, vcpu->cr3);
  1809. if (mmu_reset_needed)
  1810. kvm_mmu_reset_context(vcpu);
  1811. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1812. sizeof vcpu->irq_pending);
  1813. vcpu->irq_summary = 0;
  1814. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  1815. if (vcpu->irq_pending[i])
  1816. __set_bit(i, &vcpu->irq_summary);
  1817. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1818. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1819. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1820. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1821. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1822. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1823. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1824. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1825. vcpu_put(vcpu);
  1826. return 0;
  1827. }
  1828. /*
  1829. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1830. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1831. *
  1832. * This list is modified at module load time to reflect the
  1833. * capabilities of the host cpu.
  1834. */
  1835. static u32 msrs_to_save[] = {
  1836. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1837. MSR_K6_STAR,
  1838. #ifdef CONFIG_X86_64
  1839. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1840. #endif
  1841. MSR_IA32_TIME_STAMP_COUNTER,
  1842. };
  1843. static unsigned num_msrs_to_save;
  1844. static u32 emulated_msrs[] = {
  1845. MSR_IA32_MISC_ENABLE,
  1846. };
  1847. static __init void kvm_init_msr_list(void)
  1848. {
  1849. u32 dummy[2];
  1850. unsigned i, j;
  1851. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1852. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1853. continue;
  1854. if (j < i)
  1855. msrs_to_save[j] = msrs_to_save[i];
  1856. j++;
  1857. }
  1858. num_msrs_to_save = j;
  1859. }
  1860. /*
  1861. * Adapt set_msr() to msr_io()'s calling convention
  1862. */
  1863. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1864. {
  1865. return kvm_set_msr(vcpu, index, *data);
  1866. }
  1867. /*
  1868. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1869. *
  1870. * @return number of msrs set successfully.
  1871. */
  1872. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1873. struct kvm_msr_entry *entries,
  1874. int (*do_msr)(struct kvm_vcpu *vcpu,
  1875. unsigned index, u64 *data))
  1876. {
  1877. int i;
  1878. vcpu_load(vcpu);
  1879. for (i = 0; i < msrs->nmsrs; ++i)
  1880. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1881. break;
  1882. vcpu_put(vcpu);
  1883. return i;
  1884. }
  1885. /*
  1886. * Read or write a bunch of msrs. Parameters are user addresses.
  1887. *
  1888. * @return number of msrs set successfully.
  1889. */
  1890. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1891. int (*do_msr)(struct kvm_vcpu *vcpu,
  1892. unsigned index, u64 *data),
  1893. int writeback)
  1894. {
  1895. struct kvm_msrs msrs;
  1896. struct kvm_msr_entry *entries;
  1897. int r, n;
  1898. unsigned size;
  1899. r = -EFAULT;
  1900. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1901. goto out;
  1902. r = -E2BIG;
  1903. if (msrs.nmsrs >= MAX_IO_MSRS)
  1904. goto out;
  1905. r = -ENOMEM;
  1906. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1907. entries = vmalloc(size);
  1908. if (!entries)
  1909. goto out;
  1910. r = -EFAULT;
  1911. if (copy_from_user(entries, user_msrs->entries, size))
  1912. goto out_free;
  1913. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1914. if (r < 0)
  1915. goto out_free;
  1916. r = -EFAULT;
  1917. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1918. goto out_free;
  1919. r = n;
  1920. out_free:
  1921. vfree(entries);
  1922. out:
  1923. return r;
  1924. }
  1925. /*
  1926. * Translate a guest virtual address to a guest physical address.
  1927. */
  1928. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  1929. struct kvm_translation *tr)
  1930. {
  1931. unsigned long vaddr = tr->linear_address;
  1932. gpa_t gpa;
  1933. vcpu_load(vcpu);
  1934. mutex_lock(&vcpu->kvm->lock);
  1935. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  1936. tr->physical_address = gpa;
  1937. tr->valid = gpa != UNMAPPED_GVA;
  1938. tr->writeable = 1;
  1939. tr->usermode = 0;
  1940. mutex_unlock(&vcpu->kvm->lock);
  1941. vcpu_put(vcpu);
  1942. return 0;
  1943. }
  1944. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1945. struct kvm_interrupt *irq)
  1946. {
  1947. if (irq->irq < 0 || irq->irq >= 256)
  1948. return -EINVAL;
  1949. if (irqchip_in_kernel(vcpu->kvm))
  1950. return -ENXIO;
  1951. vcpu_load(vcpu);
  1952. set_bit(irq->irq, vcpu->irq_pending);
  1953. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  1954. vcpu_put(vcpu);
  1955. return 0;
  1956. }
  1957. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1958. struct kvm_debug_guest *dbg)
  1959. {
  1960. int r;
  1961. vcpu_load(vcpu);
  1962. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  1963. vcpu_put(vcpu);
  1964. return r;
  1965. }
  1966. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  1967. unsigned long address,
  1968. int *type)
  1969. {
  1970. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1971. unsigned long pgoff;
  1972. struct page *page;
  1973. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1974. if (pgoff == 0)
  1975. page = virt_to_page(vcpu->run);
  1976. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  1977. page = virt_to_page(vcpu->pio_data);
  1978. else
  1979. return NOPAGE_SIGBUS;
  1980. get_page(page);
  1981. if (type != NULL)
  1982. *type = VM_FAULT_MINOR;
  1983. return page;
  1984. }
  1985. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1986. .nopage = kvm_vcpu_nopage,
  1987. };
  1988. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1989. {
  1990. vma->vm_ops = &kvm_vcpu_vm_ops;
  1991. return 0;
  1992. }
  1993. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1994. {
  1995. struct kvm_vcpu *vcpu = filp->private_data;
  1996. fput(vcpu->kvm->filp);
  1997. return 0;
  1998. }
  1999. static struct file_operations kvm_vcpu_fops = {
  2000. .release = kvm_vcpu_release,
  2001. .unlocked_ioctl = kvm_vcpu_ioctl,
  2002. .compat_ioctl = kvm_vcpu_ioctl,
  2003. .mmap = kvm_vcpu_mmap,
  2004. };
  2005. /*
  2006. * Allocates an inode for the vcpu.
  2007. */
  2008. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  2009. {
  2010. int fd, r;
  2011. struct inode *inode;
  2012. struct file *file;
  2013. r = anon_inode_getfd(&fd, &inode, &file,
  2014. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  2015. if (r)
  2016. return r;
  2017. atomic_inc(&vcpu->kvm->filp->f_count);
  2018. return fd;
  2019. }
  2020. /*
  2021. * Creates some virtual cpus. Good luck creating more than one.
  2022. */
  2023. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  2024. {
  2025. int r;
  2026. struct kvm_vcpu *vcpu;
  2027. if (!valid_vcpu(n))
  2028. return -EINVAL;
  2029. vcpu = kvm_arch_ops->vcpu_create(kvm, n);
  2030. if (IS_ERR(vcpu))
  2031. return PTR_ERR(vcpu);
  2032. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  2033. /* We do fxsave: this must be aligned. */
  2034. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  2035. vcpu_load(vcpu);
  2036. r = kvm_mmu_setup(vcpu);
  2037. vcpu_put(vcpu);
  2038. if (r < 0)
  2039. goto free_vcpu;
  2040. mutex_lock(&kvm->lock);
  2041. if (kvm->vcpus[n]) {
  2042. r = -EEXIST;
  2043. mutex_unlock(&kvm->lock);
  2044. goto mmu_unload;
  2045. }
  2046. kvm->vcpus[n] = vcpu;
  2047. mutex_unlock(&kvm->lock);
  2048. /* Now it's all set up, let userspace reach it */
  2049. r = create_vcpu_fd(vcpu);
  2050. if (r < 0)
  2051. goto unlink;
  2052. return r;
  2053. unlink:
  2054. mutex_lock(&kvm->lock);
  2055. kvm->vcpus[n] = NULL;
  2056. mutex_unlock(&kvm->lock);
  2057. mmu_unload:
  2058. vcpu_load(vcpu);
  2059. kvm_mmu_unload(vcpu);
  2060. vcpu_put(vcpu);
  2061. free_vcpu:
  2062. kvm_arch_ops->vcpu_free(vcpu);
  2063. return r;
  2064. }
  2065. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  2066. {
  2067. u64 efer;
  2068. int i;
  2069. struct kvm_cpuid_entry *e, *entry;
  2070. rdmsrl(MSR_EFER, efer);
  2071. entry = NULL;
  2072. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  2073. e = &vcpu->cpuid_entries[i];
  2074. if (e->function == 0x80000001) {
  2075. entry = e;
  2076. break;
  2077. }
  2078. }
  2079. if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
  2080. entry->edx &= ~(1 << 20);
  2081. printk(KERN_INFO "kvm: guest NX capability removed\n");
  2082. }
  2083. }
  2084. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  2085. struct kvm_cpuid *cpuid,
  2086. struct kvm_cpuid_entry __user *entries)
  2087. {
  2088. int r;
  2089. r = -E2BIG;
  2090. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2091. goto out;
  2092. r = -EFAULT;
  2093. if (copy_from_user(&vcpu->cpuid_entries, entries,
  2094. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2095. goto out;
  2096. vcpu->cpuid_nent = cpuid->nent;
  2097. cpuid_fix_nx_cap(vcpu);
  2098. return 0;
  2099. out:
  2100. return r;
  2101. }
  2102. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2103. {
  2104. if (sigset) {
  2105. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2106. vcpu->sigset_active = 1;
  2107. vcpu->sigset = *sigset;
  2108. } else
  2109. vcpu->sigset_active = 0;
  2110. return 0;
  2111. }
  2112. /*
  2113. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2114. * we have asm/x86/processor.h
  2115. */
  2116. struct fxsave {
  2117. u16 cwd;
  2118. u16 swd;
  2119. u16 twd;
  2120. u16 fop;
  2121. u64 rip;
  2122. u64 rdp;
  2123. u32 mxcsr;
  2124. u32 mxcsr_mask;
  2125. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2126. #ifdef CONFIG_X86_64
  2127. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2128. #else
  2129. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2130. #endif
  2131. };
  2132. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2133. {
  2134. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2135. vcpu_load(vcpu);
  2136. memcpy(fpu->fpr, fxsave->st_space, 128);
  2137. fpu->fcw = fxsave->cwd;
  2138. fpu->fsw = fxsave->swd;
  2139. fpu->ftwx = fxsave->twd;
  2140. fpu->last_opcode = fxsave->fop;
  2141. fpu->last_ip = fxsave->rip;
  2142. fpu->last_dp = fxsave->rdp;
  2143. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2144. vcpu_put(vcpu);
  2145. return 0;
  2146. }
  2147. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2148. {
  2149. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2150. vcpu_load(vcpu);
  2151. memcpy(fxsave->st_space, fpu->fpr, 128);
  2152. fxsave->cwd = fpu->fcw;
  2153. fxsave->swd = fpu->fsw;
  2154. fxsave->twd = fpu->ftwx;
  2155. fxsave->fop = fpu->last_opcode;
  2156. fxsave->rip = fpu->last_ip;
  2157. fxsave->rdp = fpu->last_dp;
  2158. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2159. vcpu_put(vcpu);
  2160. return 0;
  2161. }
  2162. static long kvm_vcpu_ioctl(struct file *filp,
  2163. unsigned int ioctl, unsigned long arg)
  2164. {
  2165. struct kvm_vcpu *vcpu = filp->private_data;
  2166. void __user *argp = (void __user *)arg;
  2167. int r = -EINVAL;
  2168. switch (ioctl) {
  2169. case KVM_RUN:
  2170. r = -EINVAL;
  2171. if (arg)
  2172. goto out;
  2173. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2174. break;
  2175. case KVM_GET_REGS: {
  2176. struct kvm_regs kvm_regs;
  2177. memset(&kvm_regs, 0, sizeof kvm_regs);
  2178. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2179. if (r)
  2180. goto out;
  2181. r = -EFAULT;
  2182. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2183. goto out;
  2184. r = 0;
  2185. break;
  2186. }
  2187. case KVM_SET_REGS: {
  2188. struct kvm_regs kvm_regs;
  2189. r = -EFAULT;
  2190. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2191. goto out;
  2192. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2193. if (r)
  2194. goto out;
  2195. r = 0;
  2196. break;
  2197. }
  2198. case KVM_GET_SREGS: {
  2199. struct kvm_sregs kvm_sregs;
  2200. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2201. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2202. if (r)
  2203. goto out;
  2204. r = -EFAULT;
  2205. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2206. goto out;
  2207. r = 0;
  2208. break;
  2209. }
  2210. case KVM_SET_SREGS: {
  2211. struct kvm_sregs kvm_sregs;
  2212. r = -EFAULT;
  2213. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2214. goto out;
  2215. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2216. if (r)
  2217. goto out;
  2218. r = 0;
  2219. break;
  2220. }
  2221. case KVM_TRANSLATE: {
  2222. struct kvm_translation tr;
  2223. r = -EFAULT;
  2224. if (copy_from_user(&tr, argp, sizeof tr))
  2225. goto out;
  2226. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2227. if (r)
  2228. goto out;
  2229. r = -EFAULT;
  2230. if (copy_to_user(argp, &tr, sizeof tr))
  2231. goto out;
  2232. r = 0;
  2233. break;
  2234. }
  2235. case KVM_INTERRUPT: {
  2236. struct kvm_interrupt irq;
  2237. r = -EFAULT;
  2238. if (copy_from_user(&irq, argp, sizeof irq))
  2239. goto out;
  2240. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2241. if (r)
  2242. goto out;
  2243. r = 0;
  2244. break;
  2245. }
  2246. case KVM_DEBUG_GUEST: {
  2247. struct kvm_debug_guest dbg;
  2248. r = -EFAULT;
  2249. if (copy_from_user(&dbg, argp, sizeof dbg))
  2250. goto out;
  2251. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2252. if (r)
  2253. goto out;
  2254. r = 0;
  2255. break;
  2256. }
  2257. case KVM_GET_MSRS:
  2258. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2259. break;
  2260. case KVM_SET_MSRS:
  2261. r = msr_io(vcpu, argp, do_set_msr, 0);
  2262. break;
  2263. case KVM_SET_CPUID: {
  2264. struct kvm_cpuid __user *cpuid_arg = argp;
  2265. struct kvm_cpuid cpuid;
  2266. r = -EFAULT;
  2267. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2268. goto out;
  2269. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2270. if (r)
  2271. goto out;
  2272. break;
  2273. }
  2274. case KVM_SET_SIGNAL_MASK: {
  2275. struct kvm_signal_mask __user *sigmask_arg = argp;
  2276. struct kvm_signal_mask kvm_sigmask;
  2277. sigset_t sigset, *p;
  2278. p = NULL;
  2279. if (argp) {
  2280. r = -EFAULT;
  2281. if (copy_from_user(&kvm_sigmask, argp,
  2282. sizeof kvm_sigmask))
  2283. goto out;
  2284. r = -EINVAL;
  2285. if (kvm_sigmask.len != sizeof sigset)
  2286. goto out;
  2287. r = -EFAULT;
  2288. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2289. sizeof sigset))
  2290. goto out;
  2291. p = &sigset;
  2292. }
  2293. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2294. break;
  2295. }
  2296. case KVM_GET_FPU: {
  2297. struct kvm_fpu fpu;
  2298. memset(&fpu, 0, sizeof fpu);
  2299. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2300. if (r)
  2301. goto out;
  2302. r = -EFAULT;
  2303. if (copy_to_user(argp, &fpu, sizeof fpu))
  2304. goto out;
  2305. r = 0;
  2306. break;
  2307. }
  2308. case KVM_SET_FPU: {
  2309. struct kvm_fpu fpu;
  2310. r = -EFAULT;
  2311. if (copy_from_user(&fpu, argp, sizeof fpu))
  2312. goto out;
  2313. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2314. if (r)
  2315. goto out;
  2316. r = 0;
  2317. break;
  2318. }
  2319. default:
  2320. ;
  2321. }
  2322. out:
  2323. return r;
  2324. }
  2325. static long kvm_vm_ioctl(struct file *filp,
  2326. unsigned int ioctl, unsigned long arg)
  2327. {
  2328. struct kvm *kvm = filp->private_data;
  2329. void __user *argp = (void __user *)arg;
  2330. int r = -EINVAL;
  2331. switch (ioctl) {
  2332. case KVM_CREATE_VCPU:
  2333. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2334. if (r < 0)
  2335. goto out;
  2336. break;
  2337. case KVM_SET_MEMORY_REGION: {
  2338. struct kvm_memory_region kvm_mem;
  2339. r = -EFAULT;
  2340. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2341. goto out;
  2342. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
  2343. if (r)
  2344. goto out;
  2345. break;
  2346. }
  2347. case KVM_GET_DIRTY_LOG: {
  2348. struct kvm_dirty_log log;
  2349. r = -EFAULT;
  2350. if (copy_from_user(&log, argp, sizeof log))
  2351. goto out;
  2352. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2353. if (r)
  2354. goto out;
  2355. break;
  2356. }
  2357. case KVM_SET_MEMORY_ALIAS: {
  2358. struct kvm_memory_alias alias;
  2359. r = -EFAULT;
  2360. if (copy_from_user(&alias, argp, sizeof alias))
  2361. goto out;
  2362. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2363. if (r)
  2364. goto out;
  2365. break;
  2366. }
  2367. case KVM_CREATE_IRQCHIP:
  2368. r = -ENOMEM;
  2369. kvm->vpic = kvm_create_pic(kvm);
  2370. if (kvm->vpic)
  2371. r = 0;
  2372. else
  2373. goto out;
  2374. break;
  2375. case KVM_IRQ_LINE: {
  2376. struct kvm_irq_level irq_event;
  2377. r = -EFAULT;
  2378. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2379. goto out;
  2380. if (irqchip_in_kernel(kvm)) {
  2381. if (irq_event.irq < 16)
  2382. kvm_pic_set_irq(pic_irqchip(kvm),
  2383. irq_event.irq,
  2384. irq_event.level);
  2385. /* TODO: IOAPIC */
  2386. r = 0;
  2387. }
  2388. break;
  2389. }
  2390. default:
  2391. ;
  2392. }
  2393. out:
  2394. return r;
  2395. }
  2396. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2397. unsigned long address,
  2398. int *type)
  2399. {
  2400. struct kvm *kvm = vma->vm_file->private_data;
  2401. unsigned long pgoff;
  2402. struct page *page;
  2403. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2404. page = gfn_to_page(kvm, pgoff);
  2405. if (!page)
  2406. return NOPAGE_SIGBUS;
  2407. get_page(page);
  2408. if (type != NULL)
  2409. *type = VM_FAULT_MINOR;
  2410. return page;
  2411. }
  2412. static struct vm_operations_struct kvm_vm_vm_ops = {
  2413. .nopage = kvm_vm_nopage,
  2414. };
  2415. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2416. {
  2417. vma->vm_ops = &kvm_vm_vm_ops;
  2418. return 0;
  2419. }
  2420. static struct file_operations kvm_vm_fops = {
  2421. .release = kvm_vm_release,
  2422. .unlocked_ioctl = kvm_vm_ioctl,
  2423. .compat_ioctl = kvm_vm_ioctl,
  2424. .mmap = kvm_vm_mmap,
  2425. };
  2426. static int kvm_dev_ioctl_create_vm(void)
  2427. {
  2428. int fd, r;
  2429. struct inode *inode;
  2430. struct file *file;
  2431. struct kvm *kvm;
  2432. kvm = kvm_create_vm();
  2433. if (IS_ERR(kvm))
  2434. return PTR_ERR(kvm);
  2435. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2436. if (r) {
  2437. kvm_destroy_vm(kvm);
  2438. return r;
  2439. }
  2440. kvm->filp = file;
  2441. return fd;
  2442. }
  2443. static long kvm_dev_ioctl(struct file *filp,
  2444. unsigned int ioctl, unsigned long arg)
  2445. {
  2446. void __user *argp = (void __user *)arg;
  2447. long r = -EINVAL;
  2448. switch (ioctl) {
  2449. case KVM_GET_API_VERSION:
  2450. r = -EINVAL;
  2451. if (arg)
  2452. goto out;
  2453. r = KVM_API_VERSION;
  2454. break;
  2455. case KVM_CREATE_VM:
  2456. r = -EINVAL;
  2457. if (arg)
  2458. goto out;
  2459. r = kvm_dev_ioctl_create_vm();
  2460. break;
  2461. case KVM_GET_MSR_INDEX_LIST: {
  2462. struct kvm_msr_list __user *user_msr_list = argp;
  2463. struct kvm_msr_list msr_list;
  2464. unsigned n;
  2465. r = -EFAULT;
  2466. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2467. goto out;
  2468. n = msr_list.nmsrs;
  2469. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2470. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2471. goto out;
  2472. r = -E2BIG;
  2473. if (n < num_msrs_to_save)
  2474. goto out;
  2475. r = -EFAULT;
  2476. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2477. num_msrs_to_save * sizeof(u32)))
  2478. goto out;
  2479. if (copy_to_user(user_msr_list->indices
  2480. + num_msrs_to_save * sizeof(u32),
  2481. &emulated_msrs,
  2482. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2483. goto out;
  2484. r = 0;
  2485. break;
  2486. }
  2487. case KVM_CHECK_EXTENSION: {
  2488. int ext = (long)argp;
  2489. switch (ext) {
  2490. case KVM_CAP_IRQCHIP:
  2491. r = 1;
  2492. break;
  2493. default:
  2494. r = 0;
  2495. break;
  2496. }
  2497. break;
  2498. }
  2499. case KVM_GET_VCPU_MMAP_SIZE:
  2500. r = -EINVAL;
  2501. if (arg)
  2502. goto out;
  2503. r = 2 * PAGE_SIZE;
  2504. break;
  2505. default:
  2506. ;
  2507. }
  2508. out:
  2509. return r;
  2510. }
  2511. static struct file_operations kvm_chardev_ops = {
  2512. .unlocked_ioctl = kvm_dev_ioctl,
  2513. .compat_ioctl = kvm_dev_ioctl,
  2514. };
  2515. static struct miscdevice kvm_dev = {
  2516. KVM_MINOR,
  2517. "kvm",
  2518. &kvm_chardev_ops,
  2519. };
  2520. /*
  2521. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2522. * cached on it.
  2523. */
  2524. static void decache_vcpus_on_cpu(int cpu)
  2525. {
  2526. struct kvm *vm;
  2527. struct kvm_vcpu *vcpu;
  2528. int i;
  2529. spin_lock(&kvm_lock);
  2530. list_for_each_entry(vm, &vm_list, vm_list)
  2531. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2532. vcpu = vm->vcpus[i];
  2533. if (!vcpu)
  2534. continue;
  2535. /*
  2536. * If the vcpu is locked, then it is running on some
  2537. * other cpu and therefore it is not cached on the
  2538. * cpu in question.
  2539. *
  2540. * If it's not locked, check the last cpu it executed
  2541. * on.
  2542. */
  2543. if (mutex_trylock(&vcpu->mutex)) {
  2544. if (vcpu->cpu == cpu) {
  2545. kvm_arch_ops->vcpu_decache(vcpu);
  2546. vcpu->cpu = -1;
  2547. }
  2548. mutex_unlock(&vcpu->mutex);
  2549. }
  2550. }
  2551. spin_unlock(&kvm_lock);
  2552. }
  2553. static void hardware_enable(void *junk)
  2554. {
  2555. int cpu = raw_smp_processor_id();
  2556. if (cpu_isset(cpu, cpus_hardware_enabled))
  2557. return;
  2558. cpu_set(cpu, cpus_hardware_enabled);
  2559. kvm_arch_ops->hardware_enable(NULL);
  2560. }
  2561. static void hardware_disable(void *junk)
  2562. {
  2563. int cpu = raw_smp_processor_id();
  2564. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2565. return;
  2566. cpu_clear(cpu, cpus_hardware_enabled);
  2567. decache_vcpus_on_cpu(cpu);
  2568. kvm_arch_ops->hardware_disable(NULL);
  2569. }
  2570. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2571. void *v)
  2572. {
  2573. int cpu = (long)v;
  2574. switch (val) {
  2575. case CPU_DYING:
  2576. case CPU_DYING_FROZEN:
  2577. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2578. cpu);
  2579. hardware_disable(NULL);
  2580. break;
  2581. case CPU_UP_CANCELED:
  2582. case CPU_UP_CANCELED_FROZEN:
  2583. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2584. cpu);
  2585. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2586. break;
  2587. case CPU_ONLINE:
  2588. case CPU_ONLINE_FROZEN:
  2589. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2590. cpu);
  2591. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2592. break;
  2593. }
  2594. return NOTIFY_OK;
  2595. }
  2596. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2597. void *v)
  2598. {
  2599. if (val == SYS_RESTART) {
  2600. /*
  2601. * Some (well, at least mine) BIOSes hang on reboot if
  2602. * in vmx root mode.
  2603. */
  2604. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2605. on_each_cpu(hardware_disable, NULL, 0, 1);
  2606. }
  2607. return NOTIFY_OK;
  2608. }
  2609. static struct notifier_block kvm_reboot_notifier = {
  2610. .notifier_call = kvm_reboot,
  2611. .priority = 0,
  2612. };
  2613. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2614. {
  2615. memset(bus, 0, sizeof(*bus));
  2616. }
  2617. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2618. {
  2619. int i;
  2620. for (i = 0; i < bus->dev_count; i++) {
  2621. struct kvm_io_device *pos = bus->devs[i];
  2622. kvm_iodevice_destructor(pos);
  2623. }
  2624. }
  2625. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2626. {
  2627. int i;
  2628. for (i = 0; i < bus->dev_count; i++) {
  2629. struct kvm_io_device *pos = bus->devs[i];
  2630. if (pos->in_range(pos, addr))
  2631. return pos;
  2632. }
  2633. return NULL;
  2634. }
  2635. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2636. {
  2637. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2638. bus->devs[bus->dev_count++] = dev;
  2639. }
  2640. static struct notifier_block kvm_cpu_notifier = {
  2641. .notifier_call = kvm_cpu_hotplug,
  2642. .priority = 20, /* must be > scheduler priority */
  2643. };
  2644. static u64 stat_get(void *_offset)
  2645. {
  2646. unsigned offset = (long)_offset;
  2647. u64 total = 0;
  2648. struct kvm *kvm;
  2649. struct kvm_vcpu *vcpu;
  2650. int i;
  2651. spin_lock(&kvm_lock);
  2652. list_for_each_entry(kvm, &vm_list, vm_list)
  2653. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2654. vcpu = kvm->vcpus[i];
  2655. if (vcpu)
  2656. total += *(u32 *)((void *)vcpu + offset);
  2657. }
  2658. spin_unlock(&kvm_lock);
  2659. return total;
  2660. }
  2661. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  2662. static __init void kvm_init_debug(void)
  2663. {
  2664. struct kvm_stats_debugfs_item *p;
  2665. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2666. for (p = debugfs_entries; p->name; ++p)
  2667. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2668. (void *)(long)p->offset,
  2669. &stat_fops);
  2670. }
  2671. static void kvm_exit_debug(void)
  2672. {
  2673. struct kvm_stats_debugfs_item *p;
  2674. for (p = debugfs_entries; p->name; ++p)
  2675. debugfs_remove(p->dentry);
  2676. debugfs_remove(debugfs_dir);
  2677. }
  2678. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2679. {
  2680. hardware_disable(NULL);
  2681. return 0;
  2682. }
  2683. static int kvm_resume(struct sys_device *dev)
  2684. {
  2685. hardware_enable(NULL);
  2686. return 0;
  2687. }
  2688. static struct sysdev_class kvm_sysdev_class = {
  2689. set_kset_name("kvm"),
  2690. .suspend = kvm_suspend,
  2691. .resume = kvm_resume,
  2692. };
  2693. static struct sys_device kvm_sysdev = {
  2694. .id = 0,
  2695. .cls = &kvm_sysdev_class,
  2696. };
  2697. hpa_t bad_page_address;
  2698. static inline
  2699. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2700. {
  2701. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2702. }
  2703. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2704. {
  2705. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2706. kvm_arch_ops->vcpu_load(vcpu, cpu);
  2707. }
  2708. static void kvm_sched_out(struct preempt_notifier *pn,
  2709. struct task_struct *next)
  2710. {
  2711. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2712. kvm_arch_ops->vcpu_put(vcpu);
  2713. }
  2714. int kvm_init_arch(struct kvm_arch_ops *ops, unsigned int vcpu_size,
  2715. struct module *module)
  2716. {
  2717. int r;
  2718. int cpu;
  2719. if (kvm_arch_ops) {
  2720. printk(KERN_ERR "kvm: already loaded the other module\n");
  2721. return -EEXIST;
  2722. }
  2723. if (!ops->cpu_has_kvm_support()) {
  2724. printk(KERN_ERR "kvm: no hardware support\n");
  2725. return -EOPNOTSUPP;
  2726. }
  2727. if (ops->disabled_by_bios()) {
  2728. printk(KERN_ERR "kvm: disabled by bios\n");
  2729. return -EOPNOTSUPP;
  2730. }
  2731. kvm_arch_ops = ops;
  2732. r = kvm_arch_ops->hardware_setup();
  2733. if (r < 0)
  2734. goto out;
  2735. for_each_online_cpu(cpu) {
  2736. smp_call_function_single(cpu,
  2737. kvm_arch_ops->check_processor_compatibility,
  2738. &r, 0, 1);
  2739. if (r < 0)
  2740. goto out_free_0;
  2741. }
  2742. on_each_cpu(hardware_enable, NULL, 0, 1);
  2743. r = register_cpu_notifier(&kvm_cpu_notifier);
  2744. if (r)
  2745. goto out_free_1;
  2746. register_reboot_notifier(&kvm_reboot_notifier);
  2747. r = sysdev_class_register(&kvm_sysdev_class);
  2748. if (r)
  2749. goto out_free_2;
  2750. r = sysdev_register(&kvm_sysdev);
  2751. if (r)
  2752. goto out_free_3;
  2753. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2754. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2755. __alignof__(struct kvm_vcpu), 0, 0);
  2756. if (!kvm_vcpu_cache) {
  2757. r = -ENOMEM;
  2758. goto out_free_4;
  2759. }
  2760. kvm_chardev_ops.owner = module;
  2761. r = misc_register(&kvm_dev);
  2762. if (r) {
  2763. printk (KERN_ERR "kvm: misc device register failed\n");
  2764. goto out_free;
  2765. }
  2766. kvm_preempt_ops.sched_in = kvm_sched_in;
  2767. kvm_preempt_ops.sched_out = kvm_sched_out;
  2768. return r;
  2769. out_free:
  2770. kmem_cache_destroy(kvm_vcpu_cache);
  2771. out_free_4:
  2772. sysdev_unregister(&kvm_sysdev);
  2773. out_free_3:
  2774. sysdev_class_unregister(&kvm_sysdev_class);
  2775. out_free_2:
  2776. unregister_reboot_notifier(&kvm_reboot_notifier);
  2777. unregister_cpu_notifier(&kvm_cpu_notifier);
  2778. out_free_1:
  2779. on_each_cpu(hardware_disable, NULL, 0, 1);
  2780. out_free_0:
  2781. kvm_arch_ops->hardware_unsetup();
  2782. out:
  2783. kvm_arch_ops = NULL;
  2784. return r;
  2785. }
  2786. void kvm_exit_arch(void)
  2787. {
  2788. misc_deregister(&kvm_dev);
  2789. kmem_cache_destroy(kvm_vcpu_cache);
  2790. sysdev_unregister(&kvm_sysdev);
  2791. sysdev_class_unregister(&kvm_sysdev_class);
  2792. unregister_reboot_notifier(&kvm_reboot_notifier);
  2793. unregister_cpu_notifier(&kvm_cpu_notifier);
  2794. on_each_cpu(hardware_disable, NULL, 0, 1);
  2795. kvm_arch_ops->hardware_unsetup();
  2796. kvm_arch_ops = NULL;
  2797. }
  2798. static __init int kvm_init(void)
  2799. {
  2800. static struct page *bad_page;
  2801. int r;
  2802. r = kvm_mmu_module_init();
  2803. if (r)
  2804. goto out4;
  2805. kvm_init_debug();
  2806. kvm_init_msr_list();
  2807. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  2808. r = -ENOMEM;
  2809. goto out;
  2810. }
  2811. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  2812. memset(__va(bad_page_address), 0, PAGE_SIZE);
  2813. return 0;
  2814. out:
  2815. kvm_exit_debug();
  2816. kvm_mmu_module_exit();
  2817. out4:
  2818. return r;
  2819. }
  2820. static __exit void kvm_exit(void)
  2821. {
  2822. kvm_exit_debug();
  2823. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  2824. kvm_mmu_module_exit();
  2825. }
  2826. module_init(kvm_init)
  2827. module_exit(kvm_exit)
  2828. EXPORT_SYMBOL_GPL(kvm_init_arch);
  2829. EXPORT_SYMBOL_GPL(kvm_exit_arch);