mmu.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082
  1. /*
  2. * linux/arch/arm/mm/mmu.c
  3. *
  4. * Copyright (C) 1995-2005 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/errno.h>
  13. #include <linux/init.h>
  14. #include <linux/mman.h>
  15. #include <linux/nodemask.h>
  16. #include <linux/memblock.h>
  17. #include <linux/fs.h>
  18. #include <asm/cputype.h>
  19. #include <asm/sections.h>
  20. #include <asm/cachetype.h>
  21. #include <asm/setup.h>
  22. #include <asm/sizes.h>
  23. #include <asm/smp_plat.h>
  24. #include <asm/tlb.h>
  25. #include <asm/highmem.h>
  26. #include <asm/mach/arch.h>
  27. #include <asm/mach/map.h>
  28. #include "mm.h"
  29. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  30. /*
  31. * empty_zero_page is a special page that is used for
  32. * zero-initialized data and COW.
  33. */
  34. struct page *empty_zero_page;
  35. EXPORT_SYMBOL(empty_zero_page);
  36. /*
  37. * The pmd table for the upper-most set of pages.
  38. */
  39. pmd_t *top_pmd;
  40. #define CPOLICY_UNCACHED 0
  41. #define CPOLICY_BUFFERED 1
  42. #define CPOLICY_WRITETHROUGH 2
  43. #define CPOLICY_WRITEBACK 3
  44. #define CPOLICY_WRITEALLOC 4
  45. static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  46. static unsigned int ecc_mask __initdata = 0;
  47. pgprot_t pgprot_user;
  48. pgprot_t pgprot_kernel;
  49. EXPORT_SYMBOL(pgprot_user);
  50. EXPORT_SYMBOL(pgprot_kernel);
  51. struct cachepolicy {
  52. const char policy[16];
  53. unsigned int cr_mask;
  54. unsigned int pmd;
  55. unsigned int pte;
  56. };
  57. static struct cachepolicy cache_policies[] __initdata = {
  58. {
  59. .policy = "uncached",
  60. .cr_mask = CR_W|CR_C,
  61. .pmd = PMD_SECT_UNCACHED,
  62. .pte = L_PTE_MT_UNCACHED,
  63. }, {
  64. .policy = "buffered",
  65. .cr_mask = CR_C,
  66. .pmd = PMD_SECT_BUFFERED,
  67. .pte = L_PTE_MT_BUFFERABLE,
  68. }, {
  69. .policy = "writethrough",
  70. .cr_mask = 0,
  71. .pmd = PMD_SECT_WT,
  72. .pte = L_PTE_MT_WRITETHROUGH,
  73. }, {
  74. .policy = "writeback",
  75. .cr_mask = 0,
  76. .pmd = PMD_SECT_WB,
  77. .pte = L_PTE_MT_WRITEBACK,
  78. }, {
  79. .policy = "writealloc",
  80. .cr_mask = 0,
  81. .pmd = PMD_SECT_WBWA,
  82. .pte = L_PTE_MT_WRITEALLOC,
  83. }
  84. };
  85. /*
  86. * These are useful for identifying cache coherency
  87. * problems by allowing the cache or the cache and
  88. * writebuffer to be turned off. (Note: the write
  89. * buffer should not be on and the cache off).
  90. */
  91. static int __init early_cachepolicy(char *p)
  92. {
  93. int i;
  94. for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
  95. int len = strlen(cache_policies[i].policy);
  96. if (memcmp(p, cache_policies[i].policy, len) == 0) {
  97. cachepolicy = i;
  98. cr_alignment &= ~cache_policies[i].cr_mask;
  99. cr_no_alignment &= ~cache_policies[i].cr_mask;
  100. break;
  101. }
  102. }
  103. if (i == ARRAY_SIZE(cache_policies))
  104. printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
  105. /*
  106. * This restriction is partly to do with the way we boot; it is
  107. * unpredictable to have memory mapped using two different sets of
  108. * memory attributes (shared, type, and cache attribs). We can not
  109. * change these attributes once the initial assembly has setup the
  110. * page tables.
  111. */
  112. if (cpu_architecture() >= CPU_ARCH_ARMv6) {
  113. printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
  114. cachepolicy = CPOLICY_WRITEBACK;
  115. }
  116. flush_cache_all();
  117. set_cr(cr_alignment);
  118. return 0;
  119. }
  120. early_param("cachepolicy", early_cachepolicy);
  121. static int __init early_nocache(char *__unused)
  122. {
  123. char *p = "buffered";
  124. printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
  125. early_cachepolicy(p);
  126. return 0;
  127. }
  128. early_param("nocache", early_nocache);
  129. static int __init early_nowrite(char *__unused)
  130. {
  131. char *p = "uncached";
  132. printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
  133. early_cachepolicy(p);
  134. return 0;
  135. }
  136. early_param("nowb", early_nowrite);
  137. static int __init early_ecc(char *p)
  138. {
  139. if (memcmp(p, "on", 2) == 0)
  140. ecc_mask = PMD_PROTECTION;
  141. else if (memcmp(p, "off", 3) == 0)
  142. ecc_mask = 0;
  143. return 0;
  144. }
  145. early_param("ecc", early_ecc);
  146. static int __init noalign_setup(char *__unused)
  147. {
  148. cr_alignment &= ~CR_A;
  149. cr_no_alignment &= ~CR_A;
  150. set_cr(cr_alignment);
  151. return 1;
  152. }
  153. __setup("noalign", noalign_setup);
  154. #ifndef CONFIG_SMP
  155. void adjust_cr(unsigned long mask, unsigned long set)
  156. {
  157. unsigned long flags;
  158. mask &= ~CR_A;
  159. set &= mask;
  160. local_irq_save(flags);
  161. cr_no_alignment = (cr_no_alignment & ~mask) | set;
  162. cr_alignment = (cr_alignment & ~mask) | set;
  163. set_cr((get_cr() & ~mask) | set);
  164. local_irq_restore(flags);
  165. }
  166. #endif
  167. #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
  168. #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
  169. static struct mem_type mem_types[] = {
  170. [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
  171. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
  172. L_PTE_SHARED,
  173. .prot_l1 = PMD_TYPE_TABLE,
  174. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
  175. .domain = DOMAIN_IO,
  176. },
  177. [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
  178. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
  179. .prot_l1 = PMD_TYPE_TABLE,
  180. .prot_sect = PROT_SECT_DEVICE,
  181. .domain = DOMAIN_IO,
  182. },
  183. [MT_DEVICE_CACHED] = { /* ioremap_cached */
  184. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
  185. .prot_l1 = PMD_TYPE_TABLE,
  186. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
  187. .domain = DOMAIN_IO,
  188. },
  189. [MT_DEVICE_WC] = { /* ioremap_wc */
  190. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
  191. .prot_l1 = PMD_TYPE_TABLE,
  192. .prot_sect = PROT_SECT_DEVICE,
  193. .domain = DOMAIN_IO,
  194. },
  195. [MT_UNCACHED] = {
  196. .prot_pte = PROT_PTE_DEVICE,
  197. .prot_l1 = PMD_TYPE_TABLE,
  198. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  199. .domain = DOMAIN_IO,
  200. },
  201. [MT_CACHECLEAN] = {
  202. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  203. .domain = DOMAIN_KERNEL,
  204. },
  205. [MT_MINICLEAN] = {
  206. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
  207. .domain = DOMAIN_KERNEL,
  208. },
  209. [MT_LOW_VECTORS] = {
  210. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  211. L_PTE_EXEC,
  212. .prot_l1 = PMD_TYPE_TABLE,
  213. .domain = DOMAIN_USER,
  214. },
  215. [MT_HIGH_VECTORS] = {
  216. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  217. L_PTE_USER | L_PTE_EXEC,
  218. .prot_l1 = PMD_TYPE_TABLE,
  219. .domain = DOMAIN_USER,
  220. },
  221. [MT_MEMORY] = {
  222. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  223. L_PTE_WRITE | L_PTE_EXEC,
  224. .prot_l1 = PMD_TYPE_TABLE,
  225. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  226. .domain = DOMAIN_KERNEL,
  227. },
  228. [MT_ROM] = {
  229. .prot_sect = PMD_TYPE_SECT,
  230. .domain = DOMAIN_KERNEL,
  231. },
  232. [MT_MEMORY_NONCACHED] = {
  233. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  234. L_PTE_WRITE | L_PTE_EXEC | L_PTE_MT_BUFFERABLE,
  235. .prot_l1 = PMD_TYPE_TABLE,
  236. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  237. .domain = DOMAIN_KERNEL,
  238. },
  239. [MT_MEMORY_DTCM] = {
  240. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  241. L_PTE_WRITE,
  242. .prot_l1 = PMD_TYPE_TABLE,
  243. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  244. .domain = DOMAIN_KERNEL,
  245. },
  246. [MT_MEMORY_ITCM] = {
  247. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  248. L_PTE_WRITE | L_PTE_EXEC,
  249. .prot_l1 = PMD_TYPE_TABLE,
  250. .domain = DOMAIN_KERNEL,
  251. },
  252. };
  253. const struct mem_type *get_mem_type(unsigned int type)
  254. {
  255. return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
  256. }
  257. EXPORT_SYMBOL(get_mem_type);
  258. /*
  259. * Adjust the PMD section entries according to the CPU in use.
  260. */
  261. static void __init build_mem_type_table(void)
  262. {
  263. struct cachepolicy *cp;
  264. unsigned int cr = get_cr();
  265. unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
  266. int cpu_arch = cpu_architecture();
  267. int i;
  268. if (cpu_arch < CPU_ARCH_ARMv6) {
  269. #if defined(CONFIG_CPU_DCACHE_DISABLE)
  270. if (cachepolicy > CPOLICY_BUFFERED)
  271. cachepolicy = CPOLICY_BUFFERED;
  272. #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
  273. if (cachepolicy > CPOLICY_WRITETHROUGH)
  274. cachepolicy = CPOLICY_WRITETHROUGH;
  275. #endif
  276. }
  277. if (cpu_arch < CPU_ARCH_ARMv5) {
  278. if (cachepolicy >= CPOLICY_WRITEALLOC)
  279. cachepolicy = CPOLICY_WRITEBACK;
  280. ecc_mask = 0;
  281. }
  282. if (is_smp())
  283. cachepolicy = CPOLICY_WRITEALLOC;
  284. /*
  285. * Strip out features not present on earlier architectures.
  286. * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
  287. * without extended page tables don't have the 'Shared' bit.
  288. */
  289. if (cpu_arch < CPU_ARCH_ARMv5)
  290. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  291. mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
  292. if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
  293. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  294. mem_types[i].prot_sect &= ~PMD_SECT_S;
  295. /*
  296. * ARMv5 and lower, bit 4 must be set for page tables (was: cache
  297. * "update-able on write" bit on ARM610). However, Xscale and
  298. * Xscale3 require this bit to be cleared.
  299. */
  300. if (cpu_is_xscale() || cpu_is_xsc3()) {
  301. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  302. mem_types[i].prot_sect &= ~PMD_BIT4;
  303. mem_types[i].prot_l1 &= ~PMD_BIT4;
  304. }
  305. } else if (cpu_arch < CPU_ARCH_ARMv6) {
  306. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  307. if (mem_types[i].prot_l1)
  308. mem_types[i].prot_l1 |= PMD_BIT4;
  309. if (mem_types[i].prot_sect)
  310. mem_types[i].prot_sect |= PMD_BIT4;
  311. }
  312. }
  313. /*
  314. * Mark the device areas according to the CPU/architecture.
  315. */
  316. if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
  317. if (!cpu_is_xsc3()) {
  318. /*
  319. * Mark device regions on ARMv6+ as execute-never
  320. * to prevent speculative instruction fetches.
  321. */
  322. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
  323. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
  324. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
  325. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
  326. }
  327. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  328. /*
  329. * For ARMv7 with TEX remapping,
  330. * - shared device is SXCB=1100
  331. * - nonshared device is SXCB=0100
  332. * - write combine device mem is SXCB=0001
  333. * (Uncached Normal memory)
  334. */
  335. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
  336. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
  337. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  338. } else if (cpu_is_xsc3()) {
  339. /*
  340. * For Xscale3,
  341. * - shared device is TEXCB=00101
  342. * - nonshared device is TEXCB=01000
  343. * - write combine device mem is TEXCB=00100
  344. * (Inner/Outer Uncacheable in xsc3 parlance)
  345. */
  346. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
  347. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  348. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  349. } else {
  350. /*
  351. * For ARMv6 and ARMv7 without TEX remapping,
  352. * - shared device is TEXCB=00001
  353. * - nonshared device is TEXCB=01000
  354. * - write combine device mem is TEXCB=00100
  355. * (Uncached Normal in ARMv6 parlance).
  356. */
  357. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
  358. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  359. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  360. }
  361. } else {
  362. /*
  363. * On others, write combining is "Uncached/Buffered"
  364. */
  365. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  366. }
  367. /*
  368. * Now deal with the memory-type mappings
  369. */
  370. cp = &cache_policies[cachepolicy];
  371. vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
  372. /*
  373. * Only use write-through for non-SMP systems
  374. */
  375. if (!is_smp() && cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
  376. vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
  377. /*
  378. * Enable CPU-specific coherency if supported.
  379. * (Only available on XSC3 at the moment.)
  380. */
  381. if (arch_is_coherent() && cpu_is_xsc3()) {
  382. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  383. mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
  384. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  385. mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
  386. }
  387. /*
  388. * ARMv6 and above have extended page tables.
  389. */
  390. if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
  391. /*
  392. * Mark cache clean areas and XIP ROM read only
  393. * from SVC mode and no access from userspace.
  394. */
  395. mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  396. mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  397. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  398. if (is_smp()) {
  399. /*
  400. * Mark memory with the "shared" attribute
  401. * for SMP systems
  402. */
  403. user_pgprot |= L_PTE_SHARED;
  404. kern_pgprot |= L_PTE_SHARED;
  405. vecs_pgprot |= L_PTE_SHARED;
  406. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
  407. mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
  408. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
  409. mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
  410. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  411. mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
  412. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  413. mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
  414. }
  415. }
  416. /*
  417. * Non-cacheable Normal - intended for memory areas that must
  418. * not cause dirty cache line writebacks when used
  419. */
  420. if (cpu_arch >= CPU_ARCH_ARMv6) {
  421. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  422. /* Non-cacheable Normal is XCB = 001 */
  423. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  424. PMD_SECT_BUFFERED;
  425. } else {
  426. /* For both ARMv6 and non-TEX-remapping ARMv7 */
  427. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  428. PMD_SECT_TEX(1);
  429. }
  430. } else {
  431. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
  432. }
  433. for (i = 0; i < 16; i++) {
  434. unsigned long v = pgprot_val(protection_map[i]);
  435. protection_map[i] = __pgprot(v | user_pgprot);
  436. }
  437. mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
  438. mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
  439. pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
  440. pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
  441. L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
  442. mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
  443. mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
  444. mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
  445. mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
  446. mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
  447. mem_types[MT_ROM].prot_sect |= cp->pmd;
  448. switch (cp->pmd) {
  449. case PMD_SECT_WT:
  450. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
  451. break;
  452. case PMD_SECT_WB:
  453. case PMD_SECT_WBWA:
  454. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
  455. break;
  456. }
  457. printk("Memory policy: ECC %sabled, Data cache %s\n",
  458. ecc_mask ? "en" : "dis", cp->policy);
  459. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  460. struct mem_type *t = &mem_types[i];
  461. if (t->prot_l1)
  462. t->prot_l1 |= PMD_DOMAIN(t->domain);
  463. if (t->prot_sect)
  464. t->prot_sect |= PMD_DOMAIN(t->domain);
  465. }
  466. }
  467. #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
  468. pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
  469. unsigned long size, pgprot_t vma_prot)
  470. {
  471. if (!pfn_valid(pfn))
  472. return pgprot_noncached(vma_prot);
  473. else if (file->f_flags & O_SYNC)
  474. return pgprot_writecombine(vma_prot);
  475. return vma_prot;
  476. }
  477. EXPORT_SYMBOL(phys_mem_access_prot);
  478. #endif
  479. #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
  480. static void __init *early_alloc(unsigned long sz)
  481. {
  482. void *ptr = __va(memblock_alloc(sz, sz));
  483. memset(ptr, 0, sz);
  484. return ptr;
  485. }
  486. static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
  487. {
  488. if (pmd_none(*pmd)) {
  489. pte_t *pte = early_alloc(2 * PTRS_PER_PTE * sizeof(pte_t));
  490. __pmd_populate(pmd, __pa(pte), prot);
  491. }
  492. BUG_ON(pmd_bad(*pmd));
  493. return pte_offset_kernel(pmd, addr);
  494. }
  495. static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
  496. unsigned long end, unsigned long pfn,
  497. const struct mem_type *type)
  498. {
  499. pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
  500. do {
  501. set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
  502. pfn++;
  503. } while (pte++, addr += PAGE_SIZE, addr != end);
  504. }
  505. static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
  506. unsigned long end, phys_addr_t phys,
  507. const struct mem_type *type)
  508. {
  509. pmd_t *pmd = pmd_offset(pgd, addr);
  510. /*
  511. * Try a section mapping - end, addr and phys must all be aligned
  512. * to a section boundary. Note that PMDs refer to the individual
  513. * L1 entries, whereas PGDs refer to a group of L1 entries making
  514. * up one logical pointer to an L2 table.
  515. */
  516. if (((addr | end | phys) & ~SECTION_MASK) == 0) {
  517. pmd_t *p = pmd;
  518. if (addr & SECTION_SIZE)
  519. pmd++;
  520. do {
  521. *pmd = __pmd(phys | type->prot_sect);
  522. phys += SECTION_SIZE;
  523. } while (pmd++, addr += SECTION_SIZE, addr != end);
  524. flush_pmd_entry(p);
  525. } else {
  526. /*
  527. * No need to loop; pte's aren't interested in the
  528. * individual L1 entries.
  529. */
  530. alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
  531. }
  532. }
  533. static void __init create_36bit_mapping(struct map_desc *md,
  534. const struct mem_type *type)
  535. {
  536. unsigned long addr, length, end;
  537. phys_addr_t phys;
  538. pgd_t *pgd;
  539. addr = md->virtual;
  540. phys = (unsigned long)__pfn_to_phys(md->pfn);
  541. length = PAGE_ALIGN(md->length);
  542. if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
  543. printk(KERN_ERR "MM: CPU does not support supersection "
  544. "mapping for 0x%08llx at 0x%08lx\n",
  545. __pfn_to_phys((u64)md->pfn), addr);
  546. return;
  547. }
  548. /* N.B. ARMv6 supersections are only defined to work with domain 0.
  549. * Since domain assignments can in fact be arbitrary, the
  550. * 'domain == 0' check below is required to insure that ARMv6
  551. * supersections are only allocated for domain 0 regardless
  552. * of the actual domain assignments in use.
  553. */
  554. if (type->domain) {
  555. printk(KERN_ERR "MM: invalid domain in supersection "
  556. "mapping for 0x%08llx at 0x%08lx\n",
  557. __pfn_to_phys((u64)md->pfn), addr);
  558. return;
  559. }
  560. if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
  561. printk(KERN_ERR "MM: cannot create mapping for "
  562. "0x%08llx at 0x%08lx invalid alignment\n",
  563. __pfn_to_phys((u64)md->pfn), addr);
  564. return;
  565. }
  566. /*
  567. * Shift bits [35:32] of address into bits [23:20] of PMD
  568. * (See ARMv6 spec).
  569. */
  570. phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
  571. pgd = pgd_offset_k(addr);
  572. end = addr + length;
  573. do {
  574. pmd_t *pmd = pmd_offset(pgd, addr);
  575. int i;
  576. for (i = 0; i < 16; i++)
  577. *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
  578. addr += SUPERSECTION_SIZE;
  579. phys += SUPERSECTION_SIZE;
  580. pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
  581. } while (addr != end);
  582. }
  583. /*
  584. * Create the page directory entries and any necessary
  585. * page tables for the mapping specified by `md'. We
  586. * are able to cope here with varying sizes and address
  587. * offsets, and we take full advantage of sections and
  588. * supersections.
  589. */
  590. static void __init create_mapping(struct map_desc *md)
  591. {
  592. unsigned long phys, addr, length, end;
  593. const struct mem_type *type;
  594. pgd_t *pgd;
  595. if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
  596. printk(KERN_WARNING "BUG: not creating mapping for "
  597. "0x%08llx at 0x%08lx in user region\n",
  598. __pfn_to_phys((u64)md->pfn), md->virtual);
  599. return;
  600. }
  601. if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
  602. md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
  603. printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
  604. "overlaps vmalloc space\n",
  605. __pfn_to_phys((u64)md->pfn), md->virtual);
  606. }
  607. type = &mem_types[md->type];
  608. /*
  609. * Catch 36-bit addresses
  610. */
  611. if (md->pfn >= 0x100000) {
  612. create_36bit_mapping(md, type);
  613. return;
  614. }
  615. addr = md->virtual & PAGE_MASK;
  616. phys = (unsigned long)__pfn_to_phys(md->pfn);
  617. length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  618. if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
  619. printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
  620. "be mapped using pages, ignoring.\n",
  621. __pfn_to_phys(md->pfn), addr);
  622. return;
  623. }
  624. pgd = pgd_offset_k(addr);
  625. end = addr + length;
  626. do {
  627. unsigned long next = pgd_addr_end(addr, end);
  628. alloc_init_section(pgd, addr, next, phys, type);
  629. phys += next - addr;
  630. addr = next;
  631. } while (pgd++, addr != end);
  632. }
  633. /*
  634. * Create the architecture specific mappings
  635. */
  636. void __init iotable_init(struct map_desc *io_desc, int nr)
  637. {
  638. int i;
  639. for (i = 0; i < nr; i++)
  640. create_mapping(io_desc + i);
  641. }
  642. static void * __initdata vmalloc_min = (void *)(VMALLOC_END - SZ_128M);
  643. /*
  644. * vmalloc=size forces the vmalloc area to be exactly 'size'
  645. * bytes. This can be used to increase (or decrease) the vmalloc
  646. * area - the default is 128m.
  647. */
  648. static int __init early_vmalloc(char *arg)
  649. {
  650. unsigned long vmalloc_reserve = memparse(arg, NULL);
  651. if (vmalloc_reserve < SZ_16M) {
  652. vmalloc_reserve = SZ_16M;
  653. printk(KERN_WARNING
  654. "vmalloc area too small, limiting to %luMB\n",
  655. vmalloc_reserve >> 20);
  656. }
  657. if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
  658. vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
  659. printk(KERN_WARNING
  660. "vmalloc area is too big, limiting to %luMB\n",
  661. vmalloc_reserve >> 20);
  662. }
  663. vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
  664. return 0;
  665. }
  666. early_param("vmalloc", early_vmalloc);
  667. static phys_addr_t lowmem_limit __initdata = 0;
  668. static void __init sanity_check_meminfo(void)
  669. {
  670. int i, j, highmem = 0;
  671. lowmem_limit = __pa(vmalloc_min - 1) + 1;
  672. memblock_set_current_limit(lowmem_limit);
  673. for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
  674. struct membank *bank = &meminfo.bank[j];
  675. *bank = meminfo.bank[i];
  676. #ifdef CONFIG_HIGHMEM
  677. if (__va(bank->start) > vmalloc_min ||
  678. __va(bank->start) < (void *)PAGE_OFFSET)
  679. highmem = 1;
  680. bank->highmem = highmem;
  681. /*
  682. * Split those memory banks which are partially overlapping
  683. * the vmalloc area greatly simplifying things later.
  684. */
  685. if (__va(bank->start) < vmalloc_min &&
  686. bank->size > vmalloc_min - __va(bank->start)) {
  687. if (meminfo.nr_banks >= NR_BANKS) {
  688. printk(KERN_CRIT "NR_BANKS too low, "
  689. "ignoring high memory\n");
  690. } else {
  691. memmove(bank + 1, bank,
  692. (meminfo.nr_banks - i) * sizeof(*bank));
  693. meminfo.nr_banks++;
  694. i++;
  695. bank[1].size -= vmalloc_min - __va(bank->start);
  696. bank[1].start = __pa(vmalloc_min - 1) + 1;
  697. bank[1].highmem = highmem = 1;
  698. j++;
  699. }
  700. bank->size = vmalloc_min - __va(bank->start);
  701. }
  702. #else
  703. bank->highmem = highmem;
  704. /*
  705. * Check whether this memory bank would entirely overlap
  706. * the vmalloc area.
  707. */
  708. if (__va(bank->start) >= vmalloc_min ||
  709. __va(bank->start) < (void *)PAGE_OFFSET) {
  710. printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
  711. "(vmalloc region overlap).\n",
  712. bank->start, bank->start + bank->size - 1);
  713. continue;
  714. }
  715. /*
  716. * Check whether this memory bank would partially overlap
  717. * the vmalloc area.
  718. */
  719. if (__va(bank->start + bank->size) > vmalloc_min ||
  720. __va(bank->start + bank->size) < __va(bank->start)) {
  721. unsigned long newsize = vmalloc_min - __va(bank->start);
  722. printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
  723. "to -%.8lx (vmalloc region overlap).\n",
  724. bank->start, bank->start + bank->size - 1,
  725. bank->start + newsize - 1);
  726. bank->size = newsize;
  727. }
  728. #endif
  729. j++;
  730. }
  731. #ifdef CONFIG_HIGHMEM
  732. if (highmem) {
  733. const char *reason = NULL;
  734. if (cache_is_vipt_aliasing()) {
  735. /*
  736. * Interactions between kmap and other mappings
  737. * make highmem support with aliasing VIPT caches
  738. * rather difficult.
  739. */
  740. reason = "with VIPT aliasing cache";
  741. } else if (is_smp() && tlb_ops_need_broadcast()) {
  742. /*
  743. * kmap_high needs to occasionally flush TLB entries,
  744. * however, if the TLB entries need to be broadcast
  745. * we may deadlock:
  746. * kmap_high(irqs off)->flush_all_zero_pkmaps->
  747. * flush_tlb_kernel_range->smp_call_function_many
  748. * (must not be called with irqs off)
  749. */
  750. reason = "without hardware TLB ops broadcasting";
  751. }
  752. if (reason) {
  753. printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
  754. reason);
  755. while (j > 0 && meminfo.bank[j - 1].highmem)
  756. j--;
  757. }
  758. }
  759. #endif
  760. meminfo.nr_banks = j;
  761. }
  762. static inline void prepare_page_table(void)
  763. {
  764. unsigned long addr;
  765. phys_addr_t end;
  766. /*
  767. * Clear out all the mappings below the kernel image.
  768. */
  769. for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
  770. pmd_clear(pmd_off_k(addr));
  771. #ifdef CONFIG_XIP_KERNEL
  772. /* The XIP kernel is mapped in the module area -- skip over it */
  773. addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
  774. #endif
  775. for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
  776. pmd_clear(pmd_off_k(addr));
  777. /*
  778. * Find the end of the first block of lowmem.
  779. */
  780. end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
  781. if (end >= lowmem_limit)
  782. end = lowmem_limit;
  783. /*
  784. * Clear out all the kernel space mappings, except for the first
  785. * memory bank, up to the end of the vmalloc region.
  786. */
  787. for (addr = __phys_to_virt(end);
  788. addr < VMALLOC_END; addr += PGDIR_SIZE)
  789. pmd_clear(pmd_off_k(addr));
  790. }
  791. /*
  792. * Reserve the special regions of memory
  793. */
  794. void __init arm_mm_memblock_reserve(void)
  795. {
  796. /*
  797. * Reserve the page tables. These are already in use,
  798. * and can only be in node 0.
  799. */
  800. memblock_reserve(__pa(swapper_pg_dir), PTRS_PER_PGD * sizeof(pgd_t));
  801. #ifdef CONFIG_SA1111
  802. /*
  803. * Because of the SA1111 DMA bug, we want to preserve our
  804. * precious DMA-able memory...
  805. */
  806. memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
  807. #endif
  808. }
  809. /*
  810. * Set up device the mappings. Since we clear out the page tables for all
  811. * mappings above VMALLOC_END, we will remove any debug device mappings.
  812. * This means you have to be careful how you debug this function, or any
  813. * called function. This means you can't use any function or debugging
  814. * method which may touch any device, otherwise the kernel _will_ crash.
  815. */
  816. static void __init devicemaps_init(struct machine_desc *mdesc)
  817. {
  818. struct map_desc map;
  819. unsigned long addr;
  820. void *vectors;
  821. /*
  822. * Allocate the vector page early.
  823. */
  824. vectors = early_alloc(PAGE_SIZE);
  825. for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
  826. pmd_clear(pmd_off_k(addr));
  827. /*
  828. * Map the kernel if it is XIP.
  829. * It is always first in the modulearea.
  830. */
  831. #ifdef CONFIG_XIP_KERNEL
  832. map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
  833. map.virtual = MODULES_VADDR;
  834. map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
  835. map.type = MT_ROM;
  836. create_mapping(&map);
  837. #endif
  838. /*
  839. * Map the cache flushing regions.
  840. */
  841. #ifdef FLUSH_BASE
  842. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
  843. map.virtual = FLUSH_BASE;
  844. map.length = SZ_1M;
  845. map.type = MT_CACHECLEAN;
  846. create_mapping(&map);
  847. #endif
  848. #ifdef FLUSH_BASE_MINICACHE
  849. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
  850. map.virtual = FLUSH_BASE_MINICACHE;
  851. map.length = SZ_1M;
  852. map.type = MT_MINICLEAN;
  853. create_mapping(&map);
  854. #endif
  855. /*
  856. * Create a mapping for the machine vectors at the high-vectors
  857. * location (0xffff0000). If we aren't using high-vectors, also
  858. * create a mapping at the low-vectors virtual address.
  859. */
  860. map.pfn = __phys_to_pfn(virt_to_phys(vectors));
  861. map.virtual = 0xffff0000;
  862. map.length = PAGE_SIZE;
  863. map.type = MT_HIGH_VECTORS;
  864. create_mapping(&map);
  865. if (!vectors_high()) {
  866. map.virtual = 0;
  867. map.type = MT_LOW_VECTORS;
  868. create_mapping(&map);
  869. }
  870. /*
  871. * Ask the machine support to map in the statically mapped devices.
  872. */
  873. if (mdesc->map_io)
  874. mdesc->map_io();
  875. /*
  876. * Finally flush the caches and tlb to ensure that we're in a
  877. * consistent state wrt the writebuffer. This also ensures that
  878. * any write-allocated cache lines in the vector page are written
  879. * back. After this point, we can start to touch devices again.
  880. */
  881. local_flush_tlb_all();
  882. flush_cache_all();
  883. }
  884. static void __init kmap_init(void)
  885. {
  886. #ifdef CONFIG_HIGHMEM
  887. pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
  888. PKMAP_BASE, _PAGE_KERNEL_TABLE);
  889. #endif
  890. }
  891. static void __init map_lowmem(void)
  892. {
  893. struct memblock_region *reg;
  894. /* Map all the lowmem memory banks. */
  895. for_each_memblock(memory, reg) {
  896. phys_addr_t start = reg->base;
  897. phys_addr_t end = start + reg->size;
  898. struct map_desc map;
  899. if (end > lowmem_limit)
  900. end = lowmem_limit;
  901. if (start >= end)
  902. break;
  903. map.pfn = __phys_to_pfn(start);
  904. map.virtual = __phys_to_virt(start);
  905. map.length = end - start;
  906. map.type = MT_MEMORY;
  907. create_mapping(&map);
  908. }
  909. }
  910. /*
  911. * paging_init() sets up the page tables, initialises the zone memory
  912. * maps, and sets up the zero page, bad page and bad page tables.
  913. */
  914. void __init paging_init(struct machine_desc *mdesc)
  915. {
  916. void *zero_page;
  917. build_mem_type_table();
  918. sanity_check_meminfo();
  919. prepare_page_table();
  920. map_lowmem();
  921. devicemaps_init(mdesc);
  922. kmap_init();
  923. top_pmd = pmd_off_k(0xffff0000);
  924. /* allocate the zero page. */
  925. zero_page = early_alloc(PAGE_SIZE);
  926. bootmem_init();
  927. empty_zero_page = virt_to_page(zero_page);
  928. __flush_dcache_page(NULL, empty_zero_page);
  929. }
  930. /*
  931. * In order to soft-boot, we need to insert a 1:1 mapping in place of
  932. * the user-mode pages. This will then ensure that we have predictable
  933. * results when turning the mmu off
  934. */
  935. void setup_mm_for_reboot(char mode)
  936. {
  937. unsigned long base_pmdval;
  938. pgd_t *pgd;
  939. int i;
  940. /*
  941. * We need to access to user-mode page tables here. For kernel threads
  942. * we don't have any user-mode mappings so we use the context that we
  943. * "borrowed".
  944. */
  945. pgd = current->active_mm->pgd;
  946. base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
  947. if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
  948. base_pmdval |= PMD_BIT4;
  949. for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
  950. unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
  951. pmd_t *pmd;
  952. pmd = pmd_off(pgd, i << PGDIR_SHIFT);
  953. pmd[0] = __pmd(pmdval);
  954. pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
  955. flush_pmd_entry(pmd);
  956. }
  957. local_flush_tlb_all();
  958. }