pci.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689
  1. /*
  2. * Copyright (C) 2001 Allan Trautman, IBM Corporation
  3. *
  4. * iSeries specific routines for PCI.
  5. *
  6. * Based on code from pci.c and iSeries_pci.c 32bit
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  21. */
  22. #include <linux/kernel.h>
  23. #include <linux/list.h>
  24. #include <linux/string.h>
  25. #include <linux/init.h>
  26. #include <linux/module.h>
  27. #include <linux/ide.h>
  28. #include <linux/pci.h>
  29. #include <asm/io.h>
  30. #include <asm/irq.h>
  31. #include <asm/prom.h>
  32. #include <asm/machdep.h>
  33. #include <asm/pci-bridge.h>
  34. #include <asm/iommu.h>
  35. #include <asm/abs_addr.h>
  36. #include <asm/iseries/hv_call_xm.h>
  37. #include <asm/iseries/mf.h>
  38. #include <asm/iseries/iommu.h>
  39. #include <asm/ppc-pci.h>
  40. #include "irq.h"
  41. #include "pci.h"
  42. #include "call_pci.h"
  43. /*
  44. * Forward declares of prototypes.
  45. */
  46. static struct device_node *find_Device_Node(int bus, int devfn);
  47. static int Pci_Retry_Max = 3; /* Only retry 3 times */
  48. static int Pci_Error_Flag = 1; /* Set Retry Error on. */
  49. static struct pci_ops iSeries_pci_ops;
  50. /*
  51. * Table defines
  52. * Each Entry size is 4 MB * 1024 Entries = 4GB I/O address space.
  53. */
  54. #define IOMM_TABLE_MAX_ENTRIES 1024
  55. #define IOMM_TABLE_ENTRY_SIZE 0x0000000000400000UL
  56. #define BASE_IO_MEMORY 0xE000000000000000UL
  57. static unsigned long max_io_memory = BASE_IO_MEMORY;
  58. static long current_iomm_table_entry;
  59. /*
  60. * Lookup Tables.
  61. */
  62. static struct device_node *iomm_table[IOMM_TABLE_MAX_ENTRIES];
  63. static u8 iobar_table[IOMM_TABLE_MAX_ENTRIES];
  64. static const char pci_io_text[] = "iSeries PCI I/O";
  65. static DEFINE_SPINLOCK(iomm_table_lock);
  66. /*
  67. * iomm_table_allocate_entry
  68. *
  69. * Adds pci_dev entry in address translation table
  70. *
  71. * - Allocates the number of entries required in table base on BAR
  72. * size.
  73. * - Allocates starting at BASE_IO_MEMORY and increases.
  74. * - The size is round up to be a multiple of entry size.
  75. * - CurrentIndex is incremented to keep track of the last entry.
  76. * - Builds the resource entry for allocated BARs.
  77. */
  78. static void iomm_table_allocate_entry(struct pci_dev *dev, int bar_num)
  79. {
  80. struct resource *bar_res = &dev->resource[bar_num];
  81. long bar_size = pci_resource_len(dev, bar_num);
  82. /*
  83. * No space to allocate, quick exit, skip Allocation.
  84. */
  85. if (bar_size == 0)
  86. return;
  87. /*
  88. * Set Resource values.
  89. */
  90. spin_lock(&iomm_table_lock);
  91. bar_res->name = pci_io_text;
  92. bar_res->start = BASE_IO_MEMORY +
  93. IOMM_TABLE_ENTRY_SIZE * current_iomm_table_entry;
  94. bar_res->end = bar_res->start + bar_size - 1;
  95. /*
  96. * Allocate the number of table entries needed for BAR.
  97. */
  98. while (bar_size > 0 ) {
  99. iomm_table[current_iomm_table_entry] = dev->sysdata;
  100. iobar_table[current_iomm_table_entry] = bar_num;
  101. bar_size -= IOMM_TABLE_ENTRY_SIZE;
  102. ++current_iomm_table_entry;
  103. }
  104. max_io_memory = BASE_IO_MEMORY +
  105. IOMM_TABLE_ENTRY_SIZE * current_iomm_table_entry;
  106. spin_unlock(&iomm_table_lock);
  107. }
  108. /*
  109. * allocate_device_bars
  110. *
  111. * - Allocates ALL pci_dev BAR's and updates the resources with the
  112. * BAR value. BARS with zero length will have the resources
  113. * The HvCallPci_getBarParms is used to get the size of the BAR
  114. * space. It calls iomm_table_allocate_entry to allocate
  115. * each entry.
  116. * - Loops through The Bar resources(0 - 5) including the ROM
  117. * is resource(6).
  118. */
  119. static void allocate_device_bars(struct pci_dev *dev)
  120. {
  121. int bar_num;
  122. for (bar_num = 0; bar_num <= PCI_ROM_RESOURCE; ++bar_num)
  123. iomm_table_allocate_entry(dev, bar_num);
  124. }
  125. /*
  126. * Log error information to system console.
  127. * Filter out the device not there errors.
  128. * PCI: EADs Connect Failed 0x18.58.10 Rc: 0x00xx
  129. * PCI: Read Vendor Failed 0x18.58.10 Rc: 0x00xx
  130. * PCI: Connect Bus Unit Failed 0x18.58.10 Rc: 0x00xx
  131. */
  132. static void pci_Log_Error(char *Error_Text, int Bus, int SubBus,
  133. int AgentId, int HvRc)
  134. {
  135. if (HvRc == 0x0302)
  136. return;
  137. printk(KERN_ERR "PCI: %s Failed: 0x%02X.%02X.%02X Rc: 0x%04X",
  138. Error_Text, Bus, SubBus, AgentId, HvRc);
  139. }
  140. /*
  141. * iSeries_pcibios_init
  142. *
  143. * Description:
  144. * This function checks for all possible system PCI host bridges that connect
  145. * PCI buses. The system hypervisor is queried as to the guest partition
  146. * ownership status. A pci_controller is built for any bus which is partially
  147. * owned or fully owned by this guest partition.
  148. */
  149. void iSeries_pcibios_init(void)
  150. {
  151. struct pci_controller *phb;
  152. struct device_node *node;
  153. struct device_node *dn;
  154. for_each_node_by_type(node, "pci") {
  155. HvBusNumber bus;
  156. u32 *busp;
  157. busp = (u32 *)get_property(node, "bus-range", NULL);
  158. if (busp == NULL)
  159. continue;
  160. bus = *busp;
  161. printk("bus %d appears to exist\n", bus);
  162. phb = pcibios_alloc_controller(node);
  163. if (phb == NULL)
  164. continue;
  165. phb->pci_mem_offset = phb->local_number = bus;
  166. phb->first_busno = bus;
  167. phb->last_busno = bus;
  168. phb->ops = &iSeries_pci_ops;
  169. /* Find and connect the devices. */
  170. for (dn = NULL; (dn = of_get_next_child(node, dn)) != NULL;) {
  171. struct pci_dn *pdn;
  172. u8 irq;
  173. int err;
  174. u32 *agent;
  175. u32 *reg;
  176. u32 *lsn;
  177. reg = (u32 *)get_property(dn, "reg", NULL);
  178. if (reg == NULL) {
  179. printk(KERN_DEBUG "no reg property!\n");
  180. continue;
  181. }
  182. busp = (u32 *)get_property(dn, "linux,subbus", NULL);
  183. if (busp == NULL) {
  184. printk(KERN_DEBUG "no subbus property!\n");
  185. continue;
  186. }
  187. agent = (u32 *)get_property(dn, "linux,agent-id", NULL);
  188. if (agent == NULL) {
  189. printk(KERN_DEBUG "no agent-id\n");
  190. continue;
  191. }
  192. lsn = (u32 *)get_property(dn,
  193. "linux,logical-slot-number", NULL);
  194. if (lsn == NULL) {
  195. printk(KERN_DEBUG "no logical-slot-number\n");
  196. continue;
  197. }
  198. irq = iSeries_allocate_IRQ(bus, 0, *busp);
  199. err = HvCallXm_connectBusUnit(bus, *busp, *agent, irq);
  200. if (err) {
  201. pci_Log_Error("Connect Bus Unit",
  202. bus, *busp, *agent, err);
  203. continue;
  204. }
  205. err = HvCallPci_configStore8(bus, *busp, *agent,
  206. PCI_INTERRUPT_LINE, irq);
  207. if (err) {
  208. pci_Log_Error("PciCfgStore Irq Failed!",
  209. bus, *busp, *agent, err);
  210. continue;
  211. }
  212. pdn = kzalloc(sizeof(*pdn), GFP_KERNEL);
  213. if (pdn == NULL)
  214. return;
  215. dn->data = pdn;
  216. pdn->node = dn;
  217. pdn->busno = bus;
  218. pdn->devfn = (reg[0] >> 8) & 0xff;
  219. pdn->bussubno = *busp;
  220. pdn->Irq = irq;
  221. pdn->LogicalSlot = *lsn;
  222. }
  223. }
  224. }
  225. /*
  226. * iSeries_pci_final_fixup(void)
  227. */
  228. void __init iSeries_pci_final_fixup(void)
  229. {
  230. struct pci_dev *pdev = NULL;
  231. struct device_node *node;
  232. int DeviceCount = 0;
  233. /* Fix up at the device node and pci_dev relationship */
  234. mf_display_src(0xC9000100);
  235. printk("pcibios_final_fixup\n");
  236. for_each_pci_dev(pdev) {
  237. node = find_Device_Node(pdev->bus->number, pdev->devfn);
  238. printk("pci dev %p (%x.%x), node %p\n", pdev,
  239. pdev->bus->number, pdev->devfn, node);
  240. if (node != NULL) {
  241. ++DeviceCount;
  242. pdev->sysdata = (void *)node;
  243. PCI_DN(node)->pcidev = pdev;
  244. allocate_device_bars(pdev);
  245. iSeries_Device_Information(pdev, DeviceCount);
  246. iommu_devnode_init_iSeries(node);
  247. } else
  248. printk("PCI: Device Tree not found for 0x%016lX\n",
  249. (unsigned long)pdev);
  250. pdev->irq = PCI_DN(node)->Irq;
  251. }
  252. iSeries_activate_IRQs();
  253. mf_display_src(0xC9000200);
  254. }
  255. void pcibios_fixup_bus(struct pci_bus *PciBus)
  256. {
  257. }
  258. void pcibios_fixup_resources(struct pci_dev *pdev)
  259. {
  260. }
  261. /*
  262. * I/0 Memory copy MUST use mmio commands on iSeries
  263. * To do; For performance, include the hv call directly
  264. */
  265. void iSeries_memset_io(volatile void __iomem *dest, char c, size_t Count)
  266. {
  267. u8 ByteValue = c;
  268. long NumberOfBytes = Count;
  269. while (NumberOfBytes > 0) {
  270. iSeries_Write_Byte(ByteValue, dest++);
  271. -- NumberOfBytes;
  272. }
  273. }
  274. EXPORT_SYMBOL(iSeries_memset_io);
  275. void iSeries_memcpy_toio(volatile void __iomem *dest, void *source, size_t count)
  276. {
  277. char *src = source;
  278. long NumberOfBytes = count;
  279. while (NumberOfBytes > 0) {
  280. iSeries_Write_Byte(*src++, dest++);
  281. -- NumberOfBytes;
  282. }
  283. }
  284. EXPORT_SYMBOL(iSeries_memcpy_toio);
  285. void iSeries_memcpy_fromio(void *dest, const volatile void __iomem *src, size_t count)
  286. {
  287. char *dst = dest;
  288. long NumberOfBytes = count;
  289. while (NumberOfBytes > 0) {
  290. *dst++ = iSeries_Read_Byte(src++);
  291. -- NumberOfBytes;
  292. }
  293. }
  294. EXPORT_SYMBOL(iSeries_memcpy_fromio);
  295. /*
  296. * Look down the chain to find the matching Device Device
  297. */
  298. static struct device_node *find_Device_Node(int bus, int devfn)
  299. {
  300. struct device_node *node;
  301. for (node = NULL; (node = of_find_all_nodes(node)); ) {
  302. struct pci_dn *pdn = PCI_DN(node);
  303. if (pdn && (bus == pdn->busno) && (devfn == pdn->devfn))
  304. return node;
  305. }
  306. return NULL;
  307. }
  308. #if 0
  309. /*
  310. * Returns the device node for the passed pci_dev
  311. * Sanity Check Node PciDev to passed pci_dev
  312. * If none is found, returns a NULL which the client must handle.
  313. */
  314. static struct device_node *get_Device_Node(struct pci_dev *pdev)
  315. {
  316. struct device_node *node;
  317. node = pdev->sysdata;
  318. if (node == NULL || PCI_DN(node)->pcidev != pdev)
  319. node = find_Device_Node(pdev->bus->number, pdev->devfn);
  320. return node;
  321. }
  322. #endif
  323. /*
  324. * Config space read and write functions.
  325. * For now at least, we look for the device node for the bus and devfn
  326. * that we are asked to access. It may be possible to translate the devfn
  327. * to a subbus and deviceid more directly.
  328. */
  329. static u64 hv_cfg_read_func[4] = {
  330. HvCallPciConfigLoad8, HvCallPciConfigLoad16,
  331. HvCallPciConfigLoad32, HvCallPciConfigLoad32
  332. };
  333. static u64 hv_cfg_write_func[4] = {
  334. HvCallPciConfigStore8, HvCallPciConfigStore16,
  335. HvCallPciConfigStore32, HvCallPciConfigStore32
  336. };
  337. /*
  338. * Read PCI config space
  339. */
  340. static int iSeries_pci_read_config(struct pci_bus *bus, unsigned int devfn,
  341. int offset, int size, u32 *val)
  342. {
  343. struct device_node *node = find_Device_Node(bus->number, devfn);
  344. u64 fn;
  345. struct HvCallPci_LoadReturn ret;
  346. if (node == NULL)
  347. return PCIBIOS_DEVICE_NOT_FOUND;
  348. if (offset > 255) {
  349. *val = ~0;
  350. return PCIBIOS_BAD_REGISTER_NUMBER;
  351. }
  352. fn = hv_cfg_read_func[(size - 1) & 3];
  353. HvCall3Ret16(fn, &ret, iseries_ds_addr(node), offset, 0);
  354. if (ret.rc != 0) {
  355. *val = ~0;
  356. return PCIBIOS_DEVICE_NOT_FOUND; /* or something */
  357. }
  358. *val = ret.value;
  359. return 0;
  360. }
  361. /*
  362. * Write PCI config space
  363. */
  364. static int iSeries_pci_write_config(struct pci_bus *bus, unsigned int devfn,
  365. int offset, int size, u32 val)
  366. {
  367. struct device_node *node = find_Device_Node(bus->number, devfn);
  368. u64 fn;
  369. u64 ret;
  370. if (node == NULL)
  371. return PCIBIOS_DEVICE_NOT_FOUND;
  372. if (offset > 255)
  373. return PCIBIOS_BAD_REGISTER_NUMBER;
  374. fn = hv_cfg_write_func[(size - 1) & 3];
  375. ret = HvCall4(fn, iseries_ds_addr(node), offset, val, 0);
  376. if (ret != 0)
  377. return PCIBIOS_DEVICE_NOT_FOUND;
  378. return 0;
  379. }
  380. static struct pci_ops iSeries_pci_ops = {
  381. .read = iSeries_pci_read_config,
  382. .write = iSeries_pci_write_config
  383. };
  384. /*
  385. * Check Return Code
  386. * -> On Failure, print and log information.
  387. * Increment Retry Count, if exceeds max, panic partition.
  388. *
  389. * PCI: Device 23.90 ReadL I/O Error( 0): 0x1234
  390. * PCI: Device 23.90 ReadL Retry( 1)
  391. * PCI: Device 23.90 ReadL Retry Successful(1)
  392. */
  393. static int CheckReturnCode(char *TextHdr, struct device_node *DevNode,
  394. int *retry, u64 ret)
  395. {
  396. if (ret != 0) {
  397. struct pci_dn *pdn = PCI_DN(DevNode);
  398. (*retry)++;
  399. printk("PCI: %s: Device 0x%04X:%02X I/O Error(%2d): 0x%04X\n",
  400. TextHdr, pdn->busno, pdn->devfn,
  401. *retry, (int)ret);
  402. /*
  403. * Bump the retry and check for retry count exceeded.
  404. * If, Exceeded, panic the system.
  405. */
  406. if (((*retry) > Pci_Retry_Max) &&
  407. (Pci_Error_Flag > 0)) {
  408. mf_display_src(0xB6000103);
  409. panic_timeout = 0;
  410. panic("PCI: Hardware I/O Error, SRC B6000103, "
  411. "Automatic Reboot Disabled.\n");
  412. }
  413. return -1; /* Retry Try */
  414. }
  415. return 0;
  416. }
  417. /*
  418. * Translate the I/O Address into a device node, bar, and bar offset.
  419. * Note: Make sure the passed variable end up on the stack to avoid
  420. * the exposure of being device global.
  421. */
  422. static inline struct device_node *xlate_iomm_address(
  423. const volatile void __iomem *IoAddress,
  424. u64 *dsaptr, u64 *BarOffsetPtr)
  425. {
  426. unsigned long OrigIoAddr;
  427. unsigned long BaseIoAddr;
  428. unsigned long TableIndex;
  429. struct device_node *DevNode;
  430. OrigIoAddr = (unsigned long __force)IoAddress;
  431. if ((OrigIoAddr < BASE_IO_MEMORY) || (OrigIoAddr >= max_io_memory))
  432. return NULL;
  433. BaseIoAddr = OrigIoAddr - BASE_IO_MEMORY;
  434. TableIndex = BaseIoAddr / IOMM_TABLE_ENTRY_SIZE;
  435. DevNode = iomm_table[TableIndex];
  436. if (DevNode != NULL) {
  437. int barnum = iobar_table[TableIndex];
  438. *dsaptr = iseries_ds_addr(DevNode) | (barnum << 24);
  439. *BarOffsetPtr = BaseIoAddr % IOMM_TABLE_ENTRY_SIZE;
  440. } else
  441. panic("PCI: Invalid PCI IoAddress detected!\n");
  442. return DevNode;
  443. }
  444. /*
  445. * Read MM I/O Instructions for the iSeries
  446. * On MM I/O error, all ones are returned and iSeries_pci_IoError is cal
  447. * else, data is returned in big Endian format.
  448. *
  449. * iSeries_Read_Byte = Read Byte ( 8 bit)
  450. * iSeries_Read_Word = Read Word (16 bit)
  451. * iSeries_Read_Long = Read Long (32 bit)
  452. */
  453. u8 iSeries_Read_Byte(const volatile void __iomem *IoAddress)
  454. {
  455. u64 BarOffset;
  456. u64 dsa;
  457. int retry = 0;
  458. struct HvCallPci_LoadReturn ret;
  459. struct device_node *DevNode =
  460. xlate_iomm_address(IoAddress, &dsa, &BarOffset);
  461. if (DevNode == NULL) {
  462. static unsigned long last_jiffies;
  463. static int num_printed;
  464. if ((jiffies - last_jiffies) > 60 * HZ) {
  465. last_jiffies = jiffies;
  466. num_printed = 0;
  467. }
  468. if (num_printed++ < 10)
  469. printk(KERN_ERR "iSeries_Read_Byte: invalid access at IO address %p\n", IoAddress);
  470. return 0xff;
  471. }
  472. do {
  473. HvCall3Ret16(HvCallPciBarLoad8, &ret, dsa, BarOffset, 0);
  474. } while (CheckReturnCode("RDB", DevNode, &retry, ret.rc) != 0);
  475. return (u8)ret.value;
  476. }
  477. EXPORT_SYMBOL(iSeries_Read_Byte);
  478. u16 iSeries_Read_Word(const volatile void __iomem *IoAddress)
  479. {
  480. u64 BarOffset;
  481. u64 dsa;
  482. int retry = 0;
  483. struct HvCallPci_LoadReturn ret;
  484. struct device_node *DevNode =
  485. xlate_iomm_address(IoAddress, &dsa, &BarOffset);
  486. if (DevNode == NULL) {
  487. static unsigned long last_jiffies;
  488. static int num_printed;
  489. if ((jiffies - last_jiffies) > 60 * HZ) {
  490. last_jiffies = jiffies;
  491. num_printed = 0;
  492. }
  493. if (num_printed++ < 10)
  494. printk(KERN_ERR "iSeries_Read_Word: invalid access at IO address %p\n", IoAddress);
  495. return 0xffff;
  496. }
  497. do {
  498. HvCall3Ret16(HvCallPciBarLoad16, &ret, dsa,
  499. BarOffset, 0);
  500. } while (CheckReturnCode("RDW", DevNode, &retry, ret.rc) != 0);
  501. return swab16((u16)ret.value);
  502. }
  503. EXPORT_SYMBOL(iSeries_Read_Word);
  504. u32 iSeries_Read_Long(const volatile void __iomem *IoAddress)
  505. {
  506. u64 BarOffset;
  507. u64 dsa;
  508. int retry = 0;
  509. struct HvCallPci_LoadReturn ret;
  510. struct device_node *DevNode =
  511. xlate_iomm_address(IoAddress, &dsa, &BarOffset);
  512. if (DevNode == NULL) {
  513. static unsigned long last_jiffies;
  514. static int num_printed;
  515. if ((jiffies - last_jiffies) > 60 * HZ) {
  516. last_jiffies = jiffies;
  517. num_printed = 0;
  518. }
  519. if (num_printed++ < 10)
  520. printk(KERN_ERR "iSeries_Read_Long: invalid access at IO address %p\n", IoAddress);
  521. return 0xffffffff;
  522. }
  523. do {
  524. HvCall3Ret16(HvCallPciBarLoad32, &ret, dsa,
  525. BarOffset, 0);
  526. } while (CheckReturnCode("RDL", DevNode, &retry, ret.rc) != 0);
  527. return swab32((u32)ret.value);
  528. }
  529. EXPORT_SYMBOL(iSeries_Read_Long);
  530. /*
  531. * Write MM I/O Instructions for the iSeries
  532. *
  533. * iSeries_Write_Byte = Write Byte (8 bit)
  534. * iSeries_Write_Word = Write Word(16 bit)
  535. * iSeries_Write_Long = Write Long(32 bit)
  536. */
  537. void iSeries_Write_Byte(u8 data, volatile void __iomem *IoAddress)
  538. {
  539. u64 BarOffset;
  540. u64 dsa;
  541. int retry = 0;
  542. u64 rc;
  543. struct device_node *DevNode =
  544. xlate_iomm_address(IoAddress, &dsa, &BarOffset);
  545. if (DevNode == NULL) {
  546. static unsigned long last_jiffies;
  547. static int num_printed;
  548. if ((jiffies - last_jiffies) > 60 * HZ) {
  549. last_jiffies = jiffies;
  550. num_printed = 0;
  551. }
  552. if (num_printed++ < 10)
  553. printk(KERN_ERR "iSeries_Write_Byte: invalid access at IO address %p\n", IoAddress);
  554. return;
  555. }
  556. do {
  557. rc = HvCall4(HvCallPciBarStore8, dsa, BarOffset, data, 0);
  558. } while (CheckReturnCode("WWB", DevNode, &retry, rc) != 0);
  559. }
  560. EXPORT_SYMBOL(iSeries_Write_Byte);
  561. void iSeries_Write_Word(u16 data, volatile void __iomem *IoAddress)
  562. {
  563. u64 BarOffset;
  564. u64 dsa;
  565. int retry = 0;
  566. u64 rc;
  567. struct device_node *DevNode =
  568. xlate_iomm_address(IoAddress, &dsa, &BarOffset);
  569. if (DevNode == NULL) {
  570. static unsigned long last_jiffies;
  571. static int num_printed;
  572. if ((jiffies - last_jiffies) > 60 * HZ) {
  573. last_jiffies = jiffies;
  574. num_printed = 0;
  575. }
  576. if (num_printed++ < 10)
  577. printk(KERN_ERR "iSeries_Write_Word: invalid access at IO address %p\n", IoAddress);
  578. return;
  579. }
  580. do {
  581. rc = HvCall4(HvCallPciBarStore16, dsa, BarOffset, swab16(data), 0);
  582. } while (CheckReturnCode("WWW", DevNode, &retry, rc) != 0);
  583. }
  584. EXPORT_SYMBOL(iSeries_Write_Word);
  585. void iSeries_Write_Long(u32 data, volatile void __iomem *IoAddress)
  586. {
  587. u64 BarOffset;
  588. u64 dsa;
  589. int retry = 0;
  590. u64 rc;
  591. struct device_node *DevNode =
  592. xlate_iomm_address(IoAddress, &dsa, &BarOffset);
  593. if (DevNode == NULL) {
  594. static unsigned long last_jiffies;
  595. static int num_printed;
  596. if ((jiffies - last_jiffies) > 60 * HZ) {
  597. last_jiffies = jiffies;
  598. num_printed = 0;
  599. }
  600. if (num_printed++ < 10)
  601. printk(KERN_ERR "iSeries_Write_Long: invalid access at IO address %p\n", IoAddress);
  602. return;
  603. }
  604. do {
  605. rc = HvCall4(HvCallPciBarStore32, dsa, BarOffset, swab32(data), 0);
  606. } while (CheckReturnCode("WWL", DevNode, &retry, rc) != 0);
  607. }
  608. EXPORT_SYMBOL(iSeries_Write_Long);