hugetlb.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590
  1. /*
  2. * Generic hugetlb support.
  3. * (C) William Irwin, April 2004
  4. */
  5. #include <linux/gfp.h>
  6. #include <linux/list.h>
  7. #include <linux/init.h>
  8. #include <linux/module.h>
  9. #include <linux/mm.h>
  10. #include <linux/sysctl.h>
  11. #include <linux/highmem.h>
  12. #include <linux/nodemask.h>
  13. #include <linux/pagemap.h>
  14. #include <asm/page.h>
  15. #include <asm/pgtable.h>
  16. #include <linux/hugetlb.h>
  17. const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
  18. static unsigned long nr_huge_pages, free_huge_pages;
  19. unsigned long max_huge_pages;
  20. static struct list_head hugepage_freelists[MAX_NUMNODES];
  21. static unsigned int nr_huge_pages_node[MAX_NUMNODES];
  22. static unsigned int free_huge_pages_node[MAX_NUMNODES];
  23. /*
  24. * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
  25. */
  26. static DEFINE_SPINLOCK(hugetlb_lock);
  27. static void enqueue_huge_page(struct page *page)
  28. {
  29. int nid = page_to_nid(page);
  30. list_add(&page->lru, &hugepage_freelists[nid]);
  31. free_huge_pages++;
  32. free_huge_pages_node[nid]++;
  33. }
  34. static struct page *dequeue_huge_page(void)
  35. {
  36. int nid = numa_node_id();
  37. struct page *page = NULL;
  38. struct zonelist *zonelist = NODE_DATA(nid)->node_zonelists;
  39. struct zone **z;
  40. for (z = zonelist->zones; *z; z++) {
  41. nid = (*z)->zone_pgdat->node_id;
  42. if (!list_empty(&hugepage_freelists[nid]))
  43. break;
  44. }
  45. if (*z) {
  46. page = list_entry(hugepage_freelists[nid].next,
  47. struct page, lru);
  48. list_del(&page->lru);
  49. free_huge_pages--;
  50. free_huge_pages_node[nid]--;
  51. }
  52. return page;
  53. }
  54. static struct page *alloc_fresh_huge_page(void)
  55. {
  56. static int nid = 0;
  57. struct page *page;
  58. page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
  59. HUGETLB_PAGE_ORDER);
  60. nid = (nid + 1) % num_online_nodes();
  61. if (page) {
  62. spin_lock(&hugetlb_lock);
  63. nr_huge_pages++;
  64. nr_huge_pages_node[page_to_nid(page)]++;
  65. spin_unlock(&hugetlb_lock);
  66. }
  67. return page;
  68. }
  69. void free_huge_page(struct page *page)
  70. {
  71. BUG_ON(page_count(page));
  72. INIT_LIST_HEAD(&page->lru);
  73. page[1].mapping = NULL;
  74. spin_lock(&hugetlb_lock);
  75. enqueue_huge_page(page);
  76. spin_unlock(&hugetlb_lock);
  77. }
  78. struct page *alloc_huge_page(void)
  79. {
  80. struct page *page;
  81. int i;
  82. spin_lock(&hugetlb_lock);
  83. page = dequeue_huge_page();
  84. if (!page) {
  85. spin_unlock(&hugetlb_lock);
  86. return NULL;
  87. }
  88. spin_unlock(&hugetlb_lock);
  89. set_page_count(page, 1);
  90. page[1].mapping = (void *)free_huge_page;
  91. for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i)
  92. clear_highpage(&page[i]);
  93. return page;
  94. }
  95. static int __init hugetlb_init(void)
  96. {
  97. unsigned long i;
  98. struct page *page;
  99. if (HPAGE_SHIFT == 0)
  100. return 0;
  101. for (i = 0; i < MAX_NUMNODES; ++i)
  102. INIT_LIST_HEAD(&hugepage_freelists[i]);
  103. for (i = 0; i < max_huge_pages; ++i) {
  104. page = alloc_fresh_huge_page();
  105. if (!page)
  106. break;
  107. spin_lock(&hugetlb_lock);
  108. enqueue_huge_page(page);
  109. spin_unlock(&hugetlb_lock);
  110. }
  111. max_huge_pages = free_huge_pages = nr_huge_pages = i;
  112. printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
  113. return 0;
  114. }
  115. module_init(hugetlb_init);
  116. static int __init hugetlb_setup(char *s)
  117. {
  118. if (sscanf(s, "%lu", &max_huge_pages) <= 0)
  119. max_huge_pages = 0;
  120. return 1;
  121. }
  122. __setup("hugepages=", hugetlb_setup);
  123. #ifdef CONFIG_SYSCTL
  124. static void update_and_free_page(struct page *page)
  125. {
  126. int i;
  127. nr_huge_pages--;
  128. nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
  129. for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
  130. page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
  131. 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
  132. 1 << PG_private | 1<< PG_writeback);
  133. set_page_count(&page[i], 0);
  134. }
  135. set_page_count(page, 1);
  136. __free_pages(page, HUGETLB_PAGE_ORDER);
  137. }
  138. #ifdef CONFIG_HIGHMEM
  139. static void try_to_free_low(unsigned long count)
  140. {
  141. int i, nid;
  142. for (i = 0; i < MAX_NUMNODES; ++i) {
  143. struct page *page, *next;
  144. list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
  145. if (PageHighMem(page))
  146. continue;
  147. list_del(&page->lru);
  148. update_and_free_page(page);
  149. nid = page_zone(page)->zone_pgdat->node_id;
  150. free_huge_pages--;
  151. free_huge_pages_node[nid]--;
  152. if (count >= nr_huge_pages)
  153. return;
  154. }
  155. }
  156. }
  157. #else
  158. static inline void try_to_free_low(unsigned long count)
  159. {
  160. }
  161. #endif
  162. static unsigned long set_max_huge_pages(unsigned long count)
  163. {
  164. while (count > nr_huge_pages) {
  165. struct page *page = alloc_fresh_huge_page();
  166. if (!page)
  167. return nr_huge_pages;
  168. spin_lock(&hugetlb_lock);
  169. enqueue_huge_page(page);
  170. spin_unlock(&hugetlb_lock);
  171. }
  172. if (count >= nr_huge_pages)
  173. return nr_huge_pages;
  174. spin_lock(&hugetlb_lock);
  175. try_to_free_low(count);
  176. while (count < nr_huge_pages) {
  177. struct page *page = dequeue_huge_page();
  178. if (!page)
  179. break;
  180. update_and_free_page(page);
  181. }
  182. spin_unlock(&hugetlb_lock);
  183. return nr_huge_pages;
  184. }
  185. int hugetlb_sysctl_handler(struct ctl_table *table, int write,
  186. struct file *file, void __user *buffer,
  187. size_t *length, loff_t *ppos)
  188. {
  189. proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
  190. max_huge_pages = set_max_huge_pages(max_huge_pages);
  191. return 0;
  192. }
  193. #endif /* CONFIG_SYSCTL */
  194. int hugetlb_report_meminfo(char *buf)
  195. {
  196. return sprintf(buf,
  197. "HugePages_Total: %5lu\n"
  198. "HugePages_Free: %5lu\n"
  199. "Hugepagesize: %5lu kB\n",
  200. nr_huge_pages,
  201. free_huge_pages,
  202. HPAGE_SIZE/1024);
  203. }
  204. int hugetlb_report_node_meminfo(int nid, char *buf)
  205. {
  206. return sprintf(buf,
  207. "Node %d HugePages_Total: %5u\n"
  208. "Node %d HugePages_Free: %5u\n",
  209. nid, nr_huge_pages_node[nid],
  210. nid, free_huge_pages_node[nid]);
  211. }
  212. int is_hugepage_mem_enough(size_t size)
  213. {
  214. return (size + ~HPAGE_MASK)/HPAGE_SIZE <= free_huge_pages;
  215. }
  216. /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
  217. unsigned long hugetlb_total_pages(void)
  218. {
  219. return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
  220. }
  221. /*
  222. * We cannot handle pagefaults against hugetlb pages at all. They cause
  223. * handle_mm_fault() to try to instantiate regular-sized pages in the
  224. * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
  225. * this far.
  226. */
  227. static struct page *hugetlb_nopage(struct vm_area_struct *vma,
  228. unsigned long address, int *unused)
  229. {
  230. BUG();
  231. return NULL;
  232. }
  233. struct vm_operations_struct hugetlb_vm_ops = {
  234. .nopage = hugetlb_nopage,
  235. };
  236. static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
  237. int writable)
  238. {
  239. pte_t entry;
  240. if (writable) {
  241. entry =
  242. pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
  243. } else {
  244. entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
  245. }
  246. entry = pte_mkyoung(entry);
  247. entry = pte_mkhuge(entry);
  248. return entry;
  249. }
  250. static void set_huge_ptep_writable(struct vm_area_struct *vma,
  251. unsigned long address, pte_t *ptep)
  252. {
  253. pte_t entry;
  254. entry = pte_mkwrite(pte_mkdirty(*ptep));
  255. ptep_set_access_flags(vma, address, ptep, entry, 1);
  256. update_mmu_cache(vma, address, entry);
  257. lazy_mmu_prot_update(entry);
  258. }
  259. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  260. struct vm_area_struct *vma)
  261. {
  262. pte_t *src_pte, *dst_pte, entry;
  263. struct page *ptepage;
  264. unsigned long addr;
  265. int cow;
  266. cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  267. for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
  268. src_pte = huge_pte_offset(src, addr);
  269. if (!src_pte)
  270. continue;
  271. dst_pte = huge_pte_alloc(dst, addr);
  272. if (!dst_pte)
  273. goto nomem;
  274. spin_lock(&dst->page_table_lock);
  275. spin_lock(&src->page_table_lock);
  276. if (!pte_none(*src_pte)) {
  277. if (cow)
  278. ptep_set_wrprotect(src, addr, src_pte);
  279. entry = *src_pte;
  280. ptepage = pte_page(entry);
  281. get_page(ptepage);
  282. add_mm_counter(dst, file_rss, HPAGE_SIZE / PAGE_SIZE);
  283. set_huge_pte_at(dst, addr, dst_pte, entry);
  284. }
  285. spin_unlock(&src->page_table_lock);
  286. spin_unlock(&dst->page_table_lock);
  287. }
  288. return 0;
  289. nomem:
  290. return -ENOMEM;
  291. }
  292. void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  293. unsigned long end)
  294. {
  295. struct mm_struct *mm = vma->vm_mm;
  296. unsigned long address;
  297. pte_t *ptep;
  298. pte_t pte;
  299. struct page *page;
  300. WARN_ON(!is_vm_hugetlb_page(vma));
  301. BUG_ON(start & ~HPAGE_MASK);
  302. BUG_ON(end & ~HPAGE_MASK);
  303. spin_lock(&mm->page_table_lock);
  304. /* Update high watermark before we lower rss */
  305. update_hiwater_rss(mm);
  306. for (address = start; address < end; address += HPAGE_SIZE) {
  307. ptep = huge_pte_offset(mm, address);
  308. if (!ptep)
  309. continue;
  310. pte = huge_ptep_get_and_clear(mm, address, ptep);
  311. if (pte_none(pte))
  312. continue;
  313. page = pte_page(pte);
  314. put_page(page);
  315. add_mm_counter(mm, file_rss, (int) -(HPAGE_SIZE / PAGE_SIZE));
  316. }
  317. spin_unlock(&mm->page_table_lock);
  318. flush_tlb_range(vma, start, end);
  319. }
  320. static struct page *find_or_alloc_huge_page(struct address_space *mapping,
  321. unsigned long idx, int shared)
  322. {
  323. struct page *page;
  324. int err;
  325. retry:
  326. page = find_lock_page(mapping, idx);
  327. if (page)
  328. goto out;
  329. if (hugetlb_get_quota(mapping))
  330. goto out;
  331. page = alloc_huge_page();
  332. if (!page) {
  333. hugetlb_put_quota(mapping);
  334. goto out;
  335. }
  336. if (shared) {
  337. err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
  338. if (err) {
  339. put_page(page);
  340. hugetlb_put_quota(mapping);
  341. if (err == -EEXIST)
  342. goto retry;
  343. page = NULL;
  344. }
  345. } else {
  346. /* Caller expects a locked page */
  347. lock_page(page);
  348. }
  349. out:
  350. return page;
  351. }
  352. static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
  353. unsigned long address, pte_t *ptep, pte_t pte)
  354. {
  355. struct page *old_page, *new_page;
  356. int i, avoidcopy;
  357. old_page = pte_page(pte);
  358. /* If no-one else is actually using this page, avoid the copy
  359. * and just make the page writable */
  360. avoidcopy = (page_count(old_page) == 1);
  361. if (avoidcopy) {
  362. set_huge_ptep_writable(vma, address, ptep);
  363. return VM_FAULT_MINOR;
  364. }
  365. page_cache_get(old_page);
  366. new_page = alloc_huge_page();
  367. if (!new_page) {
  368. page_cache_release(old_page);
  369. /* Logically this is OOM, not a SIGBUS, but an OOM
  370. * could cause the kernel to go killing other
  371. * processes which won't help the hugepage situation
  372. * at all (?) */
  373. return VM_FAULT_SIGBUS;
  374. }
  375. spin_unlock(&mm->page_table_lock);
  376. for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++)
  377. copy_user_highpage(new_page + i, old_page + i,
  378. address + i*PAGE_SIZE);
  379. spin_lock(&mm->page_table_lock);
  380. ptep = huge_pte_offset(mm, address & HPAGE_MASK);
  381. if (likely(pte_same(*ptep, pte))) {
  382. /* Break COW */
  383. set_huge_pte_at(mm, address, ptep,
  384. make_huge_pte(vma, new_page, 1));
  385. /* Make the old page be freed below */
  386. new_page = old_page;
  387. }
  388. page_cache_release(new_page);
  389. page_cache_release(old_page);
  390. return VM_FAULT_MINOR;
  391. }
  392. int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  393. unsigned long address, pte_t *ptep, int write_access)
  394. {
  395. int ret = VM_FAULT_SIGBUS;
  396. unsigned long idx;
  397. unsigned long size;
  398. struct page *page;
  399. struct address_space *mapping;
  400. pte_t new_pte;
  401. mapping = vma->vm_file->f_mapping;
  402. idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
  403. + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
  404. /*
  405. * Use page lock to guard against racing truncation
  406. * before we get page_table_lock.
  407. */
  408. page = find_or_alloc_huge_page(mapping, idx,
  409. vma->vm_flags & VM_SHARED);
  410. if (!page)
  411. goto out;
  412. BUG_ON(!PageLocked(page));
  413. spin_lock(&mm->page_table_lock);
  414. size = i_size_read(mapping->host) >> HPAGE_SHIFT;
  415. if (idx >= size)
  416. goto backout;
  417. ret = VM_FAULT_MINOR;
  418. if (!pte_none(*ptep))
  419. goto backout;
  420. add_mm_counter(mm, file_rss, HPAGE_SIZE / PAGE_SIZE);
  421. new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
  422. && (vma->vm_flags & VM_SHARED)));
  423. set_huge_pte_at(mm, address, ptep, new_pte);
  424. if (write_access && !(vma->vm_flags & VM_SHARED)) {
  425. /* Optimization, do the COW without a second fault */
  426. ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
  427. }
  428. spin_unlock(&mm->page_table_lock);
  429. unlock_page(page);
  430. out:
  431. return ret;
  432. backout:
  433. spin_unlock(&mm->page_table_lock);
  434. hugetlb_put_quota(mapping);
  435. unlock_page(page);
  436. put_page(page);
  437. goto out;
  438. }
  439. int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  440. unsigned long address, int write_access)
  441. {
  442. pte_t *ptep;
  443. pte_t entry;
  444. int ret;
  445. ptep = huge_pte_alloc(mm, address);
  446. if (!ptep)
  447. return VM_FAULT_OOM;
  448. entry = *ptep;
  449. if (pte_none(entry))
  450. return hugetlb_no_page(mm, vma, address, ptep, write_access);
  451. ret = VM_FAULT_MINOR;
  452. spin_lock(&mm->page_table_lock);
  453. /* Check for a racing update before calling hugetlb_cow */
  454. if (likely(pte_same(entry, *ptep)))
  455. if (write_access && !pte_write(entry))
  456. ret = hugetlb_cow(mm, vma, address, ptep, entry);
  457. spin_unlock(&mm->page_table_lock);
  458. return ret;
  459. }
  460. int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  461. struct page **pages, struct vm_area_struct **vmas,
  462. unsigned long *position, int *length, int i)
  463. {
  464. unsigned long vpfn, vaddr = *position;
  465. int remainder = *length;
  466. vpfn = vaddr/PAGE_SIZE;
  467. spin_lock(&mm->page_table_lock);
  468. while (vaddr < vma->vm_end && remainder) {
  469. pte_t *pte;
  470. struct page *page;
  471. /*
  472. * Some archs (sparc64, sh*) have multiple pte_ts to
  473. * each hugepage. We have to make * sure we get the
  474. * first, for the page indexing below to work.
  475. */
  476. pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
  477. if (!pte || pte_none(*pte)) {
  478. int ret;
  479. spin_unlock(&mm->page_table_lock);
  480. ret = hugetlb_fault(mm, vma, vaddr, 0);
  481. spin_lock(&mm->page_table_lock);
  482. if (ret == VM_FAULT_MINOR)
  483. continue;
  484. remainder = 0;
  485. if (!i)
  486. i = -EFAULT;
  487. break;
  488. }
  489. if (pages) {
  490. page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
  491. get_page(page);
  492. pages[i] = page;
  493. }
  494. if (vmas)
  495. vmas[i] = vma;
  496. vaddr += PAGE_SIZE;
  497. ++vpfn;
  498. --remainder;
  499. ++i;
  500. }
  501. spin_unlock(&mm->page_table_lock);
  502. *length = remainder;
  503. *position = vaddr;
  504. return i;
  505. }