md.c 108 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/config.h>
  28. #include <linux/kthread.h>
  29. #include <linux/linkage.h>
  30. #include <linux/raid/md.h>
  31. #include <linux/raid/bitmap.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/devfs_fs_kernel.h>
  34. #include <linux/buffer_head.h> /* for invalidate_bdev */
  35. #include <linux/suspend.h>
  36. #include <linux/init.h>
  37. #include <linux/file.h>
  38. #ifdef CONFIG_KMOD
  39. #include <linux/kmod.h>
  40. #endif
  41. #include <asm/unaligned.h>
  42. #define MAJOR_NR MD_MAJOR
  43. #define MD_DRIVER
  44. /* 63 partitions with the alternate major number (mdp) */
  45. #define MdpMinorShift 6
  46. #define DEBUG 0
  47. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  48. #ifndef MODULE
  49. static void autostart_arrays (int part);
  50. #endif
  51. static mdk_personality_t *pers[MAX_PERSONALITY];
  52. static DEFINE_SPINLOCK(pers_lock);
  53. /*
  54. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  55. * is 1000 KB/sec, so the extra system load does not show up that much.
  56. * Increase it if you want to have more _guaranteed_ speed. Note that
  57. * the RAID driver will use the maximum available bandwidth if the IO
  58. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  59. * speed limit - in case reconstruction slows down your system despite
  60. * idle IO detection.
  61. *
  62. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  63. */
  64. static int sysctl_speed_limit_min = 1000;
  65. static int sysctl_speed_limit_max = 200000;
  66. static struct ctl_table_header *raid_table_header;
  67. static ctl_table raid_table[] = {
  68. {
  69. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  70. .procname = "speed_limit_min",
  71. .data = &sysctl_speed_limit_min,
  72. .maxlen = sizeof(int),
  73. .mode = 0644,
  74. .proc_handler = &proc_dointvec,
  75. },
  76. {
  77. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  78. .procname = "speed_limit_max",
  79. .data = &sysctl_speed_limit_max,
  80. .maxlen = sizeof(int),
  81. .mode = 0644,
  82. .proc_handler = &proc_dointvec,
  83. },
  84. { .ctl_name = 0 }
  85. };
  86. static ctl_table raid_dir_table[] = {
  87. {
  88. .ctl_name = DEV_RAID,
  89. .procname = "raid",
  90. .maxlen = 0,
  91. .mode = 0555,
  92. .child = raid_table,
  93. },
  94. { .ctl_name = 0 }
  95. };
  96. static ctl_table raid_root_table[] = {
  97. {
  98. .ctl_name = CTL_DEV,
  99. .procname = "dev",
  100. .maxlen = 0,
  101. .mode = 0555,
  102. .child = raid_dir_table,
  103. },
  104. { .ctl_name = 0 }
  105. };
  106. static struct block_device_operations md_fops;
  107. static int start_readonly;
  108. /*
  109. * Enables to iterate over all existing md arrays
  110. * all_mddevs_lock protects this list.
  111. */
  112. static LIST_HEAD(all_mddevs);
  113. static DEFINE_SPINLOCK(all_mddevs_lock);
  114. /*
  115. * iterates through all used mddevs in the system.
  116. * We take care to grab the all_mddevs_lock whenever navigating
  117. * the list, and to always hold a refcount when unlocked.
  118. * Any code which breaks out of this loop while own
  119. * a reference to the current mddev and must mddev_put it.
  120. */
  121. #define ITERATE_MDDEV(mddev,tmp) \
  122. \
  123. for (({ spin_lock(&all_mddevs_lock); \
  124. tmp = all_mddevs.next; \
  125. mddev = NULL;}); \
  126. ({ if (tmp != &all_mddevs) \
  127. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  128. spin_unlock(&all_mddevs_lock); \
  129. if (mddev) mddev_put(mddev); \
  130. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  131. tmp != &all_mddevs;}); \
  132. ({ spin_lock(&all_mddevs_lock); \
  133. tmp = tmp->next;}) \
  134. )
  135. static int md_fail_request (request_queue_t *q, struct bio *bio)
  136. {
  137. bio_io_error(bio, bio->bi_size);
  138. return 0;
  139. }
  140. static inline mddev_t *mddev_get(mddev_t *mddev)
  141. {
  142. atomic_inc(&mddev->active);
  143. return mddev;
  144. }
  145. static void mddev_put(mddev_t *mddev)
  146. {
  147. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  148. return;
  149. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  150. list_del(&mddev->all_mddevs);
  151. blk_put_queue(mddev->queue);
  152. kobject_unregister(&mddev->kobj);
  153. }
  154. spin_unlock(&all_mddevs_lock);
  155. }
  156. static mddev_t * mddev_find(dev_t unit)
  157. {
  158. mddev_t *mddev, *new = NULL;
  159. retry:
  160. spin_lock(&all_mddevs_lock);
  161. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  162. if (mddev->unit == unit) {
  163. mddev_get(mddev);
  164. spin_unlock(&all_mddevs_lock);
  165. kfree(new);
  166. return mddev;
  167. }
  168. if (new) {
  169. list_add(&new->all_mddevs, &all_mddevs);
  170. spin_unlock(&all_mddevs_lock);
  171. return new;
  172. }
  173. spin_unlock(&all_mddevs_lock);
  174. new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
  175. if (!new)
  176. return NULL;
  177. memset(new, 0, sizeof(*new));
  178. new->unit = unit;
  179. if (MAJOR(unit) == MD_MAJOR)
  180. new->md_minor = MINOR(unit);
  181. else
  182. new->md_minor = MINOR(unit) >> MdpMinorShift;
  183. init_MUTEX(&new->reconfig_sem);
  184. INIT_LIST_HEAD(&new->disks);
  185. INIT_LIST_HEAD(&new->all_mddevs);
  186. init_timer(&new->safemode_timer);
  187. atomic_set(&new->active, 1);
  188. spin_lock_init(&new->write_lock);
  189. init_waitqueue_head(&new->sb_wait);
  190. new->queue = blk_alloc_queue(GFP_KERNEL);
  191. if (!new->queue) {
  192. kfree(new);
  193. return NULL;
  194. }
  195. blk_queue_make_request(new->queue, md_fail_request);
  196. goto retry;
  197. }
  198. static inline int mddev_lock(mddev_t * mddev)
  199. {
  200. return down_interruptible(&mddev->reconfig_sem);
  201. }
  202. static inline void mddev_lock_uninterruptible(mddev_t * mddev)
  203. {
  204. down(&mddev->reconfig_sem);
  205. }
  206. static inline int mddev_trylock(mddev_t * mddev)
  207. {
  208. return down_trylock(&mddev->reconfig_sem);
  209. }
  210. static inline void mddev_unlock(mddev_t * mddev)
  211. {
  212. up(&mddev->reconfig_sem);
  213. md_wakeup_thread(mddev->thread);
  214. }
  215. mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  216. {
  217. mdk_rdev_t * rdev;
  218. struct list_head *tmp;
  219. ITERATE_RDEV(mddev,rdev,tmp) {
  220. if (rdev->desc_nr == nr)
  221. return rdev;
  222. }
  223. return NULL;
  224. }
  225. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  226. {
  227. struct list_head *tmp;
  228. mdk_rdev_t *rdev;
  229. ITERATE_RDEV(mddev,rdev,tmp) {
  230. if (rdev->bdev->bd_dev == dev)
  231. return rdev;
  232. }
  233. return NULL;
  234. }
  235. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  236. {
  237. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  238. return MD_NEW_SIZE_BLOCKS(size);
  239. }
  240. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  241. {
  242. sector_t size;
  243. size = rdev->sb_offset;
  244. if (chunk_size)
  245. size &= ~((sector_t)chunk_size/1024 - 1);
  246. return size;
  247. }
  248. static int alloc_disk_sb(mdk_rdev_t * rdev)
  249. {
  250. if (rdev->sb_page)
  251. MD_BUG();
  252. rdev->sb_page = alloc_page(GFP_KERNEL);
  253. if (!rdev->sb_page) {
  254. printk(KERN_ALERT "md: out of memory.\n");
  255. return -EINVAL;
  256. }
  257. return 0;
  258. }
  259. static void free_disk_sb(mdk_rdev_t * rdev)
  260. {
  261. if (rdev->sb_page) {
  262. page_cache_release(rdev->sb_page);
  263. rdev->sb_loaded = 0;
  264. rdev->sb_page = NULL;
  265. rdev->sb_offset = 0;
  266. rdev->size = 0;
  267. }
  268. }
  269. static int super_written(struct bio *bio, unsigned int bytes_done, int error)
  270. {
  271. mdk_rdev_t *rdev = bio->bi_private;
  272. mddev_t *mddev = rdev->mddev;
  273. if (bio->bi_size)
  274. return 1;
  275. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
  276. md_error(mddev, rdev);
  277. if (atomic_dec_and_test(&mddev->pending_writes))
  278. wake_up(&mddev->sb_wait);
  279. bio_put(bio);
  280. return 0;
  281. }
  282. static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
  283. {
  284. struct bio *bio2 = bio->bi_private;
  285. mdk_rdev_t *rdev = bio2->bi_private;
  286. mddev_t *mddev = rdev->mddev;
  287. if (bio->bi_size)
  288. return 1;
  289. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  290. error == -EOPNOTSUPP) {
  291. unsigned long flags;
  292. /* barriers don't appear to be supported :-( */
  293. set_bit(BarriersNotsupp, &rdev->flags);
  294. mddev->barriers_work = 0;
  295. spin_lock_irqsave(&mddev->write_lock, flags);
  296. bio2->bi_next = mddev->biolist;
  297. mddev->biolist = bio2;
  298. spin_unlock_irqrestore(&mddev->write_lock, flags);
  299. wake_up(&mddev->sb_wait);
  300. bio_put(bio);
  301. return 0;
  302. }
  303. bio_put(bio2);
  304. bio->bi_private = rdev;
  305. return super_written(bio, bytes_done, error);
  306. }
  307. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  308. sector_t sector, int size, struct page *page)
  309. {
  310. /* write first size bytes of page to sector of rdev
  311. * Increment mddev->pending_writes before returning
  312. * and decrement it on completion, waking up sb_wait
  313. * if zero is reached.
  314. * If an error occurred, call md_error
  315. *
  316. * As we might need to resubmit the request if BIO_RW_BARRIER
  317. * causes ENOTSUPP, we allocate a spare bio...
  318. */
  319. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  320. int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
  321. bio->bi_bdev = rdev->bdev;
  322. bio->bi_sector = sector;
  323. bio_add_page(bio, page, size, 0);
  324. bio->bi_private = rdev;
  325. bio->bi_end_io = super_written;
  326. bio->bi_rw = rw;
  327. atomic_inc(&mddev->pending_writes);
  328. if (!test_bit(BarriersNotsupp, &rdev->flags)) {
  329. struct bio *rbio;
  330. rw |= (1<<BIO_RW_BARRIER);
  331. rbio = bio_clone(bio, GFP_NOIO);
  332. rbio->bi_private = bio;
  333. rbio->bi_end_io = super_written_barrier;
  334. submit_bio(rw, rbio);
  335. } else
  336. submit_bio(rw, bio);
  337. }
  338. void md_super_wait(mddev_t *mddev)
  339. {
  340. /* wait for all superblock writes that were scheduled to complete.
  341. * if any had to be retried (due to BARRIER problems), retry them
  342. */
  343. DEFINE_WAIT(wq);
  344. for(;;) {
  345. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  346. if (atomic_read(&mddev->pending_writes)==0)
  347. break;
  348. while (mddev->biolist) {
  349. struct bio *bio;
  350. spin_lock_irq(&mddev->write_lock);
  351. bio = mddev->biolist;
  352. mddev->biolist = bio->bi_next ;
  353. bio->bi_next = NULL;
  354. spin_unlock_irq(&mddev->write_lock);
  355. submit_bio(bio->bi_rw, bio);
  356. }
  357. schedule();
  358. }
  359. finish_wait(&mddev->sb_wait, &wq);
  360. }
  361. static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
  362. {
  363. if (bio->bi_size)
  364. return 1;
  365. complete((struct completion*)bio->bi_private);
  366. return 0;
  367. }
  368. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  369. struct page *page, int rw)
  370. {
  371. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  372. struct completion event;
  373. int ret;
  374. rw |= (1 << BIO_RW_SYNC);
  375. bio->bi_bdev = bdev;
  376. bio->bi_sector = sector;
  377. bio_add_page(bio, page, size, 0);
  378. init_completion(&event);
  379. bio->bi_private = &event;
  380. bio->bi_end_io = bi_complete;
  381. submit_bio(rw, bio);
  382. wait_for_completion(&event);
  383. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  384. bio_put(bio);
  385. return ret;
  386. }
  387. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  388. {
  389. char b[BDEVNAME_SIZE];
  390. if (!rdev->sb_page) {
  391. MD_BUG();
  392. return -EINVAL;
  393. }
  394. if (rdev->sb_loaded)
  395. return 0;
  396. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
  397. goto fail;
  398. rdev->sb_loaded = 1;
  399. return 0;
  400. fail:
  401. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  402. bdevname(rdev->bdev,b));
  403. return -EINVAL;
  404. }
  405. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  406. {
  407. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  408. (sb1->set_uuid1 == sb2->set_uuid1) &&
  409. (sb1->set_uuid2 == sb2->set_uuid2) &&
  410. (sb1->set_uuid3 == sb2->set_uuid3))
  411. return 1;
  412. return 0;
  413. }
  414. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  415. {
  416. int ret;
  417. mdp_super_t *tmp1, *tmp2;
  418. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  419. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  420. if (!tmp1 || !tmp2) {
  421. ret = 0;
  422. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  423. goto abort;
  424. }
  425. *tmp1 = *sb1;
  426. *tmp2 = *sb2;
  427. /*
  428. * nr_disks is not constant
  429. */
  430. tmp1->nr_disks = 0;
  431. tmp2->nr_disks = 0;
  432. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  433. ret = 0;
  434. else
  435. ret = 1;
  436. abort:
  437. kfree(tmp1);
  438. kfree(tmp2);
  439. return ret;
  440. }
  441. static unsigned int calc_sb_csum(mdp_super_t * sb)
  442. {
  443. unsigned int disk_csum, csum;
  444. disk_csum = sb->sb_csum;
  445. sb->sb_csum = 0;
  446. csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
  447. sb->sb_csum = disk_csum;
  448. return csum;
  449. }
  450. /*
  451. * Handle superblock details.
  452. * We want to be able to handle multiple superblock formats
  453. * so we have a common interface to them all, and an array of
  454. * different handlers.
  455. * We rely on user-space to write the initial superblock, and support
  456. * reading and updating of superblocks.
  457. * Interface methods are:
  458. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  459. * loads and validates a superblock on dev.
  460. * if refdev != NULL, compare superblocks on both devices
  461. * Return:
  462. * 0 - dev has a superblock that is compatible with refdev
  463. * 1 - dev has a superblock that is compatible and newer than refdev
  464. * so dev should be used as the refdev in future
  465. * -EINVAL superblock incompatible or invalid
  466. * -othererror e.g. -EIO
  467. *
  468. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  469. * Verify that dev is acceptable into mddev.
  470. * The first time, mddev->raid_disks will be 0, and data from
  471. * dev should be merged in. Subsequent calls check that dev
  472. * is new enough. Return 0 or -EINVAL
  473. *
  474. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  475. * Update the superblock for rdev with data in mddev
  476. * This does not write to disc.
  477. *
  478. */
  479. struct super_type {
  480. char *name;
  481. struct module *owner;
  482. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  483. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  484. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  485. };
  486. /*
  487. * load_super for 0.90.0
  488. */
  489. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  490. {
  491. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  492. mdp_super_t *sb;
  493. int ret;
  494. sector_t sb_offset;
  495. /*
  496. * Calculate the position of the superblock,
  497. * it's at the end of the disk.
  498. *
  499. * It also happens to be a multiple of 4Kb.
  500. */
  501. sb_offset = calc_dev_sboffset(rdev->bdev);
  502. rdev->sb_offset = sb_offset;
  503. ret = read_disk_sb(rdev, MD_SB_BYTES);
  504. if (ret) return ret;
  505. ret = -EINVAL;
  506. bdevname(rdev->bdev, b);
  507. sb = (mdp_super_t*)page_address(rdev->sb_page);
  508. if (sb->md_magic != MD_SB_MAGIC) {
  509. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  510. b);
  511. goto abort;
  512. }
  513. if (sb->major_version != 0 ||
  514. sb->minor_version != 90) {
  515. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  516. sb->major_version, sb->minor_version,
  517. b);
  518. goto abort;
  519. }
  520. if (sb->raid_disks <= 0)
  521. goto abort;
  522. if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
  523. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  524. b);
  525. goto abort;
  526. }
  527. rdev->preferred_minor = sb->md_minor;
  528. rdev->data_offset = 0;
  529. rdev->sb_size = MD_SB_BYTES;
  530. if (sb->level == LEVEL_MULTIPATH)
  531. rdev->desc_nr = -1;
  532. else
  533. rdev->desc_nr = sb->this_disk.number;
  534. if (refdev == 0)
  535. ret = 1;
  536. else {
  537. __u64 ev1, ev2;
  538. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  539. if (!uuid_equal(refsb, sb)) {
  540. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  541. b, bdevname(refdev->bdev,b2));
  542. goto abort;
  543. }
  544. if (!sb_equal(refsb, sb)) {
  545. printk(KERN_WARNING "md: %s has same UUID"
  546. " but different superblock to %s\n",
  547. b, bdevname(refdev->bdev, b2));
  548. goto abort;
  549. }
  550. ev1 = md_event(sb);
  551. ev2 = md_event(refsb);
  552. if (ev1 > ev2)
  553. ret = 1;
  554. else
  555. ret = 0;
  556. }
  557. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  558. abort:
  559. return ret;
  560. }
  561. /*
  562. * validate_super for 0.90.0
  563. */
  564. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  565. {
  566. mdp_disk_t *desc;
  567. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  568. rdev->raid_disk = -1;
  569. rdev->flags = 0;
  570. if (mddev->raid_disks == 0) {
  571. mddev->major_version = 0;
  572. mddev->minor_version = sb->minor_version;
  573. mddev->patch_version = sb->patch_version;
  574. mddev->persistent = ! sb->not_persistent;
  575. mddev->chunk_size = sb->chunk_size;
  576. mddev->ctime = sb->ctime;
  577. mddev->utime = sb->utime;
  578. mddev->level = sb->level;
  579. mddev->layout = sb->layout;
  580. mddev->raid_disks = sb->raid_disks;
  581. mddev->size = sb->size;
  582. mddev->events = md_event(sb);
  583. mddev->bitmap_offset = 0;
  584. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  585. if (sb->state & (1<<MD_SB_CLEAN))
  586. mddev->recovery_cp = MaxSector;
  587. else {
  588. if (sb->events_hi == sb->cp_events_hi &&
  589. sb->events_lo == sb->cp_events_lo) {
  590. mddev->recovery_cp = sb->recovery_cp;
  591. } else
  592. mddev->recovery_cp = 0;
  593. }
  594. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  595. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  596. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  597. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  598. mddev->max_disks = MD_SB_DISKS;
  599. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  600. mddev->bitmap_file == NULL) {
  601. if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6) {
  602. /* FIXME use a better test */
  603. printk(KERN_WARNING "md: bitmaps only support for raid1\n");
  604. return -EINVAL;
  605. }
  606. mddev->bitmap_offset = mddev->default_bitmap_offset;
  607. }
  608. } else if (mddev->pers == NULL) {
  609. /* Insist on good event counter while assembling */
  610. __u64 ev1 = md_event(sb);
  611. ++ev1;
  612. if (ev1 < mddev->events)
  613. return -EINVAL;
  614. } else if (mddev->bitmap) {
  615. /* if adding to array with a bitmap, then we can accept an
  616. * older device ... but not too old.
  617. */
  618. __u64 ev1 = md_event(sb);
  619. if (ev1 < mddev->bitmap->events_cleared)
  620. return 0;
  621. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  622. return 0;
  623. if (mddev->level != LEVEL_MULTIPATH) {
  624. desc = sb->disks + rdev->desc_nr;
  625. if (desc->state & (1<<MD_DISK_FAULTY))
  626. set_bit(Faulty, &rdev->flags);
  627. else if (desc->state & (1<<MD_DISK_SYNC) &&
  628. desc->raid_disk < mddev->raid_disks) {
  629. set_bit(In_sync, &rdev->flags);
  630. rdev->raid_disk = desc->raid_disk;
  631. }
  632. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  633. set_bit(WriteMostly, &rdev->flags);
  634. } else /* MULTIPATH are always insync */
  635. set_bit(In_sync, &rdev->flags);
  636. return 0;
  637. }
  638. /*
  639. * sync_super for 0.90.0
  640. */
  641. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  642. {
  643. mdp_super_t *sb;
  644. struct list_head *tmp;
  645. mdk_rdev_t *rdev2;
  646. int next_spare = mddev->raid_disks;
  647. /* make rdev->sb match mddev data..
  648. *
  649. * 1/ zero out disks
  650. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  651. * 3/ any empty disks < next_spare become removed
  652. *
  653. * disks[0] gets initialised to REMOVED because
  654. * we cannot be sure from other fields if it has
  655. * been initialised or not.
  656. */
  657. int i;
  658. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  659. rdev->sb_size = MD_SB_BYTES;
  660. sb = (mdp_super_t*)page_address(rdev->sb_page);
  661. memset(sb, 0, sizeof(*sb));
  662. sb->md_magic = MD_SB_MAGIC;
  663. sb->major_version = mddev->major_version;
  664. sb->minor_version = mddev->minor_version;
  665. sb->patch_version = mddev->patch_version;
  666. sb->gvalid_words = 0; /* ignored */
  667. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  668. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  669. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  670. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  671. sb->ctime = mddev->ctime;
  672. sb->level = mddev->level;
  673. sb->size = mddev->size;
  674. sb->raid_disks = mddev->raid_disks;
  675. sb->md_minor = mddev->md_minor;
  676. sb->not_persistent = !mddev->persistent;
  677. sb->utime = mddev->utime;
  678. sb->state = 0;
  679. sb->events_hi = (mddev->events>>32);
  680. sb->events_lo = (u32)mddev->events;
  681. if (mddev->in_sync)
  682. {
  683. sb->recovery_cp = mddev->recovery_cp;
  684. sb->cp_events_hi = (mddev->events>>32);
  685. sb->cp_events_lo = (u32)mddev->events;
  686. if (mddev->recovery_cp == MaxSector)
  687. sb->state = (1<< MD_SB_CLEAN);
  688. } else
  689. sb->recovery_cp = 0;
  690. sb->layout = mddev->layout;
  691. sb->chunk_size = mddev->chunk_size;
  692. if (mddev->bitmap && mddev->bitmap_file == NULL)
  693. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  694. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  695. ITERATE_RDEV(mddev,rdev2,tmp) {
  696. mdp_disk_t *d;
  697. int desc_nr;
  698. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  699. && !test_bit(Faulty, &rdev2->flags))
  700. desc_nr = rdev2->raid_disk;
  701. else
  702. desc_nr = next_spare++;
  703. rdev2->desc_nr = desc_nr;
  704. d = &sb->disks[rdev2->desc_nr];
  705. nr_disks++;
  706. d->number = rdev2->desc_nr;
  707. d->major = MAJOR(rdev2->bdev->bd_dev);
  708. d->minor = MINOR(rdev2->bdev->bd_dev);
  709. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  710. && !test_bit(Faulty, &rdev2->flags))
  711. d->raid_disk = rdev2->raid_disk;
  712. else
  713. d->raid_disk = rdev2->desc_nr; /* compatibility */
  714. if (test_bit(Faulty, &rdev2->flags)) {
  715. d->state = (1<<MD_DISK_FAULTY);
  716. failed++;
  717. } else if (test_bit(In_sync, &rdev2->flags)) {
  718. d->state = (1<<MD_DISK_ACTIVE);
  719. d->state |= (1<<MD_DISK_SYNC);
  720. active++;
  721. working++;
  722. } else {
  723. d->state = 0;
  724. spare++;
  725. working++;
  726. }
  727. if (test_bit(WriteMostly, &rdev2->flags))
  728. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  729. }
  730. /* now set the "removed" and "faulty" bits on any missing devices */
  731. for (i=0 ; i < mddev->raid_disks ; i++) {
  732. mdp_disk_t *d = &sb->disks[i];
  733. if (d->state == 0 && d->number == 0) {
  734. d->number = i;
  735. d->raid_disk = i;
  736. d->state = (1<<MD_DISK_REMOVED);
  737. d->state |= (1<<MD_DISK_FAULTY);
  738. failed++;
  739. }
  740. }
  741. sb->nr_disks = nr_disks;
  742. sb->active_disks = active;
  743. sb->working_disks = working;
  744. sb->failed_disks = failed;
  745. sb->spare_disks = spare;
  746. sb->this_disk = sb->disks[rdev->desc_nr];
  747. sb->sb_csum = calc_sb_csum(sb);
  748. }
  749. /*
  750. * version 1 superblock
  751. */
  752. static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
  753. {
  754. unsigned int disk_csum, csum;
  755. unsigned long long newcsum;
  756. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  757. unsigned int *isuper = (unsigned int*)sb;
  758. int i;
  759. disk_csum = sb->sb_csum;
  760. sb->sb_csum = 0;
  761. newcsum = 0;
  762. for (i=0; size>=4; size -= 4 )
  763. newcsum += le32_to_cpu(*isuper++);
  764. if (size == 2)
  765. newcsum += le16_to_cpu(*(unsigned short*) isuper);
  766. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  767. sb->sb_csum = disk_csum;
  768. return cpu_to_le32(csum);
  769. }
  770. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  771. {
  772. struct mdp_superblock_1 *sb;
  773. int ret;
  774. sector_t sb_offset;
  775. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  776. int bmask;
  777. /*
  778. * Calculate the position of the superblock.
  779. * It is always aligned to a 4K boundary and
  780. * depeding on minor_version, it can be:
  781. * 0: At least 8K, but less than 12K, from end of device
  782. * 1: At start of device
  783. * 2: 4K from start of device.
  784. */
  785. switch(minor_version) {
  786. case 0:
  787. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  788. sb_offset -= 8*2;
  789. sb_offset &= ~(sector_t)(4*2-1);
  790. /* convert from sectors to K */
  791. sb_offset /= 2;
  792. break;
  793. case 1:
  794. sb_offset = 0;
  795. break;
  796. case 2:
  797. sb_offset = 4;
  798. break;
  799. default:
  800. return -EINVAL;
  801. }
  802. rdev->sb_offset = sb_offset;
  803. /* superblock is rarely larger than 1K, but it can be larger,
  804. * and it is safe to read 4k, so we do that
  805. */
  806. ret = read_disk_sb(rdev, 4096);
  807. if (ret) return ret;
  808. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  809. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  810. sb->major_version != cpu_to_le32(1) ||
  811. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  812. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  813. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  814. return -EINVAL;
  815. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  816. printk("md: invalid superblock checksum on %s\n",
  817. bdevname(rdev->bdev,b));
  818. return -EINVAL;
  819. }
  820. if (le64_to_cpu(sb->data_size) < 10) {
  821. printk("md: data_size too small on %s\n",
  822. bdevname(rdev->bdev,b));
  823. return -EINVAL;
  824. }
  825. rdev->preferred_minor = 0xffff;
  826. rdev->data_offset = le64_to_cpu(sb->data_offset);
  827. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  828. bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
  829. if (rdev->sb_size & bmask)
  830. rdev-> sb_size = (rdev->sb_size | bmask)+1;
  831. if (refdev == 0)
  832. return 1;
  833. else {
  834. __u64 ev1, ev2;
  835. struct mdp_superblock_1 *refsb =
  836. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  837. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  838. sb->level != refsb->level ||
  839. sb->layout != refsb->layout ||
  840. sb->chunksize != refsb->chunksize) {
  841. printk(KERN_WARNING "md: %s has strangely different"
  842. " superblock to %s\n",
  843. bdevname(rdev->bdev,b),
  844. bdevname(refdev->bdev,b2));
  845. return -EINVAL;
  846. }
  847. ev1 = le64_to_cpu(sb->events);
  848. ev2 = le64_to_cpu(refsb->events);
  849. if (ev1 > ev2)
  850. return 1;
  851. }
  852. if (minor_version)
  853. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  854. else
  855. rdev->size = rdev->sb_offset;
  856. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  857. return -EINVAL;
  858. rdev->size = le64_to_cpu(sb->data_size)/2;
  859. if (le32_to_cpu(sb->chunksize))
  860. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  861. return 0;
  862. }
  863. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  864. {
  865. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  866. rdev->raid_disk = -1;
  867. rdev->flags = 0;
  868. if (mddev->raid_disks == 0) {
  869. mddev->major_version = 1;
  870. mddev->patch_version = 0;
  871. mddev->persistent = 1;
  872. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  873. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  874. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  875. mddev->level = le32_to_cpu(sb->level);
  876. mddev->layout = le32_to_cpu(sb->layout);
  877. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  878. mddev->size = le64_to_cpu(sb->size)/2;
  879. mddev->events = le64_to_cpu(sb->events);
  880. mddev->bitmap_offset = 0;
  881. mddev->default_bitmap_offset = 0;
  882. mddev->default_bitmap_offset = 1024;
  883. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  884. memcpy(mddev->uuid, sb->set_uuid, 16);
  885. mddev->max_disks = (4096-256)/2;
  886. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  887. mddev->bitmap_file == NULL ) {
  888. if (mddev->level != 1) {
  889. printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
  890. return -EINVAL;
  891. }
  892. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  893. }
  894. } else if (mddev->pers == NULL) {
  895. /* Insist of good event counter while assembling */
  896. __u64 ev1 = le64_to_cpu(sb->events);
  897. ++ev1;
  898. if (ev1 < mddev->events)
  899. return -EINVAL;
  900. } else if (mddev->bitmap) {
  901. /* If adding to array with a bitmap, then we can accept an
  902. * older device, but not too old.
  903. */
  904. __u64 ev1 = le64_to_cpu(sb->events);
  905. if (ev1 < mddev->bitmap->events_cleared)
  906. return 0;
  907. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  908. return 0;
  909. if (mddev->level != LEVEL_MULTIPATH) {
  910. int role;
  911. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  912. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  913. switch(role) {
  914. case 0xffff: /* spare */
  915. break;
  916. case 0xfffe: /* faulty */
  917. set_bit(Faulty, &rdev->flags);
  918. break;
  919. default:
  920. set_bit(In_sync, &rdev->flags);
  921. rdev->raid_disk = role;
  922. break;
  923. }
  924. if (sb->devflags & WriteMostly1)
  925. set_bit(WriteMostly, &rdev->flags);
  926. } else /* MULTIPATH are always insync */
  927. set_bit(In_sync, &rdev->flags);
  928. return 0;
  929. }
  930. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  931. {
  932. struct mdp_superblock_1 *sb;
  933. struct list_head *tmp;
  934. mdk_rdev_t *rdev2;
  935. int max_dev, i;
  936. /* make rdev->sb match mddev and rdev data. */
  937. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  938. sb->feature_map = 0;
  939. sb->pad0 = 0;
  940. memset(sb->pad1, 0, sizeof(sb->pad1));
  941. memset(sb->pad2, 0, sizeof(sb->pad2));
  942. memset(sb->pad3, 0, sizeof(sb->pad3));
  943. sb->utime = cpu_to_le64((__u64)mddev->utime);
  944. sb->events = cpu_to_le64(mddev->events);
  945. if (mddev->in_sync)
  946. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  947. else
  948. sb->resync_offset = cpu_to_le64(0);
  949. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  950. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  951. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  952. }
  953. max_dev = 0;
  954. ITERATE_RDEV(mddev,rdev2,tmp)
  955. if (rdev2->desc_nr+1 > max_dev)
  956. max_dev = rdev2->desc_nr+1;
  957. sb->max_dev = cpu_to_le32(max_dev);
  958. for (i=0; i<max_dev;i++)
  959. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  960. ITERATE_RDEV(mddev,rdev2,tmp) {
  961. i = rdev2->desc_nr;
  962. if (test_bit(Faulty, &rdev2->flags))
  963. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  964. else if (test_bit(In_sync, &rdev2->flags))
  965. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  966. else
  967. sb->dev_roles[i] = cpu_to_le16(0xffff);
  968. }
  969. sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
  970. sb->sb_csum = calc_sb_1_csum(sb);
  971. }
  972. static struct super_type super_types[] = {
  973. [0] = {
  974. .name = "0.90.0",
  975. .owner = THIS_MODULE,
  976. .load_super = super_90_load,
  977. .validate_super = super_90_validate,
  978. .sync_super = super_90_sync,
  979. },
  980. [1] = {
  981. .name = "md-1",
  982. .owner = THIS_MODULE,
  983. .load_super = super_1_load,
  984. .validate_super = super_1_validate,
  985. .sync_super = super_1_sync,
  986. },
  987. };
  988. static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
  989. {
  990. struct list_head *tmp;
  991. mdk_rdev_t *rdev;
  992. ITERATE_RDEV(mddev,rdev,tmp)
  993. if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
  994. return rdev;
  995. return NULL;
  996. }
  997. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  998. {
  999. struct list_head *tmp;
  1000. mdk_rdev_t *rdev;
  1001. ITERATE_RDEV(mddev1,rdev,tmp)
  1002. if (match_dev_unit(mddev2, rdev))
  1003. return 1;
  1004. return 0;
  1005. }
  1006. static LIST_HEAD(pending_raid_disks);
  1007. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1008. {
  1009. mdk_rdev_t *same_pdev;
  1010. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1011. struct kobject *ko;
  1012. if (rdev->mddev) {
  1013. MD_BUG();
  1014. return -EINVAL;
  1015. }
  1016. same_pdev = match_dev_unit(mddev, rdev);
  1017. if (same_pdev)
  1018. printk(KERN_WARNING
  1019. "%s: WARNING: %s appears to be on the same physical"
  1020. " disk as %s. True\n protection against single-disk"
  1021. " failure might be compromised.\n",
  1022. mdname(mddev), bdevname(rdev->bdev,b),
  1023. bdevname(same_pdev->bdev,b2));
  1024. /* Verify rdev->desc_nr is unique.
  1025. * If it is -1, assign a free number, else
  1026. * check number is not in use
  1027. */
  1028. if (rdev->desc_nr < 0) {
  1029. int choice = 0;
  1030. if (mddev->pers) choice = mddev->raid_disks;
  1031. while (find_rdev_nr(mddev, choice))
  1032. choice++;
  1033. rdev->desc_nr = choice;
  1034. } else {
  1035. if (find_rdev_nr(mddev, rdev->desc_nr))
  1036. return -EBUSY;
  1037. }
  1038. bdevname(rdev->bdev,b);
  1039. if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
  1040. return -ENOMEM;
  1041. list_add(&rdev->same_set, &mddev->disks);
  1042. rdev->mddev = mddev;
  1043. printk(KERN_INFO "md: bind<%s>\n", b);
  1044. rdev->kobj.parent = &mddev->kobj;
  1045. kobject_add(&rdev->kobj);
  1046. if (rdev->bdev->bd_part)
  1047. ko = &rdev->bdev->bd_part->kobj;
  1048. else
  1049. ko = &rdev->bdev->bd_disk->kobj;
  1050. sysfs_create_link(&rdev->kobj, ko, "block");
  1051. return 0;
  1052. }
  1053. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1054. {
  1055. char b[BDEVNAME_SIZE];
  1056. if (!rdev->mddev) {
  1057. MD_BUG();
  1058. return;
  1059. }
  1060. list_del_init(&rdev->same_set);
  1061. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1062. rdev->mddev = NULL;
  1063. sysfs_remove_link(&rdev->kobj, "block");
  1064. kobject_del(&rdev->kobj);
  1065. }
  1066. /*
  1067. * prevent the device from being mounted, repartitioned or
  1068. * otherwise reused by a RAID array (or any other kernel
  1069. * subsystem), by bd_claiming the device.
  1070. */
  1071. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  1072. {
  1073. int err = 0;
  1074. struct block_device *bdev;
  1075. char b[BDEVNAME_SIZE];
  1076. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1077. if (IS_ERR(bdev)) {
  1078. printk(KERN_ERR "md: could not open %s.\n",
  1079. __bdevname(dev, b));
  1080. return PTR_ERR(bdev);
  1081. }
  1082. err = bd_claim(bdev, rdev);
  1083. if (err) {
  1084. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1085. bdevname(bdev, b));
  1086. blkdev_put(bdev);
  1087. return err;
  1088. }
  1089. rdev->bdev = bdev;
  1090. return err;
  1091. }
  1092. static void unlock_rdev(mdk_rdev_t *rdev)
  1093. {
  1094. struct block_device *bdev = rdev->bdev;
  1095. rdev->bdev = NULL;
  1096. if (!bdev)
  1097. MD_BUG();
  1098. bd_release(bdev);
  1099. blkdev_put(bdev);
  1100. }
  1101. void md_autodetect_dev(dev_t dev);
  1102. static void export_rdev(mdk_rdev_t * rdev)
  1103. {
  1104. char b[BDEVNAME_SIZE];
  1105. printk(KERN_INFO "md: export_rdev(%s)\n",
  1106. bdevname(rdev->bdev,b));
  1107. if (rdev->mddev)
  1108. MD_BUG();
  1109. free_disk_sb(rdev);
  1110. list_del_init(&rdev->same_set);
  1111. #ifndef MODULE
  1112. md_autodetect_dev(rdev->bdev->bd_dev);
  1113. #endif
  1114. unlock_rdev(rdev);
  1115. kobject_put(&rdev->kobj);
  1116. }
  1117. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1118. {
  1119. unbind_rdev_from_array(rdev);
  1120. export_rdev(rdev);
  1121. }
  1122. static void export_array(mddev_t *mddev)
  1123. {
  1124. struct list_head *tmp;
  1125. mdk_rdev_t *rdev;
  1126. ITERATE_RDEV(mddev,rdev,tmp) {
  1127. if (!rdev->mddev) {
  1128. MD_BUG();
  1129. continue;
  1130. }
  1131. kick_rdev_from_array(rdev);
  1132. }
  1133. if (!list_empty(&mddev->disks))
  1134. MD_BUG();
  1135. mddev->raid_disks = 0;
  1136. mddev->major_version = 0;
  1137. }
  1138. static void print_desc(mdp_disk_t *desc)
  1139. {
  1140. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1141. desc->major,desc->minor,desc->raid_disk,desc->state);
  1142. }
  1143. static void print_sb(mdp_super_t *sb)
  1144. {
  1145. int i;
  1146. printk(KERN_INFO
  1147. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1148. sb->major_version, sb->minor_version, sb->patch_version,
  1149. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1150. sb->ctime);
  1151. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1152. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1153. sb->md_minor, sb->layout, sb->chunk_size);
  1154. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1155. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1156. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1157. sb->failed_disks, sb->spare_disks,
  1158. sb->sb_csum, (unsigned long)sb->events_lo);
  1159. printk(KERN_INFO);
  1160. for (i = 0; i < MD_SB_DISKS; i++) {
  1161. mdp_disk_t *desc;
  1162. desc = sb->disks + i;
  1163. if (desc->number || desc->major || desc->minor ||
  1164. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1165. printk(" D %2d: ", i);
  1166. print_desc(desc);
  1167. }
  1168. }
  1169. printk(KERN_INFO "md: THIS: ");
  1170. print_desc(&sb->this_disk);
  1171. }
  1172. static void print_rdev(mdk_rdev_t *rdev)
  1173. {
  1174. char b[BDEVNAME_SIZE];
  1175. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1176. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1177. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1178. rdev->desc_nr);
  1179. if (rdev->sb_loaded) {
  1180. printk(KERN_INFO "md: rdev superblock:\n");
  1181. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1182. } else
  1183. printk(KERN_INFO "md: no rdev superblock!\n");
  1184. }
  1185. void md_print_devices(void)
  1186. {
  1187. struct list_head *tmp, *tmp2;
  1188. mdk_rdev_t *rdev;
  1189. mddev_t *mddev;
  1190. char b[BDEVNAME_SIZE];
  1191. printk("\n");
  1192. printk("md: **********************************\n");
  1193. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1194. printk("md: **********************************\n");
  1195. ITERATE_MDDEV(mddev,tmp) {
  1196. if (mddev->bitmap)
  1197. bitmap_print_sb(mddev->bitmap);
  1198. else
  1199. printk("%s: ", mdname(mddev));
  1200. ITERATE_RDEV(mddev,rdev,tmp2)
  1201. printk("<%s>", bdevname(rdev->bdev,b));
  1202. printk("\n");
  1203. ITERATE_RDEV(mddev,rdev,tmp2)
  1204. print_rdev(rdev);
  1205. }
  1206. printk("md: **********************************\n");
  1207. printk("\n");
  1208. }
  1209. static void sync_sbs(mddev_t * mddev)
  1210. {
  1211. mdk_rdev_t *rdev;
  1212. struct list_head *tmp;
  1213. ITERATE_RDEV(mddev,rdev,tmp) {
  1214. super_types[mddev->major_version].
  1215. sync_super(mddev, rdev);
  1216. rdev->sb_loaded = 1;
  1217. }
  1218. }
  1219. static void md_update_sb(mddev_t * mddev)
  1220. {
  1221. int err;
  1222. struct list_head *tmp;
  1223. mdk_rdev_t *rdev;
  1224. int sync_req;
  1225. repeat:
  1226. spin_lock_irq(&mddev->write_lock);
  1227. sync_req = mddev->in_sync;
  1228. mddev->utime = get_seconds();
  1229. mddev->events ++;
  1230. if (!mddev->events) {
  1231. /*
  1232. * oops, this 64-bit counter should never wrap.
  1233. * Either we are in around ~1 trillion A.C., assuming
  1234. * 1 reboot per second, or we have a bug:
  1235. */
  1236. MD_BUG();
  1237. mddev->events --;
  1238. }
  1239. mddev->sb_dirty = 2;
  1240. sync_sbs(mddev);
  1241. /*
  1242. * do not write anything to disk if using
  1243. * nonpersistent superblocks
  1244. */
  1245. if (!mddev->persistent) {
  1246. mddev->sb_dirty = 0;
  1247. spin_unlock_irq(&mddev->write_lock);
  1248. wake_up(&mddev->sb_wait);
  1249. return;
  1250. }
  1251. spin_unlock_irq(&mddev->write_lock);
  1252. dprintk(KERN_INFO
  1253. "md: updating %s RAID superblock on device (in sync %d)\n",
  1254. mdname(mddev),mddev->in_sync);
  1255. err = bitmap_update_sb(mddev->bitmap);
  1256. ITERATE_RDEV(mddev,rdev,tmp) {
  1257. char b[BDEVNAME_SIZE];
  1258. dprintk(KERN_INFO "md: ");
  1259. if (test_bit(Faulty, &rdev->flags))
  1260. dprintk("(skipping faulty ");
  1261. dprintk("%s ", bdevname(rdev->bdev,b));
  1262. if (!test_bit(Faulty, &rdev->flags)) {
  1263. md_super_write(mddev,rdev,
  1264. rdev->sb_offset<<1, rdev->sb_size,
  1265. rdev->sb_page);
  1266. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1267. bdevname(rdev->bdev,b),
  1268. (unsigned long long)rdev->sb_offset);
  1269. } else
  1270. dprintk(")\n");
  1271. if (mddev->level == LEVEL_MULTIPATH)
  1272. /* only need to write one superblock... */
  1273. break;
  1274. }
  1275. md_super_wait(mddev);
  1276. /* if there was a failure, sb_dirty was set to 1, and we re-write super */
  1277. spin_lock_irq(&mddev->write_lock);
  1278. if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
  1279. /* have to write it out again */
  1280. spin_unlock_irq(&mddev->write_lock);
  1281. goto repeat;
  1282. }
  1283. mddev->sb_dirty = 0;
  1284. spin_unlock_irq(&mddev->write_lock);
  1285. wake_up(&mddev->sb_wait);
  1286. }
  1287. struct rdev_sysfs_entry {
  1288. struct attribute attr;
  1289. ssize_t (*show)(mdk_rdev_t *, char *);
  1290. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1291. };
  1292. static ssize_t
  1293. state_show(mdk_rdev_t *rdev, char *page)
  1294. {
  1295. char *sep = "";
  1296. int len=0;
  1297. if (test_bit(Faulty, &rdev->flags)) {
  1298. len+= sprintf(page+len, "%sfaulty",sep);
  1299. sep = ",";
  1300. }
  1301. if (test_bit(In_sync, &rdev->flags)) {
  1302. len += sprintf(page+len, "%sin_sync",sep);
  1303. sep = ",";
  1304. }
  1305. if (!test_bit(Faulty, &rdev->flags) &&
  1306. !test_bit(In_sync, &rdev->flags)) {
  1307. len += sprintf(page+len, "%sspare", sep);
  1308. sep = ",";
  1309. }
  1310. return len+sprintf(page+len, "\n");
  1311. }
  1312. static struct rdev_sysfs_entry
  1313. rdev_state = __ATTR_RO(state);
  1314. static ssize_t
  1315. super_show(mdk_rdev_t *rdev, char *page)
  1316. {
  1317. if (rdev->sb_loaded && rdev->sb_size) {
  1318. memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
  1319. return rdev->sb_size;
  1320. } else
  1321. return 0;
  1322. }
  1323. static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
  1324. static struct attribute *rdev_default_attrs[] = {
  1325. &rdev_state.attr,
  1326. &rdev_super.attr,
  1327. NULL,
  1328. };
  1329. static ssize_t
  1330. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1331. {
  1332. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1333. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1334. if (!entry->show)
  1335. return -EIO;
  1336. return entry->show(rdev, page);
  1337. }
  1338. static ssize_t
  1339. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  1340. const char *page, size_t length)
  1341. {
  1342. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1343. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1344. if (!entry->store)
  1345. return -EIO;
  1346. return entry->store(rdev, page, length);
  1347. }
  1348. static void rdev_free(struct kobject *ko)
  1349. {
  1350. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  1351. kfree(rdev);
  1352. }
  1353. static struct sysfs_ops rdev_sysfs_ops = {
  1354. .show = rdev_attr_show,
  1355. .store = rdev_attr_store,
  1356. };
  1357. static struct kobj_type rdev_ktype = {
  1358. .release = rdev_free,
  1359. .sysfs_ops = &rdev_sysfs_ops,
  1360. .default_attrs = rdev_default_attrs,
  1361. };
  1362. /*
  1363. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1364. *
  1365. * mark the device faulty if:
  1366. *
  1367. * - the device is nonexistent (zero size)
  1368. * - the device has no valid superblock
  1369. *
  1370. * a faulty rdev _never_ has rdev->sb set.
  1371. */
  1372. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1373. {
  1374. char b[BDEVNAME_SIZE];
  1375. int err;
  1376. mdk_rdev_t *rdev;
  1377. sector_t size;
  1378. rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
  1379. if (!rdev) {
  1380. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1381. return ERR_PTR(-ENOMEM);
  1382. }
  1383. memset(rdev, 0, sizeof(*rdev));
  1384. if ((err = alloc_disk_sb(rdev)))
  1385. goto abort_free;
  1386. err = lock_rdev(rdev, newdev);
  1387. if (err)
  1388. goto abort_free;
  1389. rdev->kobj.parent = NULL;
  1390. rdev->kobj.ktype = &rdev_ktype;
  1391. kobject_init(&rdev->kobj);
  1392. rdev->desc_nr = -1;
  1393. rdev->flags = 0;
  1394. rdev->data_offset = 0;
  1395. atomic_set(&rdev->nr_pending, 0);
  1396. atomic_set(&rdev->read_errors, 0);
  1397. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1398. if (!size) {
  1399. printk(KERN_WARNING
  1400. "md: %s has zero or unknown size, marking faulty!\n",
  1401. bdevname(rdev->bdev,b));
  1402. err = -EINVAL;
  1403. goto abort_free;
  1404. }
  1405. if (super_format >= 0) {
  1406. err = super_types[super_format].
  1407. load_super(rdev, NULL, super_minor);
  1408. if (err == -EINVAL) {
  1409. printk(KERN_WARNING
  1410. "md: %s has invalid sb, not importing!\n",
  1411. bdevname(rdev->bdev,b));
  1412. goto abort_free;
  1413. }
  1414. if (err < 0) {
  1415. printk(KERN_WARNING
  1416. "md: could not read %s's sb, not importing!\n",
  1417. bdevname(rdev->bdev,b));
  1418. goto abort_free;
  1419. }
  1420. }
  1421. INIT_LIST_HEAD(&rdev->same_set);
  1422. return rdev;
  1423. abort_free:
  1424. if (rdev->sb_page) {
  1425. if (rdev->bdev)
  1426. unlock_rdev(rdev);
  1427. free_disk_sb(rdev);
  1428. }
  1429. kfree(rdev);
  1430. return ERR_PTR(err);
  1431. }
  1432. /*
  1433. * Check a full RAID array for plausibility
  1434. */
  1435. static void analyze_sbs(mddev_t * mddev)
  1436. {
  1437. int i;
  1438. struct list_head *tmp;
  1439. mdk_rdev_t *rdev, *freshest;
  1440. char b[BDEVNAME_SIZE];
  1441. freshest = NULL;
  1442. ITERATE_RDEV(mddev,rdev,tmp)
  1443. switch (super_types[mddev->major_version].
  1444. load_super(rdev, freshest, mddev->minor_version)) {
  1445. case 1:
  1446. freshest = rdev;
  1447. break;
  1448. case 0:
  1449. break;
  1450. default:
  1451. printk( KERN_ERR \
  1452. "md: fatal superblock inconsistency in %s"
  1453. " -- removing from array\n",
  1454. bdevname(rdev->bdev,b));
  1455. kick_rdev_from_array(rdev);
  1456. }
  1457. super_types[mddev->major_version].
  1458. validate_super(mddev, freshest);
  1459. i = 0;
  1460. ITERATE_RDEV(mddev,rdev,tmp) {
  1461. if (rdev != freshest)
  1462. if (super_types[mddev->major_version].
  1463. validate_super(mddev, rdev)) {
  1464. printk(KERN_WARNING "md: kicking non-fresh %s"
  1465. " from array!\n",
  1466. bdevname(rdev->bdev,b));
  1467. kick_rdev_from_array(rdev);
  1468. continue;
  1469. }
  1470. if (mddev->level == LEVEL_MULTIPATH) {
  1471. rdev->desc_nr = i++;
  1472. rdev->raid_disk = rdev->desc_nr;
  1473. set_bit(In_sync, &rdev->flags);
  1474. }
  1475. }
  1476. if (mddev->recovery_cp != MaxSector &&
  1477. mddev->level >= 1)
  1478. printk(KERN_ERR "md: %s: raid array is not clean"
  1479. " -- starting background reconstruction\n",
  1480. mdname(mddev));
  1481. }
  1482. static ssize_t
  1483. level_show(mddev_t *mddev, char *page)
  1484. {
  1485. mdk_personality_t *p = mddev->pers;
  1486. if (p == NULL)
  1487. return 0;
  1488. if (mddev->level >= 0)
  1489. return sprintf(page, "RAID-%d\n", mddev->level);
  1490. else
  1491. return sprintf(page, "%s\n", p->name);
  1492. }
  1493. static struct md_sysfs_entry md_level = __ATTR_RO(level);
  1494. static ssize_t
  1495. raid_disks_show(mddev_t *mddev, char *page)
  1496. {
  1497. return sprintf(page, "%d\n", mddev->raid_disks);
  1498. }
  1499. static struct md_sysfs_entry md_raid_disks = __ATTR_RO(raid_disks);
  1500. static ssize_t
  1501. md_show_scan(mddev_t *mddev, char *page)
  1502. {
  1503. char *type = "none";
  1504. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  1505. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
  1506. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  1507. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  1508. type = "resync";
  1509. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  1510. type = "check";
  1511. else
  1512. type = "repair";
  1513. } else
  1514. type = "recover";
  1515. }
  1516. return sprintf(page, "%s\n", type);
  1517. }
  1518. static ssize_t
  1519. md_store_scan(mddev_t *mddev, const char *page, size_t len)
  1520. {
  1521. int canscan=0;
  1522. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  1523. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  1524. return -EBUSY;
  1525. if (mddev->pers && mddev->pers->sync_request)
  1526. canscan=1;
  1527. if (!canscan)
  1528. return -EINVAL;
  1529. if (strcmp(page, "check")==0 || strcmp(page, "check\n")==0)
  1530. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  1531. else if (strcmp(page, "repair")!=0 && strcmp(page, "repair\n")!=0)
  1532. return -EINVAL;
  1533. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  1534. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  1535. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1536. md_wakeup_thread(mddev->thread);
  1537. return len;
  1538. }
  1539. static ssize_t
  1540. mismatch_cnt_show(mddev_t *mddev, char *page)
  1541. {
  1542. return sprintf(page, "%llu\n",
  1543. (unsigned long long) mddev->resync_mismatches);
  1544. }
  1545. static struct md_sysfs_entry
  1546. md_scan_mode = __ATTR(scan_mode, S_IRUGO|S_IWUSR, md_show_scan, md_store_scan);
  1547. static struct md_sysfs_entry
  1548. md_mismatches = __ATTR_RO(mismatch_cnt);
  1549. static struct attribute *md_default_attrs[] = {
  1550. &md_level.attr,
  1551. &md_raid_disks.attr,
  1552. &md_scan_mode.attr,
  1553. &md_mismatches.attr,
  1554. NULL,
  1555. };
  1556. static ssize_t
  1557. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1558. {
  1559. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  1560. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  1561. ssize_t rv;
  1562. if (!entry->show)
  1563. return -EIO;
  1564. mddev_lock(mddev);
  1565. rv = entry->show(mddev, page);
  1566. mddev_unlock(mddev);
  1567. return rv;
  1568. }
  1569. static ssize_t
  1570. md_attr_store(struct kobject *kobj, struct attribute *attr,
  1571. const char *page, size_t length)
  1572. {
  1573. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  1574. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  1575. ssize_t rv;
  1576. if (!entry->store)
  1577. return -EIO;
  1578. mddev_lock(mddev);
  1579. rv = entry->store(mddev, page, length);
  1580. mddev_unlock(mddev);
  1581. return rv;
  1582. }
  1583. static void md_free(struct kobject *ko)
  1584. {
  1585. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  1586. kfree(mddev);
  1587. }
  1588. static struct sysfs_ops md_sysfs_ops = {
  1589. .show = md_attr_show,
  1590. .store = md_attr_store,
  1591. };
  1592. static struct kobj_type md_ktype = {
  1593. .release = md_free,
  1594. .sysfs_ops = &md_sysfs_ops,
  1595. .default_attrs = md_default_attrs,
  1596. };
  1597. int mdp_major = 0;
  1598. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  1599. {
  1600. static DECLARE_MUTEX(disks_sem);
  1601. mddev_t *mddev = mddev_find(dev);
  1602. struct gendisk *disk;
  1603. int partitioned = (MAJOR(dev) != MD_MAJOR);
  1604. int shift = partitioned ? MdpMinorShift : 0;
  1605. int unit = MINOR(dev) >> shift;
  1606. if (!mddev)
  1607. return NULL;
  1608. down(&disks_sem);
  1609. if (mddev->gendisk) {
  1610. up(&disks_sem);
  1611. mddev_put(mddev);
  1612. return NULL;
  1613. }
  1614. disk = alloc_disk(1 << shift);
  1615. if (!disk) {
  1616. up(&disks_sem);
  1617. mddev_put(mddev);
  1618. return NULL;
  1619. }
  1620. disk->major = MAJOR(dev);
  1621. disk->first_minor = unit << shift;
  1622. if (partitioned) {
  1623. sprintf(disk->disk_name, "md_d%d", unit);
  1624. sprintf(disk->devfs_name, "md/d%d", unit);
  1625. } else {
  1626. sprintf(disk->disk_name, "md%d", unit);
  1627. sprintf(disk->devfs_name, "md/%d", unit);
  1628. }
  1629. disk->fops = &md_fops;
  1630. disk->private_data = mddev;
  1631. disk->queue = mddev->queue;
  1632. add_disk(disk);
  1633. mddev->gendisk = disk;
  1634. up(&disks_sem);
  1635. mddev->kobj.parent = &disk->kobj;
  1636. mddev->kobj.k_name = NULL;
  1637. snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
  1638. mddev->kobj.ktype = &md_ktype;
  1639. kobject_register(&mddev->kobj);
  1640. return NULL;
  1641. }
  1642. void md_wakeup_thread(mdk_thread_t *thread);
  1643. static void md_safemode_timeout(unsigned long data)
  1644. {
  1645. mddev_t *mddev = (mddev_t *) data;
  1646. mddev->safemode = 1;
  1647. md_wakeup_thread(mddev->thread);
  1648. }
  1649. static int do_md_run(mddev_t * mddev)
  1650. {
  1651. int pnum, err;
  1652. int chunk_size;
  1653. struct list_head *tmp;
  1654. mdk_rdev_t *rdev;
  1655. struct gendisk *disk;
  1656. char b[BDEVNAME_SIZE];
  1657. if (list_empty(&mddev->disks))
  1658. /* cannot run an array with no devices.. */
  1659. return -EINVAL;
  1660. if (mddev->pers)
  1661. return -EBUSY;
  1662. /*
  1663. * Analyze all RAID superblock(s)
  1664. */
  1665. if (!mddev->raid_disks)
  1666. analyze_sbs(mddev);
  1667. chunk_size = mddev->chunk_size;
  1668. pnum = level_to_pers(mddev->level);
  1669. if ((pnum != MULTIPATH) && (pnum != RAID1)) {
  1670. if (!chunk_size) {
  1671. /*
  1672. * 'default chunksize' in the old md code used to
  1673. * be PAGE_SIZE, baaad.
  1674. * we abort here to be on the safe side. We don't
  1675. * want to continue the bad practice.
  1676. */
  1677. printk(KERN_ERR
  1678. "no chunksize specified, see 'man raidtab'\n");
  1679. return -EINVAL;
  1680. }
  1681. if (chunk_size > MAX_CHUNK_SIZE) {
  1682. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  1683. chunk_size, MAX_CHUNK_SIZE);
  1684. return -EINVAL;
  1685. }
  1686. /*
  1687. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  1688. */
  1689. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  1690. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  1691. return -EINVAL;
  1692. }
  1693. if (chunk_size < PAGE_SIZE) {
  1694. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  1695. chunk_size, PAGE_SIZE);
  1696. return -EINVAL;
  1697. }
  1698. /* devices must have minimum size of one chunk */
  1699. ITERATE_RDEV(mddev,rdev,tmp) {
  1700. if (test_bit(Faulty, &rdev->flags))
  1701. continue;
  1702. if (rdev->size < chunk_size / 1024) {
  1703. printk(KERN_WARNING
  1704. "md: Dev %s smaller than chunk_size:"
  1705. " %lluk < %dk\n",
  1706. bdevname(rdev->bdev,b),
  1707. (unsigned long long)rdev->size,
  1708. chunk_size / 1024);
  1709. return -EINVAL;
  1710. }
  1711. }
  1712. }
  1713. #ifdef CONFIG_KMOD
  1714. if (!pers[pnum])
  1715. {
  1716. request_module("md-personality-%d", pnum);
  1717. }
  1718. #endif
  1719. /*
  1720. * Drop all container device buffers, from now on
  1721. * the only valid external interface is through the md
  1722. * device.
  1723. * Also find largest hardsector size
  1724. */
  1725. ITERATE_RDEV(mddev,rdev,tmp) {
  1726. if (test_bit(Faulty, &rdev->flags))
  1727. continue;
  1728. sync_blockdev(rdev->bdev);
  1729. invalidate_bdev(rdev->bdev, 0);
  1730. }
  1731. md_probe(mddev->unit, NULL, NULL);
  1732. disk = mddev->gendisk;
  1733. if (!disk)
  1734. return -ENOMEM;
  1735. spin_lock(&pers_lock);
  1736. if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
  1737. spin_unlock(&pers_lock);
  1738. printk(KERN_WARNING "md: personality %d is not loaded!\n",
  1739. pnum);
  1740. return -EINVAL;
  1741. }
  1742. mddev->pers = pers[pnum];
  1743. spin_unlock(&pers_lock);
  1744. mddev->recovery = 0;
  1745. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  1746. mddev->barriers_work = 1;
  1747. if (start_readonly)
  1748. mddev->ro = 2; /* read-only, but switch on first write */
  1749. /* before we start the array running, initialise the bitmap */
  1750. err = bitmap_create(mddev);
  1751. if (err)
  1752. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  1753. mdname(mddev), err);
  1754. else
  1755. err = mddev->pers->run(mddev);
  1756. if (err) {
  1757. printk(KERN_ERR "md: pers->run() failed ...\n");
  1758. module_put(mddev->pers->owner);
  1759. mddev->pers = NULL;
  1760. bitmap_destroy(mddev);
  1761. return err;
  1762. }
  1763. atomic_set(&mddev->writes_pending,0);
  1764. mddev->safemode = 0;
  1765. mddev->safemode_timer.function = md_safemode_timeout;
  1766. mddev->safemode_timer.data = (unsigned long) mddev;
  1767. mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
  1768. mddev->in_sync = 1;
  1769. ITERATE_RDEV(mddev,rdev,tmp)
  1770. if (rdev->raid_disk >= 0) {
  1771. char nm[20];
  1772. sprintf(nm, "rd%d", rdev->raid_disk);
  1773. sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
  1774. }
  1775. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1776. md_wakeup_thread(mddev->thread);
  1777. if (mddev->sb_dirty)
  1778. md_update_sb(mddev);
  1779. set_capacity(disk, mddev->array_size<<1);
  1780. /* If we call blk_queue_make_request here, it will
  1781. * re-initialise max_sectors etc which may have been
  1782. * refined inside -> run. So just set the bits we need to set.
  1783. * Most initialisation happended when we called
  1784. * blk_queue_make_request(..., md_fail_request)
  1785. * earlier.
  1786. */
  1787. mddev->queue->queuedata = mddev;
  1788. mddev->queue->make_request_fn = mddev->pers->make_request;
  1789. mddev->changed = 1;
  1790. return 0;
  1791. }
  1792. static int restart_array(mddev_t *mddev)
  1793. {
  1794. struct gendisk *disk = mddev->gendisk;
  1795. int err;
  1796. /*
  1797. * Complain if it has no devices
  1798. */
  1799. err = -ENXIO;
  1800. if (list_empty(&mddev->disks))
  1801. goto out;
  1802. if (mddev->pers) {
  1803. err = -EBUSY;
  1804. if (!mddev->ro)
  1805. goto out;
  1806. mddev->safemode = 0;
  1807. mddev->ro = 0;
  1808. set_disk_ro(disk, 0);
  1809. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  1810. mdname(mddev));
  1811. /*
  1812. * Kick recovery or resync if necessary
  1813. */
  1814. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1815. md_wakeup_thread(mddev->thread);
  1816. err = 0;
  1817. } else {
  1818. printk(KERN_ERR "md: %s has no personality assigned.\n",
  1819. mdname(mddev));
  1820. err = -EINVAL;
  1821. }
  1822. out:
  1823. return err;
  1824. }
  1825. static int do_md_stop(mddev_t * mddev, int ro)
  1826. {
  1827. int err = 0;
  1828. struct gendisk *disk = mddev->gendisk;
  1829. if (mddev->pers) {
  1830. if (atomic_read(&mddev->active)>2) {
  1831. printk("md: %s still in use.\n",mdname(mddev));
  1832. return -EBUSY;
  1833. }
  1834. if (mddev->sync_thread) {
  1835. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1836. md_unregister_thread(mddev->sync_thread);
  1837. mddev->sync_thread = NULL;
  1838. }
  1839. del_timer_sync(&mddev->safemode_timer);
  1840. invalidate_partition(disk, 0);
  1841. if (ro) {
  1842. err = -ENXIO;
  1843. if (mddev->ro==1)
  1844. goto out;
  1845. mddev->ro = 1;
  1846. } else {
  1847. bitmap_flush(mddev);
  1848. md_super_wait(mddev);
  1849. if (mddev->ro)
  1850. set_disk_ro(disk, 0);
  1851. blk_queue_make_request(mddev->queue, md_fail_request);
  1852. mddev->pers->stop(mddev);
  1853. module_put(mddev->pers->owner);
  1854. mddev->pers = NULL;
  1855. if (mddev->ro)
  1856. mddev->ro = 0;
  1857. }
  1858. if (!mddev->in_sync) {
  1859. /* mark array as shutdown cleanly */
  1860. mddev->in_sync = 1;
  1861. md_update_sb(mddev);
  1862. }
  1863. if (ro)
  1864. set_disk_ro(disk, 1);
  1865. }
  1866. bitmap_destroy(mddev);
  1867. if (mddev->bitmap_file) {
  1868. atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
  1869. fput(mddev->bitmap_file);
  1870. mddev->bitmap_file = NULL;
  1871. }
  1872. mddev->bitmap_offset = 0;
  1873. /*
  1874. * Free resources if final stop
  1875. */
  1876. if (!ro) {
  1877. mdk_rdev_t *rdev;
  1878. struct list_head *tmp;
  1879. struct gendisk *disk;
  1880. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  1881. ITERATE_RDEV(mddev,rdev,tmp)
  1882. if (rdev->raid_disk >= 0) {
  1883. char nm[20];
  1884. sprintf(nm, "rd%d", rdev->raid_disk);
  1885. sysfs_remove_link(&mddev->kobj, nm);
  1886. }
  1887. export_array(mddev);
  1888. mddev->array_size = 0;
  1889. disk = mddev->gendisk;
  1890. if (disk)
  1891. set_capacity(disk, 0);
  1892. mddev->changed = 1;
  1893. } else
  1894. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  1895. mdname(mddev));
  1896. err = 0;
  1897. out:
  1898. return err;
  1899. }
  1900. static void autorun_array(mddev_t *mddev)
  1901. {
  1902. mdk_rdev_t *rdev;
  1903. struct list_head *tmp;
  1904. int err;
  1905. if (list_empty(&mddev->disks))
  1906. return;
  1907. printk(KERN_INFO "md: running: ");
  1908. ITERATE_RDEV(mddev,rdev,tmp) {
  1909. char b[BDEVNAME_SIZE];
  1910. printk("<%s>", bdevname(rdev->bdev,b));
  1911. }
  1912. printk("\n");
  1913. err = do_md_run (mddev);
  1914. if (err) {
  1915. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  1916. do_md_stop (mddev, 0);
  1917. }
  1918. }
  1919. /*
  1920. * lets try to run arrays based on all disks that have arrived
  1921. * until now. (those are in pending_raid_disks)
  1922. *
  1923. * the method: pick the first pending disk, collect all disks with
  1924. * the same UUID, remove all from the pending list and put them into
  1925. * the 'same_array' list. Then order this list based on superblock
  1926. * update time (freshest comes first), kick out 'old' disks and
  1927. * compare superblocks. If everything's fine then run it.
  1928. *
  1929. * If "unit" is allocated, then bump its reference count
  1930. */
  1931. static void autorun_devices(int part)
  1932. {
  1933. struct list_head candidates;
  1934. struct list_head *tmp;
  1935. mdk_rdev_t *rdev0, *rdev;
  1936. mddev_t *mddev;
  1937. char b[BDEVNAME_SIZE];
  1938. printk(KERN_INFO "md: autorun ...\n");
  1939. while (!list_empty(&pending_raid_disks)) {
  1940. dev_t dev;
  1941. rdev0 = list_entry(pending_raid_disks.next,
  1942. mdk_rdev_t, same_set);
  1943. printk(KERN_INFO "md: considering %s ...\n",
  1944. bdevname(rdev0->bdev,b));
  1945. INIT_LIST_HEAD(&candidates);
  1946. ITERATE_RDEV_PENDING(rdev,tmp)
  1947. if (super_90_load(rdev, rdev0, 0) >= 0) {
  1948. printk(KERN_INFO "md: adding %s ...\n",
  1949. bdevname(rdev->bdev,b));
  1950. list_move(&rdev->same_set, &candidates);
  1951. }
  1952. /*
  1953. * now we have a set of devices, with all of them having
  1954. * mostly sane superblocks. It's time to allocate the
  1955. * mddev.
  1956. */
  1957. if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
  1958. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  1959. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  1960. break;
  1961. }
  1962. if (part)
  1963. dev = MKDEV(mdp_major,
  1964. rdev0->preferred_minor << MdpMinorShift);
  1965. else
  1966. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  1967. md_probe(dev, NULL, NULL);
  1968. mddev = mddev_find(dev);
  1969. if (!mddev) {
  1970. printk(KERN_ERR
  1971. "md: cannot allocate memory for md drive.\n");
  1972. break;
  1973. }
  1974. if (mddev_lock(mddev))
  1975. printk(KERN_WARNING "md: %s locked, cannot run\n",
  1976. mdname(mddev));
  1977. else if (mddev->raid_disks || mddev->major_version
  1978. || !list_empty(&mddev->disks)) {
  1979. printk(KERN_WARNING
  1980. "md: %s already running, cannot run %s\n",
  1981. mdname(mddev), bdevname(rdev0->bdev,b));
  1982. mddev_unlock(mddev);
  1983. } else {
  1984. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  1985. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  1986. list_del_init(&rdev->same_set);
  1987. if (bind_rdev_to_array(rdev, mddev))
  1988. export_rdev(rdev);
  1989. }
  1990. autorun_array(mddev);
  1991. mddev_unlock(mddev);
  1992. }
  1993. /* on success, candidates will be empty, on error
  1994. * it won't...
  1995. */
  1996. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  1997. export_rdev(rdev);
  1998. mddev_put(mddev);
  1999. }
  2000. printk(KERN_INFO "md: ... autorun DONE.\n");
  2001. }
  2002. /*
  2003. * import RAID devices based on one partition
  2004. * if possible, the array gets run as well.
  2005. */
  2006. static int autostart_array(dev_t startdev)
  2007. {
  2008. char b[BDEVNAME_SIZE];
  2009. int err = -EINVAL, i;
  2010. mdp_super_t *sb = NULL;
  2011. mdk_rdev_t *start_rdev = NULL, *rdev;
  2012. start_rdev = md_import_device(startdev, 0, 0);
  2013. if (IS_ERR(start_rdev))
  2014. return err;
  2015. /* NOTE: this can only work for 0.90.0 superblocks */
  2016. sb = (mdp_super_t*)page_address(start_rdev->sb_page);
  2017. if (sb->major_version != 0 ||
  2018. sb->minor_version != 90 ) {
  2019. printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
  2020. export_rdev(start_rdev);
  2021. return err;
  2022. }
  2023. if (test_bit(Faulty, &start_rdev->flags)) {
  2024. printk(KERN_WARNING
  2025. "md: can not autostart based on faulty %s!\n",
  2026. bdevname(start_rdev->bdev,b));
  2027. export_rdev(start_rdev);
  2028. return err;
  2029. }
  2030. list_add(&start_rdev->same_set, &pending_raid_disks);
  2031. for (i = 0; i < MD_SB_DISKS; i++) {
  2032. mdp_disk_t *desc = sb->disks + i;
  2033. dev_t dev = MKDEV(desc->major, desc->minor);
  2034. if (!dev)
  2035. continue;
  2036. if (dev == startdev)
  2037. continue;
  2038. if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
  2039. continue;
  2040. rdev = md_import_device(dev, 0, 0);
  2041. if (IS_ERR(rdev))
  2042. continue;
  2043. list_add(&rdev->same_set, &pending_raid_disks);
  2044. }
  2045. /*
  2046. * possibly return codes
  2047. */
  2048. autorun_devices(0);
  2049. return 0;
  2050. }
  2051. static int get_version(void __user * arg)
  2052. {
  2053. mdu_version_t ver;
  2054. ver.major = MD_MAJOR_VERSION;
  2055. ver.minor = MD_MINOR_VERSION;
  2056. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  2057. if (copy_to_user(arg, &ver, sizeof(ver)))
  2058. return -EFAULT;
  2059. return 0;
  2060. }
  2061. static int get_array_info(mddev_t * mddev, void __user * arg)
  2062. {
  2063. mdu_array_info_t info;
  2064. int nr,working,active,failed,spare;
  2065. mdk_rdev_t *rdev;
  2066. struct list_head *tmp;
  2067. nr=working=active=failed=spare=0;
  2068. ITERATE_RDEV(mddev,rdev,tmp) {
  2069. nr++;
  2070. if (test_bit(Faulty, &rdev->flags))
  2071. failed++;
  2072. else {
  2073. working++;
  2074. if (test_bit(In_sync, &rdev->flags))
  2075. active++;
  2076. else
  2077. spare++;
  2078. }
  2079. }
  2080. info.major_version = mddev->major_version;
  2081. info.minor_version = mddev->minor_version;
  2082. info.patch_version = MD_PATCHLEVEL_VERSION;
  2083. info.ctime = mddev->ctime;
  2084. info.level = mddev->level;
  2085. info.size = mddev->size;
  2086. info.nr_disks = nr;
  2087. info.raid_disks = mddev->raid_disks;
  2088. info.md_minor = mddev->md_minor;
  2089. info.not_persistent= !mddev->persistent;
  2090. info.utime = mddev->utime;
  2091. info.state = 0;
  2092. if (mddev->in_sync)
  2093. info.state = (1<<MD_SB_CLEAN);
  2094. if (mddev->bitmap && mddev->bitmap_offset)
  2095. info.state = (1<<MD_SB_BITMAP_PRESENT);
  2096. info.active_disks = active;
  2097. info.working_disks = working;
  2098. info.failed_disks = failed;
  2099. info.spare_disks = spare;
  2100. info.layout = mddev->layout;
  2101. info.chunk_size = mddev->chunk_size;
  2102. if (copy_to_user(arg, &info, sizeof(info)))
  2103. return -EFAULT;
  2104. return 0;
  2105. }
  2106. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  2107. {
  2108. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  2109. char *ptr, *buf = NULL;
  2110. int err = -ENOMEM;
  2111. file = kmalloc(sizeof(*file), GFP_KERNEL);
  2112. if (!file)
  2113. goto out;
  2114. /* bitmap disabled, zero the first byte and copy out */
  2115. if (!mddev->bitmap || !mddev->bitmap->file) {
  2116. file->pathname[0] = '\0';
  2117. goto copy_out;
  2118. }
  2119. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  2120. if (!buf)
  2121. goto out;
  2122. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  2123. if (!ptr)
  2124. goto out;
  2125. strcpy(file->pathname, ptr);
  2126. copy_out:
  2127. err = 0;
  2128. if (copy_to_user(arg, file, sizeof(*file)))
  2129. err = -EFAULT;
  2130. out:
  2131. kfree(buf);
  2132. kfree(file);
  2133. return err;
  2134. }
  2135. static int get_disk_info(mddev_t * mddev, void __user * arg)
  2136. {
  2137. mdu_disk_info_t info;
  2138. unsigned int nr;
  2139. mdk_rdev_t *rdev;
  2140. if (copy_from_user(&info, arg, sizeof(info)))
  2141. return -EFAULT;
  2142. nr = info.number;
  2143. rdev = find_rdev_nr(mddev, nr);
  2144. if (rdev) {
  2145. info.major = MAJOR(rdev->bdev->bd_dev);
  2146. info.minor = MINOR(rdev->bdev->bd_dev);
  2147. info.raid_disk = rdev->raid_disk;
  2148. info.state = 0;
  2149. if (test_bit(Faulty, &rdev->flags))
  2150. info.state |= (1<<MD_DISK_FAULTY);
  2151. else if (test_bit(In_sync, &rdev->flags)) {
  2152. info.state |= (1<<MD_DISK_ACTIVE);
  2153. info.state |= (1<<MD_DISK_SYNC);
  2154. }
  2155. if (test_bit(WriteMostly, &rdev->flags))
  2156. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  2157. } else {
  2158. info.major = info.minor = 0;
  2159. info.raid_disk = -1;
  2160. info.state = (1<<MD_DISK_REMOVED);
  2161. }
  2162. if (copy_to_user(arg, &info, sizeof(info)))
  2163. return -EFAULT;
  2164. return 0;
  2165. }
  2166. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  2167. {
  2168. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  2169. mdk_rdev_t *rdev;
  2170. dev_t dev = MKDEV(info->major,info->minor);
  2171. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  2172. return -EOVERFLOW;
  2173. if (!mddev->raid_disks) {
  2174. int err;
  2175. /* expecting a device which has a superblock */
  2176. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  2177. if (IS_ERR(rdev)) {
  2178. printk(KERN_WARNING
  2179. "md: md_import_device returned %ld\n",
  2180. PTR_ERR(rdev));
  2181. return PTR_ERR(rdev);
  2182. }
  2183. if (!list_empty(&mddev->disks)) {
  2184. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  2185. mdk_rdev_t, same_set);
  2186. int err = super_types[mddev->major_version]
  2187. .load_super(rdev, rdev0, mddev->minor_version);
  2188. if (err < 0) {
  2189. printk(KERN_WARNING
  2190. "md: %s has different UUID to %s\n",
  2191. bdevname(rdev->bdev,b),
  2192. bdevname(rdev0->bdev,b2));
  2193. export_rdev(rdev);
  2194. return -EINVAL;
  2195. }
  2196. }
  2197. err = bind_rdev_to_array(rdev, mddev);
  2198. if (err)
  2199. export_rdev(rdev);
  2200. return err;
  2201. }
  2202. /*
  2203. * add_new_disk can be used once the array is assembled
  2204. * to add "hot spares". They must already have a superblock
  2205. * written
  2206. */
  2207. if (mddev->pers) {
  2208. int err;
  2209. if (!mddev->pers->hot_add_disk) {
  2210. printk(KERN_WARNING
  2211. "%s: personality does not support diskops!\n",
  2212. mdname(mddev));
  2213. return -EINVAL;
  2214. }
  2215. if (mddev->persistent)
  2216. rdev = md_import_device(dev, mddev->major_version,
  2217. mddev->minor_version);
  2218. else
  2219. rdev = md_import_device(dev, -1, -1);
  2220. if (IS_ERR(rdev)) {
  2221. printk(KERN_WARNING
  2222. "md: md_import_device returned %ld\n",
  2223. PTR_ERR(rdev));
  2224. return PTR_ERR(rdev);
  2225. }
  2226. /* set save_raid_disk if appropriate */
  2227. if (!mddev->persistent) {
  2228. if (info->state & (1<<MD_DISK_SYNC) &&
  2229. info->raid_disk < mddev->raid_disks)
  2230. rdev->raid_disk = info->raid_disk;
  2231. else
  2232. rdev->raid_disk = -1;
  2233. } else
  2234. super_types[mddev->major_version].
  2235. validate_super(mddev, rdev);
  2236. rdev->saved_raid_disk = rdev->raid_disk;
  2237. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  2238. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  2239. set_bit(WriteMostly, &rdev->flags);
  2240. rdev->raid_disk = -1;
  2241. err = bind_rdev_to_array(rdev, mddev);
  2242. if (err)
  2243. export_rdev(rdev);
  2244. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2245. md_wakeup_thread(mddev->thread);
  2246. return err;
  2247. }
  2248. /* otherwise, add_new_disk is only allowed
  2249. * for major_version==0 superblocks
  2250. */
  2251. if (mddev->major_version != 0) {
  2252. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  2253. mdname(mddev));
  2254. return -EINVAL;
  2255. }
  2256. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  2257. int err;
  2258. rdev = md_import_device (dev, -1, 0);
  2259. if (IS_ERR(rdev)) {
  2260. printk(KERN_WARNING
  2261. "md: error, md_import_device() returned %ld\n",
  2262. PTR_ERR(rdev));
  2263. return PTR_ERR(rdev);
  2264. }
  2265. rdev->desc_nr = info->number;
  2266. if (info->raid_disk < mddev->raid_disks)
  2267. rdev->raid_disk = info->raid_disk;
  2268. else
  2269. rdev->raid_disk = -1;
  2270. rdev->flags = 0;
  2271. if (rdev->raid_disk < mddev->raid_disks)
  2272. if (info->state & (1<<MD_DISK_SYNC))
  2273. set_bit(In_sync, &rdev->flags);
  2274. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  2275. set_bit(WriteMostly, &rdev->flags);
  2276. err = bind_rdev_to_array(rdev, mddev);
  2277. if (err) {
  2278. export_rdev(rdev);
  2279. return err;
  2280. }
  2281. if (!mddev->persistent) {
  2282. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  2283. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2284. } else
  2285. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  2286. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  2287. if (!mddev->size || (mddev->size > rdev->size))
  2288. mddev->size = rdev->size;
  2289. }
  2290. return 0;
  2291. }
  2292. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  2293. {
  2294. char b[BDEVNAME_SIZE];
  2295. mdk_rdev_t *rdev;
  2296. if (!mddev->pers)
  2297. return -ENODEV;
  2298. rdev = find_rdev(mddev, dev);
  2299. if (!rdev)
  2300. return -ENXIO;
  2301. if (rdev->raid_disk >= 0)
  2302. goto busy;
  2303. kick_rdev_from_array(rdev);
  2304. md_update_sb(mddev);
  2305. return 0;
  2306. busy:
  2307. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  2308. bdevname(rdev->bdev,b), mdname(mddev));
  2309. return -EBUSY;
  2310. }
  2311. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  2312. {
  2313. char b[BDEVNAME_SIZE];
  2314. int err;
  2315. unsigned int size;
  2316. mdk_rdev_t *rdev;
  2317. if (!mddev->pers)
  2318. return -ENODEV;
  2319. if (mddev->major_version != 0) {
  2320. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  2321. " version-0 superblocks.\n",
  2322. mdname(mddev));
  2323. return -EINVAL;
  2324. }
  2325. if (!mddev->pers->hot_add_disk) {
  2326. printk(KERN_WARNING
  2327. "%s: personality does not support diskops!\n",
  2328. mdname(mddev));
  2329. return -EINVAL;
  2330. }
  2331. rdev = md_import_device (dev, -1, 0);
  2332. if (IS_ERR(rdev)) {
  2333. printk(KERN_WARNING
  2334. "md: error, md_import_device() returned %ld\n",
  2335. PTR_ERR(rdev));
  2336. return -EINVAL;
  2337. }
  2338. if (mddev->persistent)
  2339. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  2340. else
  2341. rdev->sb_offset =
  2342. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2343. size = calc_dev_size(rdev, mddev->chunk_size);
  2344. rdev->size = size;
  2345. if (size < mddev->size) {
  2346. printk(KERN_WARNING
  2347. "%s: disk size %llu blocks < array size %llu\n",
  2348. mdname(mddev), (unsigned long long)size,
  2349. (unsigned long long)mddev->size);
  2350. err = -ENOSPC;
  2351. goto abort_export;
  2352. }
  2353. if (test_bit(Faulty, &rdev->flags)) {
  2354. printk(KERN_WARNING
  2355. "md: can not hot-add faulty %s disk to %s!\n",
  2356. bdevname(rdev->bdev,b), mdname(mddev));
  2357. err = -EINVAL;
  2358. goto abort_export;
  2359. }
  2360. clear_bit(In_sync, &rdev->flags);
  2361. rdev->desc_nr = -1;
  2362. bind_rdev_to_array(rdev, mddev);
  2363. /*
  2364. * The rest should better be atomic, we can have disk failures
  2365. * noticed in interrupt contexts ...
  2366. */
  2367. if (rdev->desc_nr == mddev->max_disks) {
  2368. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  2369. mdname(mddev));
  2370. err = -EBUSY;
  2371. goto abort_unbind_export;
  2372. }
  2373. rdev->raid_disk = -1;
  2374. md_update_sb(mddev);
  2375. /*
  2376. * Kick recovery, maybe this spare has to be added to the
  2377. * array immediately.
  2378. */
  2379. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2380. md_wakeup_thread(mddev->thread);
  2381. return 0;
  2382. abort_unbind_export:
  2383. unbind_rdev_from_array(rdev);
  2384. abort_export:
  2385. export_rdev(rdev);
  2386. return err;
  2387. }
  2388. /* similar to deny_write_access, but accounts for our holding a reference
  2389. * to the file ourselves */
  2390. static int deny_bitmap_write_access(struct file * file)
  2391. {
  2392. struct inode *inode = file->f_mapping->host;
  2393. spin_lock(&inode->i_lock);
  2394. if (atomic_read(&inode->i_writecount) > 1) {
  2395. spin_unlock(&inode->i_lock);
  2396. return -ETXTBSY;
  2397. }
  2398. atomic_set(&inode->i_writecount, -1);
  2399. spin_unlock(&inode->i_lock);
  2400. return 0;
  2401. }
  2402. static int set_bitmap_file(mddev_t *mddev, int fd)
  2403. {
  2404. int err;
  2405. if (mddev->pers) {
  2406. if (!mddev->pers->quiesce)
  2407. return -EBUSY;
  2408. if (mddev->recovery || mddev->sync_thread)
  2409. return -EBUSY;
  2410. /* we should be able to change the bitmap.. */
  2411. }
  2412. if (fd >= 0) {
  2413. if (mddev->bitmap)
  2414. return -EEXIST; /* cannot add when bitmap is present */
  2415. mddev->bitmap_file = fget(fd);
  2416. if (mddev->bitmap_file == NULL) {
  2417. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  2418. mdname(mddev));
  2419. return -EBADF;
  2420. }
  2421. err = deny_bitmap_write_access(mddev->bitmap_file);
  2422. if (err) {
  2423. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  2424. mdname(mddev));
  2425. fput(mddev->bitmap_file);
  2426. mddev->bitmap_file = NULL;
  2427. return err;
  2428. }
  2429. mddev->bitmap_offset = 0; /* file overrides offset */
  2430. } else if (mddev->bitmap == NULL)
  2431. return -ENOENT; /* cannot remove what isn't there */
  2432. err = 0;
  2433. if (mddev->pers) {
  2434. mddev->pers->quiesce(mddev, 1);
  2435. if (fd >= 0)
  2436. err = bitmap_create(mddev);
  2437. if (fd < 0 || err)
  2438. bitmap_destroy(mddev);
  2439. mddev->pers->quiesce(mddev, 0);
  2440. } else if (fd < 0) {
  2441. if (mddev->bitmap_file)
  2442. fput(mddev->bitmap_file);
  2443. mddev->bitmap_file = NULL;
  2444. }
  2445. return err;
  2446. }
  2447. /*
  2448. * set_array_info is used two different ways
  2449. * The original usage is when creating a new array.
  2450. * In this usage, raid_disks is > 0 and it together with
  2451. * level, size, not_persistent,layout,chunksize determine the
  2452. * shape of the array.
  2453. * This will always create an array with a type-0.90.0 superblock.
  2454. * The newer usage is when assembling an array.
  2455. * In this case raid_disks will be 0, and the major_version field is
  2456. * use to determine which style super-blocks are to be found on the devices.
  2457. * The minor and patch _version numbers are also kept incase the
  2458. * super_block handler wishes to interpret them.
  2459. */
  2460. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  2461. {
  2462. if (info->raid_disks == 0) {
  2463. /* just setting version number for superblock loading */
  2464. if (info->major_version < 0 ||
  2465. info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
  2466. super_types[info->major_version].name == NULL) {
  2467. /* maybe try to auto-load a module? */
  2468. printk(KERN_INFO
  2469. "md: superblock version %d not known\n",
  2470. info->major_version);
  2471. return -EINVAL;
  2472. }
  2473. mddev->major_version = info->major_version;
  2474. mddev->minor_version = info->minor_version;
  2475. mddev->patch_version = info->patch_version;
  2476. return 0;
  2477. }
  2478. mddev->major_version = MD_MAJOR_VERSION;
  2479. mddev->minor_version = MD_MINOR_VERSION;
  2480. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  2481. mddev->ctime = get_seconds();
  2482. mddev->level = info->level;
  2483. mddev->size = info->size;
  2484. mddev->raid_disks = info->raid_disks;
  2485. /* don't set md_minor, it is determined by which /dev/md* was
  2486. * openned
  2487. */
  2488. if (info->state & (1<<MD_SB_CLEAN))
  2489. mddev->recovery_cp = MaxSector;
  2490. else
  2491. mddev->recovery_cp = 0;
  2492. mddev->persistent = ! info->not_persistent;
  2493. mddev->layout = info->layout;
  2494. mddev->chunk_size = info->chunk_size;
  2495. mddev->max_disks = MD_SB_DISKS;
  2496. mddev->sb_dirty = 1;
  2497. /*
  2498. * Generate a 128 bit UUID
  2499. */
  2500. get_random_bytes(mddev->uuid, 16);
  2501. return 0;
  2502. }
  2503. /*
  2504. * update_array_info is used to change the configuration of an
  2505. * on-line array.
  2506. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  2507. * fields in the info are checked against the array.
  2508. * Any differences that cannot be handled will cause an error.
  2509. * Normally, only one change can be managed at a time.
  2510. */
  2511. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  2512. {
  2513. int rv = 0;
  2514. int cnt = 0;
  2515. int state = 0;
  2516. /* calculate expected state,ignoring low bits */
  2517. if (mddev->bitmap && mddev->bitmap_offset)
  2518. state |= (1 << MD_SB_BITMAP_PRESENT);
  2519. if (mddev->major_version != info->major_version ||
  2520. mddev->minor_version != info->minor_version ||
  2521. /* mddev->patch_version != info->patch_version || */
  2522. mddev->ctime != info->ctime ||
  2523. mddev->level != info->level ||
  2524. /* mddev->layout != info->layout || */
  2525. !mddev->persistent != info->not_persistent||
  2526. mddev->chunk_size != info->chunk_size ||
  2527. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  2528. ((state^info->state) & 0xfffffe00)
  2529. )
  2530. return -EINVAL;
  2531. /* Check there is only one change */
  2532. if (mddev->size != info->size) cnt++;
  2533. if (mddev->raid_disks != info->raid_disks) cnt++;
  2534. if (mddev->layout != info->layout) cnt++;
  2535. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
  2536. if (cnt == 0) return 0;
  2537. if (cnt > 1) return -EINVAL;
  2538. if (mddev->layout != info->layout) {
  2539. /* Change layout
  2540. * we don't need to do anything at the md level, the
  2541. * personality will take care of it all.
  2542. */
  2543. if (mddev->pers->reconfig == NULL)
  2544. return -EINVAL;
  2545. else
  2546. return mddev->pers->reconfig(mddev, info->layout, -1);
  2547. }
  2548. if (mddev->size != info->size) {
  2549. mdk_rdev_t * rdev;
  2550. struct list_head *tmp;
  2551. if (mddev->pers->resize == NULL)
  2552. return -EINVAL;
  2553. /* The "size" is the amount of each device that is used.
  2554. * This can only make sense for arrays with redundancy.
  2555. * linear and raid0 always use whatever space is available
  2556. * We can only consider changing the size if no resync
  2557. * or reconstruction is happening, and if the new size
  2558. * is acceptable. It must fit before the sb_offset or,
  2559. * if that is <data_offset, it must fit before the
  2560. * size of each device.
  2561. * If size is zero, we find the largest size that fits.
  2562. */
  2563. if (mddev->sync_thread)
  2564. return -EBUSY;
  2565. ITERATE_RDEV(mddev,rdev,tmp) {
  2566. sector_t avail;
  2567. int fit = (info->size == 0);
  2568. if (rdev->sb_offset > rdev->data_offset)
  2569. avail = (rdev->sb_offset*2) - rdev->data_offset;
  2570. else
  2571. avail = get_capacity(rdev->bdev->bd_disk)
  2572. - rdev->data_offset;
  2573. if (fit && (info->size == 0 || info->size > avail/2))
  2574. info->size = avail/2;
  2575. if (avail < ((sector_t)info->size << 1))
  2576. return -ENOSPC;
  2577. }
  2578. rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
  2579. if (!rv) {
  2580. struct block_device *bdev;
  2581. bdev = bdget_disk(mddev->gendisk, 0);
  2582. if (bdev) {
  2583. down(&bdev->bd_inode->i_sem);
  2584. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2585. up(&bdev->bd_inode->i_sem);
  2586. bdput(bdev);
  2587. }
  2588. }
  2589. }
  2590. if (mddev->raid_disks != info->raid_disks) {
  2591. /* change the number of raid disks */
  2592. if (mddev->pers->reshape == NULL)
  2593. return -EINVAL;
  2594. if (info->raid_disks <= 0 ||
  2595. info->raid_disks >= mddev->max_disks)
  2596. return -EINVAL;
  2597. if (mddev->sync_thread)
  2598. return -EBUSY;
  2599. rv = mddev->pers->reshape(mddev, info->raid_disks);
  2600. if (!rv) {
  2601. struct block_device *bdev;
  2602. bdev = bdget_disk(mddev->gendisk, 0);
  2603. if (bdev) {
  2604. down(&bdev->bd_inode->i_sem);
  2605. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2606. up(&bdev->bd_inode->i_sem);
  2607. bdput(bdev);
  2608. }
  2609. }
  2610. }
  2611. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  2612. if (mddev->pers->quiesce == NULL)
  2613. return -EINVAL;
  2614. if (mddev->recovery || mddev->sync_thread)
  2615. return -EBUSY;
  2616. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  2617. /* add the bitmap */
  2618. if (mddev->bitmap)
  2619. return -EEXIST;
  2620. if (mddev->default_bitmap_offset == 0)
  2621. return -EINVAL;
  2622. mddev->bitmap_offset = mddev->default_bitmap_offset;
  2623. mddev->pers->quiesce(mddev, 1);
  2624. rv = bitmap_create(mddev);
  2625. if (rv)
  2626. bitmap_destroy(mddev);
  2627. mddev->pers->quiesce(mddev, 0);
  2628. } else {
  2629. /* remove the bitmap */
  2630. if (!mddev->bitmap)
  2631. return -ENOENT;
  2632. if (mddev->bitmap->file)
  2633. return -EINVAL;
  2634. mddev->pers->quiesce(mddev, 1);
  2635. bitmap_destroy(mddev);
  2636. mddev->pers->quiesce(mddev, 0);
  2637. mddev->bitmap_offset = 0;
  2638. }
  2639. }
  2640. md_update_sb(mddev);
  2641. return rv;
  2642. }
  2643. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  2644. {
  2645. mdk_rdev_t *rdev;
  2646. if (mddev->pers == NULL)
  2647. return -ENODEV;
  2648. rdev = find_rdev(mddev, dev);
  2649. if (!rdev)
  2650. return -ENODEV;
  2651. md_error(mddev, rdev);
  2652. return 0;
  2653. }
  2654. static int md_ioctl(struct inode *inode, struct file *file,
  2655. unsigned int cmd, unsigned long arg)
  2656. {
  2657. int err = 0;
  2658. void __user *argp = (void __user *)arg;
  2659. struct hd_geometry __user *loc = argp;
  2660. mddev_t *mddev = NULL;
  2661. if (!capable(CAP_SYS_ADMIN))
  2662. return -EACCES;
  2663. /*
  2664. * Commands dealing with the RAID driver but not any
  2665. * particular array:
  2666. */
  2667. switch (cmd)
  2668. {
  2669. case RAID_VERSION:
  2670. err = get_version(argp);
  2671. goto done;
  2672. case PRINT_RAID_DEBUG:
  2673. err = 0;
  2674. md_print_devices();
  2675. goto done;
  2676. #ifndef MODULE
  2677. case RAID_AUTORUN:
  2678. err = 0;
  2679. autostart_arrays(arg);
  2680. goto done;
  2681. #endif
  2682. default:;
  2683. }
  2684. /*
  2685. * Commands creating/starting a new array:
  2686. */
  2687. mddev = inode->i_bdev->bd_disk->private_data;
  2688. if (!mddev) {
  2689. BUG();
  2690. goto abort;
  2691. }
  2692. if (cmd == START_ARRAY) {
  2693. /* START_ARRAY doesn't need to lock the array as autostart_array
  2694. * does the locking, and it could even be a different array
  2695. */
  2696. static int cnt = 3;
  2697. if (cnt > 0 ) {
  2698. printk(KERN_WARNING
  2699. "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
  2700. "This will not be supported beyond 2.6\n",
  2701. current->comm, current->pid);
  2702. cnt--;
  2703. }
  2704. err = autostart_array(new_decode_dev(arg));
  2705. if (err) {
  2706. printk(KERN_WARNING "md: autostart failed!\n");
  2707. goto abort;
  2708. }
  2709. goto done;
  2710. }
  2711. err = mddev_lock(mddev);
  2712. if (err) {
  2713. printk(KERN_INFO
  2714. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  2715. err, cmd);
  2716. goto abort;
  2717. }
  2718. switch (cmd)
  2719. {
  2720. case SET_ARRAY_INFO:
  2721. {
  2722. mdu_array_info_t info;
  2723. if (!arg)
  2724. memset(&info, 0, sizeof(info));
  2725. else if (copy_from_user(&info, argp, sizeof(info))) {
  2726. err = -EFAULT;
  2727. goto abort_unlock;
  2728. }
  2729. if (mddev->pers) {
  2730. err = update_array_info(mddev, &info);
  2731. if (err) {
  2732. printk(KERN_WARNING "md: couldn't update"
  2733. " array info. %d\n", err);
  2734. goto abort_unlock;
  2735. }
  2736. goto done_unlock;
  2737. }
  2738. if (!list_empty(&mddev->disks)) {
  2739. printk(KERN_WARNING
  2740. "md: array %s already has disks!\n",
  2741. mdname(mddev));
  2742. err = -EBUSY;
  2743. goto abort_unlock;
  2744. }
  2745. if (mddev->raid_disks) {
  2746. printk(KERN_WARNING
  2747. "md: array %s already initialised!\n",
  2748. mdname(mddev));
  2749. err = -EBUSY;
  2750. goto abort_unlock;
  2751. }
  2752. err = set_array_info(mddev, &info);
  2753. if (err) {
  2754. printk(KERN_WARNING "md: couldn't set"
  2755. " array info. %d\n", err);
  2756. goto abort_unlock;
  2757. }
  2758. }
  2759. goto done_unlock;
  2760. default:;
  2761. }
  2762. /*
  2763. * Commands querying/configuring an existing array:
  2764. */
  2765. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  2766. * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
  2767. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  2768. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
  2769. err = -ENODEV;
  2770. goto abort_unlock;
  2771. }
  2772. /*
  2773. * Commands even a read-only array can execute:
  2774. */
  2775. switch (cmd)
  2776. {
  2777. case GET_ARRAY_INFO:
  2778. err = get_array_info(mddev, argp);
  2779. goto done_unlock;
  2780. case GET_BITMAP_FILE:
  2781. err = get_bitmap_file(mddev, argp);
  2782. goto done_unlock;
  2783. case GET_DISK_INFO:
  2784. err = get_disk_info(mddev, argp);
  2785. goto done_unlock;
  2786. case RESTART_ARRAY_RW:
  2787. err = restart_array(mddev);
  2788. goto done_unlock;
  2789. case STOP_ARRAY:
  2790. err = do_md_stop (mddev, 0);
  2791. goto done_unlock;
  2792. case STOP_ARRAY_RO:
  2793. err = do_md_stop (mddev, 1);
  2794. goto done_unlock;
  2795. /*
  2796. * We have a problem here : there is no easy way to give a CHS
  2797. * virtual geometry. We currently pretend that we have a 2 heads
  2798. * 4 sectors (with a BIG number of cylinders...). This drives
  2799. * dosfs just mad... ;-)
  2800. */
  2801. case HDIO_GETGEO:
  2802. if (!loc) {
  2803. err = -EINVAL;
  2804. goto abort_unlock;
  2805. }
  2806. err = put_user (2, (char __user *) &loc->heads);
  2807. if (err)
  2808. goto abort_unlock;
  2809. err = put_user (4, (char __user *) &loc->sectors);
  2810. if (err)
  2811. goto abort_unlock;
  2812. err = put_user(get_capacity(mddev->gendisk)/8,
  2813. (short __user *) &loc->cylinders);
  2814. if (err)
  2815. goto abort_unlock;
  2816. err = put_user (get_start_sect(inode->i_bdev),
  2817. (long __user *) &loc->start);
  2818. goto done_unlock;
  2819. }
  2820. /*
  2821. * The remaining ioctls are changing the state of the
  2822. * superblock, so we do not allow them on read-only arrays.
  2823. * However non-MD ioctls (e.g. get-size) will still come through
  2824. * here and hit the 'default' below, so only disallow
  2825. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  2826. */
  2827. if (_IOC_TYPE(cmd) == MD_MAJOR &&
  2828. mddev->ro && mddev->pers) {
  2829. if (mddev->ro == 2) {
  2830. mddev->ro = 0;
  2831. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2832. md_wakeup_thread(mddev->thread);
  2833. } else {
  2834. err = -EROFS;
  2835. goto abort_unlock;
  2836. }
  2837. }
  2838. switch (cmd)
  2839. {
  2840. case ADD_NEW_DISK:
  2841. {
  2842. mdu_disk_info_t info;
  2843. if (copy_from_user(&info, argp, sizeof(info)))
  2844. err = -EFAULT;
  2845. else
  2846. err = add_new_disk(mddev, &info);
  2847. goto done_unlock;
  2848. }
  2849. case HOT_REMOVE_DISK:
  2850. err = hot_remove_disk(mddev, new_decode_dev(arg));
  2851. goto done_unlock;
  2852. case HOT_ADD_DISK:
  2853. err = hot_add_disk(mddev, new_decode_dev(arg));
  2854. goto done_unlock;
  2855. case SET_DISK_FAULTY:
  2856. err = set_disk_faulty(mddev, new_decode_dev(arg));
  2857. goto done_unlock;
  2858. case RUN_ARRAY:
  2859. err = do_md_run (mddev);
  2860. goto done_unlock;
  2861. case SET_BITMAP_FILE:
  2862. err = set_bitmap_file(mddev, (int)arg);
  2863. goto done_unlock;
  2864. default:
  2865. if (_IOC_TYPE(cmd) == MD_MAJOR)
  2866. printk(KERN_WARNING "md: %s(pid %d) used"
  2867. " obsolete MD ioctl, upgrade your"
  2868. " software to use new ictls.\n",
  2869. current->comm, current->pid);
  2870. err = -EINVAL;
  2871. goto abort_unlock;
  2872. }
  2873. done_unlock:
  2874. abort_unlock:
  2875. mddev_unlock(mddev);
  2876. return err;
  2877. done:
  2878. if (err)
  2879. MD_BUG();
  2880. abort:
  2881. return err;
  2882. }
  2883. static int md_open(struct inode *inode, struct file *file)
  2884. {
  2885. /*
  2886. * Succeed if we can lock the mddev, which confirms that
  2887. * it isn't being stopped right now.
  2888. */
  2889. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2890. int err;
  2891. if ((err = mddev_lock(mddev)))
  2892. goto out;
  2893. err = 0;
  2894. mddev_get(mddev);
  2895. mddev_unlock(mddev);
  2896. check_disk_change(inode->i_bdev);
  2897. out:
  2898. return err;
  2899. }
  2900. static int md_release(struct inode *inode, struct file * file)
  2901. {
  2902. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2903. if (!mddev)
  2904. BUG();
  2905. mddev_put(mddev);
  2906. return 0;
  2907. }
  2908. static int md_media_changed(struct gendisk *disk)
  2909. {
  2910. mddev_t *mddev = disk->private_data;
  2911. return mddev->changed;
  2912. }
  2913. static int md_revalidate(struct gendisk *disk)
  2914. {
  2915. mddev_t *mddev = disk->private_data;
  2916. mddev->changed = 0;
  2917. return 0;
  2918. }
  2919. static struct block_device_operations md_fops =
  2920. {
  2921. .owner = THIS_MODULE,
  2922. .open = md_open,
  2923. .release = md_release,
  2924. .ioctl = md_ioctl,
  2925. .media_changed = md_media_changed,
  2926. .revalidate_disk= md_revalidate,
  2927. };
  2928. static int md_thread(void * arg)
  2929. {
  2930. mdk_thread_t *thread = arg;
  2931. /*
  2932. * md_thread is a 'system-thread', it's priority should be very
  2933. * high. We avoid resource deadlocks individually in each
  2934. * raid personality. (RAID5 does preallocation) We also use RR and
  2935. * the very same RT priority as kswapd, thus we will never get
  2936. * into a priority inversion deadlock.
  2937. *
  2938. * we definitely have to have equal or higher priority than
  2939. * bdflush, otherwise bdflush will deadlock if there are too
  2940. * many dirty RAID5 blocks.
  2941. */
  2942. allow_signal(SIGKILL);
  2943. complete(thread->event);
  2944. while (!kthread_should_stop()) {
  2945. void (*run)(mddev_t *);
  2946. wait_event_interruptible_timeout(thread->wqueue,
  2947. test_bit(THREAD_WAKEUP, &thread->flags)
  2948. || kthread_should_stop(),
  2949. thread->timeout);
  2950. try_to_freeze();
  2951. clear_bit(THREAD_WAKEUP, &thread->flags);
  2952. run = thread->run;
  2953. if (run)
  2954. run(thread->mddev);
  2955. }
  2956. return 0;
  2957. }
  2958. void md_wakeup_thread(mdk_thread_t *thread)
  2959. {
  2960. if (thread) {
  2961. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  2962. set_bit(THREAD_WAKEUP, &thread->flags);
  2963. wake_up(&thread->wqueue);
  2964. }
  2965. }
  2966. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  2967. const char *name)
  2968. {
  2969. mdk_thread_t *thread;
  2970. struct completion event;
  2971. thread = kmalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  2972. if (!thread)
  2973. return NULL;
  2974. memset(thread, 0, sizeof(mdk_thread_t));
  2975. init_waitqueue_head(&thread->wqueue);
  2976. init_completion(&event);
  2977. thread->event = &event;
  2978. thread->run = run;
  2979. thread->mddev = mddev;
  2980. thread->name = name;
  2981. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  2982. thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
  2983. if (IS_ERR(thread->tsk)) {
  2984. kfree(thread);
  2985. return NULL;
  2986. }
  2987. wait_for_completion(&event);
  2988. return thread;
  2989. }
  2990. void md_unregister_thread(mdk_thread_t *thread)
  2991. {
  2992. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  2993. kthread_stop(thread->tsk);
  2994. kfree(thread);
  2995. }
  2996. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  2997. {
  2998. if (!mddev) {
  2999. MD_BUG();
  3000. return;
  3001. }
  3002. if (!rdev || test_bit(Faulty, &rdev->flags))
  3003. return;
  3004. /*
  3005. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  3006. mdname(mddev),
  3007. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  3008. __builtin_return_address(0),__builtin_return_address(1),
  3009. __builtin_return_address(2),__builtin_return_address(3));
  3010. */
  3011. if (!mddev->pers->error_handler)
  3012. return;
  3013. mddev->pers->error_handler(mddev,rdev);
  3014. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3015. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3016. md_wakeup_thread(mddev->thread);
  3017. }
  3018. /* seq_file implementation /proc/mdstat */
  3019. static void status_unused(struct seq_file *seq)
  3020. {
  3021. int i = 0;
  3022. mdk_rdev_t *rdev;
  3023. struct list_head *tmp;
  3024. seq_printf(seq, "unused devices: ");
  3025. ITERATE_RDEV_PENDING(rdev,tmp) {
  3026. char b[BDEVNAME_SIZE];
  3027. i++;
  3028. seq_printf(seq, "%s ",
  3029. bdevname(rdev->bdev,b));
  3030. }
  3031. if (!i)
  3032. seq_printf(seq, "<none>");
  3033. seq_printf(seq, "\n");
  3034. }
  3035. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  3036. {
  3037. unsigned long max_blocks, resync, res, dt, db, rt;
  3038. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  3039. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3040. max_blocks = mddev->resync_max_sectors >> 1;
  3041. else
  3042. max_blocks = mddev->size;
  3043. /*
  3044. * Should not happen.
  3045. */
  3046. if (!max_blocks) {
  3047. MD_BUG();
  3048. return;
  3049. }
  3050. res = (resync/1024)*1000/(max_blocks/1024 + 1);
  3051. {
  3052. int i, x = res/50, y = 20-x;
  3053. seq_printf(seq, "[");
  3054. for (i = 0; i < x; i++)
  3055. seq_printf(seq, "=");
  3056. seq_printf(seq, ">");
  3057. for (i = 0; i < y; i++)
  3058. seq_printf(seq, ".");
  3059. seq_printf(seq, "] ");
  3060. }
  3061. seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
  3062. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  3063. "resync" : "recovery"),
  3064. res/10, res % 10, resync, max_blocks);
  3065. /*
  3066. * We do not want to overflow, so the order of operands and
  3067. * the * 100 / 100 trick are important. We do a +1 to be
  3068. * safe against division by zero. We only estimate anyway.
  3069. *
  3070. * dt: time from mark until now
  3071. * db: blocks written from mark until now
  3072. * rt: remaining time
  3073. */
  3074. dt = ((jiffies - mddev->resync_mark) / HZ);
  3075. if (!dt) dt++;
  3076. db = resync - (mddev->resync_mark_cnt/2);
  3077. rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
  3078. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  3079. seq_printf(seq, " speed=%ldK/sec", db/dt);
  3080. }
  3081. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  3082. {
  3083. struct list_head *tmp;
  3084. loff_t l = *pos;
  3085. mddev_t *mddev;
  3086. if (l >= 0x10000)
  3087. return NULL;
  3088. if (!l--)
  3089. /* header */
  3090. return (void*)1;
  3091. spin_lock(&all_mddevs_lock);
  3092. list_for_each(tmp,&all_mddevs)
  3093. if (!l--) {
  3094. mddev = list_entry(tmp, mddev_t, all_mddevs);
  3095. mddev_get(mddev);
  3096. spin_unlock(&all_mddevs_lock);
  3097. return mddev;
  3098. }
  3099. spin_unlock(&all_mddevs_lock);
  3100. if (!l--)
  3101. return (void*)2;/* tail */
  3102. return NULL;
  3103. }
  3104. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  3105. {
  3106. struct list_head *tmp;
  3107. mddev_t *next_mddev, *mddev = v;
  3108. ++*pos;
  3109. if (v == (void*)2)
  3110. return NULL;
  3111. spin_lock(&all_mddevs_lock);
  3112. if (v == (void*)1)
  3113. tmp = all_mddevs.next;
  3114. else
  3115. tmp = mddev->all_mddevs.next;
  3116. if (tmp != &all_mddevs)
  3117. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  3118. else {
  3119. next_mddev = (void*)2;
  3120. *pos = 0x10000;
  3121. }
  3122. spin_unlock(&all_mddevs_lock);
  3123. if (v != (void*)1)
  3124. mddev_put(mddev);
  3125. return next_mddev;
  3126. }
  3127. static void md_seq_stop(struct seq_file *seq, void *v)
  3128. {
  3129. mddev_t *mddev = v;
  3130. if (mddev && v != (void*)1 && v != (void*)2)
  3131. mddev_put(mddev);
  3132. }
  3133. static int md_seq_show(struct seq_file *seq, void *v)
  3134. {
  3135. mddev_t *mddev = v;
  3136. sector_t size;
  3137. struct list_head *tmp2;
  3138. mdk_rdev_t *rdev;
  3139. int i;
  3140. struct bitmap *bitmap;
  3141. if (v == (void*)1) {
  3142. seq_printf(seq, "Personalities : ");
  3143. spin_lock(&pers_lock);
  3144. for (i = 0; i < MAX_PERSONALITY; i++)
  3145. if (pers[i])
  3146. seq_printf(seq, "[%s] ", pers[i]->name);
  3147. spin_unlock(&pers_lock);
  3148. seq_printf(seq, "\n");
  3149. return 0;
  3150. }
  3151. if (v == (void*)2) {
  3152. status_unused(seq);
  3153. return 0;
  3154. }
  3155. if (mddev_lock(mddev)!=0)
  3156. return -EINTR;
  3157. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  3158. seq_printf(seq, "%s : %sactive", mdname(mddev),
  3159. mddev->pers ? "" : "in");
  3160. if (mddev->pers) {
  3161. if (mddev->ro==1)
  3162. seq_printf(seq, " (read-only)");
  3163. if (mddev->ro==2)
  3164. seq_printf(seq, "(auto-read-only)");
  3165. seq_printf(seq, " %s", mddev->pers->name);
  3166. }
  3167. size = 0;
  3168. ITERATE_RDEV(mddev,rdev,tmp2) {
  3169. char b[BDEVNAME_SIZE];
  3170. seq_printf(seq, " %s[%d]",
  3171. bdevname(rdev->bdev,b), rdev->desc_nr);
  3172. if (test_bit(WriteMostly, &rdev->flags))
  3173. seq_printf(seq, "(W)");
  3174. if (test_bit(Faulty, &rdev->flags)) {
  3175. seq_printf(seq, "(F)");
  3176. continue;
  3177. } else if (rdev->raid_disk < 0)
  3178. seq_printf(seq, "(S)"); /* spare */
  3179. size += rdev->size;
  3180. }
  3181. if (!list_empty(&mddev->disks)) {
  3182. if (mddev->pers)
  3183. seq_printf(seq, "\n %llu blocks",
  3184. (unsigned long long)mddev->array_size);
  3185. else
  3186. seq_printf(seq, "\n %llu blocks",
  3187. (unsigned long long)size);
  3188. }
  3189. if (mddev->persistent) {
  3190. if (mddev->major_version != 0 ||
  3191. mddev->minor_version != 90) {
  3192. seq_printf(seq," super %d.%d",
  3193. mddev->major_version,
  3194. mddev->minor_version);
  3195. }
  3196. } else
  3197. seq_printf(seq, " super non-persistent");
  3198. if (mddev->pers) {
  3199. mddev->pers->status (seq, mddev);
  3200. seq_printf(seq, "\n ");
  3201. if (mddev->curr_resync > 2) {
  3202. status_resync (seq, mddev);
  3203. seq_printf(seq, "\n ");
  3204. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  3205. seq_printf(seq, "\tresync=DELAYED\n ");
  3206. else if (mddev->recovery_cp < MaxSector)
  3207. seq_printf(seq, "\tresync=PENDING\n ");
  3208. } else
  3209. seq_printf(seq, "\n ");
  3210. if ((bitmap = mddev->bitmap)) {
  3211. unsigned long chunk_kb;
  3212. unsigned long flags;
  3213. spin_lock_irqsave(&bitmap->lock, flags);
  3214. chunk_kb = bitmap->chunksize >> 10;
  3215. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  3216. "%lu%s chunk",
  3217. bitmap->pages - bitmap->missing_pages,
  3218. bitmap->pages,
  3219. (bitmap->pages - bitmap->missing_pages)
  3220. << (PAGE_SHIFT - 10),
  3221. chunk_kb ? chunk_kb : bitmap->chunksize,
  3222. chunk_kb ? "KB" : "B");
  3223. if (bitmap->file) {
  3224. seq_printf(seq, ", file: ");
  3225. seq_path(seq, bitmap->file->f_vfsmnt,
  3226. bitmap->file->f_dentry," \t\n");
  3227. }
  3228. seq_printf(seq, "\n");
  3229. spin_unlock_irqrestore(&bitmap->lock, flags);
  3230. }
  3231. seq_printf(seq, "\n");
  3232. }
  3233. mddev_unlock(mddev);
  3234. return 0;
  3235. }
  3236. static struct seq_operations md_seq_ops = {
  3237. .start = md_seq_start,
  3238. .next = md_seq_next,
  3239. .stop = md_seq_stop,
  3240. .show = md_seq_show,
  3241. };
  3242. static int md_seq_open(struct inode *inode, struct file *file)
  3243. {
  3244. int error;
  3245. error = seq_open(file, &md_seq_ops);
  3246. return error;
  3247. }
  3248. static struct file_operations md_seq_fops = {
  3249. .open = md_seq_open,
  3250. .read = seq_read,
  3251. .llseek = seq_lseek,
  3252. .release = seq_release,
  3253. };
  3254. int register_md_personality(int pnum, mdk_personality_t *p)
  3255. {
  3256. if (pnum >= MAX_PERSONALITY) {
  3257. printk(KERN_ERR
  3258. "md: tried to install personality %s as nr %d, but max is %lu\n",
  3259. p->name, pnum, MAX_PERSONALITY-1);
  3260. return -EINVAL;
  3261. }
  3262. spin_lock(&pers_lock);
  3263. if (pers[pnum]) {
  3264. spin_unlock(&pers_lock);
  3265. return -EBUSY;
  3266. }
  3267. pers[pnum] = p;
  3268. printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
  3269. spin_unlock(&pers_lock);
  3270. return 0;
  3271. }
  3272. int unregister_md_personality(int pnum)
  3273. {
  3274. if (pnum >= MAX_PERSONALITY)
  3275. return -EINVAL;
  3276. printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
  3277. spin_lock(&pers_lock);
  3278. pers[pnum] = NULL;
  3279. spin_unlock(&pers_lock);
  3280. return 0;
  3281. }
  3282. static int is_mddev_idle(mddev_t *mddev)
  3283. {
  3284. mdk_rdev_t * rdev;
  3285. struct list_head *tmp;
  3286. int idle;
  3287. unsigned long curr_events;
  3288. idle = 1;
  3289. ITERATE_RDEV(mddev,rdev,tmp) {
  3290. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  3291. curr_events = disk_stat_read(disk, sectors[0]) +
  3292. disk_stat_read(disk, sectors[1]) -
  3293. atomic_read(&disk->sync_io);
  3294. /* Allow some slack between valud of curr_events and last_events,
  3295. * as there are some uninteresting races.
  3296. * Note: the following is an unsigned comparison.
  3297. */
  3298. if ((curr_events - rdev->last_events + 32) > 64) {
  3299. rdev->last_events = curr_events;
  3300. idle = 0;
  3301. }
  3302. }
  3303. return idle;
  3304. }
  3305. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  3306. {
  3307. /* another "blocks" (512byte) blocks have been synced */
  3308. atomic_sub(blocks, &mddev->recovery_active);
  3309. wake_up(&mddev->recovery_wait);
  3310. if (!ok) {
  3311. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3312. md_wakeup_thread(mddev->thread);
  3313. // stop recovery, signal do_sync ....
  3314. }
  3315. }
  3316. /* md_write_start(mddev, bi)
  3317. * If we need to update some array metadata (e.g. 'active' flag
  3318. * in superblock) before writing, schedule a superblock update
  3319. * and wait for it to complete.
  3320. */
  3321. void md_write_start(mddev_t *mddev, struct bio *bi)
  3322. {
  3323. if (bio_data_dir(bi) != WRITE)
  3324. return;
  3325. BUG_ON(mddev->ro == 1);
  3326. if (mddev->ro == 2) {
  3327. /* need to switch to read/write */
  3328. mddev->ro = 0;
  3329. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3330. md_wakeup_thread(mddev->thread);
  3331. }
  3332. atomic_inc(&mddev->writes_pending);
  3333. if (mddev->in_sync) {
  3334. spin_lock_irq(&mddev->write_lock);
  3335. if (mddev->in_sync) {
  3336. mddev->in_sync = 0;
  3337. mddev->sb_dirty = 1;
  3338. md_wakeup_thread(mddev->thread);
  3339. }
  3340. spin_unlock_irq(&mddev->write_lock);
  3341. }
  3342. wait_event(mddev->sb_wait, mddev->sb_dirty==0);
  3343. }
  3344. void md_write_end(mddev_t *mddev)
  3345. {
  3346. if (atomic_dec_and_test(&mddev->writes_pending)) {
  3347. if (mddev->safemode == 2)
  3348. md_wakeup_thread(mddev->thread);
  3349. else
  3350. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  3351. }
  3352. }
  3353. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  3354. #define SYNC_MARKS 10
  3355. #define SYNC_MARK_STEP (3*HZ)
  3356. static void md_do_sync(mddev_t *mddev)
  3357. {
  3358. mddev_t *mddev2;
  3359. unsigned int currspeed = 0,
  3360. window;
  3361. sector_t max_sectors,j, io_sectors;
  3362. unsigned long mark[SYNC_MARKS];
  3363. sector_t mark_cnt[SYNC_MARKS];
  3364. int last_mark,m;
  3365. struct list_head *tmp;
  3366. sector_t last_check;
  3367. int skipped = 0;
  3368. /* just incase thread restarts... */
  3369. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  3370. return;
  3371. /* we overload curr_resync somewhat here.
  3372. * 0 == not engaged in resync at all
  3373. * 2 == checking that there is no conflict with another sync
  3374. * 1 == like 2, but have yielded to allow conflicting resync to
  3375. * commense
  3376. * other == active in resync - this many blocks
  3377. *
  3378. * Before starting a resync we must have set curr_resync to
  3379. * 2, and then checked that every "conflicting" array has curr_resync
  3380. * less than ours. When we find one that is the same or higher
  3381. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  3382. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  3383. * This will mean we have to start checking from the beginning again.
  3384. *
  3385. */
  3386. do {
  3387. mddev->curr_resync = 2;
  3388. try_again:
  3389. if (signal_pending(current) ||
  3390. kthread_should_stop()) {
  3391. flush_signals(current);
  3392. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3393. goto skip;
  3394. }
  3395. ITERATE_MDDEV(mddev2,tmp) {
  3396. if (mddev2 == mddev)
  3397. continue;
  3398. if (mddev2->curr_resync &&
  3399. match_mddev_units(mddev,mddev2)) {
  3400. DEFINE_WAIT(wq);
  3401. if (mddev < mddev2 && mddev->curr_resync == 2) {
  3402. /* arbitrarily yield */
  3403. mddev->curr_resync = 1;
  3404. wake_up(&resync_wait);
  3405. }
  3406. if (mddev > mddev2 && mddev->curr_resync == 1)
  3407. /* no need to wait here, we can wait the next
  3408. * time 'round when curr_resync == 2
  3409. */
  3410. continue;
  3411. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  3412. if (!signal_pending(current) &&
  3413. !kthread_should_stop() &&
  3414. mddev2->curr_resync >= mddev->curr_resync) {
  3415. printk(KERN_INFO "md: delaying resync of %s"
  3416. " until %s has finished resync (they"
  3417. " share one or more physical units)\n",
  3418. mdname(mddev), mdname(mddev2));
  3419. mddev_put(mddev2);
  3420. schedule();
  3421. finish_wait(&resync_wait, &wq);
  3422. goto try_again;
  3423. }
  3424. finish_wait(&resync_wait, &wq);
  3425. }
  3426. }
  3427. } while (mddev->curr_resync < 2);
  3428. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3429. /* resync follows the size requested by the personality,
  3430. * which defaults to physical size, but can be virtual size
  3431. */
  3432. max_sectors = mddev->resync_max_sectors;
  3433. mddev->resync_mismatches = 0;
  3434. } else
  3435. /* recovery follows the physical size of devices */
  3436. max_sectors = mddev->size << 1;
  3437. printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
  3438. printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
  3439. " %d KB/sec/disc.\n", sysctl_speed_limit_min);
  3440. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  3441. "(but not more than %d KB/sec) for reconstruction.\n",
  3442. sysctl_speed_limit_max);
  3443. is_mddev_idle(mddev); /* this also initializes IO event counters */
  3444. /* we don't use the checkpoint if there's a bitmap */
  3445. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
  3446. && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3447. j = mddev->recovery_cp;
  3448. else
  3449. j = 0;
  3450. io_sectors = 0;
  3451. for (m = 0; m < SYNC_MARKS; m++) {
  3452. mark[m] = jiffies;
  3453. mark_cnt[m] = io_sectors;
  3454. }
  3455. last_mark = 0;
  3456. mddev->resync_mark = mark[last_mark];
  3457. mddev->resync_mark_cnt = mark_cnt[last_mark];
  3458. /*
  3459. * Tune reconstruction:
  3460. */
  3461. window = 32*(PAGE_SIZE/512);
  3462. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  3463. window/2,(unsigned long long) max_sectors/2);
  3464. atomic_set(&mddev->recovery_active, 0);
  3465. init_waitqueue_head(&mddev->recovery_wait);
  3466. last_check = 0;
  3467. if (j>2) {
  3468. printk(KERN_INFO
  3469. "md: resuming recovery of %s from checkpoint.\n",
  3470. mdname(mddev));
  3471. mddev->curr_resync = j;
  3472. }
  3473. while (j < max_sectors) {
  3474. sector_t sectors;
  3475. skipped = 0;
  3476. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  3477. currspeed < sysctl_speed_limit_min);
  3478. if (sectors == 0) {
  3479. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3480. goto out;
  3481. }
  3482. if (!skipped) { /* actual IO requested */
  3483. io_sectors += sectors;
  3484. atomic_add(sectors, &mddev->recovery_active);
  3485. }
  3486. j += sectors;
  3487. if (j>1) mddev->curr_resync = j;
  3488. if (last_check + window > io_sectors || j == max_sectors)
  3489. continue;
  3490. last_check = io_sectors;
  3491. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  3492. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  3493. break;
  3494. repeat:
  3495. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  3496. /* step marks */
  3497. int next = (last_mark+1) % SYNC_MARKS;
  3498. mddev->resync_mark = mark[next];
  3499. mddev->resync_mark_cnt = mark_cnt[next];
  3500. mark[next] = jiffies;
  3501. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  3502. last_mark = next;
  3503. }
  3504. if (signal_pending(current) || kthread_should_stop()) {
  3505. /*
  3506. * got a signal, exit.
  3507. */
  3508. printk(KERN_INFO
  3509. "md: md_do_sync() got signal ... exiting\n");
  3510. flush_signals(current);
  3511. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3512. goto out;
  3513. }
  3514. /*
  3515. * this loop exits only if either when we are slower than
  3516. * the 'hard' speed limit, or the system was IO-idle for
  3517. * a jiffy.
  3518. * the system might be non-idle CPU-wise, but we only care
  3519. * about not overloading the IO subsystem. (things like an
  3520. * e2fsck being done on the RAID array should execute fast)
  3521. */
  3522. mddev->queue->unplug_fn(mddev->queue);
  3523. cond_resched();
  3524. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  3525. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  3526. if (currspeed > sysctl_speed_limit_min) {
  3527. if ((currspeed > sysctl_speed_limit_max) ||
  3528. !is_mddev_idle(mddev)) {
  3529. msleep_interruptible(250);
  3530. goto repeat;
  3531. }
  3532. }
  3533. }
  3534. printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
  3535. /*
  3536. * this also signals 'finished resyncing' to md_stop
  3537. */
  3538. out:
  3539. mddev->queue->unplug_fn(mddev->queue);
  3540. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  3541. /* tell personality that we are finished */
  3542. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  3543. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3544. mddev->curr_resync > 2 &&
  3545. mddev->curr_resync >= mddev->recovery_cp) {
  3546. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3547. printk(KERN_INFO
  3548. "md: checkpointing recovery of %s.\n",
  3549. mdname(mddev));
  3550. mddev->recovery_cp = mddev->curr_resync;
  3551. } else
  3552. mddev->recovery_cp = MaxSector;
  3553. }
  3554. skip:
  3555. mddev->curr_resync = 0;
  3556. wake_up(&resync_wait);
  3557. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  3558. md_wakeup_thread(mddev->thread);
  3559. }
  3560. /*
  3561. * This routine is regularly called by all per-raid-array threads to
  3562. * deal with generic issues like resync and super-block update.
  3563. * Raid personalities that don't have a thread (linear/raid0) do not
  3564. * need this as they never do any recovery or update the superblock.
  3565. *
  3566. * It does not do any resync itself, but rather "forks" off other threads
  3567. * to do that as needed.
  3568. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  3569. * "->recovery" and create a thread at ->sync_thread.
  3570. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  3571. * and wakeups up this thread which will reap the thread and finish up.
  3572. * This thread also removes any faulty devices (with nr_pending == 0).
  3573. *
  3574. * The overall approach is:
  3575. * 1/ if the superblock needs updating, update it.
  3576. * 2/ If a recovery thread is running, don't do anything else.
  3577. * 3/ If recovery has finished, clean up, possibly marking spares active.
  3578. * 4/ If there are any faulty devices, remove them.
  3579. * 5/ If array is degraded, try to add spares devices
  3580. * 6/ If array has spares or is not in-sync, start a resync thread.
  3581. */
  3582. void md_check_recovery(mddev_t *mddev)
  3583. {
  3584. mdk_rdev_t *rdev;
  3585. struct list_head *rtmp;
  3586. if (mddev->bitmap)
  3587. bitmap_daemon_work(mddev->bitmap);
  3588. if (mddev->ro)
  3589. return;
  3590. if (signal_pending(current)) {
  3591. if (mddev->pers->sync_request) {
  3592. printk(KERN_INFO "md: %s in immediate safe mode\n",
  3593. mdname(mddev));
  3594. mddev->safemode = 2;
  3595. }
  3596. flush_signals(current);
  3597. }
  3598. if ( ! (
  3599. mddev->sb_dirty ||
  3600. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  3601. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  3602. (mddev->safemode == 1) ||
  3603. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  3604. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  3605. ))
  3606. return;
  3607. if (mddev_trylock(mddev)==0) {
  3608. int spares =0;
  3609. spin_lock_irq(&mddev->write_lock);
  3610. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  3611. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  3612. mddev->in_sync = 1;
  3613. mddev->sb_dirty = 1;
  3614. }
  3615. if (mddev->safemode == 1)
  3616. mddev->safemode = 0;
  3617. spin_unlock_irq(&mddev->write_lock);
  3618. if (mddev->sb_dirty)
  3619. md_update_sb(mddev);
  3620. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  3621. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  3622. /* resync/recovery still happening */
  3623. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3624. goto unlock;
  3625. }
  3626. if (mddev->sync_thread) {
  3627. /* resync has finished, collect result */
  3628. md_unregister_thread(mddev->sync_thread);
  3629. mddev->sync_thread = NULL;
  3630. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3631. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3632. /* success...*/
  3633. /* activate any spares */
  3634. mddev->pers->spare_active(mddev);
  3635. }
  3636. md_update_sb(mddev);
  3637. /* if array is no-longer degraded, then any saved_raid_disk
  3638. * information must be scrapped
  3639. */
  3640. if (!mddev->degraded)
  3641. ITERATE_RDEV(mddev,rdev,rtmp)
  3642. rdev->saved_raid_disk = -1;
  3643. mddev->recovery = 0;
  3644. /* flag recovery needed just to double check */
  3645. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3646. goto unlock;
  3647. }
  3648. /* Clear some bits that don't mean anything, but
  3649. * might be left set
  3650. */
  3651. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3652. clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3653. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3654. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  3655. /* no recovery is running.
  3656. * remove any failed drives, then
  3657. * add spares if possible.
  3658. * Spare are also removed and re-added, to allow
  3659. * the personality to fail the re-add.
  3660. */
  3661. ITERATE_RDEV(mddev,rdev,rtmp)
  3662. if (rdev->raid_disk >= 0 &&
  3663. (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
  3664. atomic_read(&rdev->nr_pending)==0) {
  3665. if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
  3666. char nm[20];
  3667. sprintf(nm,"rd%d", rdev->raid_disk);
  3668. sysfs_remove_link(&mddev->kobj, nm);
  3669. rdev->raid_disk = -1;
  3670. }
  3671. }
  3672. if (mddev->degraded) {
  3673. ITERATE_RDEV(mddev,rdev,rtmp)
  3674. if (rdev->raid_disk < 0
  3675. && !test_bit(Faulty, &rdev->flags)) {
  3676. if (mddev->pers->hot_add_disk(mddev,rdev)) {
  3677. char nm[20];
  3678. sprintf(nm, "rd%d", rdev->raid_disk);
  3679. sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
  3680. spares++;
  3681. } else
  3682. break;
  3683. }
  3684. }
  3685. if (spares) {
  3686. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3687. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3688. } else if (mddev->recovery_cp < MaxSector) {
  3689. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3690. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3691. /* nothing to be done ... */
  3692. goto unlock;
  3693. if (mddev->pers->sync_request) {
  3694. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3695. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  3696. /* We are adding a device or devices to an array
  3697. * which has the bitmap stored on all devices.
  3698. * So make sure all bitmap pages get written
  3699. */
  3700. bitmap_write_all(mddev->bitmap);
  3701. }
  3702. mddev->sync_thread = md_register_thread(md_do_sync,
  3703. mddev,
  3704. "%s_resync");
  3705. if (!mddev->sync_thread) {
  3706. printk(KERN_ERR "%s: could not start resync"
  3707. " thread...\n",
  3708. mdname(mddev));
  3709. /* leave the spares where they are, it shouldn't hurt */
  3710. mddev->recovery = 0;
  3711. } else {
  3712. md_wakeup_thread(mddev->sync_thread);
  3713. }
  3714. }
  3715. unlock:
  3716. mddev_unlock(mddev);
  3717. }
  3718. }
  3719. static int md_notify_reboot(struct notifier_block *this,
  3720. unsigned long code, void *x)
  3721. {
  3722. struct list_head *tmp;
  3723. mddev_t *mddev;
  3724. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  3725. printk(KERN_INFO "md: stopping all md devices.\n");
  3726. ITERATE_MDDEV(mddev,tmp)
  3727. if (mddev_trylock(mddev)==0)
  3728. do_md_stop (mddev, 1);
  3729. /*
  3730. * certain more exotic SCSI devices are known to be
  3731. * volatile wrt too early system reboots. While the
  3732. * right place to handle this issue is the given
  3733. * driver, we do want to have a safe RAID driver ...
  3734. */
  3735. mdelay(1000*1);
  3736. }
  3737. return NOTIFY_DONE;
  3738. }
  3739. static struct notifier_block md_notifier = {
  3740. .notifier_call = md_notify_reboot,
  3741. .next = NULL,
  3742. .priority = INT_MAX, /* before any real devices */
  3743. };
  3744. static void md_geninit(void)
  3745. {
  3746. struct proc_dir_entry *p;
  3747. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  3748. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  3749. if (p)
  3750. p->proc_fops = &md_seq_fops;
  3751. }
  3752. static int __init md_init(void)
  3753. {
  3754. int minor;
  3755. printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
  3756. " MD_SB_DISKS=%d\n",
  3757. MD_MAJOR_VERSION, MD_MINOR_VERSION,
  3758. MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
  3759. printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
  3760. BITMAP_MINOR);
  3761. if (register_blkdev(MAJOR_NR, "md"))
  3762. return -1;
  3763. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  3764. unregister_blkdev(MAJOR_NR, "md");
  3765. return -1;
  3766. }
  3767. devfs_mk_dir("md");
  3768. blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
  3769. md_probe, NULL, NULL);
  3770. blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
  3771. md_probe, NULL, NULL);
  3772. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3773. devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
  3774. S_IFBLK|S_IRUSR|S_IWUSR,
  3775. "md/%d", minor);
  3776. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3777. devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
  3778. S_IFBLK|S_IRUSR|S_IWUSR,
  3779. "md/mdp%d", minor);
  3780. register_reboot_notifier(&md_notifier);
  3781. raid_table_header = register_sysctl_table(raid_root_table, 1);
  3782. md_geninit();
  3783. return (0);
  3784. }
  3785. #ifndef MODULE
  3786. /*
  3787. * Searches all registered partitions for autorun RAID arrays
  3788. * at boot time.
  3789. */
  3790. static dev_t detected_devices[128];
  3791. static int dev_cnt;
  3792. void md_autodetect_dev(dev_t dev)
  3793. {
  3794. if (dev_cnt >= 0 && dev_cnt < 127)
  3795. detected_devices[dev_cnt++] = dev;
  3796. }
  3797. static void autostart_arrays(int part)
  3798. {
  3799. mdk_rdev_t *rdev;
  3800. int i;
  3801. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  3802. for (i = 0; i < dev_cnt; i++) {
  3803. dev_t dev = detected_devices[i];
  3804. rdev = md_import_device(dev,0, 0);
  3805. if (IS_ERR(rdev))
  3806. continue;
  3807. if (test_bit(Faulty, &rdev->flags)) {
  3808. MD_BUG();
  3809. continue;
  3810. }
  3811. list_add(&rdev->same_set, &pending_raid_disks);
  3812. }
  3813. dev_cnt = 0;
  3814. autorun_devices(part);
  3815. }
  3816. #endif
  3817. static __exit void md_exit(void)
  3818. {
  3819. mddev_t *mddev;
  3820. struct list_head *tmp;
  3821. int i;
  3822. blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
  3823. blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
  3824. for (i=0; i < MAX_MD_DEVS; i++)
  3825. devfs_remove("md/%d", i);
  3826. for (i=0; i < MAX_MD_DEVS; i++)
  3827. devfs_remove("md/d%d", i);
  3828. devfs_remove("md");
  3829. unregister_blkdev(MAJOR_NR,"md");
  3830. unregister_blkdev(mdp_major, "mdp");
  3831. unregister_reboot_notifier(&md_notifier);
  3832. unregister_sysctl_table(raid_table_header);
  3833. remove_proc_entry("mdstat", NULL);
  3834. ITERATE_MDDEV(mddev,tmp) {
  3835. struct gendisk *disk = mddev->gendisk;
  3836. if (!disk)
  3837. continue;
  3838. export_array(mddev);
  3839. del_gendisk(disk);
  3840. put_disk(disk);
  3841. mddev->gendisk = NULL;
  3842. mddev_put(mddev);
  3843. }
  3844. }
  3845. module_init(md_init)
  3846. module_exit(md_exit)
  3847. static int get_ro(char *buffer, struct kernel_param *kp)
  3848. {
  3849. return sprintf(buffer, "%d", start_readonly);
  3850. }
  3851. static int set_ro(const char *val, struct kernel_param *kp)
  3852. {
  3853. char *e;
  3854. int num = simple_strtoul(val, &e, 10);
  3855. if (*val && (*e == '\0' || *e == '\n')) {
  3856. start_readonly = num;
  3857. return 0;;
  3858. }
  3859. return -EINVAL;
  3860. }
  3861. module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
  3862. EXPORT_SYMBOL(register_md_personality);
  3863. EXPORT_SYMBOL(unregister_md_personality);
  3864. EXPORT_SYMBOL(md_error);
  3865. EXPORT_SYMBOL(md_done_sync);
  3866. EXPORT_SYMBOL(md_write_start);
  3867. EXPORT_SYMBOL(md_write_end);
  3868. EXPORT_SYMBOL(md_register_thread);
  3869. EXPORT_SYMBOL(md_unregister_thread);
  3870. EXPORT_SYMBOL(md_wakeup_thread);
  3871. EXPORT_SYMBOL(md_print_devices);
  3872. EXPORT_SYMBOL(md_check_recovery);
  3873. MODULE_LICENSE("GPL");
  3874. MODULE_ALIAS("md");
  3875. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);