slub.c 129 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include "slab.h"
  19. #include <linux/proc_fs.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/kmemcheck.h>
  22. #include <linux/cpu.h>
  23. #include <linux/cpuset.h>
  24. #include <linux/mempolicy.h>
  25. #include <linux/ctype.h>
  26. #include <linux/debugobjects.h>
  27. #include <linux/kallsyms.h>
  28. #include <linux/memory.h>
  29. #include <linux/math64.h>
  30. #include <linux/fault-inject.h>
  31. #include <linux/stacktrace.h>
  32. #include <linux/prefetch.h>
  33. #include <trace/events/kmem.h>
  34. #include "internal.h"
  35. /*
  36. * Lock order:
  37. * 1. slab_mutex (Global Mutex)
  38. * 2. node->list_lock
  39. * 3. slab_lock(page) (Only on some arches and for debugging)
  40. *
  41. * slab_mutex
  42. *
  43. * The role of the slab_mutex is to protect the list of all the slabs
  44. * and to synchronize major metadata changes to slab cache structures.
  45. *
  46. * The slab_lock is only used for debugging and on arches that do not
  47. * have the ability to do a cmpxchg_double. It only protects the second
  48. * double word in the page struct. Meaning
  49. * A. page->freelist -> List of object free in a page
  50. * B. page->counters -> Counters of objects
  51. * C. page->frozen -> frozen state
  52. *
  53. * If a slab is frozen then it is exempt from list management. It is not
  54. * on any list. The processor that froze the slab is the one who can
  55. * perform list operations on the page. Other processors may put objects
  56. * onto the freelist but the processor that froze the slab is the only
  57. * one that can retrieve the objects from the page's freelist.
  58. *
  59. * The list_lock protects the partial and full list on each node and
  60. * the partial slab counter. If taken then no new slabs may be added or
  61. * removed from the lists nor make the number of partial slabs be modified.
  62. * (Note that the total number of slabs is an atomic value that may be
  63. * modified without taking the list lock).
  64. *
  65. * The list_lock is a centralized lock and thus we avoid taking it as
  66. * much as possible. As long as SLUB does not have to handle partial
  67. * slabs, operations can continue without any centralized lock. F.e.
  68. * allocating a long series of objects that fill up slabs does not require
  69. * the list lock.
  70. * Interrupts are disabled during allocation and deallocation in order to
  71. * make the slab allocator safe to use in the context of an irq. In addition
  72. * interrupts are disabled to ensure that the processor does not change
  73. * while handling per_cpu slabs, due to kernel preemption.
  74. *
  75. * SLUB assigns one slab for allocation to each processor.
  76. * Allocations only occur from these slabs called cpu slabs.
  77. *
  78. * Slabs with free elements are kept on a partial list and during regular
  79. * operations no list for full slabs is used. If an object in a full slab is
  80. * freed then the slab will show up again on the partial lists.
  81. * We track full slabs for debugging purposes though because otherwise we
  82. * cannot scan all objects.
  83. *
  84. * Slabs are freed when they become empty. Teardown and setup is
  85. * minimal so we rely on the page allocators per cpu caches for
  86. * fast frees and allocs.
  87. *
  88. * Overloading of page flags that are otherwise used for LRU management.
  89. *
  90. * PageActive The slab is frozen and exempt from list processing.
  91. * This means that the slab is dedicated to a purpose
  92. * such as satisfying allocations for a specific
  93. * processor. Objects may be freed in the slab while
  94. * it is frozen but slab_free will then skip the usual
  95. * list operations. It is up to the processor holding
  96. * the slab to integrate the slab into the slab lists
  97. * when the slab is no longer needed.
  98. *
  99. * One use of this flag is to mark slabs that are
  100. * used for allocations. Then such a slab becomes a cpu
  101. * slab. The cpu slab may be equipped with an additional
  102. * freelist that allows lockless access to
  103. * free objects in addition to the regular freelist
  104. * that requires the slab lock.
  105. *
  106. * PageError Slab requires special handling due to debug
  107. * options set. This moves slab handling out of
  108. * the fast path and disables lockless freelists.
  109. */
  110. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  111. SLAB_TRACE | SLAB_DEBUG_FREE)
  112. static inline int kmem_cache_debug(struct kmem_cache *s)
  113. {
  114. #ifdef CONFIG_SLUB_DEBUG
  115. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  116. #else
  117. return 0;
  118. #endif
  119. }
  120. /*
  121. * Issues still to be resolved:
  122. *
  123. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  124. *
  125. * - Variable sizing of the per node arrays
  126. */
  127. /* Enable to test recovery from slab corruption on boot */
  128. #undef SLUB_RESILIENCY_TEST
  129. /* Enable to log cmpxchg failures */
  130. #undef SLUB_DEBUG_CMPXCHG
  131. /*
  132. * Mininum number of partial slabs. These will be left on the partial
  133. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  134. */
  135. #define MIN_PARTIAL 5
  136. /*
  137. * Maximum number of desirable partial slabs.
  138. * The existence of more partial slabs makes kmem_cache_shrink
  139. * sort the partial list by the number of objects in the.
  140. */
  141. #define MAX_PARTIAL 10
  142. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  143. SLAB_POISON | SLAB_STORE_USER)
  144. /*
  145. * Debugging flags that require metadata to be stored in the slab. These get
  146. * disabled when slub_debug=O is used and a cache's min order increases with
  147. * metadata.
  148. */
  149. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  150. /*
  151. * Set of flags that will prevent slab merging
  152. */
  153. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  154. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  155. SLAB_FAILSLAB)
  156. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  157. SLAB_CACHE_DMA | SLAB_NOTRACK)
  158. #define OO_SHIFT 16
  159. #define OO_MASK ((1 << OO_SHIFT) - 1)
  160. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  161. /* Internal SLUB flags */
  162. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  163. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  164. static int kmem_size = sizeof(struct kmem_cache);
  165. #ifdef CONFIG_SMP
  166. static struct notifier_block slab_notifier;
  167. #endif
  168. /*
  169. * Tracking user of a slab.
  170. */
  171. #define TRACK_ADDRS_COUNT 16
  172. struct track {
  173. unsigned long addr; /* Called from address */
  174. #ifdef CONFIG_STACKTRACE
  175. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  176. #endif
  177. int cpu; /* Was running on cpu */
  178. int pid; /* Pid context */
  179. unsigned long when; /* When did the operation occur */
  180. };
  181. enum track_item { TRACK_ALLOC, TRACK_FREE };
  182. #ifdef CONFIG_SYSFS
  183. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  184. static void sysfs_slab_remove(struct kmem_cache *);
  185. #else
  186. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  187. { return 0; }
  188. static inline void sysfs_slab_remove(struct kmem_cache *s) { }
  189. #endif
  190. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  191. {
  192. #ifdef CONFIG_SLUB_STATS
  193. __this_cpu_inc(s->cpu_slab->stat[si]);
  194. #endif
  195. }
  196. /********************************************************************
  197. * Core slab cache functions
  198. *******************************************************************/
  199. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  200. {
  201. return s->node[node];
  202. }
  203. /* Verify that a pointer has an address that is valid within a slab page */
  204. static inline int check_valid_pointer(struct kmem_cache *s,
  205. struct page *page, const void *object)
  206. {
  207. void *base;
  208. if (!object)
  209. return 1;
  210. base = page_address(page);
  211. if (object < base || object >= base + page->objects * s->size ||
  212. (object - base) % s->size) {
  213. return 0;
  214. }
  215. return 1;
  216. }
  217. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  218. {
  219. return *(void **)(object + s->offset);
  220. }
  221. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  222. {
  223. prefetch(object + s->offset);
  224. }
  225. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  226. {
  227. void *p;
  228. #ifdef CONFIG_DEBUG_PAGEALLOC
  229. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  230. #else
  231. p = get_freepointer(s, object);
  232. #endif
  233. return p;
  234. }
  235. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  236. {
  237. *(void **)(object + s->offset) = fp;
  238. }
  239. /* Loop over all objects in a slab */
  240. #define for_each_object(__p, __s, __addr, __objects) \
  241. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  242. __p += (__s)->size)
  243. /* Determine object index from a given position */
  244. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  245. {
  246. return (p - addr) / s->size;
  247. }
  248. static inline size_t slab_ksize(const struct kmem_cache *s)
  249. {
  250. #ifdef CONFIG_SLUB_DEBUG
  251. /*
  252. * Debugging requires use of the padding between object
  253. * and whatever may come after it.
  254. */
  255. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  256. return s->object_size;
  257. #endif
  258. /*
  259. * If we have the need to store the freelist pointer
  260. * back there or track user information then we can
  261. * only use the space before that information.
  262. */
  263. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  264. return s->inuse;
  265. /*
  266. * Else we can use all the padding etc for the allocation
  267. */
  268. return s->size;
  269. }
  270. static inline int order_objects(int order, unsigned long size, int reserved)
  271. {
  272. return ((PAGE_SIZE << order) - reserved) / size;
  273. }
  274. static inline struct kmem_cache_order_objects oo_make(int order,
  275. unsigned long size, int reserved)
  276. {
  277. struct kmem_cache_order_objects x = {
  278. (order << OO_SHIFT) + order_objects(order, size, reserved)
  279. };
  280. return x;
  281. }
  282. static inline int oo_order(struct kmem_cache_order_objects x)
  283. {
  284. return x.x >> OO_SHIFT;
  285. }
  286. static inline int oo_objects(struct kmem_cache_order_objects x)
  287. {
  288. return x.x & OO_MASK;
  289. }
  290. /*
  291. * Per slab locking using the pagelock
  292. */
  293. static __always_inline void slab_lock(struct page *page)
  294. {
  295. bit_spin_lock(PG_locked, &page->flags);
  296. }
  297. static __always_inline void slab_unlock(struct page *page)
  298. {
  299. __bit_spin_unlock(PG_locked, &page->flags);
  300. }
  301. /* Interrupts must be disabled (for the fallback code to work right) */
  302. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  303. void *freelist_old, unsigned long counters_old,
  304. void *freelist_new, unsigned long counters_new,
  305. const char *n)
  306. {
  307. VM_BUG_ON(!irqs_disabled());
  308. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  309. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  310. if (s->flags & __CMPXCHG_DOUBLE) {
  311. if (cmpxchg_double(&page->freelist, &page->counters,
  312. freelist_old, counters_old,
  313. freelist_new, counters_new))
  314. return 1;
  315. } else
  316. #endif
  317. {
  318. slab_lock(page);
  319. if (page->freelist == freelist_old && page->counters == counters_old) {
  320. page->freelist = freelist_new;
  321. page->counters = counters_new;
  322. slab_unlock(page);
  323. return 1;
  324. }
  325. slab_unlock(page);
  326. }
  327. cpu_relax();
  328. stat(s, CMPXCHG_DOUBLE_FAIL);
  329. #ifdef SLUB_DEBUG_CMPXCHG
  330. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  331. #endif
  332. return 0;
  333. }
  334. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  335. void *freelist_old, unsigned long counters_old,
  336. void *freelist_new, unsigned long counters_new,
  337. const char *n)
  338. {
  339. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  340. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  341. if (s->flags & __CMPXCHG_DOUBLE) {
  342. if (cmpxchg_double(&page->freelist, &page->counters,
  343. freelist_old, counters_old,
  344. freelist_new, counters_new))
  345. return 1;
  346. } else
  347. #endif
  348. {
  349. unsigned long flags;
  350. local_irq_save(flags);
  351. slab_lock(page);
  352. if (page->freelist == freelist_old && page->counters == counters_old) {
  353. page->freelist = freelist_new;
  354. page->counters = counters_new;
  355. slab_unlock(page);
  356. local_irq_restore(flags);
  357. return 1;
  358. }
  359. slab_unlock(page);
  360. local_irq_restore(flags);
  361. }
  362. cpu_relax();
  363. stat(s, CMPXCHG_DOUBLE_FAIL);
  364. #ifdef SLUB_DEBUG_CMPXCHG
  365. printk(KERN_INFO "%s %s: cmpxchg double redo ", n, s->name);
  366. #endif
  367. return 0;
  368. }
  369. #ifdef CONFIG_SLUB_DEBUG
  370. /*
  371. * Determine a map of object in use on a page.
  372. *
  373. * Node listlock must be held to guarantee that the page does
  374. * not vanish from under us.
  375. */
  376. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  377. {
  378. void *p;
  379. void *addr = page_address(page);
  380. for (p = page->freelist; p; p = get_freepointer(s, p))
  381. set_bit(slab_index(p, s, addr), map);
  382. }
  383. /*
  384. * Debug settings:
  385. */
  386. #ifdef CONFIG_SLUB_DEBUG_ON
  387. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  388. #else
  389. static int slub_debug;
  390. #endif
  391. static char *slub_debug_slabs;
  392. static int disable_higher_order_debug;
  393. /*
  394. * Object debugging
  395. */
  396. static void print_section(char *text, u8 *addr, unsigned int length)
  397. {
  398. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  399. length, 1);
  400. }
  401. static struct track *get_track(struct kmem_cache *s, void *object,
  402. enum track_item alloc)
  403. {
  404. struct track *p;
  405. if (s->offset)
  406. p = object + s->offset + sizeof(void *);
  407. else
  408. p = object + s->inuse;
  409. return p + alloc;
  410. }
  411. static void set_track(struct kmem_cache *s, void *object,
  412. enum track_item alloc, unsigned long addr)
  413. {
  414. struct track *p = get_track(s, object, alloc);
  415. if (addr) {
  416. #ifdef CONFIG_STACKTRACE
  417. struct stack_trace trace;
  418. int i;
  419. trace.nr_entries = 0;
  420. trace.max_entries = TRACK_ADDRS_COUNT;
  421. trace.entries = p->addrs;
  422. trace.skip = 3;
  423. save_stack_trace(&trace);
  424. /* See rant in lockdep.c */
  425. if (trace.nr_entries != 0 &&
  426. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  427. trace.nr_entries--;
  428. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  429. p->addrs[i] = 0;
  430. #endif
  431. p->addr = addr;
  432. p->cpu = smp_processor_id();
  433. p->pid = current->pid;
  434. p->when = jiffies;
  435. } else
  436. memset(p, 0, sizeof(struct track));
  437. }
  438. static void init_tracking(struct kmem_cache *s, void *object)
  439. {
  440. if (!(s->flags & SLAB_STORE_USER))
  441. return;
  442. set_track(s, object, TRACK_FREE, 0UL);
  443. set_track(s, object, TRACK_ALLOC, 0UL);
  444. }
  445. static void print_track(const char *s, struct track *t)
  446. {
  447. if (!t->addr)
  448. return;
  449. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  450. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  451. #ifdef CONFIG_STACKTRACE
  452. {
  453. int i;
  454. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  455. if (t->addrs[i])
  456. printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
  457. else
  458. break;
  459. }
  460. #endif
  461. }
  462. static void print_tracking(struct kmem_cache *s, void *object)
  463. {
  464. if (!(s->flags & SLAB_STORE_USER))
  465. return;
  466. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  467. print_track("Freed", get_track(s, object, TRACK_FREE));
  468. }
  469. static void print_page_info(struct page *page)
  470. {
  471. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  472. page, page->objects, page->inuse, page->freelist, page->flags);
  473. }
  474. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  475. {
  476. va_list args;
  477. char buf[100];
  478. va_start(args, fmt);
  479. vsnprintf(buf, sizeof(buf), fmt, args);
  480. va_end(args);
  481. printk(KERN_ERR "========================================"
  482. "=====================================\n");
  483. printk(KERN_ERR "BUG %s (%s): %s\n", s->name, print_tainted(), buf);
  484. printk(KERN_ERR "----------------------------------------"
  485. "-------------------------------------\n\n");
  486. }
  487. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  488. {
  489. va_list args;
  490. char buf[100];
  491. va_start(args, fmt);
  492. vsnprintf(buf, sizeof(buf), fmt, args);
  493. va_end(args);
  494. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  495. }
  496. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  497. {
  498. unsigned int off; /* Offset of last byte */
  499. u8 *addr = page_address(page);
  500. print_tracking(s, p);
  501. print_page_info(page);
  502. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  503. p, p - addr, get_freepointer(s, p));
  504. if (p > addr + 16)
  505. print_section("Bytes b4 ", p - 16, 16);
  506. print_section("Object ", p, min_t(unsigned long, s->object_size,
  507. PAGE_SIZE));
  508. if (s->flags & SLAB_RED_ZONE)
  509. print_section("Redzone ", p + s->object_size,
  510. s->inuse - s->object_size);
  511. if (s->offset)
  512. off = s->offset + sizeof(void *);
  513. else
  514. off = s->inuse;
  515. if (s->flags & SLAB_STORE_USER)
  516. off += 2 * sizeof(struct track);
  517. if (off != s->size)
  518. /* Beginning of the filler is the free pointer */
  519. print_section("Padding ", p + off, s->size - off);
  520. dump_stack();
  521. }
  522. static void object_err(struct kmem_cache *s, struct page *page,
  523. u8 *object, char *reason)
  524. {
  525. slab_bug(s, "%s", reason);
  526. print_trailer(s, page, object);
  527. }
  528. static void slab_err(struct kmem_cache *s, struct page *page, const char *fmt, ...)
  529. {
  530. va_list args;
  531. char buf[100];
  532. va_start(args, fmt);
  533. vsnprintf(buf, sizeof(buf), fmt, args);
  534. va_end(args);
  535. slab_bug(s, "%s", buf);
  536. print_page_info(page);
  537. dump_stack();
  538. }
  539. static void init_object(struct kmem_cache *s, void *object, u8 val)
  540. {
  541. u8 *p = object;
  542. if (s->flags & __OBJECT_POISON) {
  543. memset(p, POISON_FREE, s->object_size - 1);
  544. p[s->object_size - 1] = POISON_END;
  545. }
  546. if (s->flags & SLAB_RED_ZONE)
  547. memset(p + s->object_size, val, s->inuse - s->object_size);
  548. }
  549. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  550. void *from, void *to)
  551. {
  552. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  553. memset(from, data, to - from);
  554. }
  555. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  556. u8 *object, char *what,
  557. u8 *start, unsigned int value, unsigned int bytes)
  558. {
  559. u8 *fault;
  560. u8 *end;
  561. fault = memchr_inv(start, value, bytes);
  562. if (!fault)
  563. return 1;
  564. end = start + bytes;
  565. while (end > fault && end[-1] == value)
  566. end--;
  567. slab_bug(s, "%s overwritten", what);
  568. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  569. fault, end - 1, fault[0], value);
  570. print_trailer(s, page, object);
  571. restore_bytes(s, what, value, fault, end);
  572. return 0;
  573. }
  574. /*
  575. * Object layout:
  576. *
  577. * object address
  578. * Bytes of the object to be managed.
  579. * If the freepointer may overlay the object then the free
  580. * pointer is the first word of the object.
  581. *
  582. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  583. * 0xa5 (POISON_END)
  584. *
  585. * object + s->object_size
  586. * Padding to reach word boundary. This is also used for Redzoning.
  587. * Padding is extended by another word if Redzoning is enabled and
  588. * object_size == inuse.
  589. *
  590. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  591. * 0xcc (RED_ACTIVE) for objects in use.
  592. *
  593. * object + s->inuse
  594. * Meta data starts here.
  595. *
  596. * A. Free pointer (if we cannot overwrite object on free)
  597. * B. Tracking data for SLAB_STORE_USER
  598. * C. Padding to reach required alignment boundary or at mininum
  599. * one word if debugging is on to be able to detect writes
  600. * before the word boundary.
  601. *
  602. * Padding is done using 0x5a (POISON_INUSE)
  603. *
  604. * object + s->size
  605. * Nothing is used beyond s->size.
  606. *
  607. * If slabcaches are merged then the object_size and inuse boundaries are mostly
  608. * ignored. And therefore no slab options that rely on these boundaries
  609. * may be used with merged slabcaches.
  610. */
  611. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  612. {
  613. unsigned long off = s->inuse; /* The end of info */
  614. if (s->offset)
  615. /* Freepointer is placed after the object. */
  616. off += sizeof(void *);
  617. if (s->flags & SLAB_STORE_USER)
  618. /* We also have user information there */
  619. off += 2 * sizeof(struct track);
  620. if (s->size == off)
  621. return 1;
  622. return check_bytes_and_report(s, page, p, "Object padding",
  623. p + off, POISON_INUSE, s->size - off);
  624. }
  625. /* Check the pad bytes at the end of a slab page */
  626. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  627. {
  628. u8 *start;
  629. u8 *fault;
  630. u8 *end;
  631. int length;
  632. int remainder;
  633. if (!(s->flags & SLAB_POISON))
  634. return 1;
  635. start = page_address(page);
  636. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  637. end = start + length;
  638. remainder = length % s->size;
  639. if (!remainder)
  640. return 1;
  641. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  642. if (!fault)
  643. return 1;
  644. while (end > fault && end[-1] == POISON_INUSE)
  645. end--;
  646. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  647. print_section("Padding ", end - remainder, remainder);
  648. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  649. return 0;
  650. }
  651. static int check_object(struct kmem_cache *s, struct page *page,
  652. void *object, u8 val)
  653. {
  654. u8 *p = object;
  655. u8 *endobject = object + s->object_size;
  656. if (s->flags & SLAB_RED_ZONE) {
  657. if (!check_bytes_and_report(s, page, object, "Redzone",
  658. endobject, val, s->inuse - s->object_size))
  659. return 0;
  660. } else {
  661. if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
  662. check_bytes_and_report(s, page, p, "Alignment padding",
  663. endobject, POISON_INUSE, s->inuse - s->object_size);
  664. }
  665. }
  666. if (s->flags & SLAB_POISON) {
  667. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  668. (!check_bytes_and_report(s, page, p, "Poison", p,
  669. POISON_FREE, s->object_size - 1) ||
  670. !check_bytes_and_report(s, page, p, "Poison",
  671. p + s->object_size - 1, POISON_END, 1)))
  672. return 0;
  673. /*
  674. * check_pad_bytes cleans up on its own.
  675. */
  676. check_pad_bytes(s, page, p);
  677. }
  678. if (!s->offset && val == SLUB_RED_ACTIVE)
  679. /*
  680. * Object and freepointer overlap. Cannot check
  681. * freepointer while object is allocated.
  682. */
  683. return 1;
  684. /* Check free pointer validity */
  685. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  686. object_err(s, page, p, "Freepointer corrupt");
  687. /*
  688. * No choice but to zap it and thus lose the remainder
  689. * of the free objects in this slab. May cause
  690. * another error because the object count is now wrong.
  691. */
  692. set_freepointer(s, p, NULL);
  693. return 0;
  694. }
  695. return 1;
  696. }
  697. static int check_slab(struct kmem_cache *s, struct page *page)
  698. {
  699. int maxobj;
  700. VM_BUG_ON(!irqs_disabled());
  701. if (!PageSlab(page)) {
  702. slab_err(s, page, "Not a valid slab page");
  703. return 0;
  704. }
  705. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  706. if (page->objects > maxobj) {
  707. slab_err(s, page, "objects %u > max %u",
  708. s->name, page->objects, maxobj);
  709. return 0;
  710. }
  711. if (page->inuse > page->objects) {
  712. slab_err(s, page, "inuse %u > max %u",
  713. s->name, page->inuse, page->objects);
  714. return 0;
  715. }
  716. /* Slab_pad_check fixes things up after itself */
  717. slab_pad_check(s, page);
  718. return 1;
  719. }
  720. /*
  721. * Determine if a certain object on a page is on the freelist. Must hold the
  722. * slab lock to guarantee that the chains are in a consistent state.
  723. */
  724. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  725. {
  726. int nr = 0;
  727. void *fp;
  728. void *object = NULL;
  729. unsigned long max_objects;
  730. fp = page->freelist;
  731. while (fp && nr <= page->objects) {
  732. if (fp == search)
  733. return 1;
  734. if (!check_valid_pointer(s, page, fp)) {
  735. if (object) {
  736. object_err(s, page, object,
  737. "Freechain corrupt");
  738. set_freepointer(s, object, NULL);
  739. break;
  740. } else {
  741. slab_err(s, page, "Freepointer corrupt");
  742. page->freelist = NULL;
  743. page->inuse = page->objects;
  744. slab_fix(s, "Freelist cleared");
  745. return 0;
  746. }
  747. break;
  748. }
  749. object = fp;
  750. fp = get_freepointer(s, object);
  751. nr++;
  752. }
  753. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  754. if (max_objects > MAX_OBJS_PER_PAGE)
  755. max_objects = MAX_OBJS_PER_PAGE;
  756. if (page->objects != max_objects) {
  757. slab_err(s, page, "Wrong number of objects. Found %d but "
  758. "should be %d", page->objects, max_objects);
  759. page->objects = max_objects;
  760. slab_fix(s, "Number of objects adjusted.");
  761. }
  762. if (page->inuse != page->objects - nr) {
  763. slab_err(s, page, "Wrong object count. Counter is %d but "
  764. "counted were %d", page->inuse, page->objects - nr);
  765. page->inuse = page->objects - nr;
  766. slab_fix(s, "Object count adjusted.");
  767. }
  768. return search == NULL;
  769. }
  770. static void trace(struct kmem_cache *s, struct page *page, void *object,
  771. int alloc)
  772. {
  773. if (s->flags & SLAB_TRACE) {
  774. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  775. s->name,
  776. alloc ? "alloc" : "free",
  777. object, page->inuse,
  778. page->freelist);
  779. if (!alloc)
  780. print_section("Object ", (void *)object, s->object_size);
  781. dump_stack();
  782. }
  783. }
  784. /*
  785. * Hooks for other subsystems that check memory allocations. In a typical
  786. * production configuration these hooks all should produce no code at all.
  787. */
  788. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  789. {
  790. flags &= gfp_allowed_mask;
  791. lockdep_trace_alloc(flags);
  792. might_sleep_if(flags & __GFP_WAIT);
  793. return should_failslab(s->object_size, flags, s->flags);
  794. }
  795. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  796. {
  797. flags &= gfp_allowed_mask;
  798. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  799. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
  800. }
  801. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  802. {
  803. kmemleak_free_recursive(x, s->flags);
  804. /*
  805. * Trouble is that we may no longer disable interupts in the fast path
  806. * So in order to make the debug calls that expect irqs to be
  807. * disabled we need to disable interrupts temporarily.
  808. */
  809. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  810. {
  811. unsigned long flags;
  812. local_irq_save(flags);
  813. kmemcheck_slab_free(s, x, s->object_size);
  814. debug_check_no_locks_freed(x, s->object_size);
  815. local_irq_restore(flags);
  816. }
  817. #endif
  818. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  819. debug_check_no_obj_freed(x, s->object_size);
  820. }
  821. /*
  822. * Tracking of fully allocated slabs for debugging purposes.
  823. *
  824. * list_lock must be held.
  825. */
  826. static void add_full(struct kmem_cache *s,
  827. struct kmem_cache_node *n, struct page *page)
  828. {
  829. if (!(s->flags & SLAB_STORE_USER))
  830. return;
  831. list_add(&page->lru, &n->full);
  832. }
  833. /*
  834. * list_lock must be held.
  835. */
  836. static void remove_full(struct kmem_cache *s, struct page *page)
  837. {
  838. if (!(s->flags & SLAB_STORE_USER))
  839. return;
  840. list_del(&page->lru);
  841. }
  842. /* Tracking of the number of slabs for debugging purposes */
  843. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  844. {
  845. struct kmem_cache_node *n = get_node(s, node);
  846. return atomic_long_read(&n->nr_slabs);
  847. }
  848. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  849. {
  850. return atomic_long_read(&n->nr_slabs);
  851. }
  852. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  853. {
  854. struct kmem_cache_node *n = get_node(s, node);
  855. /*
  856. * May be called early in order to allocate a slab for the
  857. * kmem_cache_node structure. Solve the chicken-egg
  858. * dilemma by deferring the increment of the count during
  859. * bootstrap (see early_kmem_cache_node_alloc).
  860. */
  861. if (n) {
  862. atomic_long_inc(&n->nr_slabs);
  863. atomic_long_add(objects, &n->total_objects);
  864. }
  865. }
  866. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  867. {
  868. struct kmem_cache_node *n = get_node(s, node);
  869. atomic_long_dec(&n->nr_slabs);
  870. atomic_long_sub(objects, &n->total_objects);
  871. }
  872. /* Object debug checks for alloc/free paths */
  873. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  874. void *object)
  875. {
  876. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  877. return;
  878. init_object(s, object, SLUB_RED_INACTIVE);
  879. init_tracking(s, object);
  880. }
  881. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  882. void *object, unsigned long addr)
  883. {
  884. if (!check_slab(s, page))
  885. goto bad;
  886. if (!check_valid_pointer(s, page, object)) {
  887. object_err(s, page, object, "Freelist Pointer check fails");
  888. goto bad;
  889. }
  890. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  891. goto bad;
  892. /* Success perform special debug activities for allocs */
  893. if (s->flags & SLAB_STORE_USER)
  894. set_track(s, object, TRACK_ALLOC, addr);
  895. trace(s, page, object, 1);
  896. init_object(s, object, SLUB_RED_ACTIVE);
  897. return 1;
  898. bad:
  899. if (PageSlab(page)) {
  900. /*
  901. * If this is a slab page then lets do the best we can
  902. * to avoid issues in the future. Marking all objects
  903. * as used avoids touching the remaining objects.
  904. */
  905. slab_fix(s, "Marking all objects used");
  906. page->inuse = page->objects;
  907. page->freelist = NULL;
  908. }
  909. return 0;
  910. }
  911. static noinline struct kmem_cache_node *free_debug_processing(
  912. struct kmem_cache *s, struct page *page, void *object,
  913. unsigned long addr, unsigned long *flags)
  914. {
  915. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  916. spin_lock_irqsave(&n->list_lock, *flags);
  917. slab_lock(page);
  918. if (!check_slab(s, page))
  919. goto fail;
  920. if (!check_valid_pointer(s, page, object)) {
  921. slab_err(s, page, "Invalid object pointer 0x%p", object);
  922. goto fail;
  923. }
  924. if (on_freelist(s, page, object)) {
  925. object_err(s, page, object, "Object already free");
  926. goto fail;
  927. }
  928. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  929. goto out;
  930. if (unlikely(s != page->slab)) {
  931. if (!PageSlab(page)) {
  932. slab_err(s, page, "Attempt to free object(0x%p) "
  933. "outside of slab", object);
  934. } else if (!page->slab) {
  935. printk(KERN_ERR
  936. "SLUB <none>: no slab for object 0x%p.\n",
  937. object);
  938. dump_stack();
  939. } else
  940. object_err(s, page, object,
  941. "page slab pointer corrupt.");
  942. goto fail;
  943. }
  944. if (s->flags & SLAB_STORE_USER)
  945. set_track(s, object, TRACK_FREE, addr);
  946. trace(s, page, object, 0);
  947. init_object(s, object, SLUB_RED_INACTIVE);
  948. out:
  949. slab_unlock(page);
  950. /*
  951. * Keep node_lock to preserve integrity
  952. * until the object is actually freed
  953. */
  954. return n;
  955. fail:
  956. slab_unlock(page);
  957. spin_unlock_irqrestore(&n->list_lock, *flags);
  958. slab_fix(s, "Object at 0x%p not freed", object);
  959. return NULL;
  960. }
  961. static int __init setup_slub_debug(char *str)
  962. {
  963. slub_debug = DEBUG_DEFAULT_FLAGS;
  964. if (*str++ != '=' || !*str)
  965. /*
  966. * No options specified. Switch on full debugging.
  967. */
  968. goto out;
  969. if (*str == ',')
  970. /*
  971. * No options but restriction on slabs. This means full
  972. * debugging for slabs matching a pattern.
  973. */
  974. goto check_slabs;
  975. if (tolower(*str) == 'o') {
  976. /*
  977. * Avoid enabling debugging on caches if its minimum order
  978. * would increase as a result.
  979. */
  980. disable_higher_order_debug = 1;
  981. goto out;
  982. }
  983. slub_debug = 0;
  984. if (*str == '-')
  985. /*
  986. * Switch off all debugging measures.
  987. */
  988. goto out;
  989. /*
  990. * Determine which debug features should be switched on
  991. */
  992. for (; *str && *str != ','; str++) {
  993. switch (tolower(*str)) {
  994. case 'f':
  995. slub_debug |= SLAB_DEBUG_FREE;
  996. break;
  997. case 'z':
  998. slub_debug |= SLAB_RED_ZONE;
  999. break;
  1000. case 'p':
  1001. slub_debug |= SLAB_POISON;
  1002. break;
  1003. case 'u':
  1004. slub_debug |= SLAB_STORE_USER;
  1005. break;
  1006. case 't':
  1007. slub_debug |= SLAB_TRACE;
  1008. break;
  1009. case 'a':
  1010. slub_debug |= SLAB_FAILSLAB;
  1011. break;
  1012. default:
  1013. printk(KERN_ERR "slub_debug option '%c' "
  1014. "unknown. skipped\n", *str);
  1015. }
  1016. }
  1017. check_slabs:
  1018. if (*str == ',')
  1019. slub_debug_slabs = str + 1;
  1020. out:
  1021. return 1;
  1022. }
  1023. __setup("slub_debug", setup_slub_debug);
  1024. static unsigned long kmem_cache_flags(unsigned long object_size,
  1025. unsigned long flags, const char *name,
  1026. void (*ctor)(void *))
  1027. {
  1028. /*
  1029. * Enable debugging if selected on the kernel commandline.
  1030. */
  1031. if (slub_debug && (!slub_debug_slabs ||
  1032. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  1033. flags |= slub_debug;
  1034. return flags;
  1035. }
  1036. #else
  1037. static inline void setup_object_debug(struct kmem_cache *s,
  1038. struct page *page, void *object) {}
  1039. static inline int alloc_debug_processing(struct kmem_cache *s,
  1040. struct page *page, void *object, unsigned long addr) { return 0; }
  1041. static inline struct kmem_cache_node *free_debug_processing(
  1042. struct kmem_cache *s, struct page *page, void *object,
  1043. unsigned long addr, unsigned long *flags) { return NULL; }
  1044. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1045. { return 1; }
  1046. static inline int check_object(struct kmem_cache *s, struct page *page,
  1047. void *object, u8 val) { return 1; }
  1048. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1049. struct page *page) {}
  1050. static inline void remove_full(struct kmem_cache *s, struct page *page) {}
  1051. static inline unsigned long kmem_cache_flags(unsigned long object_size,
  1052. unsigned long flags, const char *name,
  1053. void (*ctor)(void *))
  1054. {
  1055. return flags;
  1056. }
  1057. #define slub_debug 0
  1058. #define disable_higher_order_debug 0
  1059. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1060. { return 0; }
  1061. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1062. { return 0; }
  1063. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1064. int objects) {}
  1065. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1066. int objects) {}
  1067. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1068. { return 0; }
  1069. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1070. void *object) {}
  1071. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  1072. #endif /* CONFIG_SLUB_DEBUG */
  1073. /*
  1074. * Slab allocation and freeing
  1075. */
  1076. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  1077. struct kmem_cache_order_objects oo)
  1078. {
  1079. int order = oo_order(oo);
  1080. flags |= __GFP_NOTRACK;
  1081. if (node == NUMA_NO_NODE)
  1082. return alloc_pages(flags, order);
  1083. else
  1084. return alloc_pages_exact_node(node, flags, order);
  1085. }
  1086. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1087. {
  1088. struct page *page;
  1089. struct kmem_cache_order_objects oo = s->oo;
  1090. gfp_t alloc_gfp;
  1091. flags &= gfp_allowed_mask;
  1092. if (flags & __GFP_WAIT)
  1093. local_irq_enable();
  1094. flags |= s->allocflags;
  1095. /*
  1096. * Let the initial higher-order allocation fail under memory pressure
  1097. * so we fall-back to the minimum order allocation.
  1098. */
  1099. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1100. page = alloc_slab_page(alloc_gfp, node, oo);
  1101. if (unlikely(!page)) {
  1102. oo = s->min;
  1103. /*
  1104. * Allocation may have failed due to fragmentation.
  1105. * Try a lower order alloc if possible
  1106. */
  1107. page = alloc_slab_page(flags, node, oo);
  1108. if (page)
  1109. stat(s, ORDER_FALLBACK);
  1110. }
  1111. if (kmemcheck_enabled && page
  1112. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1113. int pages = 1 << oo_order(oo);
  1114. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  1115. /*
  1116. * Objects from caches that have a constructor don't get
  1117. * cleared when they're allocated, so we need to do it here.
  1118. */
  1119. if (s->ctor)
  1120. kmemcheck_mark_uninitialized_pages(page, pages);
  1121. else
  1122. kmemcheck_mark_unallocated_pages(page, pages);
  1123. }
  1124. if (flags & __GFP_WAIT)
  1125. local_irq_disable();
  1126. if (!page)
  1127. return NULL;
  1128. page->objects = oo_objects(oo);
  1129. mod_zone_page_state(page_zone(page),
  1130. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1131. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1132. 1 << oo_order(oo));
  1133. return page;
  1134. }
  1135. static void setup_object(struct kmem_cache *s, struct page *page,
  1136. void *object)
  1137. {
  1138. setup_object_debug(s, page, object);
  1139. if (unlikely(s->ctor))
  1140. s->ctor(object);
  1141. }
  1142. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1143. {
  1144. struct page *page;
  1145. void *start;
  1146. void *last;
  1147. void *p;
  1148. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1149. page = allocate_slab(s,
  1150. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1151. if (!page)
  1152. goto out;
  1153. inc_slabs_node(s, page_to_nid(page), page->objects);
  1154. page->slab = s;
  1155. __SetPageSlab(page);
  1156. if (page->pfmemalloc)
  1157. SetPageSlabPfmemalloc(page);
  1158. start = page_address(page);
  1159. if (unlikely(s->flags & SLAB_POISON))
  1160. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1161. last = start;
  1162. for_each_object(p, s, start, page->objects) {
  1163. setup_object(s, page, last);
  1164. set_freepointer(s, last, p);
  1165. last = p;
  1166. }
  1167. setup_object(s, page, last);
  1168. set_freepointer(s, last, NULL);
  1169. page->freelist = start;
  1170. page->inuse = page->objects;
  1171. page->frozen = 1;
  1172. out:
  1173. return page;
  1174. }
  1175. static void __free_slab(struct kmem_cache *s, struct page *page)
  1176. {
  1177. int order = compound_order(page);
  1178. int pages = 1 << order;
  1179. if (kmem_cache_debug(s)) {
  1180. void *p;
  1181. slab_pad_check(s, page);
  1182. for_each_object(p, s, page_address(page),
  1183. page->objects)
  1184. check_object(s, page, p, SLUB_RED_INACTIVE);
  1185. }
  1186. kmemcheck_free_shadow(page, compound_order(page));
  1187. mod_zone_page_state(page_zone(page),
  1188. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1189. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1190. -pages);
  1191. __ClearPageSlabPfmemalloc(page);
  1192. __ClearPageSlab(page);
  1193. reset_page_mapcount(page);
  1194. if (current->reclaim_state)
  1195. current->reclaim_state->reclaimed_slab += pages;
  1196. __free_pages(page, order);
  1197. }
  1198. #define need_reserve_slab_rcu \
  1199. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1200. static void rcu_free_slab(struct rcu_head *h)
  1201. {
  1202. struct page *page;
  1203. if (need_reserve_slab_rcu)
  1204. page = virt_to_head_page(h);
  1205. else
  1206. page = container_of((struct list_head *)h, struct page, lru);
  1207. __free_slab(page->slab, page);
  1208. }
  1209. static void free_slab(struct kmem_cache *s, struct page *page)
  1210. {
  1211. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1212. struct rcu_head *head;
  1213. if (need_reserve_slab_rcu) {
  1214. int order = compound_order(page);
  1215. int offset = (PAGE_SIZE << order) - s->reserved;
  1216. VM_BUG_ON(s->reserved != sizeof(*head));
  1217. head = page_address(page) + offset;
  1218. } else {
  1219. /*
  1220. * RCU free overloads the RCU head over the LRU
  1221. */
  1222. head = (void *)&page->lru;
  1223. }
  1224. call_rcu(head, rcu_free_slab);
  1225. } else
  1226. __free_slab(s, page);
  1227. }
  1228. static void discard_slab(struct kmem_cache *s, struct page *page)
  1229. {
  1230. dec_slabs_node(s, page_to_nid(page), page->objects);
  1231. free_slab(s, page);
  1232. }
  1233. /*
  1234. * Management of partially allocated slabs.
  1235. *
  1236. * list_lock must be held.
  1237. */
  1238. static inline void add_partial(struct kmem_cache_node *n,
  1239. struct page *page, int tail)
  1240. {
  1241. n->nr_partial++;
  1242. if (tail == DEACTIVATE_TO_TAIL)
  1243. list_add_tail(&page->lru, &n->partial);
  1244. else
  1245. list_add(&page->lru, &n->partial);
  1246. }
  1247. /*
  1248. * list_lock must be held.
  1249. */
  1250. static inline void remove_partial(struct kmem_cache_node *n,
  1251. struct page *page)
  1252. {
  1253. list_del(&page->lru);
  1254. n->nr_partial--;
  1255. }
  1256. /*
  1257. * Remove slab from the partial list, freeze it and
  1258. * return the pointer to the freelist.
  1259. *
  1260. * Returns a list of objects or NULL if it fails.
  1261. *
  1262. * Must hold list_lock since we modify the partial list.
  1263. */
  1264. static inline void *acquire_slab(struct kmem_cache *s,
  1265. struct kmem_cache_node *n, struct page *page,
  1266. int mode)
  1267. {
  1268. void *freelist;
  1269. unsigned long counters;
  1270. struct page new;
  1271. /*
  1272. * Zap the freelist and set the frozen bit.
  1273. * The old freelist is the list of objects for the
  1274. * per cpu allocation list.
  1275. */
  1276. freelist = page->freelist;
  1277. counters = page->counters;
  1278. new.counters = counters;
  1279. if (mode) {
  1280. new.inuse = page->objects;
  1281. new.freelist = NULL;
  1282. } else {
  1283. new.freelist = freelist;
  1284. }
  1285. VM_BUG_ON(new.frozen);
  1286. new.frozen = 1;
  1287. if (!__cmpxchg_double_slab(s, page,
  1288. freelist, counters,
  1289. new.freelist, new.counters,
  1290. "acquire_slab"))
  1291. return NULL;
  1292. remove_partial(n, page);
  1293. WARN_ON(!freelist);
  1294. return freelist;
  1295. }
  1296. static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1297. /*
  1298. * Try to allocate a partial slab from a specific node.
  1299. */
  1300. static void *get_partial_node(struct kmem_cache *s,
  1301. struct kmem_cache_node *n, struct kmem_cache_cpu *c)
  1302. {
  1303. struct page *page, *page2;
  1304. void *object = NULL;
  1305. /*
  1306. * Racy check. If we mistakenly see no partial slabs then we
  1307. * just allocate an empty slab. If we mistakenly try to get a
  1308. * partial slab and there is none available then get_partials()
  1309. * will return NULL.
  1310. */
  1311. if (!n || !n->nr_partial)
  1312. return NULL;
  1313. spin_lock(&n->list_lock);
  1314. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1315. void *t = acquire_slab(s, n, page, object == NULL);
  1316. int available;
  1317. if (!t)
  1318. break;
  1319. if (!object) {
  1320. c->page = page;
  1321. stat(s, ALLOC_FROM_PARTIAL);
  1322. object = t;
  1323. available = page->objects - page->inuse;
  1324. } else {
  1325. available = put_cpu_partial(s, page, 0);
  1326. stat(s, CPU_PARTIAL_NODE);
  1327. }
  1328. if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
  1329. break;
  1330. }
  1331. spin_unlock(&n->list_lock);
  1332. return object;
  1333. }
  1334. /*
  1335. * Get a page from somewhere. Search in increasing NUMA distances.
  1336. */
  1337. static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1338. struct kmem_cache_cpu *c)
  1339. {
  1340. #ifdef CONFIG_NUMA
  1341. struct zonelist *zonelist;
  1342. struct zoneref *z;
  1343. struct zone *zone;
  1344. enum zone_type high_zoneidx = gfp_zone(flags);
  1345. void *object;
  1346. unsigned int cpuset_mems_cookie;
  1347. /*
  1348. * The defrag ratio allows a configuration of the tradeoffs between
  1349. * inter node defragmentation and node local allocations. A lower
  1350. * defrag_ratio increases the tendency to do local allocations
  1351. * instead of attempting to obtain partial slabs from other nodes.
  1352. *
  1353. * If the defrag_ratio is set to 0 then kmalloc() always
  1354. * returns node local objects. If the ratio is higher then kmalloc()
  1355. * may return off node objects because partial slabs are obtained
  1356. * from other nodes and filled up.
  1357. *
  1358. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1359. * defrag_ratio = 1000) then every (well almost) allocation will
  1360. * first attempt to defrag slab caches on other nodes. This means
  1361. * scanning over all nodes to look for partial slabs which may be
  1362. * expensive if we do it every time we are trying to find a slab
  1363. * with available objects.
  1364. */
  1365. if (!s->remote_node_defrag_ratio ||
  1366. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1367. return NULL;
  1368. do {
  1369. cpuset_mems_cookie = get_mems_allowed();
  1370. zonelist = node_zonelist(slab_node(), flags);
  1371. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1372. struct kmem_cache_node *n;
  1373. n = get_node(s, zone_to_nid(zone));
  1374. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1375. n->nr_partial > s->min_partial) {
  1376. object = get_partial_node(s, n, c);
  1377. if (object) {
  1378. /*
  1379. * Return the object even if
  1380. * put_mems_allowed indicated that
  1381. * the cpuset mems_allowed was
  1382. * updated in parallel. It's a
  1383. * harmless race between the alloc
  1384. * and the cpuset update.
  1385. */
  1386. put_mems_allowed(cpuset_mems_cookie);
  1387. return object;
  1388. }
  1389. }
  1390. }
  1391. } while (!put_mems_allowed(cpuset_mems_cookie));
  1392. #endif
  1393. return NULL;
  1394. }
  1395. /*
  1396. * Get a partial page, lock it and return it.
  1397. */
  1398. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1399. struct kmem_cache_cpu *c)
  1400. {
  1401. void *object;
  1402. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1403. object = get_partial_node(s, get_node(s, searchnode), c);
  1404. if (object || node != NUMA_NO_NODE)
  1405. return object;
  1406. return get_any_partial(s, flags, c);
  1407. }
  1408. #ifdef CONFIG_PREEMPT
  1409. /*
  1410. * Calculate the next globally unique transaction for disambiguiation
  1411. * during cmpxchg. The transactions start with the cpu number and are then
  1412. * incremented by CONFIG_NR_CPUS.
  1413. */
  1414. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1415. #else
  1416. /*
  1417. * No preemption supported therefore also no need to check for
  1418. * different cpus.
  1419. */
  1420. #define TID_STEP 1
  1421. #endif
  1422. static inline unsigned long next_tid(unsigned long tid)
  1423. {
  1424. return tid + TID_STEP;
  1425. }
  1426. static inline unsigned int tid_to_cpu(unsigned long tid)
  1427. {
  1428. return tid % TID_STEP;
  1429. }
  1430. static inline unsigned long tid_to_event(unsigned long tid)
  1431. {
  1432. return tid / TID_STEP;
  1433. }
  1434. static inline unsigned int init_tid(int cpu)
  1435. {
  1436. return cpu;
  1437. }
  1438. static inline void note_cmpxchg_failure(const char *n,
  1439. const struct kmem_cache *s, unsigned long tid)
  1440. {
  1441. #ifdef SLUB_DEBUG_CMPXCHG
  1442. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1443. printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
  1444. #ifdef CONFIG_PREEMPT
  1445. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1446. printk("due to cpu change %d -> %d\n",
  1447. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1448. else
  1449. #endif
  1450. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1451. printk("due to cpu running other code. Event %ld->%ld\n",
  1452. tid_to_event(tid), tid_to_event(actual_tid));
  1453. else
  1454. printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1455. actual_tid, tid, next_tid(tid));
  1456. #endif
  1457. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1458. }
  1459. void init_kmem_cache_cpus(struct kmem_cache *s)
  1460. {
  1461. int cpu;
  1462. for_each_possible_cpu(cpu)
  1463. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1464. }
  1465. /*
  1466. * Remove the cpu slab
  1467. */
  1468. static void deactivate_slab(struct kmem_cache *s, struct page *page, void *freelist)
  1469. {
  1470. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1471. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1472. int lock = 0;
  1473. enum slab_modes l = M_NONE, m = M_NONE;
  1474. void *nextfree;
  1475. int tail = DEACTIVATE_TO_HEAD;
  1476. struct page new;
  1477. struct page old;
  1478. if (page->freelist) {
  1479. stat(s, DEACTIVATE_REMOTE_FREES);
  1480. tail = DEACTIVATE_TO_TAIL;
  1481. }
  1482. /*
  1483. * Stage one: Free all available per cpu objects back
  1484. * to the page freelist while it is still frozen. Leave the
  1485. * last one.
  1486. *
  1487. * There is no need to take the list->lock because the page
  1488. * is still frozen.
  1489. */
  1490. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1491. void *prior;
  1492. unsigned long counters;
  1493. do {
  1494. prior = page->freelist;
  1495. counters = page->counters;
  1496. set_freepointer(s, freelist, prior);
  1497. new.counters = counters;
  1498. new.inuse--;
  1499. VM_BUG_ON(!new.frozen);
  1500. } while (!__cmpxchg_double_slab(s, page,
  1501. prior, counters,
  1502. freelist, new.counters,
  1503. "drain percpu freelist"));
  1504. freelist = nextfree;
  1505. }
  1506. /*
  1507. * Stage two: Ensure that the page is unfrozen while the
  1508. * list presence reflects the actual number of objects
  1509. * during unfreeze.
  1510. *
  1511. * We setup the list membership and then perform a cmpxchg
  1512. * with the count. If there is a mismatch then the page
  1513. * is not unfrozen but the page is on the wrong list.
  1514. *
  1515. * Then we restart the process which may have to remove
  1516. * the page from the list that we just put it on again
  1517. * because the number of objects in the slab may have
  1518. * changed.
  1519. */
  1520. redo:
  1521. old.freelist = page->freelist;
  1522. old.counters = page->counters;
  1523. VM_BUG_ON(!old.frozen);
  1524. /* Determine target state of the slab */
  1525. new.counters = old.counters;
  1526. if (freelist) {
  1527. new.inuse--;
  1528. set_freepointer(s, freelist, old.freelist);
  1529. new.freelist = freelist;
  1530. } else
  1531. new.freelist = old.freelist;
  1532. new.frozen = 0;
  1533. if (!new.inuse && n->nr_partial > s->min_partial)
  1534. m = M_FREE;
  1535. else if (new.freelist) {
  1536. m = M_PARTIAL;
  1537. if (!lock) {
  1538. lock = 1;
  1539. /*
  1540. * Taking the spinlock removes the possiblity
  1541. * that acquire_slab() will see a slab page that
  1542. * is frozen
  1543. */
  1544. spin_lock(&n->list_lock);
  1545. }
  1546. } else {
  1547. m = M_FULL;
  1548. if (kmem_cache_debug(s) && !lock) {
  1549. lock = 1;
  1550. /*
  1551. * This also ensures that the scanning of full
  1552. * slabs from diagnostic functions will not see
  1553. * any frozen slabs.
  1554. */
  1555. spin_lock(&n->list_lock);
  1556. }
  1557. }
  1558. if (l != m) {
  1559. if (l == M_PARTIAL)
  1560. remove_partial(n, page);
  1561. else if (l == M_FULL)
  1562. remove_full(s, page);
  1563. if (m == M_PARTIAL) {
  1564. add_partial(n, page, tail);
  1565. stat(s, tail);
  1566. } else if (m == M_FULL) {
  1567. stat(s, DEACTIVATE_FULL);
  1568. add_full(s, n, page);
  1569. }
  1570. }
  1571. l = m;
  1572. if (!__cmpxchg_double_slab(s, page,
  1573. old.freelist, old.counters,
  1574. new.freelist, new.counters,
  1575. "unfreezing slab"))
  1576. goto redo;
  1577. if (lock)
  1578. spin_unlock(&n->list_lock);
  1579. if (m == M_FREE) {
  1580. stat(s, DEACTIVATE_EMPTY);
  1581. discard_slab(s, page);
  1582. stat(s, FREE_SLAB);
  1583. }
  1584. }
  1585. /*
  1586. * Unfreeze all the cpu partial slabs.
  1587. *
  1588. * This function must be called with interrupt disabled.
  1589. */
  1590. static void unfreeze_partials(struct kmem_cache *s)
  1591. {
  1592. struct kmem_cache_node *n = NULL, *n2 = NULL;
  1593. struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
  1594. struct page *page, *discard_page = NULL;
  1595. while ((page = c->partial)) {
  1596. struct page new;
  1597. struct page old;
  1598. c->partial = page->next;
  1599. n2 = get_node(s, page_to_nid(page));
  1600. if (n != n2) {
  1601. if (n)
  1602. spin_unlock(&n->list_lock);
  1603. n = n2;
  1604. spin_lock(&n->list_lock);
  1605. }
  1606. do {
  1607. old.freelist = page->freelist;
  1608. old.counters = page->counters;
  1609. VM_BUG_ON(!old.frozen);
  1610. new.counters = old.counters;
  1611. new.freelist = old.freelist;
  1612. new.frozen = 0;
  1613. } while (!__cmpxchg_double_slab(s, page,
  1614. old.freelist, old.counters,
  1615. new.freelist, new.counters,
  1616. "unfreezing slab"));
  1617. if (unlikely(!new.inuse && n->nr_partial > s->min_partial)) {
  1618. page->next = discard_page;
  1619. discard_page = page;
  1620. } else {
  1621. add_partial(n, page, DEACTIVATE_TO_TAIL);
  1622. stat(s, FREE_ADD_PARTIAL);
  1623. }
  1624. }
  1625. if (n)
  1626. spin_unlock(&n->list_lock);
  1627. while (discard_page) {
  1628. page = discard_page;
  1629. discard_page = discard_page->next;
  1630. stat(s, DEACTIVATE_EMPTY);
  1631. discard_slab(s, page);
  1632. stat(s, FREE_SLAB);
  1633. }
  1634. }
  1635. /*
  1636. * Put a page that was just frozen (in __slab_free) into a partial page
  1637. * slot if available. This is done without interrupts disabled and without
  1638. * preemption disabled. The cmpxchg is racy and may put the partial page
  1639. * onto a random cpus partial slot.
  1640. *
  1641. * If we did not find a slot then simply move all the partials to the
  1642. * per node partial list.
  1643. */
  1644. int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1645. {
  1646. struct page *oldpage;
  1647. int pages;
  1648. int pobjects;
  1649. do {
  1650. pages = 0;
  1651. pobjects = 0;
  1652. oldpage = this_cpu_read(s->cpu_slab->partial);
  1653. if (oldpage) {
  1654. pobjects = oldpage->pobjects;
  1655. pages = oldpage->pages;
  1656. if (drain && pobjects > s->cpu_partial) {
  1657. unsigned long flags;
  1658. /*
  1659. * partial array is full. Move the existing
  1660. * set to the per node partial list.
  1661. */
  1662. local_irq_save(flags);
  1663. unfreeze_partials(s);
  1664. local_irq_restore(flags);
  1665. oldpage = NULL;
  1666. pobjects = 0;
  1667. pages = 0;
  1668. stat(s, CPU_PARTIAL_DRAIN);
  1669. }
  1670. }
  1671. pages++;
  1672. pobjects += page->objects - page->inuse;
  1673. page->pages = pages;
  1674. page->pobjects = pobjects;
  1675. page->next = oldpage;
  1676. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
  1677. return pobjects;
  1678. }
  1679. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1680. {
  1681. stat(s, CPUSLAB_FLUSH);
  1682. deactivate_slab(s, c->page, c->freelist);
  1683. c->tid = next_tid(c->tid);
  1684. c->page = NULL;
  1685. c->freelist = NULL;
  1686. }
  1687. /*
  1688. * Flush cpu slab.
  1689. *
  1690. * Called from IPI handler with interrupts disabled.
  1691. */
  1692. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1693. {
  1694. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1695. if (likely(c)) {
  1696. if (c->page)
  1697. flush_slab(s, c);
  1698. unfreeze_partials(s);
  1699. }
  1700. }
  1701. static void flush_cpu_slab(void *d)
  1702. {
  1703. struct kmem_cache *s = d;
  1704. __flush_cpu_slab(s, smp_processor_id());
  1705. }
  1706. static bool has_cpu_slab(int cpu, void *info)
  1707. {
  1708. struct kmem_cache *s = info;
  1709. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1710. return c->page || c->partial;
  1711. }
  1712. static void flush_all(struct kmem_cache *s)
  1713. {
  1714. on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
  1715. }
  1716. /*
  1717. * Check if the objects in a per cpu structure fit numa
  1718. * locality expectations.
  1719. */
  1720. static inline int node_match(struct page *page, int node)
  1721. {
  1722. #ifdef CONFIG_NUMA
  1723. if (node != NUMA_NO_NODE && page_to_nid(page) != node)
  1724. return 0;
  1725. #endif
  1726. return 1;
  1727. }
  1728. static int count_free(struct page *page)
  1729. {
  1730. return page->objects - page->inuse;
  1731. }
  1732. static unsigned long count_partial(struct kmem_cache_node *n,
  1733. int (*get_count)(struct page *))
  1734. {
  1735. unsigned long flags;
  1736. unsigned long x = 0;
  1737. struct page *page;
  1738. spin_lock_irqsave(&n->list_lock, flags);
  1739. list_for_each_entry(page, &n->partial, lru)
  1740. x += get_count(page);
  1741. spin_unlock_irqrestore(&n->list_lock, flags);
  1742. return x;
  1743. }
  1744. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1745. {
  1746. #ifdef CONFIG_SLUB_DEBUG
  1747. return atomic_long_read(&n->total_objects);
  1748. #else
  1749. return 0;
  1750. #endif
  1751. }
  1752. static noinline void
  1753. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1754. {
  1755. int node;
  1756. printk(KERN_WARNING
  1757. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1758. nid, gfpflags);
  1759. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1760. "default order: %d, min order: %d\n", s->name, s->object_size,
  1761. s->size, oo_order(s->oo), oo_order(s->min));
  1762. if (oo_order(s->min) > get_order(s->object_size))
  1763. printk(KERN_WARNING " %s debugging increased min order, use "
  1764. "slub_debug=O to disable.\n", s->name);
  1765. for_each_online_node(node) {
  1766. struct kmem_cache_node *n = get_node(s, node);
  1767. unsigned long nr_slabs;
  1768. unsigned long nr_objs;
  1769. unsigned long nr_free;
  1770. if (!n)
  1771. continue;
  1772. nr_free = count_partial(n, count_free);
  1773. nr_slabs = node_nr_slabs(n);
  1774. nr_objs = node_nr_objs(n);
  1775. printk(KERN_WARNING
  1776. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1777. node, nr_slabs, nr_objs, nr_free);
  1778. }
  1779. }
  1780. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1781. int node, struct kmem_cache_cpu **pc)
  1782. {
  1783. void *freelist;
  1784. struct kmem_cache_cpu *c = *pc;
  1785. struct page *page;
  1786. freelist = get_partial(s, flags, node, c);
  1787. if (freelist)
  1788. return freelist;
  1789. page = new_slab(s, flags, node);
  1790. if (page) {
  1791. c = __this_cpu_ptr(s->cpu_slab);
  1792. if (c->page)
  1793. flush_slab(s, c);
  1794. /*
  1795. * No other reference to the page yet so we can
  1796. * muck around with it freely without cmpxchg
  1797. */
  1798. freelist = page->freelist;
  1799. page->freelist = NULL;
  1800. stat(s, ALLOC_SLAB);
  1801. c->page = page;
  1802. *pc = c;
  1803. } else
  1804. freelist = NULL;
  1805. return freelist;
  1806. }
  1807. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
  1808. {
  1809. if (unlikely(PageSlabPfmemalloc(page)))
  1810. return gfp_pfmemalloc_allowed(gfpflags);
  1811. return true;
  1812. }
  1813. /*
  1814. * Check the page->freelist of a page and either transfer the freelist to the per cpu freelist
  1815. * or deactivate the page.
  1816. *
  1817. * The page is still frozen if the return value is not NULL.
  1818. *
  1819. * If this function returns NULL then the page has been unfrozen.
  1820. *
  1821. * This function must be called with interrupt disabled.
  1822. */
  1823. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1824. {
  1825. struct page new;
  1826. unsigned long counters;
  1827. void *freelist;
  1828. do {
  1829. freelist = page->freelist;
  1830. counters = page->counters;
  1831. new.counters = counters;
  1832. VM_BUG_ON(!new.frozen);
  1833. new.inuse = page->objects;
  1834. new.frozen = freelist != NULL;
  1835. } while (!__cmpxchg_double_slab(s, page,
  1836. freelist, counters,
  1837. NULL, new.counters,
  1838. "get_freelist"));
  1839. return freelist;
  1840. }
  1841. /*
  1842. * Slow path. The lockless freelist is empty or we need to perform
  1843. * debugging duties.
  1844. *
  1845. * Processing is still very fast if new objects have been freed to the
  1846. * regular freelist. In that case we simply take over the regular freelist
  1847. * as the lockless freelist and zap the regular freelist.
  1848. *
  1849. * If that is not working then we fall back to the partial lists. We take the
  1850. * first element of the freelist as the object to allocate now and move the
  1851. * rest of the freelist to the lockless freelist.
  1852. *
  1853. * And if we were unable to get a new slab from the partial slab lists then
  1854. * we need to allocate a new slab. This is the slowest path since it involves
  1855. * a call to the page allocator and the setup of a new slab.
  1856. */
  1857. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1858. unsigned long addr, struct kmem_cache_cpu *c)
  1859. {
  1860. void *freelist;
  1861. struct page *page;
  1862. unsigned long flags;
  1863. local_irq_save(flags);
  1864. #ifdef CONFIG_PREEMPT
  1865. /*
  1866. * We may have been preempted and rescheduled on a different
  1867. * cpu before disabling interrupts. Need to reload cpu area
  1868. * pointer.
  1869. */
  1870. c = this_cpu_ptr(s->cpu_slab);
  1871. #endif
  1872. page = c->page;
  1873. if (!page)
  1874. goto new_slab;
  1875. redo:
  1876. if (unlikely(!node_match(page, node))) {
  1877. stat(s, ALLOC_NODE_MISMATCH);
  1878. deactivate_slab(s, page, c->freelist);
  1879. c->page = NULL;
  1880. c->freelist = NULL;
  1881. goto new_slab;
  1882. }
  1883. /*
  1884. * By rights, we should be searching for a slab page that was
  1885. * PFMEMALLOC but right now, we are losing the pfmemalloc
  1886. * information when the page leaves the per-cpu allocator
  1887. */
  1888. if (unlikely(!pfmemalloc_match(page, gfpflags))) {
  1889. deactivate_slab(s, page, c->freelist);
  1890. c->page = NULL;
  1891. c->freelist = NULL;
  1892. goto new_slab;
  1893. }
  1894. /* must check again c->freelist in case of cpu migration or IRQ */
  1895. freelist = c->freelist;
  1896. if (freelist)
  1897. goto load_freelist;
  1898. stat(s, ALLOC_SLOWPATH);
  1899. freelist = get_freelist(s, page);
  1900. if (!freelist) {
  1901. c->page = NULL;
  1902. stat(s, DEACTIVATE_BYPASS);
  1903. goto new_slab;
  1904. }
  1905. stat(s, ALLOC_REFILL);
  1906. load_freelist:
  1907. /*
  1908. * freelist is pointing to the list of objects to be used.
  1909. * page is pointing to the page from which the objects are obtained.
  1910. * That page must be frozen for per cpu allocations to work.
  1911. */
  1912. VM_BUG_ON(!c->page->frozen);
  1913. c->freelist = get_freepointer(s, freelist);
  1914. c->tid = next_tid(c->tid);
  1915. local_irq_restore(flags);
  1916. return freelist;
  1917. new_slab:
  1918. if (c->partial) {
  1919. page = c->page = c->partial;
  1920. c->partial = page->next;
  1921. stat(s, CPU_PARTIAL_ALLOC);
  1922. c->freelist = NULL;
  1923. goto redo;
  1924. }
  1925. freelist = new_slab_objects(s, gfpflags, node, &c);
  1926. if (unlikely(!freelist)) {
  1927. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1928. slab_out_of_memory(s, gfpflags, node);
  1929. local_irq_restore(flags);
  1930. return NULL;
  1931. }
  1932. page = c->page;
  1933. if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
  1934. goto load_freelist;
  1935. /* Only entered in the debug case */
  1936. if (kmem_cache_debug(s) && !alloc_debug_processing(s, page, freelist, addr))
  1937. goto new_slab; /* Slab failed checks. Next slab needed */
  1938. deactivate_slab(s, page, get_freepointer(s, freelist));
  1939. c->page = NULL;
  1940. c->freelist = NULL;
  1941. local_irq_restore(flags);
  1942. return freelist;
  1943. }
  1944. /*
  1945. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1946. * have the fastpath folded into their functions. So no function call
  1947. * overhead for requests that can be satisfied on the fastpath.
  1948. *
  1949. * The fastpath works by first checking if the lockless freelist can be used.
  1950. * If not then __slab_alloc is called for slow processing.
  1951. *
  1952. * Otherwise we can simply pick the next object from the lockless free list.
  1953. */
  1954. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1955. gfp_t gfpflags, int node, unsigned long addr)
  1956. {
  1957. void **object;
  1958. struct kmem_cache_cpu *c;
  1959. struct page *page;
  1960. unsigned long tid;
  1961. if (slab_pre_alloc_hook(s, gfpflags))
  1962. return NULL;
  1963. redo:
  1964. /*
  1965. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  1966. * enabled. We may switch back and forth between cpus while
  1967. * reading from one cpu area. That does not matter as long
  1968. * as we end up on the original cpu again when doing the cmpxchg.
  1969. */
  1970. c = __this_cpu_ptr(s->cpu_slab);
  1971. /*
  1972. * The transaction ids are globally unique per cpu and per operation on
  1973. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  1974. * occurs on the right processor and that there was no operation on the
  1975. * linked list in between.
  1976. */
  1977. tid = c->tid;
  1978. barrier();
  1979. object = c->freelist;
  1980. page = c->page;
  1981. if (unlikely(!object || !node_match(page, node)))
  1982. object = __slab_alloc(s, gfpflags, node, addr, c);
  1983. else {
  1984. void *next_object = get_freepointer_safe(s, object);
  1985. /*
  1986. * The cmpxchg will only match if there was no additional
  1987. * operation and if we are on the right processor.
  1988. *
  1989. * The cmpxchg does the following atomically (without lock semantics!)
  1990. * 1. Relocate first pointer to the current per cpu area.
  1991. * 2. Verify that tid and freelist have not been changed
  1992. * 3. If they were not changed replace tid and freelist
  1993. *
  1994. * Since this is without lock semantics the protection is only against
  1995. * code executing on this cpu *not* from access by other cpus.
  1996. */
  1997. if (unlikely(!this_cpu_cmpxchg_double(
  1998. s->cpu_slab->freelist, s->cpu_slab->tid,
  1999. object, tid,
  2000. next_object, next_tid(tid)))) {
  2001. note_cmpxchg_failure("slab_alloc", s, tid);
  2002. goto redo;
  2003. }
  2004. prefetch_freepointer(s, next_object);
  2005. stat(s, ALLOC_FASTPATH);
  2006. }
  2007. if (unlikely(gfpflags & __GFP_ZERO) && object)
  2008. memset(object, 0, s->object_size);
  2009. slab_post_alloc_hook(s, gfpflags, object);
  2010. return object;
  2011. }
  2012. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  2013. {
  2014. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  2015. trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, s->size, gfpflags);
  2016. return ret;
  2017. }
  2018. EXPORT_SYMBOL(kmem_cache_alloc);
  2019. #ifdef CONFIG_TRACING
  2020. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2021. {
  2022. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  2023. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2024. return ret;
  2025. }
  2026. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2027. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  2028. {
  2029. void *ret = kmalloc_order(size, flags, order);
  2030. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  2031. return ret;
  2032. }
  2033. EXPORT_SYMBOL(kmalloc_order_trace);
  2034. #endif
  2035. #ifdef CONFIG_NUMA
  2036. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2037. {
  2038. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  2039. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2040. s->object_size, s->size, gfpflags, node);
  2041. return ret;
  2042. }
  2043. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2044. #ifdef CONFIG_TRACING
  2045. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2046. gfp_t gfpflags,
  2047. int node, size_t size)
  2048. {
  2049. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  2050. trace_kmalloc_node(_RET_IP_, ret,
  2051. size, s->size, gfpflags, node);
  2052. return ret;
  2053. }
  2054. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2055. #endif
  2056. #endif
  2057. /*
  2058. * Slow patch handling. This may still be called frequently since objects
  2059. * have a longer lifetime than the cpu slabs in most processing loads.
  2060. *
  2061. * So we still attempt to reduce cache line usage. Just take the slab
  2062. * lock and free the item. If there is no additional partial page
  2063. * handling required then we can return immediately.
  2064. */
  2065. static void __slab_free(struct kmem_cache *s, struct page *page,
  2066. void *x, unsigned long addr)
  2067. {
  2068. void *prior;
  2069. void **object = (void *)x;
  2070. int was_frozen;
  2071. int inuse;
  2072. struct page new;
  2073. unsigned long counters;
  2074. struct kmem_cache_node *n = NULL;
  2075. unsigned long uninitialized_var(flags);
  2076. stat(s, FREE_SLOWPATH);
  2077. if (kmem_cache_debug(s) &&
  2078. !(n = free_debug_processing(s, page, x, addr, &flags)))
  2079. return;
  2080. do {
  2081. prior = page->freelist;
  2082. counters = page->counters;
  2083. set_freepointer(s, object, prior);
  2084. new.counters = counters;
  2085. was_frozen = new.frozen;
  2086. new.inuse--;
  2087. if ((!new.inuse || !prior) && !was_frozen && !n) {
  2088. if (!kmem_cache_debug(s) && !prior)
  2089. /*
  2090. * Slab was on no list before and will be partially empty
  2091. * We can defer the list move and instead freeze it.
  2092. */
  2093. new.frozen = 1;
  2094. else { /* Needs to be taken off a list */
  2095. n = get_node(s, page_to_nid(page));
  2096. /*
  2097. * Speculatively acquire the list_lock.
  2098. * If the cmpxchg does not succeed then we may
  2099. * drop the list_lock without any processing.
  2100. *
  2101. * Otherwise the list_lock will synchronize with
  2102. * other processors updating the list of slabs.
  2103. */
  2104. spin_lock_irqsave(&n->list_lock, flags);
  2105. }
  2106. }
  2107. inuse = new.inuse;
  2108. } while (!cmpxchg_double_slab(s, page,
  2109. prior, counters,
  2110. object, new.counters,
  2111. "__slab_free"));
  2112. if (likely(!n)) {
  2113. /*
  2114. * If we just froze the page then put it onto the
  2115. * per cpu partial list.
  2116. */
  2117. if (new.frozen && !was_frozen) {
  2118. put_cpu_partial(s, page, 1);
  2119. stat(s, CPU_PARTIAL_FREE);
  2120. }
  2121. /*
  2122. * The list lock was not taken therefore no list
  2123. * activity can be necessary.
  2124. */
  2125. if (was_frozen)
  2126. stat(s, FREE_FROZEN);
  2127. return;
  2128. }
  2129. /*
  2130. * was_frozen may have been set after we acquired the list_lock in
  2131. * an earlier loop. So we need to check it here again.
  2132. */
  2133. if (was_frozen)
  2134. stat(s, FREE_FROZEN);
  2135. else {
  2136. if (unlikely(!inuse && n->nr_partial > s->min_partial))
  2137. goto slab_empty;
  2138. /*
  2139. * Objects left in the slab. If it was not on the partial list before
  2140. * then add it.
  2141. */
  2142. if (unlikely(!prior)) {
  2143. remove_full(s, page);
  2144. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2145. stat(s, FREE_ADD_PARTIAL);
  2146. }
  2147. }
  2148. spin_unlock_irqrestore(&n->list_lock, flags);
  2149. return;
  2150. slab_empty:
  2151. if (prior) {
  2152. /*
  2153. * Slab on the partial list.
  2154. */
  2155. remove_partial(n, page);
  2156. stat(s, FREE_REMOVE_PARTIAL);
  2157. } else
  2158. /* Slab must be on the full list */
  2159. remove_full(s, page);
  2160. spin_unlock_irqrestore(&n->list_lock, flags);
  2161. stat(s, FREE_SLAB);
  2162. discard_slab(s, page);
  2163. }
  2164. /*
  2165. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2166. * can perform fastpath freeing without additional function calls.
  2167. *
  2168. * The fastpath is only possible if we are freeing to the current cpu slab
  2169. * of this processor. This typically the case if we have just allocated
  2170. * the item before.
  2171. *
  2172. * If fastpath is not possible then fall back to __slab_free where we deal
  2173. * with all sorts of special processing.
  2174. */
  2175. static __always_inline void slab_free(struct kmem_cache *s,
  2176. struct page *page, void *x, unsigned long addr)
  2177. {
  2178. void **object = (void *)x;
  2179. struct kmem_cache_cpu *c;
  2180. unsigned long tid;
  2181. slab_free_hook(s, x);
  2182. redo:
  2183. /*
  2184. * Determine the currently cpus per cpu slab.
  2185. * The cpu may change afterward. However that does not matter since
  2186. * data is retrieved via this pointer. If we are on the same cpu
  2187. * during the cmpxchg then the free will succedd.
  2188. */
  2189. c = __this_cpu_ptr(s->cpu_slab);
  2190. tid = c->tid;
  2191. barrier();
  2192. if (likely(page == c->page)) {
  2193. set_freepointer(s, object, c->freelist);
  2194. if (unlikely(!this_cpu_cmpxchg_double(
  2195. s->cpu_slab->freelist, s->cpu_slab->tid,
  2196. c->freelist, tid,
  2197. object, next_tid(tid)))) {
  2198. note_cmpxchg_failure("slab_free", s, tid);
  2199. goto redo;
  2200. }
  2201. stat(s, FREE_FASTPATH);
  2202. } else
  2203. __slab_free(s, page, x, addr);
  2204. }
  2205. void kmem_cache_free(struct kmem_cache *s, void *x)
  2206. {
  2207. struct page *page;
  2208. page = virt_to_head_page(x);
  2209. if (kmem_cache_debug(s) && page->slab != s) {
  2210. pr_err("kmem_cache_free: Wrong slab cache. %s but object"
  2211. " is from %s\n", page->slab->name, s->name);
  2212. WARN_ON_ONCE(1);
  2213. return;
  2214. }
  2215. slab_free(s, page, x, _RET_IP_);
  2216. trace_kmem_cache_free(_RET_IP_, x);
  2217. }
  2218. EXPORT_SYMBOL(kmem_cache_free);
  2219. /*
  2220. * Object placement in a slab is made very easy because we always start at
  2221. * offset 0. If we tune the size of the object to the alignment then we can
  2222. * get the required alignment by putting one properly sized object after
  2223. * another.
  2224. *
  2225. * Notice that the allocation order determines the sizes of the per cpu
  2226. * caches. Each processor has always one slab available for allocations.
  2227. * Increasing the allocation order reduces the number of times that slabs
  2228. * must be moved on and off the partial lists and is therefore a factor in
  2229. * locking overhead.
  2230. */
  2231. /*
  2232. * Mininum / Maximum order of slab pages. This influences locking overhead
  2233. * and slab fragmentation. A higher order reduces the number of partial slabs
  2234. * and increases the number of allocations possible without having to
  2235. * take the list_lock.
  2236. */
  2237. static int slub_min_order;
  2238. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2239. static int slub_min_objects;
  2240. /*
  2241. * Merge control. If this is set then no merging of slab caches will occur.
  2242. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2243. */
  2244. static int slub_nomerge;
  2245. /*
  2246. * Calculate the order of allocation given an slab object size.
  2247. *
  2248. * The order of allocation has significant impact on performance and other
  2249. * system components. Generally order 0 allocations should be preferred since
  2250. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2251. * be problematic to put into order 0 slabs because there may be too much
  2252. * unused space left. We go to a higher order if more than 1/16th of the slab
  2253. * would be wasted.
  2254. *
  2255. * In order to reach satisfactory performance we must ensure that a minimum
  2256. * number of objects is in one slab. Otherwise we may generate too much
  2257. * activity on the partial lists which requires taking the list_lock. This is
  2258. * less a concern for large slabs though which are rarely used.
  2259. *
  2260. * slub_max_order specifies the order where we begin to stop considering the
  2261. * number of objects in a slab as critical. If we reach slub_max_order then
  2262. * we try to keep the page order as low as possible. So we accept more waste
  2263. * of space in favor of a small page order.
  2264. *
  2265. * Higher order allocations also allow the placement of more objects in a
  2266. * slab and thereby reduce object handling overhead. If the user has
  2267. * requested a higher mininum order then we start with that one instead of
  2268. * the smallest order which will fit the object.
  2269. */
  2270. static inline int slab_order(int size, int min_objects,
  2271. int max_order, int fract_leftover, int reserved)
  2272. {
  2273. int order;
  2274. int rem;
  2275. int min_order = slub_min_order;
  2276. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2277. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2278. for (order = max(min_order,
  2279. fls(min_objects * size - 1) - PAGE_SHIFT);
  2280. order <= max_order; order++) {
  2281. unsigned long slab_size = PAGE_SIZE << order;
  2282. if (slab_size < min_objects * size + reserved)
  2283. continue;
  2284. rem = (slab_size - reserved) % size;
  2285. if (rem <= slab_size / fract_leftover)
  2286. break;
  2287. }
  2288. return order;
  2289. }
  2290. static inline int calculate_order(int size, int reserved)
  2291. {
  2292. int order;
  2293. int min_objects;
  2294. int fraction;
  2295. int max_objects;
  2296. /*
  2297. * Attempt to find best configuration for a slab. This
  2298. * works by first attempting to generate a layout with
  2299. * the best configuration and backing off gradually.
  2300. *
  2301. * First we reduce the acceptable waste in a slab. Then
  2302. * we reduce the minimum objects required in a slab.
  2303. */
  2304. min_objects = slub_min_objects;
  2305. if (!min_objects)
  2306. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2307. max_objects = order_objects(slub_max_order, size, reserved);
  2308. min_objects = min(min_objects, max_objects);
  2309. while (min_objects > 1) {
  2310. fraction = 16;
  2311. while (fraction >= 4) {
  2312. order = slab_order(size, min_objects,
  2313. slub_max_order, fraction, reserved);
  2314. if (order <= slub_max_order)
  2315. return order;
  2316. fraction /= 2;
  2317. }
  2318. min_objects--;
  2319. }
  2320. /*
  2321. * We were unable to place multiple objects in a slab. Now
  2322. * lets see if we can place a single object there.
  2323. */
  2324. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2325. if (order <= slub_max_order)
  2326. return order;
  2327. /*
  2328. * Doh this slab cannot be placed using slub_max_order.
  2329. */
  2330. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2331. if (order < MAX_ORDER)
  2332. return order;
  2333. return -ENOSYS;
  2334. }
  2335. /*
  2336. * Figure out what the alignment of the objects will be.
  2337. */
  2338. static unsigned long calculate_alignment(unsigned long flags,
  2339. unsigned long align, unsigned long size)
  2340. {
  2341. /*
  2342. * If the user wants hardware cache aligned objects then follow that
  2343. * suggestion if the object is sufficiently large.
  2344. *
  2345. * The hardware cache alignment cannot override the specified
  2346. * alignment though. If that is greater then use it.
  2347. */
  2348. if (flags & SLAB_HWCACHE_ALIGN) {
  2349. unsigned long ralign = cache_line_size();
  2350. while (size <= ralign / 2)
  2351. ralign /= 2;
  2352. align = max(align, ralign);
  2353. }
  2354. if (align < ARCH_SLAB_MINALIGN)
  2355. align = ARCH_SLAB_MINALIGN;
  2356. return ALIGN(align, sizeof(void *));
  2357. }
  2358. static void
  2359. init_kmem_cache_node(struct kmem_cache_node *n)
  2360. {
  2361. n->nr_partial = 0;
  2362. spin_lock_init(&n->list_lock);
  2363. INIT_LIST_HEAD(&n->partial);
  2364. #ifdef CONFIG_SLUB_DEBUG
  2365. atomic_long_set(&n->nr_slabs, 0);
  2366. atomic_long_set(&n->total_objects, 0);
  2367. INIT_LIST_HEAD(&n->full);
  2368. #endif
  2369. }
  2370. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2371. {
  2372. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2373. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  2374. /*
  2375. * Must align to double word boundary for the double cmpxchg
  2376. * instructions to work; see __pcpu_double_call_return_bool().
  2377. */
  2378. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2379. 2 * sizeof(void *));
  2380. if (!s->cpu_slab)
  2381. return 0;
  2382. init_kmem_cache_cpus(s);
  2383. return 1;
  2384. }
  2385. static struct kmem_cache *kmem_cache_node;
  2386. /*
  2387. * No kmalloc_node yet so do it by hand. We know that this is the first
  2388. * slab on the node for this slabcache. There are no concurrent accesses
  2389. * possible.
  2390. *
  2391. * Note that this function only works on the kmalloc_node_cache
  2392. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  2393. * memory on a fresh node that has no slab structures yet.
  2394. */
  2395. static void early_kmem_cache_node_alloc(int node)
  2396. {
  2397. struct page *page;
  2398. struct kmem_cache_node *n;
  2399. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2400. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2401. BUG_ON(!page);
  2402. if (page_to_nid(page) != node) {
  2403. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  2404. "node %d\n", node);
  2405. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  2406. "in order to be able to continue\n");
  2407. }
  2408. n = page->freelist;
  2409. BUG_ON(!n);
  2410. page->freelist = get_freepointer(kmem_cache_node, n);
  2411. page->inuse = 1;
  2412. page->frozen = 0;
  2413. kmem_cache_node->node[node] = n;
  2414. #ifdef CONFIG_SLUB_DEBUG
  2415. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2416. init_tracking(kmem_cache_node, n);
  2417. #endif
  2418. init_kmem_cache_node(n);
  2419. inc_slabs_node(kmem_cache_node, node, page->objects);
  2420. add_partial(n, page, DEACTIVATE_TO_HEAD);
  2421. }
  2422. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2423. {
  2424. int node;
  2425. for_each_node_state(node, N_NORMAL_MEMORY) {
  2426. struct kmem_cache_node *n = s->node[node];
  2427. if (n)
  2428. kmem_cache_free(kmem_cache_node, n);
  2429. s->node[node] = NULL;
  2430. }
  2431. }
  2432. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2433. {
  2434. int node;
  2435. for_each_node_state(node, N_NORMAL_MEMORY) {
  2436. struct kmem_cache_node *n;
  2437. if (slab_state == DOWN) {
  2438. early_kmem_cache_node_alloc(node);
  2439. continue;
  2440. }
  2441. n = kmem_cache_alloc_node(kmem_cache_node,
  2442. GFP_KERNEL, node);
  2443. if (!n) {
  2444. free_kmem_cache_nodes(s);
  2445. return 0;
  2446. }
  2447. s->node[node] = n;
  2448. init_kmem_cache_node(n);
  2449. }
  2450. return 1;
  2451. }
  2452. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2453. {
  2454. if (min < MIN_PARTIAL)
  2455. min = MIN_PARTIAL;
  2456. else if (min > MAX_PARTIAL)
  2457. min = MAX_PARTIAL;
  2458. s->min_partial = min;
  2459. }
  2460. /*
  2461. * calculate_sizes() determines the order and the distribution of data within
  2462. * a slab object.
  2463. */
  2464. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2465. {
  2466. unsigned long flags = s->flags;
  2467. unsigned long size = s->object_size;
  2468. unsigned long align = s->align;
  2469. int order;
  2470. /*
  2471. * Round up object size to the next word boundary. We can only
  2472. * place the free pointer at word boundaries and this determines
  2473. * the possible location of the free pointer.
  2474. */
  2475. size = ALIGN(size, sizeof(void *));
  2476. #ifdef CONFIG_SLUB_DEBUG
  2477. /*
  2478. * Determine if we can poison the object itself. If the user of
  2479. * the slab may touch the object after free or before allocation
  2480. * then we should never poison the object itself.
  2481. */
  2482. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2483. !s->ctor)
  2484. s->flags |= __OBJECT_POISON;
  2485. else
  2486. s->flags &= ~__OBJECT_POISON;
  2487. /*
  2488. * If we are Redzoning then check if there is some space between the
  2489. * end of the object and the free pointer. If not then add an
  2490. * additional word to have some bytes to store Redzone information.
  2491. */
  2492. if ((flags & SLAB_RED_ZONE) && size == s->object_size)
  2493. size += sizeof(void *);
  2494. #endif
  2495. /*
  2496. * With that we have determined the number of bytes in actual use
  2497. * by the object. This is the potential offset to the free pointer.
  2498. */
  2499. s->inuse = size;
  2500. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2501. s->ctor)) {
  2502. /*
  2503. * Relocate free pointer after the object if it is not
  2504. * permitted to overwrite the first word of the object on
  2505. * kmem_cache_free.
  2506. *
  2507. * This is the case if we do RCU, have a constructor or
  2508. * destructor or are poisoning the objects.
  2509. */
  2510. s->offset = size;
  2511. size += sizeof(void *);
  2512. }
  2513. #ifdef CONFIG_SLUB_DEBUG
  2514. if (flags & SLAB_STORE_USER)
  2515. /*
  2516. * Need to store information about allocs and frees after
  2517. * the object.
  2518. */
  2519. size += 2 * sizeof(struct track);
  2520. if (flags & SLAB_RED_ZONE)
  2521. /*
  2522. * Add some empty padding so that we can catch
  2523. * overwrites from earlier objects rather than let
  2524. * tracking information or the free pointer be
  2525. * corrupted if a user writes before the start
  2526. * of the object.
  2527. */
  2528. size += sizeof(void *);
  2529. #endif
  2530. /*
  2531. * Determine the alignment based on various parameters that the
  2532. * user specified and the dynamic determination of cache line size
  2533. * on bootup.
  2534. */
  2535. align = calculate_alignment(flags, align, s->object_size);
  2536. s->align = align;
  2537. /*
  2538. * SLUB stores one object immediately after another beginning from
  2539. * offset 0. In order to align the objects we have to simply size
  2540. * each object to conform to the alignment.
  2541. */
  2542. size = ALIGN(size, align);
  2543. s->size = size;
  2544. if (forced_order >= 0)
  2545. order = forced_order;
  2546. else
  2547. order = calculate_order(size, s->reserved);
  2548. if (order < 0)
  2549. return 0;
  2550. s->allocflags = 0;
  2551. if (order)
  2552. s->allocflags |= __GFP_COMP;
  2553. if (s->flags & SLAB_CACHE_DMA)
  2554. s->allocflags |= SLUB_DMA;
  2555. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2556. s->allocflags |= __GFP_RECLAIMABLE;
  2557. /*
  2558. * Determine the number of objects per slab
  2559. */
  2560. s->oo = oo_make(order, size, s->reserved);
  2561. s->min = oo_make(get_order(size), size, s->reserved);
  2562. if (oo_objects(s->oo) > oo_objects(s->max))
  2563. s->max = s->oo;
  2564. return !!oo_objects(s->oo);
  2565. }
  2566. static int kmem_cache_open(struct kmem_cache *s,
  2567. const char *name, size_t size,
  2568. size_t align, unsigned long flags,
  2569. void (*ctor)(void *))
  2570. {
  2571. memset(s, 0, kmem_size);
  2572. s->name = name;
  2573. s->ctor = ctor;
  2574. s->object_size = size;
  2575. s->align = align;
  2576. s->flags = kmem_cache_flags(size, flags, name, ctor);
  2577. s->reserved = 0;
  2578. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2579. s->reserved = sizeof(struct rcu_head);
  2580. if (!calculate_sizes(s, -1))
  2581. goto error;
  2582. if (disable_higher_order_debug) {
  2583. /*
  2584. * Disable debugging flags that store metadata if the min slab
  2585. * order increased.
  2586. */
  2587. if (get_order(s->size) > get_order(s->object_size)) {
  2588. s->flags &= ~DEBUG_METADATA_FLAGS;
  2589. s->offset = 0;
  2590. if (!calculate_sizes(s, -1))
  2591. goto error;
  2592. }
  2593. }
  2594. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2595. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2596. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2597. /* Enable fast mode */
  2598. s->flags |= __CMPXCHG_DOUBLE;
  2599. #endif
  2600. /*
  2601. * The larger the object size is, the more pages we want on the partial
  2602. * list to avoid pounding the page allocator excessively.
  2603. */
  2604. set_min_partial(s, ilog2(s->size) / 2);
  2605. /*
  2606. * cpu_partial determined the maximum number of objects kept in the
  2607. * per cpu partial lists of a processor.
  2608. *
  2609. * Per cpu partial lists mainly contain slabs that just have one
  2610. * object freed. If they are used for allocation then they can be
  2611. * filled up again with minimal effort. The slab will never hit the
  2612. * per node partial lists and therefore no locking will be required.
  2613. *
  2614. * This setting also determines
  2615. *
  2616. * A) The number of objects from per cpu partial slabs dumped to the
  2617. * per node list when we reach the limit.
  2618. * B) The number of objects in cpu partial slabs to extract from the
  2619. * per node list when we run out of per cpu objects. We only fetch 50%
  2620. * to keep some capacity around for frees.
  2621. */
  2622. if (kmem_cache_debug(s))
  2623. s->cpu_partial = 0;
  2624. else if (s->size >= PAGE_SIZE)
  2625. s->cpu_partial = 2;
  2626. else if (s->size >= 1024)
  2627. s->cpu_partial = 6;
  2628. else if (s->size >= 256)
  2629. s->cpu_partial = 13;
  2630. else
  2631. s->cpu_partial = 30;
  2632. s->refcount = 1;
  2633. #ifdef CONFIG_NUMA
  2634. s->remote_node_defrag_ratio = 1000;
  2635. #endif
  2636. if (!init_kmem_cache_nodes(s))
  2637. goto error;
  2638. if (alloc_kmem_cache_cpus(s))
  2639. return 1;
  2640. free_kmem_cache_nodes(s);
  2641. error:
  2642. if (flags & SLAB_PANIC)
  2643. panic("Cannot create slab %s size=%lu realsize=%u "
  2644. "order=%u offset=%u flags=%lx\n",
  2645. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2646. s->offset, flags);
  2647. return 0;
  2648. }
  2649. /*
  2650. * Determine the size of a slab object
  2651. */
  2652. unsigned int kmem_cache_size(struct kmem_cache *s)
  2653. {
  2654. return s->object_size;
  2655. }
  2656. EXPORT_SYMBOL(kmem_cache_size);
  2657. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2658. const char *text)
  2659. {
  2660. #ifdef CONFIG_SLUB_DEBUG
  2661. void *addr = page_address(page);
  2662. void *p;
  2663. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2664. sizeof(long), GFP_ATOMIC);
  2665. if (!map)
  2666. return;
  2667. slab_err(s, page, text, s->name);
  2668. slab_lock(page);
  2669. get_map(s, page, map);
  2670. for_each_object(p, s, addr, page->objects) {
  2671. if (!test_bit(slab_index(p, s, addr), map)) {
  2672. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2673. p, p - addr);
  2674. print_tracking(s, p);
  2675. }
  2676. }
  2677. slab_unlock(page);
  2678. kfree(map);
  2679. #endif
  2680. }
  2681. /*
  2682. * Attempt to free all partial slabs on a node.
  2683. * This is called from kmem_cache_close(). We must be the last thread
  2684. * using the cache and therefore we do not need to lock anymore.
  2685. */
  2686. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2687. {
  2688. struct page *page, *h;
  2689. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2690. if (!page->inuse) {
  2691. remove_partial(n, page);
  2692. discard_slab(s, page);
  2693. } else {
  2694. list_slab_objects(s, page,
  2695. "Objects remaining in %s on kmem_cache_close()");
  2696. }
  2697. }
  2698. }
  2699. /*
  2700. * Release all resources used by a slab cache.
  2701. */
  2702. static inline int kmem_cache_close(struct kmem_cache *s)
  2703. {
  2704. int node;
  2705. flush_all(s);
  2706. /* Attempt to free all objects */
  2707. for_each_node_state(node, N_NORMAL_MEMORY) {
  2708. struct kmem_cache_node *n = get_node(s, node);
  2709. free_partial(s, n);
  2710. if (n->nr_partial || slabs_node(s, node))
  2711. return 1;
  2712. }
  2713. free_percpu(s->cpu_slab);
  2714. free_kmem_cache_nodes(s);
  2715. return 0;
  2716. }
  2717. int __kmem_cache_shutdown(struct kmem_cache *s)
  2718. {
  2719. int rc = kmem_cache_close(s);
  2720. if (!rc)
  2721. sysfs_slab_remove(s);
  2722. return rc;
  2723. }
  2724. /********************************************************************
  2725. * Kmalloc subsystem
  2726. *******************************************************************/
  2727. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2728. EXPORT_SYMBOL(kmalloc_caches);
  2729. #ifdef CONFIG_ZONE_DMA
  2730. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2731. #endif
  2732. static int __init setup_slub_min_order(char *str)
  2733. {
  2734. get_option(&str, &slub_min_order);
  2735. return 1;
  2736. }
  2737. __setup("slub_min_order=", setup_slub_min_order);
  2738. static int __init setup_slub_max_order(char *str)
  2739. {
  2740. get_option(&str, &slub_max_order);
  2741. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2742. return 1;
  2743. }
  2744. __setup("slub_max_order=", setup_slub_max_order);
  2745. static int __init setup_slub_min_objects(char *str)
  2746. {
  2747. get_option(&str, &slub_min_objects);
  2748. return 1;
  2749. }
  2750. __setup("slub_min_objects=", setup_slub_min_objects);
  2751. static int __init setup_slub_nomerge(char *str)
  2752. {
  2753. slub_nomerge = 1;
  2754. return 1;
  2755. }
  2756. __setup("slub_nomerge", setup_slub_nomerge);
  2757. static struct kmem_cache *__init create_kmalloc_cache(const char *name,
  2758. int size, unsigned int flags)
  2759. {
  2760. struct kmem_cache *s;
  2761. s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2762. /*
  2763. * This function is called with IRQs disabled during early-boot on
  2764. * single CPU so there's no need to take slab_mutex here.
  2765. */
  2766. if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
  2767. flags, NULL))
  2768. goto panic;
  2769. list_add(&s->list, &slab_caches);
  2770. return s;
  2771. panic:
  2772. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2773. return NULL;
  2774. }
  2775. /*
  2776. * Conversion table for small slabs sizes / 8 to the index in the
  2777. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2778. * of two cache sizes there. The size of larger slabs can be determined using
  2779. * fls.
  2780. */
  2781. static s8 size_index[24] = {
  2782. 3, /* 8 */
  2783. 4, /* 16 */
  2784. 5, /* 24 */
  2785. 5, /* 32 */
  2786. 6, /* 40 */
  2787. 6, /* 48 */
  2788. 6, /* 56 */
  2789. 6, /* 64 */
  2790. 1, /* 72 */
  2791. 1, /* 80 */
  2792. 1, /* 88 */
  2793. 1, /* 96 */
  2794. 7, /* 104 */
  2795. 7, /* 112 */
  2796. 7, /* 120 */
  2797. 7, /* 128 */
  2798. 2, /* 136 */
  2799. 2, /* 144 */
  2800. 2, /* 152 */
  2801. 2, /* 160 */
  2802. 2, /* 168 */
  2803. 2, /* 176 */
  2804. 2, /* 184 */
  2805. 2 /* 192 */
  2806. };
  2807. static inline int size_index_elem(size_t bytes)
  2808. {
  2809. return (bytes - 1) / 8;
  2810. }
  2811. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2812. {
  2813. int index;
  2814. if (size <= 192) {
  2815. if (!size)
  2816. return ZERO_SIZE_PTR;
  2817. index = size_index[size_index_elem(size)];
  2818. } else
  2819. index = fls(size - 1);
  2820. #ifdef CONFIG_ZONE_DMA
  2821. if (unlikely((flags & SLUB_DMA)))
  2822. return kmalloc_dma_caches[index];
  2823. #endif
  2824. return kmalloc_caches[index];
  2825. }
  2826. void *__kmalloc(size_t size, gfp_t flags)
  2827. {
  2828. struct kmem_cache *s;
  2829. void *ret;
  2830. if (unlikely(size > SLUB_MAX_SIZE))
  2831. return kmalloc_large(size, flags);
  2832. s = get_slab(size, flags);
  2833. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2834. return s;
  2835. ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
  2836. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2837. return ret;
  2838. }
  2839. EXPORT_SYMBOL(__kmalloc);
  2840. #ifdef CONFIG_NUMA
  2841. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2842. {
  2843. struct page *page;
  2844. void *ptr = NULL;
  2845. flags |= __GFP_COMP | __GFP_NOTRACK;
  2846. page = alloc_pages_node(node, flags, get_order(size));
  2847. if (page)
  2848. ptr = page_address(page);
  2849. kmemleak_alloc(ptr, size, 1, flags);
  2850. return ptr;
  2851. }
  2852. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2853. {
  2854. struct kmem_cache *s;
  2855. void *ret;
  2856. if (unlikely(size > SLUB_MAX_SIZE)) {
  2857. ret = kmalloc_large_node(size, flags, node);
  2858. trace_kmalloc_node(_RET_IP_, ret,
  2859. size, PAGE_SIZE << get_order(size),
  2860. flags, node);
  2861. return ret;
  2862. }
  2863. s = get_slab(size, flags);
  2864. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2865. return s;
  2866. ret = slab_alloc(s, flags, node, _RET_IP_);
  2867. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2868. return ret;
  2869. }
  2870. EXPORT_SYMBOL(__kmalloc_node);
  2871. #endif
  2872. size_t ksize(const void *object)
  2873. {
  2874. struct page *page;
  2875. if (unlikely(object == ZERO_SIZE_PTR))
  2876. return 0;
  2877. page = virt_to_head_page(object);
  2878. if (unlikely(!PageSlab(page))) {
  2879. WARN_ON(!PageCompound(page));
  2880. return PAGE_SIZE << compound_order(page);
  2881. }
  2882. return slab_ksize(page->slab);
  2883. }
  2884. EXPORT_SYMBOL(ksize);
  2885. #ifdef CONFIG_SLUB_DEBUG
  2886. bool verify_mem_not_deleted(const void *x)
  2887. {
  2888. struct page *page;
  2889. void *object = (void *)x;
  2890. unsigned long flags;
  2891. bool rv;
  2892. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2893. return false;
  2894. local_irq_save(flags);
  2895. page = virt_to_head_page(x);
  2896. if (unlikely(!PageSlab(page))) {
  2897. /* maybe it was from stack? */
  2898. rv = true;
  2899. goto out_unlock;
  2900. }
  2901. slab_lock(page);
  2902. if (on_freelist(page->slab, page, object)) {
  2903. object_err(page->slab, page, object, "Object is on free-list");
  2904. rv = false;
  2905. } else {
  2906. rv = true;
  2907. }
  2908. slab_unlock(page);
  2909. out_unlock:
  2910. local_irq_restore(flags);
  2911. return rv;
  2912. }
  2913. EXPORT_SYMBOL(verify_mem_not_deleted);
  2914. #endif
  2915. void kfree(const void *x)
  2916. {
  2917. struct page *page;
  2918. void *object = (void *)x;
  2919. trace_kfree(_RET_IP_, x);
  2920. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2921. return;
  2922. page = virt_to_head_page(x);
  2923. if (unlikely(!PageSlab(page))) {
  2924. BUG_ON(!PageCompound(page));
  2925. kmemleak_free(x);
  2926. __free_pages(page, compound_order(page));
  2927. return;
  2928. }
  2929. slab_free(page->slab, page, object, _RET_IP_);
  2930. }
  2931. EXPORT_SYMBOL(kfree);
  2932. /*
  2933. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2934. * the remaining slabs by the number of items in use. The slabs with the
  2935. * most items in use come first. New allocations will then fill those up
  2936. * and thus they can be removed from the partial lists.
  2937. *
  2938. * The slabs with the least items are placed last. This results in them
  2939. * being allocated from last increasing the chance that the last objects
  2940. * are freed in them.
  2941. */
  2942. int kmem_cache_shrink(struct kmem_cache *s)
  2943. {
  2944. int node;
  2945. int i;
  2946. struct kmem_cache_node *n;
  2947. struct page *page;
  2948. struct page *t;
  2949. int objects = oo_objects(s->max);
  2950. struct list_head *slabs_by_inuse =
  2951. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2952. unsigned long flags;
  2953. if (!slabs_by_inuse)
  2954. return -ENOMEM;
  2955. flush_all(s);
  2956. for_each_node_state(node, N_NORMAL_MEMORY) {
  2957. n = get_node(s, node);
  2958. if (!n->nr_partial)
  2959. continue;
  2960. for (i = 0; i < objects; i++)
  2961. INIT_LIST_HEAD(slabs_by_inuse + i);
  2962. spin_lock_irqsave(&n->list_lock, flags);
  2963. /*
  2964. * Build lists indexed by the items in use in each slab.
  2965. *
  2966. * Note that concurrent frees may occur while we hold the
  2967. * list_lock. page->inuse here is the upper limit.
  2968. */
  2969. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2970. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2971. if (!page->inuse)
  2972. n->nr_partial--;
  2973. }
  2974. /*
  2975. * Rebuild the partial list with the slabs filled up most
  2976. * first and the least used slabs at the end.
  2977. */
  2978. for (i = objects - 1; i > 0; i--)
  2979. list_splice(slabs_by_inuse + i, n->partial.prev);
  2980. spin_unlock_irqrestore(&n->list_lock, flags);
  2981. /* Release empty slabs */
  2982. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2983. discard_slab(s, page);
  2984. }
  2985. kfree(slabs_by_inuse);
  2986. return 0;
  2987. }
  2988. EXPORT_SYMBOL(kmem_cache_shrink);
  2989. #if defined(CONFIG_MEMORY_HOTPLUG)
  2990. static int slab_mem_going_offline_callback(void *arg)
  2991. {
  2992. struct kmem_cache *s;
  2993. mutex_lock(&slab_mutex);
  2994. list_for_each_entry(s, &slab_caches, list)
  2995. kmem_cache_shrink(s);
  2996. mutex_unlock(&slab_mutex);
  2997. return 0;
  2998. }
  2999. static void slab_mem_offline_callback(void *arg)
  3000. {
  3001. struct kmem_cache_node *n;
  3002. struct kmem_cache *s;
  3003. struct memory_notify *marg = arg;
  3004. int offline_node;
  3005. offline_node = marg->status_change_nid;
  3006. /*
  3007. * If the node still has available memory. we need kmem_cache_node
  3008. * for it yet.
  3009. */
  3010. if (offline_node < 0)
  3011. return;
  3012. mutex_lock(&slab_mutex);
  3013. list_for_each_entry(s, &slab_caches, list) {
  3014. n = get_node(s, offline_node);
  3015. if (n) {
  3016. /*
  3017. * if n->nr_slabs > 0, slabs still exist on the node
  3018. * that is going down. We were unable to free them,
  3019. * and offline_pages() function shouldn't call this
  3020. * callback. So, we must fail.
  3021. */
  3022. BUG_ON(slabs_node(s, offline_node));
  3023. s->node[offline_node] = NULL;
  3024. kmem_cache_free(kmem_cache_node, n);
  3025. }
  3026. }
  3027. mutex_unlock(&slab_mutex);
  3028. }
  3029. static int slab_mem_going_online_callback(void *arg)
  3030. {
  3031. struct kmem_cache_node *n;
  3032. struct kmem_cache *s;
  3033. struct memory_notify *marg = arg;
  3034. int nid = marg->status_change_nid;
  3035. int ret = 0;
  3036. /*
  3037. * If the node's memory is already available, then kmem_cache_node is
  3038. * already created. Nothing to do.
  3039. */
  3040. if (nid < 0)
  3041. return 0;
  3042. /*
  3043. * We are bringing a node online. No memory is available yet. We must
  3044. * allocate a kmem_cache_node structure in order to bring the node
  3045. * online.
  3046. */
  3047. mutex_lock(&slab_mutex);
  3048. list_for_each_entry(s, &slab_caches, list) {
  3049. /*
  3050. * XXX: kmem_cache_alloc_node will fallback to other nodes
  3051. * since memory is not yet available from the node that
  3052. * is brought up.
  3053. */
  3054. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  3055. if (!n) {
  3056. ret = -ENOMEM;
  3057. goto out;
  3058. }
  3059. init_kmem_cache_node(n);
  3060. s->node[nid] = n;
  3061. }
  3062. out:
  3063. mutex_unlock(&slab_mutex);
  3064. return ret;
  3065. }
  3066. static int slab_memory_callback(struct notifier_block *self,
  3067. unsigned long action, void *arg)
  3068. {
  3069. int ret = 0;
  3070. switch (action) {
  3071. case MEM_GOING_ONLINE:
  3072. ret = slab_mem_going_online_callback(arg);
  3073. break;
  3074. case MEM_GOING_OFFLINE:
  3075. ret = slab_mem_going_offline_callback(arg);
  3076. break;
  3077. case MEM_OFFLINE:
  3078. case MEM_CANCEL_ONLINE:
  3079. slab_mem_offline_callback(arg);
  3080. break;
  3081. case MEM_ONLINE:
  3082. case MEM_CANCEL_OFFLINE:
  3083. break;
  3084. }
  3085. if (ret)
  3086. ret = notifier_from_errno(ret);
  3087. else
  3088. ret = NOTIFY_OK;
  3089. return ret;
  3090. }
  3091. #endif /* CONFIG_MEMORY_HOTPLUG */
  3092. /********************************************************************
  3093. * Basic setup of slabs
  3094. *******************************************************************/
  3095. /*
  3096. * Used for early kmem_cache structures that were allocated using
  3097. * the page allocator
  3098. */
  3099. static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
  3100. {
  3101. int node;
  3102. list_add(&s->list, &slab_caches);
  3103. s->refcount = -1;
  3104. for_each_node_state(node, N_NORMAL_MEMORY) {
  3105. struct kmem_cache_node *n = get_node(s, node);
  3106. struct page *p;
  3107. if (n) {
  3108. list_for_each_entry(p, &n->partial, lru)
  3109. p->slab = s;
  3110. #ifdef CONFIG_SLUB_DEBUG
  3111. list_for_each_entry(p, &n->full, lru)
  3112. p->slab = s;
  3113. #endif
  3114. }
  3115. }
  3116. }
  3117. void __init kmem_cache_init(void)
  3118. {
  3119. int i;
  3120. int caches = 0;
  3121. struct kmem_cache *temp_kmem_cache;
  3122. int order;
  3123. struct kmem_cache *temp_kmem_cache_node;
  3124. unsigned long kmalloc_size;
  3125. if (debug_guardpage_minorder())
  3126. slub_max_order = 0;
  3127. kmem_size = offsetof(struct kmem_cache, node) +
  3128. nr_node_ids * sizeof(struct kmem_cache_node *);
  3129. /* Allocate two kmem_caches from the page allocator */
  3130. kmalloc_size = ALIGN(kmem_size, cache_line_size());
  3131. order = get_order(2 * kmalloc_size);
  3132. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  3133. /*
  3134. * Must first have the slab cache available for the allocations of the
  3135. * struct kmem_cache_node's. There is special bootstrap code in
  3136. * kmem_cache_open for slab_state == DOWN.
  3137. */
  3138. kmem_cache_node = (void *)kmem_cache + kmalloc_size;
  3139. kmem_cache_open(kmem_cache_node, "kmem_cache_node",
  3140. sizeof(struct kmem_cache_node),
  3141. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3142. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  3143. /* Able to allocate the per node structures */
  3144. slab_state = PARTIAL;
  3145. temp_kmem_cache = kmem_cache;
  3146. kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
  3147. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  3148. kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3149. memcpy(kmem_cache, temp_kmem_cache, kmem_size);
  3150. /*
  3151. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3152. * kmem_cache_node is separately allocated so no need to
  3153. * update any list pointers.
  3154. */
  3155. temp_kmem_cache_node = kmem_cache_node;
  3156. kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  3157. memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
  3158. kmem_cache_bootstrap_fixup(kmem_cache_node);
  3159. caches++;
  3160. kmem_cache_bootstrap_fixup(kmem_cache);
  3161. caches++;
  3162. /* Free temporary boot structure */
  3163. free_pages((unsigned long)temp_kmem_cache, order);
  3164. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3165. /*
  3166. * Patch up the size_index table if we have strange large alignment
  3167. * requirements for the kmalloc array. This is only the case for
  3168. * MIPS it seems. The standard arches will not generate any code here.
  3169. *
  3170. * Largest permitted alignment is 256 bytes due to the way we
  3171. * handle the index determination for the smaller caches.
  3172. *
  3173. * Make sure that nothing crazy happens if someone starts tinkering
  3174. * around with ARCH_KMALLOC_MINALIGN
  3175. */
  3176. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  3177. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  3178. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  3179. int elem = size_index_elem(i);
  3180. if (elem >= ARRAY_SIZE(size_index))
  3181. break;
  3182. size_index[elem] = KMALLOC_SHIFT_LOW;
  3183. }
  3184. if (KMALLOC_MIN_SIZE == 64) {
  3185. /*
  3186. * The 96 byte size cache is not used if the alignment
  3187. * is 64 byte.
  3188. */
  3189. for (i = 64 + 8; i <= 96; i += 8)
  3190. size_index[size_index_elem(i)] = 7;
  3191. } else if (KMALLOC_MIN_SIZE == 128) {
  3192. /*
  3193. * The 192 byte sized cache is not used if the alignment
  3194. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  3195. * instead.
  3196. */
  3197. for (i = 128 + 8; i <= 192; i += 8)
  3198. size_index[size_index_elem(i)] = 8;
  3199. }
  3200. /* Caches that are not of the two-to-the-power-of size */
  3201. if (KMALLOC_MIN_SIZE <= 32) {
  3202. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  3203. caches++;
  3204. }
  3205. if (KMALLOC_MIN_SIZE <= 64) {
  3206. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  3207. caches++;
  3208. }
  3209. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3210. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  3211. caches++;
  3212. }
  3213. slab_state = UP;
  3214. /* Provide the correct kmalloc names now that the caches are up */
  3215. if (KMALLOC_MIN_SIZE <= 32) {
  3216. kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
  3217. BUG_ON(!kmalloc_caches[1]->name);
  3218. }
  3219. if (KMALLOC_MIN_SIZE <= 64) {
  3220. kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
  3221. BUG_ON(!kmalloc_caches[2]->name);
  3222. }
  3223. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  3224. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  3225. BUG_ON(!s);
  3226. kmalloc_caches[i]->name = s;
  3227. }
  3228. #ifdef CONFIG_SMP
  3229. register_cpu_notifier(&slab_notifier);
  3230. #endif
  3231. #ifdef CONFIG_ZONE_DMA
  3232. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  3233. struct kmem_cache *s = kmalloc_caches[i];
  3234. if (s && s->size) {
  3235. char *name = kasprintf(GFP_NOWAIT,
  3236. "dma-kmalloc-%d", s->object_size);
  3237. BUG_ON(!name);
  3238. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  3239. s->object_size, SLAB_CACHE_DMA);
  3240. }
  3241. }
  3242. #endif
  3243. printk(KERN_INFO
  3244. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  3245. " CPUs=%d, Nodes=%d\n",
  3246. caches, cache_line_size(),
  3247. slub_min_order, slub_max_order, slub_min_objects,
  3248. nr_cpu_ids, nr_node_ids);
  3249. }
  3250. void __init kmem_cache_init_late(void)
  3251. {
  3252. }
  3253. /*
  3254. * Find a mergeable slab cache
  3255. */
  3256. static int slab_unmergeable(struct kmem_cache *s)
  3257. {
  3258. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3259. return 1;
  3260. if (s->ctor)
  3261. return 1;
  3262. /*
  3263. * We may have set a slab to be unmergeable during bootstrap.
  3264. */
  3265. if (s->refcount < 0)
  3266. return 1;
  3267. return 0;
  3268. }
  3269. static struct kmem_cache *find_mergeable(size_t size,
  3270. size_t align, unsigned long flags, const char *name,
  3271. void (*ctor)(void *))
  3272. {
  3273. struct kmem_cache *s;
  3274. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3275. return NULL;
  3276. if (ctor)
  3277. return NULL;
  3278. size = ALIGN(size, sizeof(void *));
  3279. align = calculate_alignment(flags, align, size);
  3280. size = ALIGN(size, align);
  3281. flags = kmem_cache_flags(size, flags, name, NULL);
  3282. list_for_each_entry(s, &slab_caches, list) {
  3283. if (slab_unmergeable(s))
  3284. continue;
  3285. if (size > s->size)
  3286. continue;
  3287. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3288. continue;
  3289. /*
  3290. * Check if alignment is compatible.
  3291. * Courtesy of Adrian Drzewiecki
  3292. */
  3293. if ((s->size & ~(align - 1)) != s->size)
  3294. continue;
  3295. if (s->size - size >= sizeof(void *))
  3296. continue;
  3297. return s;
  3298. }
  3299. return NULL;
  3300. }
  3301. struct kmem_cache *__kmem_cache_alias(const char *name, size_t size,
  3302. size_t align, unsigned long flags, void (*ctor)(void *))
  3303. {
  3304. struct kmem_cache *s;
  3305. s = find_mergeable(size, align, flags, name, ctor);
  3306. if (s) {
  3307. s->refcount++;
  3308. /*
  3309. * Adjust the object sizes so that we clear
  3310. * the complete object on kzalloc.
  3311. */
  3312. s->object_size = max(s->object_size, (int)size);
  3313. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3314. if (sysfs_slab_alias(s, name)) {
  3315. s->refcount--;
  3316. s = NULL;
  3317. }
  3318. }
  3319. return s;
  3320. }
  3321. struct kmem_cache *__kmem_cache_create(const char *name, size_t size,
  3322. size_t align, unsigned long flags, void (*ctor)(void *))
  3323. {
  3324. struct kmem_cache *s;
  3325. s = kmem_cache_alloc(kmem_cache, GFP_KERNEL);
  3326. if (s) {
  3327. if (kmem_cache_open(s, name,
  3328. size, align, flags, ctor)) {
  3329. return s;
  3330. }
  3331. kmem_cache_free(kmem_cache, s);
  3332. }
  3333. return NULL;
  3334. }
  3335. #ifdef CONFIG_SMP
  3336. /*
  3337. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3338. * necessary.
  3339. */
  3340. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  3341. unsigned long action, void *hcpu)
  3342. {
  3343. long cpu = (long)hcpu;
  3344. struct kmem_cache *s;
  3345. unsigned long flags;
  3346. switch (action) {
  3347. case CPU_UP_CANCELED:
  3348. case CPU_UP_CANCELED_FROZEN:
  3349. case CPU_DEAD:
  3350. case CPU_DEAD_FROZEN:
  3351. mutex_lock(&slab_mutex);
  3352. list_for_each_entry(s, &slab_caches, list) {
  3353. local_irq_save(flags);
  3354. __flush_cpu_slab(s, cpu);
  3355. local_irq_restore(flags);
  3356. }
  3357. mutex_unlock(&slab_mutex);
  3358. break;
  3359. default:
  3360. break;
  3361. }
  3362. return NOTIFY_OK;
  3363. }
  3364. static struct notifier_block __cpuinitdata slab_notifier = {
  3365. .notifier_call = slab_cpuup_callback
  3366. };
  3367. #endif
  3368. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3369. {
  3370. struct kmem_cache *s;
  3371. void *ret;
  3372. if (unlikely(size > SLUB_MAX_SIZE))
  3373. return kmalloc_large(size, gfpflags);
  3374. s = get_slab(size, gfpflags);
  3375. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3376. return s;
  3377. ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
  3378. /* Honor the call site pointer we received. */
  3379. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3380. return ret;
  3381. }
  3382. #ifdef CONFIG_NUMA
  3383. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3384. int node, unsigned long caller)
  3385. {
  3386. struct kmem_cache *s;
  3387. void *ret;
  3388. if (unlikely(size > SLUB_MAX_SIZE)) {
  3389. ret = kmalloc_large_node(size, gfpflags, node);
  3390. trace_kmalloc_node(caller, ret,
  3391. size, PAGE_SIZE << get_order(size),
  3392. gfpflags, node);
  3393. return ret;
  3394. }
  3395. s = get_slab(size, gfpflags);
  3396. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3397. return s;
  3398. ret = slab_alloc(s, gfpflags, node, caller);
  3399. /* Honor the call site pointer we received. */
  3400. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3401. return ret;
  3402. }
  3403. #endif
  3404. #ifdef CONFIG_SYSFS
  3405. static int count_inuse(struct page *page)
  3406. {
  3407. return page->inuse;
  3408. }
  3409. static int count_total(struct page *page)
  3410. {
  3411. return page->objects;
  3412. }
  3413. #endif
  3414. #ifdef CONFIG_SLUB_DEBUG
  3415. static int validate_slab(struct kmem_cache *s, struct page *page,
  3416. unsigned long *map)
  3417. {
  3418. void *p;
  3419. void *addr = page_address(page);
  3420. if (!check_slab(s, page) ||
  3421. !on_freelist(s, page, NULL))
  3422. return 0;
  3423. /* Now we know that a valid freelist exists */
  3424. bitmap_zero(map, page->objects);
  3425. get_map(s, page, map);
  3426. for_each_object(p, s, addr, page->objects) {
  3427. if (test_bit(slab_index(p, s, addr), map))
  3428. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3429. return 0;
  3430. }
  3431. for_each_object(p, s, addr, page->objects)
  3432. if (!test_bit(slab_index(p, s, addr), map))
  3433. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3434. return 0;
  3435. return 1;
  3436. }
  3437. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3438. unsigned long *map)
  3439. {
  3440. slab_lock(page);
  3441. validate_slab(s, page, map);
  3442. slab_unlock(page);
  3443. }
  3444. static int validate_slab_node(struct kmem_cache *s,
  3445. struct kmem_cache_node *n, unsigned long *map)
  3446. {
  3447. unsigned long count = 0;
  3448. struct page *page;
  3449. unsigned long flags;
  3450. spin_lock_irqsave(&n->list_lock, flags);
  3451. list_for_each_entry(page, &n->partial, lru) {
  3452. validate_slab_slab(s, page, map);
  3453. count++;
  3454. }
  3455. if (count != n->nr_partial)
  3456. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  3457. "counter=%ld\n", s->name, count, n->nr_partial);
  3458. if (!(s->flags & SLAB_STORE_USER))
  3459. goto out;
  3460. list_for_each_entry(page, &n->full, lru) {
  3461. validate_slab_slab(s, page, map);
  3462. count++;
  3463. }
  3464. if (count != atomic_long_read(&n->nr_slabs))
  3465. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  3466. "counter=%ld\n", s->name, count,
  3467. atomic_long_read(&n->nr_slabs));
  3468. out:
  3469. spin_unlock_irqrestore(&n->list_lock, flags);
  3470. return count;
  3471. }
  3472. static long validate_slab_cache(struct kmem_cache *s)
  3473. {
  3474. int node;
  3475. unsigned long count = 0;
  3476. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3477. sizeof(unsigned long), GFP_KERNEL);
  3478. if (!map)
  3479. return -ENOMEM;
  3480. flush_all(s);
  3481. for_each_node_state(node, N_NORMAL_MEMORY) {
  3482. struct kmem_cache_node *n = get_node(s, node);
  3483. count += validate_slab_node(s, n, map);
  3484. }
  3485. kfree(map);
  3486. return count;
  3487. }
  3488. /*
  3489. * Generate lists of code addresses where slabcache objects are allocated
  3490. * and freed.
  3491. */
  3492. struct location {
  3493. unsigned long count;
  3494. unsigned long addr;
  3495. long long sum_time;
  3496. long min_time;
  3497. long max_time;
  3498. long min_pid;
  3499. long max_pid;
  3500. DECLARE_BITMAP(cpus, NR_CPUS);
  3501. nodemask_t nodes;
  3502. };
  3503. struct loc_track {
  3504. unsigned long max;
  3505. unsigned long count;
  3506. struct location *loc;
  3507. };
  3508. static void free_loc_track(struct loc_track *t)
  3509. {
  3510. if (t->max)
  3511. free_pages((unsigned long)t->loc,
  3512. get_order(sizeof(struct location) * t->max));
  3513. }
  3514. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3515. {
  3516. struct location *l;
  3517. int order;
  3518. order = get_order(sizeof(struct location) * max);
  3519. l = (void *)__get_free_pages(flags, order);
  3520. if (!l)
  3521. return 0;
  3522. if (t->count) {
  3523. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3524. free_loc_track(t);
  3525. }
  3526. t->max = max;
  3527. t->loc = l;
  3528. return 1;
  3529. }
  3530. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3531. const struct track *track)
  3532. {
  3533. long start, end, pos;
  3534. struct location *l;
  3535. unsigned long caddr;
  3536. unsigned long age = jiffies - track->when;
  3537. start = -1;
  3538. end = t->count;
  3539. for ( ; ; ) {
  3540. pos = start + (end - start + 1) / 2;
  3541. /*
  3542. * There is nothing at "end". If we end up there
  3543. * we need to add something to before end.
  3544. */
  3545. if (pos == end)
  3546. break;
  3547. caddr = t->loc[pos].addr;
  3548. if (track->addr == caddr) {
  3549. l = &t->loc[pos];
  3550. l->count++;
  3551. if (track->when) {
  3552. l->sum_time += age;
  3553. if (age < l->min_time)
  3554. l->min_time = age;
  3555. if (age > l->max_time)
  3556. l->max_time = age;
  3557. if (track->pid < l->min_pid)
  3558. l->min_pid = track->pid;
  3559. if (track->pid > l->max_pid)
  3560. l->max_pid = track->pid;
  3561. cpumask_set_cpu(track->cpu,
  3562. to_cpumask(l->cpus));
  3563. }
  3564. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3565. return 1;
  3566. }
  3567. if (track->addr < caddr)
  3568. end = pos;
  3569. else
  3570. start = pos;
  3571. }
  3572. /*
  3573. * Not found. Insert new tracking element.
  3574. */
  3575. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3576. return 0;
  3577. l = t->loc + pos;
  3578. if (pos < t->count)
  3579. memmove(l + 1, l,
  3580. (t->count - pos) * sizeof(struct location));
  3581. t->count++;
  3582. l->count = 1;
  3583. l->addr = track->addr;
  3584. l->sum_time = age;
  3585. l->min_time = age;
  3586. l->max_time = age;
  3587. l->min_pid = track->pid;
  3588. l->max_pid = track->pid;
  3589. cpumask_clear(to_cpumask(l->cpus));
  3590. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3591. nodes_clear(l->nodes);
  3592. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3593. return 1;
  3594. }
  3595. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3596. struct page *page, enum track_item alloc,
  3597. unsigned long *map)
  3598. {
  3599. void *addr = page_address(page);
  3600. void *p;
  3601. bitmap_zero(map, page->objects);
  3602. get_map(s, page, map);
  3603. for_each_object(p, s, addr, page->objects)
  3604. if (!test_bit(slab_index(p, s, addr), map))
  3605. add_location(t, s, get_track(s, p, alloc));
  3606. }
  3607. static int list_locations(struct kmem_cache *s, char *buf,
  3608. enum track_item alloc)
  3609. {
  3610. int len = 0;
  3611. unsigned long i;
  3612. struct loc_track t = { 0, 0, NULL };
  3613. int node;
  3614. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3615. sizeof(unsigned long), GFP_KERNEL);
  3616. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3617. GFP_TEMPORARY)) {
  3618. kfree(map);
  3619. return sprintf(buf, "Out of memory\n");
  3620. }
  3621. /* Push back cpu slabs */
  3622. flush_all(s);
  3623. for_each_node_state(node, N_NORMAL_MEMORY) {
  3624. struct kmem_cache_node *n = get_node(s, node);
  3625. unsigned long flags;
  3626. struct page *page;
  3627. if (!atomic_long_read(&n->nr_slabs))
  3628. continue;
  3629. spin_lock_irqsave(&n->list_lock, flags);
  3630. list_for_each_entry(page, &n->partial, lru)
  3631. process_slab(&t, s, page, alloc, map);
  3632. list_for_each_entry(page, &n->full, lru)
  3633. process_slab(&t, s, page, alloc, map);
  3634. spin_unlock_irqrestore(&n->list_lock, flags);
  3635. }
  3636. for (i = 0; i < t.count; i++) {
  3637. struct location *l = &t.loc[i];
  3638. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3639. break;
  3640. len += sprintf(buf + len, "%7ld ", l->count);
  3641. if (l->addr)
  3642. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3643. else
  3644. len += sprintf(buf + len, "<not-available>");
  3645. if (l->sum_time != l->min_time) {
  3646. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3647. l->min_time,
  3648. (long)div_u64(l->sum_time, l->count),
  3649. l->max_time);
  3650. } else
  3651. len += sprintf(buf + len, " age=%ld",
  3652. l->min_time);
  3653. if (l->min_pid != l->max_pid)
  3654. len += sprintf(buf + len, " pid=%ld-%ld",
  3655. l->min_pid, l->max_pid);
  3656. else
  3657. len += sprintf(buf + len, " pid=%ld",
  3658. l->min_pid);
  3659. if (num_online_cpus() > 1 &&
  3660. !cpumask_empty(to_cpumask(l->cpus)) &&
  3661. len < PAGE_SIZE - 60) {
  3662. len += sprintf(buf + len, " cpus=");
  3663. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3664. to_cpumask(l->cpus));
  3665. }
  3666. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3667. len < PAGE_SIZE - 60) {
  3668. len += sprintf(buf + len, " nodes=");
  3669. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3670. l->nodes);
  3671. }
  3672. len += sprintf(buf + len, "\n");
  3673. }
  3674. free_loc_track(&t);
  3675. kfree(map);
  3676. if (!t.count)
  3677. len += sprintf(buf, "No data\n");
  3678. return len;
  3679. }
  3680. #endif
  3681. #ifdef SLUB_RESILIENCY_TEST
  3682. static void resiliency_test(void)
  3683. {
  3684. u8 *p;
  3685. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
  3686. printk(KERN_ERR "SLUB resiliency testing\n");
  3687. printk(KERN_ERR "-----------------------\n");
  3688. printk(KERN_ERR "A. Corruption after allocation\n");
  3689. p = kzalloc(16, GFP_KERNEL);
  3690. p[16] = 0x12;
  3691. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3692. " 0x12->0x%p\n\n", p + 16);
  3693. validate_slab_cache(kmalloc_caches[4]);
  3694. /* Hmmm... The next two are dangerous */
  3695. p = kzalloc(32, GFP_KERNEL);
  3696. p[32 + sizeof(void *)] = 0x34;
  3697. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3698. " 0x34 -> -0x%p\n", p);
  3699. printk(KERN_ERR
  3700. "If allocated object is overwritten then not detectable\n\n");
  3701. validate_slab_cache(kmalloc_caches[5]);
  3702. p = kzalloc(64, GFP_KERNEL);
  3703. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3704. *p = 0x56;
  3705. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3706. p);
  3707. printk(KERN_ERR
  3708. "If allocated object is overwritten then not detectable\n\n");
  3709. validate_slab_cache(kmalloc_caches[6]);
  3710. printk(KERN_ERR "\nB. Corruption after free\n");
  3711. p = kzalloc(128, GFP_KERNEL);
  3712. kfree(p);
  3713. *p = 0x78;
  3714. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3715. validate_slab_cache(kmalloc_caches[7]);
  3716. p = kzalloc(256, GFP_KERNEL);
  3717. kfree(p);
  3718. p[50] = 0x9a;
  3719. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3720. p);
  3721. validate_slab_cache(kmalloc_caches[8]);
  3722. p = kzalloc(512, GFP_KERNEL);
  3723. kfree(p);
  3724. p[512] = 0xab;
  3725. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3726. validate_slab_cache(kmalloc_caches[9]);
  3727. }
  3728. #else
  3729. #ifdef CONFIG_SYSFS
  3730. static void resiliency_test(void) {};
  3731. #endif
  3732. #endif
  3733. #ifdef CONFIG_SYSFS
  3734. enum slab_stat_type {
  3735. SL_ALL, /* All slabs */
  3736. SL_PARTIAL, /* Only partially allocated slabs */
  3737. SL_CPU, /* Only slabs used for cpu caches */
  3738. SL_OBJECTS, /* Determine allocated objects not slabs */
  3739. SL_TOTAL /* Determine object capacity not slabs */
  3740. };
  3741. #define SO_ALL (1 << SL_ALL)
  3742. #define SO_PARTIAL (1 << SL_PARTIAL)
  3743. #define SO_CPU (1 << SL_CPU)
  3744. #define SO_OBJECTS (1 << SL_OBJECTS)
  3745. #define SO_TOTAL (1 << SL_TOTAL)
  3746. static ssize_t show_slab_objects(struct kmem_cache *s,
  3747. char *buf, unsigned long flags)
  3748. {
  3749. unsigned long total = 0;
  3750. int node;
  3751. int x;
  3752. unsigned long *nodes;
  3753. unsigned long *per_cpu;
  3754. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3755. if (!nodes)
  3756. return -ENOMEM;
  3757. per_cpu = nodes + nr_node_ids;
  3758. if (flags & SO_CPU) {
  3759. int cpu;
  3760. for_each_possible_cpu(cpu) {
  3761. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3762. int node;
  3763. struct page *page;
  3764. page = ACCESS_ONCE(c->page);
  3765. if (!page)
  3766. continue;
  3767. node = page_to_nid(page);
  3768. if (flags & SO_TOTAL)
  3769. x = page->objects;
  3770. else if (flags & SO_OBJECTS)
  3771. x = page->inuse;
  3772. else
  3773. x = 1;
  3774. total += x;
  3775. nodes[node] += x;
  3776. page = ACCESS_ONCE(c->partial);
  3777. if (page) {
  3778. x = page->pobjects;
  3779. total += x;
  3780. nodes[node] += x;
  3781. }
  3782. per_cpu[node]++;
  3783. }
  3784. }
  3785. lock_memory_hotplug();
  3786. #ifdef CONFIG_SLUB_DEBUG
  3787. if (flags & SO_ALL) {
  3788. for_each_node_state(node, N_NORMAL_MEMORY) {
  3789. struct kmem_cache_node *n = get_node(s, node);
  3790. if (flags & SO_TOTAL)
  3791. x = atomic_long_read(&n->total_objects);
  3792. else if (flags & SO_OBJECTS)
  3793. x = atomic_long_read(&n->total_objects) -
  3794. count_partial(n, count_free);
  3795. else
  3796. x = atomic_long_read(&n->nr_slabs);
  3797. total += x;
  3798. nodes[node] += x;
  3799. }
  3800. } else
  3801. #endif
  3802. if (flags & SO_PARTIAL) {
  3803. for_each_node_state(node, N_NORMAL_MEMORY) {
  3804. struct kmem_cache_node *n = get_node(s, node);
  3805. if (flags & SO_TOTAL)
  3806. x = count_partial(n, count_total);
  3807. else if (flags & SO_OBJECTS)
  3808. x = count_partial(n, count_inuse);
  3809. else
  3810. x = n->nr_partial;
  3811. total += x;
  3812. nodes[node] += x;
  3813. }
  3814. }
  3815. x = sprintf(buf, "%lu", total);
  3816. #ifdef CONFIG_NUMA
  3817. for_each_node_state(node, N_NORMAL_MEMORY)
  3818. if (nodes[node])
  3819. x += sprintf(buf + x, " N%d=%lu",
  3820. node, nodes[node]);
  3821. #endif
  3822. unlock_memory_hotplug();
  3823. kfree(nodes);
  3824. return x + sprintf(buf + x, "\n");
  3825. }
  3826. #ifdef CONFIG_SLUB_DEBUG
  3827. static int any_slab_objects(struct kmem_cache *s)
  3828. {
  3829. int node;
  3830. for_each_online_node(node) {
  3831. struct kmem_cache_node *n = get_node(s, node);
  3832. if (!n)
  3833. continue;
  3834. if (atomic_long_read(&n->total_objects))
  3835. return 1;
  3836. }
  3837. return 0;
  3838. }
  3839. #endif
  3840. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3841. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3842. struct slab_attribute {
  3843. struct attribute attr;
  3844. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3845. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3846. };
  3847. #define SLAB_ATTR_RO(_name) \
  3848. static struct slab_attribute _name##_attr = \
  3849. __ATTR(_name, 0400, _name##_show, NULL)
  3850. #define SLAB_ATTR(_name) \
  3851. static struct slab_attribute _name##_attr = \
  3852. __ATTR(_name, 0600, _name##_show, _name##_store)
  3853. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3854. {
  3855. return sprintf(buf, "%d\n", s->size);
  3856. }
  3857. SLAB_ATTR_RO(slab_size);
  3858. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3859. {
  3860. return sprintf(buf, "%d\n", s->align);
  3861. }
  3862. SLAB_ATTR_RO(align);
  3863. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3864. {
  3865. return sprintf(buf, "%d\n", s->object_size);
  3866. }
  3867. SLAB_ATTR_RO(object_size);
  3868. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3869. {
  3870. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3871. }
  3872. SLAB_ATTR_RO(objs_per_slab);
  3873. static ssize_t order_store(struct kmem_cache *s,
  3874. const char *buf, size_t length)
  3875. {
  3876. unsigned long order;
  3877. int err;
  3878. err = strict_strtoul(buf, 10, &order);
  3879. if (err)
  3880. return err;
  3881. if (order > slub_max_order || order < slub_min_order)
  3882. return -EINVAL;
  3883. calculate_sizes(s, order);
  3884. return length;
  3885. }
  3886. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3887. {
  3888. return sprintf(buf, "%d\n", oo_order(s->oo));
  3889. }
  3890. SLAB_ATTR(order);
  3891. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3892. {
  3893. return sprintf(buf, "%lu\n", s->min_partial);
  3894. }
  3895. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3896. size_t length)
  3897. {
  3898. unsigned long min;
  3899. int err;
  3900. err = strict_strtoul(buf, 10, &min);
  3901. if (err)
  3902. return err;
  3903. set_min_partial(s, min);
  3904. return length;
  3905. }
  3906. SLAB_ATTR(min_partial);
  3907. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3908. {
  3909. return sprintf(buf, "%u\n", s->cpu_partial);
  3910. }
  3911. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3912. size_t length)
  3913. {
  3914. unsigned long objects;
  3915. int err;
  3916. err = strict_strtoul(buf, 10, &objects);
  3917. if (err)
  3918. return err;
  3919. if (objects && kmem_cache_debug(s))
  3920. return -EINVAL;
  3921. s->cpu_partial = objects;
  3922. flush_all(s);
  3923. return length;
  3924. }
  3925. SLAB_ATTR(cpu_partial);
  3926. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3927. {
  3928. if (!s->ctor)
  3929. return 0;
  3930. return sprintf(buf, "%pS\n", s->ctor);
  3931. }
  3932. SLAB_ATTR_RO(ctor);
  3933. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3934. {
  3935. return sprintf(buf, "%d\n", s->refcount - 1);
  3936. }
  3937. SLAB_ATTR_RO(aliases);
  3938. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3939. {
  3940. return show_slab_objects(s, buf, SO_PARTIAL);
  3941. }
  3942. SLAB_ATTR_RO(partial);
  3943. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3944. {
  3945. return show_slab_objects(s, buf, SO_CPU);
  3946. }
  3947. SLAB_ATTR_RO(cpu_slabs);
  3948. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3949. {
  3950. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3951. }
  3952. SLAB_ATTR_RO(objects);
  3953. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3954. {
  3955. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3956. }
  3957. SLAB_ATTR_RO(objects_partial);
  3958. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3959. {
  3960. int objects = 0;
  3961. int pages = 0;
  3962. int cpu;
  3963. int len;
  3964. for_each_online_cpu(cpu) {
  3965. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3966. if (page) {
  3967. pages += page->pages;
  3968. objects += page->pobjects;
  3969. }
  3970. }
  3971. len = sprintf(buf, "%d(%d)", objects, pages);
  3972. #ifdef CONFIG_SMP
  3973. for_each_online_cpu(cpu) {
  3974. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3975. if (page && len < PAGE_SIZE - 20)
  3976. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3977. page->pobjects, page->pages);
  3978. }
  3979. #endif
  3980. return len + sprintf(buf + len, "\n");
  3981. }
  3982. SLAB_ATTR_RO(slabs_cpu_partial);
  3983. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3984. {
  3985. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3986. }
  3987. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3988. const char *buf, size_t length)
  3989. {
  3990. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3991. if (buf[0] == '1')
  3992. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3993. return length;
  3994. }
  3995. SLAB_ATTR(reclaim_account);
  3996. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3997. {
  3998. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3999. }
  4000. SLAB_ATTR_RO(hwcache_align);
  4001. #ifdef CONFIG_ZONE_DMA
  4002. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  4003. {
  4004. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  4005. }
  4006. SLAB_ATTR_RO(cache_dma);
  4007. #endif
  4008. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  4009. {
  4010. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  4011. }
  4012. SLAB_ATTR_RO(destroy_by_rcu);
  4013. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  4014. {
  4015. return sprintf(buf, "%d\n", s->reserved);
  4016. }
  4017. SLAB_ATTR_RO(reserved);
  4018. #ifdef CONFIG_SLUB_DEBUG
  4019. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  4020. {
  4021. return show_slab_objects(s, buf, SO_ALL);
  4022. }
  4023. SLAB_ATTR_RO(slabs);
  4024. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  4025. {
  4026. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  4027. }
  4028. SLAB_ATTR_RO(total_objects);
  4029. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  4030. {
  4031. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  4032. }
  4033. static ssize_t sanity_checks_store(struct kmem_cache *s,
  4034. const char *buf, size_t length)
  4035. {
  4036. s->flags &= ~SLAB_DEBUG_FREE;
  4037. if (buf[0] == '1') {
  4038. s->flags &= ~__CMPXCHG_DOUBLE;
  4039. s->flags |= SLAB_DEBUG_FREE;
  4040. }
  4041. return length;
  4042. }
  4043. SLAB_ATTR(sanity_checks);
  4044. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  4045. {
  4046. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  4047. }
  4048. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  4049. size_t length)
  4050. {
  4051. s->flags &= ~SLAB_TRACE;
  4052. if (buf[0] == '1') {
  4053. s->flags &= ~__CMPXCHG_DOUBLE;
  4054. s->flags |= SLAB_TRACE;
  4055. }
  4056. return length;
  4057. }
  4058. SLAB_ATTR(trace);
  4059. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  4060. {
  4061. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  4062. }
  4063. static ssize_t red_zone_store(struct kmem_cache *s,
  4064. const char *buf, size_t length)
  4065. {
  4066. if (any_slab_objects(s))
  4067. return -EBUSY;
  4068. s->flags &= ~SLAB_RED_ZONE;
  4069. if (buf[0] == '1') {
  4070. s->flags &= ~__CMPXCHG_DOUBLE;
  4071. s->flags |= SLAB_RED_ZONE;
  4072. }
  4073. calculate_sizes(s, -1);
  4074. return length;
  4075. }
  4076. SLAB_ATTR(red_zone);
  4077. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  4078. {
  4079. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  4080. }
  4081. static ssize_t poison_store(struct kmem_cache *s,
  4082. const char *buf, size_t length)
  4083. {
  4084. if (any_slab_objects(s))
  4085. return -EBUSY;
  4086. s->flags &= ~SLAB_POISON;
  4087. if (buf[0] == '1') {
  4088. s->flags &= ~__CMPXCHG_DOUBLE;
  4089. s->flags |= SLAB_POISON;
  4090. }
  4091. calculate_sizes(s, -1);
  4092. return length;
  4093. }
  4094. SLAB_ATTR(poison);
  4095. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  4096. {
  4097. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  4098. }
  4099. static ssize_t store_user_store(struct kmem_cache *s,
  4100. const char *buf, size_t length)
  4101. {
  4102. if (any_slab_objects(s))
  4103. return -EBUSY;
  4104. s->flags &= ~SLAB_STORE_USER;
  4105. if (buf[0] == '1') {
  4106. s->flags &= ~__CMPXCHG_DOUBLE;
  4107. s->flags |= SLAB_STORE_USER;
  4108. }
  4109. calculate_sizes(s, -1);
  4110. return length;
  4111. }
  4112. SLAB_ATTR(store_user);
  4113. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  4114. {
  4115. return 0;
  4116. }
  4117. static ssize_t validate_store(struct kmem_cache *s,
  4118. const char *buf, size_t length)
  4119. {
  4120. int ret = -EINVAL;
  4121. if (buf[0] == '1') {
  4122. ret = validate_slab_cache(s);
  4123. if (ret >= 0)
  4124. ret = length;
  4125. }
  4126. return ret;
  4127. }
  4128. SLAB_ATTR(validate);
  4129. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  4130. {
  4131. if (!(s->flags & SLAB_STORE_USER))
  4132. return -ENOSYS;
  4133. return list_locations(s, buf, TRACK_ALLOC);
  4134. }
  4135. SLAB_ATTR_RO(alloc_calls);
  4136. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  4137. {
  4138. if (!(s->flags & SLAB_STORE_USER))
  4139. return -ENOSYS;
  4140. return list_locations(s, buf, TRACK_FREE);
  4141. }
  4142. SLAB_ATTR_RO(free_calls);
  4143. #endif /* CONFIG_SLUB_DEBUG */
  4144. #ifdef CONFIG_FAILSLAB
  4145. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  4146. {
  4147. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  4148. }
  4149. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  4150. size_t length)
  4151. {
  4152. s->flags &= ~SLAB_FAILSLAB;
  4153. if (buf[0] == '1')
  4154. s->flags |= SLAB_FAILSLAB;
  4155. return length;
  4156. }
  4157. SLAB_ATTR(failslab);
  4158. #endif
  4159. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  4160. {
  4161. return 0;
  4162. }
  4163. static ssize_t shrink_store(struct kmem_cache *s,
  4164. const char *buf, size_t length)
  4165. {
  4166. if (buf[0] == '1') {
  4167. int rc = kmem_cache_shrink(s);
  4168. if (rc)
  4169. return rc;
  4170. } else
  4171. return -EINVAL;
  4172. return length;
  4173. }
  4174. SLAB_ATTR(shrink);
  4175. #ifdef CONFIG_NUMA
  4176. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4177. {
  4178. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4179. }
  4180. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4181. const char *buf, size_t length)
  4182. {
  4183. unsigned long ratio;
  4184. int err;
  4185. err = strict_strtoul(buf, 10, &ratio);
  4186. if (err)
  4187. return err;
  4188. if (ratio <= 100)
  4189. s->remote_node_defrag_ratio = ratio * 10;
  4190. return length;
  4191. }
  4192. SLAB_ATTR(remote_node_defrag_ratio);
  4193. #endif
  4194. #ifdef CONFIG_SLUB_STATS
  4195. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4196. {
  4197. unsigned long sum = 0;
  4198. int cpu;
  4199. int len;
  4200. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4201. if (!data)
  4202. return -ENOMEM;
  4203. for_each_online_cpu(cpu) {
  4204. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4205. data[cpu] = x;
  4206. sum += x;
  4207. }
  4208. len = sprintf(buf, "%lu", sum);
  4209. #ifdef CONFIG_SMP
  4210. for_each_online_cpu(cpu) {
  4211. if (data[cpu] && len < PAGE_SIZE - 20)
  4212. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4213. }
  4214. #endif
  4215. kfree(data);
  4216. return len + sprintf(buf + len, "\n");
  4217. }
  4218. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4219. {
  4220. int cpu;
  4221. for_each_online_cpu(cpu)
  4222. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4223. }
  4224. #define STAT_ATTR(si, text) \
  4225. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4226. { \
  4227. return show_stat(s, buf, si); \
  4228. } \
  4229. static ssize_t text##_store(struct kmem_cache *s, \
  4230. const char *buf, size_t length) \
  4231. { \
  4232. if (buf[0] != '0') \
  4233. return -EINVAL; \
  4234. clear_stat(s, si); \
  4235. return length; \
  4236. } \
  4237. SLAB_ATTR(text); \
  4238. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4239. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4240. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4241. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4242. STAT_ATTR(FREE_FROZEN, free_frozen);
  4243. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4244. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4245. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4246. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4247. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4248. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4249. STAT_ATTR(FREE_SLAB, free_slab);
  4250. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4251. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4252. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4253. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4254. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4255. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4256. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4257. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4258. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4259. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4260. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4261. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4262. STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
  4263. STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
  4264. #endif
  4265. static struct attribute *slab_attrs[] = {
  4266. &slab_size_attr.attr,
  4267. &object_size_attr.attr,
  4268. &objs_per_slab_attr.attr,
  4269. &order_attr.attr,
  4270. &min_partial_attr.attr,
  4271. &cpu_partial_attr.attr,
  4272. &objects_attr.attr,
  4273. &objects_partial_attr.attr,
  4274. &partial_attr.attr,
  4275. &cpu_slabs_attr.attr,
  4276. &ctor_attr.attr,
  4277. &aliases_attr.attr,
  4278. &align_attr.attr,
  4279. &hwcache_align_attr.attr,
  4280. &reclaim_account_attr.attr,
  4281. &destroy_by_rcu_attr.attr,
  4282. &shrink_attr.attr,
  4283. &reserved_attr.attr,
  4284. &slabs_cpu_partial_attr.attr,
  4285. #ifdef CONFIG_SLUB_DEBUG
  4286. &total_objects_attr.attr,
  4287. &slabs_attr.attr,
  4288. &sanity_checks_attr.attr,
  4289. &trace_attr.attr,
  4290. &red_zone_attr.attr,
  4291. &poison_attr.attr,
  4292. &store_user_attr.attr,
  4293. &validate_attr.attr,
  4294. &alloc_calls_attr.attr,
  4295. &free_calls_attr.attr,
  4296. #endif
  4297. #ifdef CONFIG_ZONE_DMA
  4298. &cache_dma_attr.attr,
  4299. #endif
  4300. #ifdef CONFIG_NUMA
  4301. &remote_node_defrag_ratio_attr.attr,
  4302. #endif
  4303. #ifdef CONFIG_SLUB_STATS
  4304. &alloc_fastpath_attr.attr,
  4305. &alloc_slowpath_attr.attr,
  4306. &free_fastpath_attr.attr,
  4307. &free_slowpath_attr.attr,
  4308. &free_frozen_attr.attr,
  4309. &free_add_partial_attr.attr,
  4310. &free_remove_partial_attr.attr,
  4311. &alloc_from_partial_attr.attr,
  4312. &alloc_slab_attr.attr,
  4313. &alloc_refill_attr.attr,
  4314. &alloc_node_mismatch_attr.attr,
  4315. &free_slab_attr.attr,
  4316. &cpuslab_flush_attr.attr,
  4317. &deactivate_full_attr.attr,
  4318. &deactivate_empty_attr.attr,
  4319. &deactivate_to_head_attr.attr,
  4320. &deactivate_to_tail_attr.attr,
  4321. &deactivate_remote_frees_attr.attr,
  4322. &deactivate_bypass_attr.attr,
  4323. &order_fallback_attr.attr,
  4324. &cmpxchg_double_fail_attr.attr,
  4325. &cmpxchg_double_cpu_fail_attr.attr,
  4326. &cpu_partial_alloc_attr.attr,
  4327. &cpu_partial_free_attr.attr,
  4328. &cpu_partial_node_attr.attr,
  4329. &cpu_partial_drain_attr.attr,
  4330. #endif
  4331. #ifdef CONFIG_FAILSLAB
  4332. &failslab_attr.attr,
  4333. #endif
  4334. NULL
  4335. };
  4336. static struct attribute_group slab_attr_group = {
  4337. .attrs = slab_attrs,
  4338. };
  4339. static ssize_t slab_attr_show(struct kobject *kobj,
  4340. struct attribute *attr,
  4341. char *buf)
  4342. {
  4343. struct slab_attribute *attribute;
  4344. struct kmem_cache *s;
  4345. int err;
  4346. attribute = to_slab_attr(attr);
  4347. s = to_slab(kobj);
  4348. if (!attribute->show)
  4349. return -EIO;
  4350. err = attribute->show(s, buf);
  4351. return err;
  4352. }
  4353. static ssize_t slab_attr_store(struct kobject *kobj,
  4354. struct attribute *attr,
  4355. const char *buf, size_t len)
  4356. {
  4357. struct slab_attribute *attribute;
  4358. struct kmem_cache *s;
  4359. int err;
  4360. attribute = to_slab_attr(attr);
  4361. s = to_slab(kobj);
  4362. if (!attribute->store)
  4363. return -EIO;
  4364. err = attribute->store(s, buf, len);
  4365. return err;
  4366. }
  4367. static const struct sysfs_ops slab_sysfs_ops = {
  4368. .show = slab_attr_show,
  4369. .store = slab_attr_store,
  4370. };
  4371. static struct kobj_type slab_ktype = {
  4372. .sysfs_ops = &slab_sysfs_ops,
  4373. };
  4374. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4375. {
  4376. struct kobj_type *ktype = get_ktype(kobj);
  4377. if (ktype == &slab_ktype)
  4378. return 1;
  4379. return 0;
  4380. }
  4381. static const struct kset_uevent_ops slab_uevent_ops = {
  4382. .filter = uevent_filter,
  4383. };
  4384. static struct kset *slab_kset;
  4385. #define ID_STR_LENGTH 64
  4386. /* Create a unique string id for a slab cache:
  4387. *
  4388. * Format :[flags-]size
  4389. */
  4390. static char *create_unique_id(struct kmem_cache *s)
  4391. {
  4392. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4393. char *p = name;
  4394. BUG_ON(!name);
  4395. *p++ = ':';
  4396. /*
  4397. * First flags affecting slabcache operations. We will only
  4398. * get here for aliasable slabs so we do not need to support
  4399. * too many flags. The flags here must cover all flags that
  4400. * are matched during merging to guarantee that the id is
  4401. * unique.
  4402. */
  4403. if (s->flags & SLAB_CACHE_DMA)
  4404. *p++ = 'd';
  4405. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4406. *p++ = 'a';
  4407. if (s->flags & SLAB_DEBUG_FREE)
  4408. *p++ = 'F';
  4409. if (!(s->flags & SLAB_NOTRACK))
  4410. *p++ = 't';
  4411. if (p != name + 1)
  4412. *p++ = '-';
  4413. p += sprintf(p, "%07d", s->size);
  4414. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4415. return name;
  4416. }
  4417. int sysfs_slab_add(struct kmem_cache *s)
  4418. {
  4419. int err;
  4420. const char *name;
  4421. int unmergeable;
  4422. if (slab_state < FULL)
  4423. /* Defer until later */
  4424. return 0;
  4425. unmergeable = slab_unmergeable(s);
  4426. if (unmergeable) {
  4427. /*
  4428. * Slabcache can never be merged so we can use the name proper.
  4429. * This is typically the case for debug situations. In that
  4430. * case we can catch duplicate names easily.
  4431. */
  4432. sysfs_remove_link(&slab_kset->kobj, s->name);
  4433. name = s->name;
  4434. } else {
  4435. /*
  4436. * Create a unique name for the slab as a target
  4437. * for the symlinks.
  4438. */
  4439. name = create_unique_id(s);
  4440. }
  4441. s->kobj.kset = slab_kset;
  4442. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  4443. if (err) {
  4444. kobject_put(&s->kobj);
  4445. return err;
  4446. }
  4447. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4448. if (err) {
  4449. kobject_del(&s->kobj);
  4450. kobject_put(&s->kobj);
  4451. return err;
  4452. }
  4453. kobject_uevent(&s->kobj, KOBJ_ADD);
  4454. if (!unmergeable) {
  4455. /* Setup first alias */
  4456. sysfs_slab_alias(s, s->name);
  4457. kfree(name);
  4458. }
  4459. return 0;
  4460. }
  4461. static void sysfs_slab_remove(struct kmem_cache *s)
  4462. {
  4463. if (slab_state < FULL)
  4464. /*
  4465. * Sysfs has not been setup yet so no need to remove the
  4466. * cache from sysfs.
  4467. */
  4468. return;
  4469. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4470. kobject_del(&s->kobj);
  4471. kobject_put(&s->kobj);
  4472. }
  4473. /*
  4474. * Need to buffer aliases during bootup until sysfs becomes
  4475. * available lest we lose that information.
  4476. */
  4477. struct saved_alias {
  4478. struct kmem_cache *s;
  4479. const char *name;
  4480. struct saved_alias *next;
  4481. };
  4482. static struct saved_alias *alias_list;
  4483. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4484. {
  4485. struct saved_alias *al;
  4486. if (slab_state == FULL) {
  4487. /*
  4488. * If we have a leftover link then remove it.
  4489. */
  4490. sysfs_remove_link(&slab_kset->kobj, name);
  4491. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4492. }
  4493. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4494. if (!al)
  4495. return -ENOMEM;
  4496. al->s = s;
  4497. al->name = name;
  4498. al->next = alias_list;
  4499. alias_list = al;
  4500. return 0;
  4501. }
  4502. static int __init slab_sysfs_init(void)
  4503. {
  4504. struct kmem_cache *s;
  4505. int err;
  4506. mutex_lock(&slab_mutex);
  4507. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4508. if (!slab_kset) {
  4509. mutex_unlock(&slab_mutex);
  4510. printk(KERN_ERR "Cannot register slab subsystem.\n");
  4511. return -ENOSYS;
  4512. }
  4513. slab_state = FULL;
  4514. list_for_each_entry(s, &slab_caches, list) {
  4515. err = sysfs_slab_add(s);
  4516. if (err)
  4517. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  4518. " to sysfs\n", s->name);
  4519. }
  4520. while (alias_list) {
  4521. struct saved_alias *al = alias_list;
  4522. alias_list = alias_list->next;
  4523. err = sysfs_slab_alias(al->s, al->name);
  4524. if (err)
  4525. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  4526. " %s to sysfs\n", al->name);
  4527. kfree(al);
  4528. }
  4529. mutex_unlock(&slab_mutex);
  4530. resiliency_test();
  4531. return 0;
  4532. }
  4533. __initcall(slab_sysfs_init);
  4534. #endif /* CONFIG_SYSFS */
  4535. /*
  4536. * The /proc/slabinfo ABI
  4537. */
  4538. #ifdef CONFIG_SLABINFO
  4539. static void print_slabinfo_header(struct seq_file *m)
  4540. {
  4541. seq_puts(m, "slabinfo - version: 2.1\n");
  4542. seq_puts(m, "# name <active_objs> <num_objs> <object_size> "
  4543. "<objperslab> <pagesperslab>");
  4544. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  4545. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  4546. seq_putc(m, '\n');
  4547. }
  4548. static void *s_start(struct seq_file *m, loff_t *pos)
  4549. {
  4550. loff_t n = *pos;
  4551. mutex_lock(&slab_mutex);
  4552. if (!n)
  4553. print_slabinfo_header(m);
  4554. return seq_list_start(&slab_caches, *pos);
  4555. }
  4556. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  4557. {
  4558. return seq_list_next(p, &slab_caches, pos);
  4559. }
  4560. static void s_stop(struct seq_file *m, void *p)
  4561. {
  4562. mutex_unlock(&slab_mutex);
  4563. }
  4564. static int s_show(struct seq_file *m, void *p)
  4565. {
  4566. unsigned long nr_partials = 0;
  4567. unsigned long nr_slabs = 0;
  4568. unsigned long nr_inuse = 0;
  4569. unsigned long nr_objs = 0;
  4570. unsigned long nr_free = 0;
  4571. struct kmem_cache *s;
  4572. int node;
  4573. s = list_entry(p, struct kmem_cache, list);
  4574. for_each_online_node(node) {
  4575. struct kmem_cache_node *n = get_node(s, node);
  4576. if (!n)
  4577. continue;
  4578. nr_partials += n->nr_partial;
  4579. nr_slabs += atomic_long_read(&n->nr_slabs);
  4580. nr_objs += atomic_long_read(&n->total_objects);
  4581. nr_free += count_partial(n, count_free);
  4582. }
  4583. nr_inuse = nr_objs - nr_free;
  4584. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  4585. nr_objs, s->size, oo_objects(s->oo),
  4586. (1 << oo_order(s->oo)));
  4587. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  4588. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  4589. 0UL);
  4590. seq_putc(m, '\n');
  4591. return 0;
  4592. }
  4593. static const struct seq_operations slabinfo_op = {
  4594. .start = s_start,
  4595. .next = s_next,
  4596. .stop = s_stop,
  4597. .show = s_show,
  4598. };
  4599. static int slabinfo_open(struct inode *inode, struct file *file)
  4600. {
  4601. return seq_open(file, &slabinfo_op);
  4602. }
  4603. static const struct file_operations proc_slabinfo_operations = {
  4604. .open = slabinfo_open,
  4605. .read = seq_read,
  4606. .llseek = seq_lseek,
  4607. .release = seq_release,
  4608. };
  4609. static int __init slab_proc_init(void)
  4610. {
  4611. proc_create("slabinfo", S_IRUSR, NULL, &proc_slabinfo_operations);
  4612. return 0;
  4613. }
  4614. module_init(slab_proc_init);
  4615. #endif /* CONFIG_SLABINFO */