lmb.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509
  1. /*
  2. * Procedures for maintaining information about logical memory blocks.
  3. *
  4. * Peter Bergner, IBM Corp. June 2001.
  5. * Copyright (C) 2001 Peter Bergner.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/init.h>
  14. #include <linux/bitops.h>
  15. #include <linux/lmb.h>
  16. #define LMB_ALLOC_ANYWHERE 0
  17. struct lmb lmb;
  18. void lmb_dump_all(void)
  19. {
  20. #ifdef DEBUG
  21. unsigned long i;
  22. pr_debug("lmb_dump_all:\n");
  23. pr_debug(" memory.cnt = 0x%lx\n", lmb.memory.cnt);
  24. pr_debug(" memory.size = 0x%llx\n",
  25. (unsigned long long)lmb.memory.size);
  26. for (i=0; i < lmb.memory.cnt ;i++) {
  27. pr_debug(" memory.region[0x%x].base = 0x%llx\n",
  28. i, (unsigned long long)lmb.memory.region[i].base);
  29. pr_debug(" .size = 0x%llx\n",
  30. (unsigned long long)lmb.memory.region[i].size);
  31. }
  32. pr_debug(" reserved.cnt = 0x%lx\n", lmb.reserved.cnt);
  33. pr_debug(" reserved.size = 0x%lx\n", lmb.reserved.size);
  34. for (i=0; i < lmb.reserved.cnt ;i++) {
  35. pr_debug(" reserved.region[0x%x].base = 0x%llx\n",
  36. i, (unsigned long long)lmb.reserved.region[i].base);
  37. pr_debug(" .size = 0x%llx\n",
  38. (unsigned long long)lmb.reserved.region[i].size);
  39. }
  40. #endif /* DEBUG */
  41. }
  42. static unsigned long lmb_addrs_overlap(u64 base1, u64 size1, u64 base2,
  43. u64 size2)
  44. {
  45. return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
  46. }
  47. static long lmb_addrs_adjacent(u64 base1, u64 size1, u64 base2, u64 size2)
  48. {
  49. if (base2 == base1 + size1)
  50. return 1;
  51. else if (base1 == base2 + size2)
  52. return -1;
  53. return 0;
  54. }
  55. static long lmb_regions_adjacent(struct lmb_region *rgn,
  56. unsigned long r1, unsigned long r2)
  57. {
  58. u64 base1 = rgn->region[r1].base;
  59. u64 size1 = rgn->region[r1].size;
  60. u64 base2 = rgn->region[r2].base;
  61. u64 size2 = rgn->region[r2].size;
  62. return lmb_addrs_adjacent(base1, size1, base2, size2);
  63. }
  64. static void lmb_remove_region(struct lmb_region *rgn, unsigned long r)
  65. {
  66. unsigned long i;
  67. for (i = r; i < rgn->cnt - 1; i++) {
  68. rgn->region[i].base = rgn->region[i + 1].base;
  69. rgn->region[i].size = rgn->region[i + 1].size;
  70. }
  71. rgn->cnt--;
  72. }
  73. /* Assumption: base addr of region 1 < base addr of region 2 */
  74. static void lmb_coalesce_regions(struct lmb_region *rgn,
  75. unsigned long r1, unsigned long r2)
  76. {
  77. rgn->region[r1].size += rgn->region[r2].size;
  78. lmb_remove_region(rgn, r2);
  79. }
  80. void __init lmb_init(void)
  81. {
  82. /* Create a dummy zero size LMB which will get coalesced away later.
  83. * This simplifies the lmb_add() code below...
  84. */
  85. lmb.memory.region[0].base = 0;
  86. lmb.memory.region[0].size = 0;
  87. lmb.memory.cnt = 1;
  88. /* Ditto. */
  89. lmb.reserved.region[0].base = 0;
  90. lmb.reserved.region[0].size = 0;
  91. lmb.reserved.cnt = 1;
  92. }
  93. void __init lmb_analyze(void)
  94. {
  95. int i;
  96. lmb.memory.size = 0;
  97. for (i = 0; i < lmb.memory.cnt; i++)
  98. lmb.memory.size += lmb.memory.region[i].size;
  99. }
  100. static long lmb_add_region(struct lmb_region *rgn, u64 base, u64 size)
  101. {
  102. unsigned long coalesced = 0;
  103. long adjacent, i;
  104. if ((rgn->cnt == 1) && (rgn->region[0].size == 0)) {
  105. rgn->region[0].base = base;
  106. rgn->region[0].size = size;
  107. return 0;
  108. }
  109. /* First try and coalesce this LMB with another. */
  110. for (i = 0; i < rgn->cnt; i++) {
  111. u64 rgnbase = rgn->region[i].base;
  112. u64 rgnsize = rgn->region[i].size;
  113. if ((rgnbase == base) && (rgnsize == size))
  114. /* Already have this region, so we're done */
  115. return 0;
  116. adjacent = lmb_addrs_adjacent(base, size, rgnbase, rgnsize);
  117. if (adjacent > 0) {
  118. rgn->region[i].base -= size;
  119. rgn->region[i].size += size;
  120. coalesced++;
  121. break;
  122. } else if (adjacent < 0) {
  123. rgn->region[i].size += size;
  124. coalesced++;
  125. break;
  126. }
  127. }
  128. if ((i < rgn->cnt - 1) && lmb_regions_adjacent(rgn, i, i+1)) {
  129. lmb_coalesce_regions(rgn, i, i+1);
  130. coalesced++;
  131. }
  132. if (coalesced)
  133. return coalesced;
  134. if (rgn->cnt >= MAX_LMB_REGIONS)
  135. return -1;
  136. /* Couldn't coalesce the LMB, so add it to the sorted table. */
  137. for (i = rgn->cnt - 1; i >= 0; i--) {
  138. if (base < rgn->region[i].base) {
  139. rgn->region[i+1].base = rgn->region[i].base;
  140. rgn->region[i+1].size = rgn->region[i].size;
  141. } else {
  142. rgn->region[i+1].base = base;
  143. rgn->region[i+1].size = size;
  144. break;
  145. }
  146. }
  147. if (base < rgn->region[0].base) {
  148. rgn->region[0].base = base;
  149. rgn->region[0].size = size;
  150. }
  151. rgn->cnt++;
  152. return 0;
  153. }
  154. long lmb_add(u64 base, u64 size)
  155. {
  156. struct lmb_region *_rgn = &lmb.memory;
  157. /* On pSeries LPAR systems, the first LMB is our RMO region. */
  158. if (base == 0)
  159. lmb.rmo_size = size;
  160. return lmb_add_region(_rgn, base, size);
  161. }
  162. long lmb_remove(u64 base, u64 size)
  163. {
  164. struct lmb_region *rgn = &(lmb.memory);
  165. u64 rgnbegin, rgnend;
  166. u64 end = base + size;
  167. int i;
  168. rgnbegin = rgnend = 0; /* supress gcc warnings */
  169. /* Find the region where (base, size) belongs to */
  170. for (i=0; i < rgn->cnt; i++) {
  171. rgnbegin = rgn->region[i].base;
  172. rgnend = rgnbegin + rgn->region[i].size;
  173. if ((rgnbegin <= base) && (end <= rgnend))
  174. break;
  175. }
  176. /* Didn't find the region */
  177. if (i == rgn->cnt)
  178. return -1;
  179. /* Check to see if we are removing entire region */
  180. if ((rgnbegin == base) && (rgnend == end)) {
  181. lmb_remove_region(rgn, i);
  182. return 0;
  183. }
  184. /* Check to see if region is matching at the front */
  185. if (rgnbegin == base) {
  186. rgn->region[i].base = end;
  187. rgn->region[i].size -= size;
  188. return 0;
  189. }
  190. /* Check to see if the region is matching at the end */
  191. if (rgnend == end) {
  192. rgn->region[i].size -= size;
  193. return 0;
  194. }
  195. /*
  196. * We need to split the entry - adjust the current one to the
  197. * beginging of the hole and add the region after hole.
  198. */
  199. rgn->region[i].size = base - rgn->region[i].base;
  200. return lmb_add_region(rgn, end, rgnend - end);
  201. }
  202. long __init lmb_reserve(u64 base, u64 size)
  203. {
  204. struct lmb_region *_rgn = &lmb.reserved;
  205. BUG_ON(0 == size);
  206. return lmb_add_region(_rgn, base, size);
  207. }
  208. long __init lmb_overlaps_region(struct lmb_region *rgn, u64 base, u64 size)
  209. {
  210. unsigned long i;
  211. for (i = 0; i < rgn->cnt; i++) {
  212. u64 rgnbase = rgn->region[i].base;
  213. u64 rgnsize = rgn->region[i].size;
  214. if (lmb_addrs_overlap(base, size, rgnbase, rgnsize))
  215. break;
  216. }
  217. return (i < rgn->cnt) ? i : -1;
  218. }
  219. static u64 lmb_align_down(u64 addr, u64 size)
  220. {
  221. return addr & ~(size - 1);
  222. }
  223. static u64 lmb_align_up(u64 addr, u64 size)
  224. {
  225. return (addr + (size - 1)) & ~(size - 1);
  226. }
  227. static u64 __init lmb_alloc_nid_unreserved(u64 start, u64 end,
  228. u64 size, u64 align)
  229. {
  230. u64 base, res_base;
  231. long j;
  232. base = lmb_align_down((end - size), align);
  233. while (start <= base) {
  234. j = lmb_overlaps_region(&lmb.reserved, base, size);
  235. if (j < 0) {
  236. /* this area isn't reserved, take it */
  237. if (lmb_add_region(&lmb.reserved, base,
  238. lmb_align_up(size, align)) < 0)
  239. base = ~(u64)0;
  240. return base;
  241. }
  242. res_base = lmb.reserved.region[j].base;
  243. if (res_base < size)
  244. break;
  245. base = lmb_align_down(res_base - size, align);
  246. }
  247. return ~(u64)0;
  248. }
  249. static u64 __init lmb_alloc_nid_region(struct lmb_property *mp,
  250. u64 (*nid_range)(u64, u64, int *),
  251. u64 size, u64 align, int nid)
  252. {
  253. u64 start, end;
  254. start = mp->base;
  255. end = start + mp->size;
  256. start = lmb_align_up(start, align);
  257. while (start < end) {
  258. u64 this_end;
  259. int this_nid;
  260. this_end = nid_range(start, end, &this_nid);
  261. if (this_nid == nid) {
  262. u64 ret = lmb_alloc_nid_unreserved(start, this_end,
  263. size, align);
  264. if (ret != ~(u64)0)
  265. return ret;
  266. }
  267. start = this_end;
  268. }
  269. return ~(u64)0;
  270. }
  271. u64 __init lmb_alloc_nid(u64 size, u64 align, int nid,
  272. u64 (*nid_range)(u64 start, u64 end, int *nid))
  273. {
  274. struct lmb_region *mem = &lmb.memory;
  275. int i;
  276. for (i = 0; i < mem->cnt; i++) {
  277. u64 ret = lmb_alloc_nid_region(&mem->region[i],
  278. nid_range,
  279. size, align, nid);
  280. if (ret != ~(u64)0)
  281. return ret;
  282. }
  283. return lmb_alloc(size, align);
  284. }
  285. u64 __init lmb_alloc(u64 size, u64 align)
  286. {
  287. return lmb_alloc_base(size, align, LMB_ALLOC_ANYWHERE);
  288. }
  289. u64 __init lmb_alloc_base(u64 size, u64 align, u64 max_addr)
  290. {
  291. u64 alloc;
  292. alloc = __lmb_alloc_base(size, align, max_addr);
  293. if (alloc == 0)
  294. panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
  295. (unsigned long long) size, (unsigned long long) max_addr);
  296. return alloc;
  297. }
  298. u64 __init __lmb_alloc_base(u64 size, u64 align, u64 max_addr)
  299. {
  300. long i, j;
  301. u64 base = 0;
  302. u64 res_base;
  303. BUG_ON(0 == size);
  304. /* On some platforms, make sure we allocate lowmem */
  305. /* Note that LMB_REAL_LIMIT may be LMB_ALLOC_ANYWHERE */
  306. if (max_addr == LMB_ALLOC_ANYWHERE)
  307. max_addr = LMB_REAL_LIMIT;
  308. for (i = lmb.memory.cnt - 1; i >= 0; i--) {
  309. u64 lmbbase = lmb.memory.region[i].base;
  310. u64 lmbsize = lmb.memory.region[i].size;
  311. if (lmbsize < size)
  312. continue;
  313. if (max_addr == LMB_ALLOC_ANYWHERE)
  314. base = lmb_align_down(lmbbase + lmbsize - size, align);
  315. else if (lmbbase < max_addr) {
  316. base = min(lmbbase + lmbsize, max_addr);
  317. base = lmb_align_down(base - size, align);
  318. } else
  319. continue;
  320. while (base && lmbbase <= base) {
  321. j = lmb_overlaps_region(&lmb.reserved, base, size);
  322. if (j < 0) {
  323. /* this area isn't reserved, take it */
  324. if (lmb_add_region(&lmb.reserved, base,
  325. lmb_align_up(size, align)) < 0)
  326. return 0;
  327. return base;
  328. }
  329. res_base = lmb.reserved.region[j].base;
  330. if (res_base < size)
  331. break;
  332. base = lmb_align_down(res_base - size, align);
  333. }
  334. }
  335. return 0;
  336. }
  337. /* You must call lmb_analyze() before this. */
  338. u64 __init lmb_phys_mem_size(void)
  339. {
  340. return lmb.memory.size;
  341. }
  342. u64 __init lmb_end_of_DRAM(void)
  343. {
  344. int idx = lmb.memory.cnt - 1;
  345. return (lmb.memory.region[idx].base + lmb.memory.region[idx].size);
  346. }
  347. /* You must call lmb_analyze() after this. */
  348. void __init lmb_enforce_memory_limit(u64 memory_limit)
  349. {
  350. unsigned long i;
  351. u64 limit;
  352. struct lmb_property *p;
  353. if (!memory_limit)
  354. return;
  355. /* Truncate the lmb regions to satisfy the memory limit. */
  356. limit = memory_limit;
  357. for (i = 0; i < lmb.memory.cnt; i++) {
  358. if (limit > lmb.memory.region[i].size) {
  359. limit -= lmb.memory.region[i].size;
  360. continue;
  361. }
  362. lmb.memory.region[i].size = limit;
  363. lmb.memory.cnt = i + 1;
  364. break;
  365. }
  366. if (lmb.memory.region[0].size < lmb.rmo_size)
  367. lmb.rmo_size = lmb.memory.region[0].size;
  368. /* And truncate any reserves above the limit also. */
  369. for (i = 0; i < lmb.reserved.cnt; i++) {
  370. p = &lmb.reserved.region[i];
  371. if (p->base > memory_limit)
  372. p->size = 0;
  373. else if ((p->base + p->size) > memory_limit)
  374. p->size = memory_limit - p->base;
  375. if (p->size == 0) {
  376. lmb_remove_region(&lmb.reserved, i);
  377. i--;
  378. }
  379. }
  380. }
  381. int __init lmb_is_reserved(u64 addr)
  382. {
  383. int i;
  384. for (i = 0; i < lmb.reserved.cnt; i++) {
  385. u64 upper = lmb.reserved.region[i].base +
  386. lmb.reserved.region[i].size - 1;
  387. if ((addr >= lmb.reserved.region[i].base) && (addr <= upper))
  388. return 1;
  389. }
  390. return 0;
  391. }
  392. /*
  393. * Given a <base, len>, find which memory regions belong to this range.
  394. * Adjust the request and return a contiguous chunk.
  395. */
  396. int lmb_find(struct lmb_property *res)
  397. {
  398. int i;
  399. u64 rstart, rend;
  400. rstart = res->base;
  401. rend = rstart + res->size - 1;
  402. for (i = 0; i < lmb.memory.cnt; i++) {
  403. u64 start = lmb.memory.region[i].base;
  404. u64 end = start + lmb.memory.region[i].size - 1;
  405. if (start > rend)
  406. return -1;
  407. if ((end >= rstart) && (start < rend)) {
  408. /* adjust the request */
  409. if (rstart < start)
  410. rstart = start;
  411. if (rend > end)
  412. rend = end;
  413. res->base = rstart;
  414. res->size = rend - rstart + 1;
  415. return 0;
  416. }
  417. }
  418. return -1;
  419. }