audit.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502
  1. /* audit.c -- Auditing support
  2. * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
  3. * System-call specific features have moved to auditsc.c
  4. *
  5. * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
  6. * All Rights Reserved.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  21. *
  22. * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  23. *
  24. * Goals: 1) Integrate fully with Security Modules.
  25. * 2) Minimal run-time overhead:
  26. * a) Minimal when syscall auditing is disabled (audit_enable=0).
  27. * b) Small when syscall auditing is enabled and no audit record
  28. * is generated (defer as much work as possible to record
  29. * generation time):
  30. * i) context is allocated,
  31. * ii) names from getname are stored without a copy, and
  32. * iii) inode information stored from path_lookup.
  33. * 3) Ability to disable syscall auditing at boot time (audit=0).
  34. * 4) Usable by other parts of the kernel (if audit_log* is called,
  35. * then a syscall record will be generated automatically for the
  36. * current syscall).
  37. * 5) Netlink interface to user-space.
  38. * 6) Support low-overhead kernel-based filtering to minimize the
  39. * information that must be passed to user-space.
  40. *
  41. * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
  42. */
  43. #include <linux/init.h>
  44. #include <asm/types.h>
  45. #include <asm/atomic.h>
  46. #include <linux/mm.h>
  47. #include <linux/module.h>
  48. #include <linux/err.h>
  49. #include <linux/kthread.h>
  50. #include <linux/audit.h>
  51. #include <net/sock.h>
  52. #include <net/netlink.h>
  53. #include <linux/skbuff.h>
  54. #include <linux/netlink.h>
  55. #include <linux/inotify.h>
  56. #include <linux/freezer.h>
  57. #include <linux/tty.h>
  58. #include "audit.h"
  59. /* No auditing will take place until audit_initialized != 0.
  60. * (Initialization happens after skb_init is called.) */
  61. static int audit_initialized;
  62. #define AUDIT_OFF 0
  63. #define AUDIT_ON 1
  64. #define AUDIT_LOCKED 2
  65. int audit_enabled;
  66. int audit_ever_enabled;
  67. /* Default state when kernel boots without any parameters. */
  68. static int audit_default;
  69. /* If auditing cannot proceed, audit_failure selects what happens. */
  70. static int audit_failure = AUDIT_FAIL_PRINTK;
  71. /*
  72. * If audit records are to be written to the netlink socket, audit_pid
  73. * contains the pid of the auditd process and audit_nlk_pid contains
  74. * the pid to use to send netlink messages to that process.
  75. */
  76. int audit_pid;
  77. static int audit_nlk_pid;
  78. /* If audit_rate_limit is non-zero, limit the rate of sending audit records
  79. * to that number per second. This prevents DoS attacks, but results in
  80. * audit records being dropped. */
  81. static int audit_rate_limit;
  82. /* Number of outstanding audit_buffers allowed. */
  83. static int audit_backlog_limit = 64;
  84. static int audit_backlog_wait_time = 60 * HZ;
  85. static int audit_backlog_wait_overflow = 0;
  86. /* The identity of the user shutting down the audit system. */
  87. uid_t audit_sig_uid = -1;
  88. pid_t audit_sig_pid = -1;
  89. u32 audit_sig_sid = 0;
  90. /* Records can be lost in several ways:
  91. 0) [suppressed in audit_alloc]
  92. 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
  93. 2) out of memory in audit_log_move [alloc_skb]
  94. 3) suppressed due to audit_rate_limit
  95. 4) suppressed due to audit_backlog_limit
  96. */
  97. static atomic_t audit_lost = ATOMIC_INIT(0);
  98. /* The netlink socket. */
  99. static struct sock *audit_sock;
  100. /* Inotify handle. */
  101. struct inotify_handle *audit_ih;
  102. /* Hash for inode-based rules */
  103. struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
  104. /* The audit_freelist is a list of pre-allocated audit buffers (if more
  105. * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
  106. * being placed on the freelist). */
  107. static DEFINE_SPINLOCK(audit_freelist_lock);
  108. static int audit_freelist_count;
  109. static LIST_HEAD(audit_freelist);
  110. static struct sk_buff_head audit_skb_queue;
  111. /* queue of skbs to send to auditd when/if it comes back */
  112. static struct sk_buff_head audit_skb_hold_queue;
  113. static struct task_struct *kauditd_task;
  114. static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
  115. static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
  116. /* Serialize requests from userspace. */
  117. static DEFINE_MUTEX(audit_cmd_mutex);
  118. /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
  119. * audit records. Since printk uses a 1024 byte buffer, this buffer
  120. * should be at least that large. */
  121. #define AUDIT_BUFSIZ 1024
  122. /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
  123. * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
  124. #define AUDIT_MAXFREE (2*NR_CPUS)
  125. /* The audit_buffer is used when formatting an audit record. The caller
  126. * locks briefly to get the record off the freelist or to allocate the
  127. * buffer, and locks briefly to send the buffer to the netlink layer or
  128. * to place it on a transmit queue. Multiple audit_buffers can be in
  129. * use simultaneously. */
  130. struct audit_buffer {
  131. struct list_head list;
  132. struct sk_buff *skb; /* formatted skb ready to send */
  133. struct audit_context *ctx; /* NULL or associated context */
  134. gfp_t gfp_mask;
  135. };
  136. struct audit_reply {
  137. int pid;
  138. struct sk_buff *skb;
  139. };
  140. static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
  141. {
  142. if (ab) {
  143. struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
  144. nlh->nlmsg_pid = pid;
  145. }
  146. }
  147. void audit_panic(const char *message)
  148. {
  149. switch (audit_failure)
  150. {
  151. case AUDIT_FAIL_SILENT:
  152. break;
  153. case AUDIT_FAIL_PRINTK:
  154. if (printk_ratelimit())
  155. printk(KERN_ERR "audit: %s\n", message);
  156. break;
  157. case AUDIT_FAIL_PANIC:
  158. /* test audit_pid since printk is always losey, why bother? */
  159. if (audit_pid)
  160. panic("audit: %s\n", message);
  161. break;
  162. }
  163. }
  164. static inline int audit_rate_check(void)
  165. {
  166. static unsigned long last_check = 0;
  167. static int messages = 0;
  168. static DEFINE_SPINLOCK(lock);
  169. unsigned long flags;
  170. unsigned long now;
  171. unsigned long elapsed;
  172. int retval = 0;
  173. if (!audit_rate_limit) return 1;
  174. spin_lock_irqsave(&lock, flags);
  175. if (++messages < audit_rate_limit) {
  176. retval = 1;
  177. } else {
  178. now = jiffies;
  179. elapsed = now - last_check;
  180. if (elapsed > HZ) {
  181. last_check = now;
  182. messages = 0;
  183. retval = 1;
  184. }
  185. }
  186. spin_unlock_irqrestore(&lock, flags);
  187. return retval;
  188. }
  189. /**
  190. * audit_log_lost - conditionally log lost audit message event
  191. * @message: the message stating reason for lost audit message
  192. *
  193. * Emit at least 1 message per second, even if audit_rate_check is
  194. * throttling.
  195. * Always increment the lost messages counter.
  196. */
  197. void audit_log_lost(const char *message)
  198. {
  199. static unsigned long last_msg = 0;
  200. static DEFINE_SPINLOCK(lock);
  201. unsigned long flags;
  202. unsigned long now;
  203. int print;
  204. atomic_inc(&audit_lost);
  205. print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
  206. if (!print) {
  207. spin_lock_irqsave(&lock, flags);
  208. now = jiffies;
  209. if (now - last_msg > HZ) {
  210. print = 1;
  211. last_msg = now;
  212. }
  213. spin_unlock_irqrestore(&lock, flags);
  214. }
  215. if (print) {
  216. if (printk_ratelimit())
  217. printk(KERN_WARNING
  218. "audit: audit_lost=%d audit_rate_limit=%d "
  219. "audit_backlog_limit=%d\n",
  220. atomic_read(&audit_lost),
  221. audit_rate_limit,
  222. audit_backlog_limit);
  223. audit_panic(message);
  224. }
  225. }
  226. static int audit_log_config_change(char *function_name, int new, int old,
  227. uid_t loginuid, u32 sessionid, u32 sid,
  228. int allow_changes)
  229. {
  230. struct audit_buffer *ab;
  231. int rc = 0;
  232. ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
  233. audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new,
  234. old, loginuid, sessionid);
  235. if (sid) {
  236. char *ctx = NULL;
  237. u32 len;
  238. rc = security_secid_to_secctx(sid, &ctx, &len);
  239. if (rc) {
  240. audit_log_format(ab, " sid=%u", sid);
  241. allow_changes = 0; /* Something weird, deny request */
  242. } else {
  243. audit_log_format(ab, " subj=%s", ctx);
  244. security_release_secctx(ctx, len);
  245. }
  246. }
  247. audit_log_format(ab, " res=%d", allow_changes);
  248. audit_log_end(ab);
  249. return rc;
  250. }
  251. static int audit_do_config_change(char *function_name, int *to_change,
  252. int new, uid_t loginuid, u32 sessionid,
  253. u32 sid)
  254. {
  255. int allow_changes, rc = 0, old = *to_change;
  256. /* check if we are locked */
  257. if (audit_enabled == AUDIT_LOCKED)
  258. allow_changes = 0;
  259. else
  260. allow_changes = 1;
  261. if (audit_enabled != AUDIT_OFF) {
  262. rc = audit_log_config_change(function_name, new, old, loginuid,
  263. sessionid, sid, allow_changes);
  264. if (rc)
  265. allow_changes = 0;
  266. }
  267. /* If we are allowed, make the change */
  268. if (allow_changes == 1)
  269. *to_change = new;
  270. /* Not allowed, update reason */
  271. else if (rc == 0)
  272. rc = -EPERM;
  273. return rc;
  274. }
  275. static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sessionid,
  276. u32 sid)
  277. {
  278. return audit_do_config_change("audit_rate_limit", &audit_rate_limit,
  279. limit, loginuid, sessionid, sid);
  280. }
  281. static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sessionid,
  282. u32 sid)
  283. {
  284. return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit,
  285. limit, loginuid, sessionid, sid);
  286. }
  287. static int audit_set_enabled(int state, uid_t loginuid, u32 sessionid, u32 sid)
  288. {
  289. int rc;
  290. if (state < AUDIT_OFF || state > AUDIT_LOCKED)
  291. return -EINVAL;
  292. rc = audit_do_config_change("audit_enabled", &audit_enabled, state,
  293. loginuid, sessionid, sid);
  294. if (!rc)
  295. audit_ever_enabled |= !!state;
  296. return rc;
  297. }
  298. static int audit_set_failure(int state, uid_t loginuid, u32 sessionid, u32 sid)
  299. {
  300. if (state != AUDIT_FAIL_SILENT
  301. && state != AUDIT_FAIL_PRINTK
  302. && state != AUDIT_FAIL_PANIC)
  303. return -EINVAL;
  304. return audit_do_config_change("audit_failure", &audit_failure, state,
  305. loginuid, sessionid, sid);
  306. }
  307. /*
  308. * Queue skbs to be sent to auditd when/if it comes back. These skbs should
  309. * already have been sent via prink/syslog and so if these messages are dropped
  310. * it is not a huge concern since we already passed the audit_log_lost()
  311. * notification and stuff. This is just nice to get audit messages during
  312. * boot before auditd is running or messages generated while auditd is stopped.
  313. * This only holds messages is audit_default is set, aka booting with audit=1
  314. * or building your kernel that way.
  315. */
  316. static void audit_hold_skb(struct sk_buff *skb)
  317. {
  318. if (audit_default &&
  319. skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)
  320. skb_queue_tail(&audit_skb_hold_queue, skb);
  321. else
  322. kfree_skb(skb);
  323. }
  324. static void kauditd_send_skb(struct sk_buff *skb)
  325. {
  326. int err;
  327. /* take a reference in case we can't send it and we want to hold it */
  328. skb_get(skb);
  329. err = netlink_unicast(audit_sock, skb, audit_nlk_pid, 0);
  330. if (err < 0) {
  331. BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */
  332. printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
  333. audit_log_lost("auditd dissapeared\n");
  334. audit_pid = 0;
  335. /* we might get lucky and get this in the next auditd */
  336. audit_hold_skb(skb);
  337. } else
  338. /* drop the extra reference if sent ok */
  339. kfree_skb(skb);
  340. }
  341. static int kauditd_thread(void *dummy)
  342. {
  343. struct sk_buff *skb;
  344. set_freezable();
  345. while (!kthread_should_stop()) {
  346. /*
  347. * if auditd just started drain the queue of messages already
  348. * sent to syslog/printk. remember loss here is ok. we already
  349. * called audit_log_lost() if it didn't go out normally. so the
  350. * race between the skb_dequeue and the next check for audit_pid
  351. * doesn't matter.
  352. *
  353. * if you ever find kauditd to be too slow we can get a perf win
  354. * by doing our own locking and keeping better track if there
  355. * are messages in this queue. I don't see the need now, but
  356. * in 5 years when I want to play with this again I'll see this
  357. * note and still have no friggin idea what i'm thinking today.
  358. */
  359. if (audit_default && audit_pid) {
  360. skb = skb_dequeue(&audit_skb_hold_queue);
  361. if (unlikely(skb)) {
  362. while (skb && audit_pid) {
  363. kauditd_send_skb(skb);
  364. skb = skb_dequeue(&audit_skb_hold_queue);
  365. }
  366. }
  367. }
  368. skb = skb_dequeue(&audit_skb_queue);
  369. wake_up(&audit_backlog_wait);
  370. if (skb) {
  371. if (audit_pid)
  372. kauditd_send_skb(skb);
  373. else {
  374. if (printk_ratelimit())
  375. printk(KERN_NOTICE "%s\n", skb->data + NLMSG_SPACE(0));
  376. else
  377. audit_log_lost("printk limit exceeded\n");
  378. audit_hold_skb(skb);
  379. }
  380. } else {
  381. DECLARE_WAITQUEUE(wait, current);
  382. set_current_state(TASK_INTERRUPTIBLE);
  383. add_wait_queue(&kauditd_wait, &wait);
  384. if (!skb_queue_len(&audit_skb_queue)) {
  385. try_to_freeze();
  386. schedule();
  387. }
  388. __set_current_state(TASK_RUNNING);
  389. remove_wait_queue(&kauditd_wait, &wait);
  390. }
  391. }
  392. return 0;
  393. }
  394. static int audit_prepare_user_tty(pid_t pid, uid_t loginuid, u32 sessionid)
  395. {
  396. struct task_struct *tsk;
  397. int err;
  398. read_lock(&tasklist_lock);
  399. tsk = find_task_by_vpid(pid);
  400. err = -ESRCH;
  401. if (!tsk)
  402. goto out;
  403. err = 0;
  404. spin_lock_irq(&tsk->sighand->siglock);
  405. if (!tsk->signal->audit_tty)
  406. err = -EPERM;
  407. spin_unlock_irq(&tsk->sighand->siglock);
  408. if (err)
  409. goto out;
  410. tty_audit_push_task(tsk, loginuid, sessionid);
  411. out:
  412. read_unlock(&tasklist_lock);
  413. return err;
  414. }
  415. int audit_send_list(void *_dest)
  416. {
  417. struct audit_netlink_list *dest = _dest;
  418. int pid = dest->pid;
  419. struct sk_buff *skb;
  420. /* wait for parent to finish and send an ACK */
  421. mutex_lock(&audit_cmd_mutex);
  422. mutex_unlock(&audit_cmd_mutex);
  423. while ((skb = __skb_dequeue(&dest->q)) != NULL)
  424. netlink_unicast(audit_sock, skb, pid, 0);
  425. kfree(dest);
  426. return 0;
  427. }
  428. #ifdef CONFIG_AUDIT_TREE
  429. static int prune_tree_thread(void *unused)
  430. {
  431. mutex_lock(&audit_cmd_mutex);
  432. audit_prune_trees();
  433. mutex_unlock(&audit_cmd_mutex);
  434. return 0;
  435. }
  436. void audit_schedule_prune(void)
  437. {
  438. kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
  439. }
  440. #endif
  441. struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
  442. int multi, void *payload, int size)
  443. {
  444. struct sk_buff *skb;
  445. struct nlmsghdr *nlh;
  446. int len = NLMSG_SPACE(size);
  447. void *data;
  448. int flags = multi ? NLM_F_MULTI : 0;
  449. int t = done ? NLMSG_DONE : type;
  450. skb = alloc_skb(len, GFP_KERNEL);
  451. if (!skb)
  452. return NULL;
  453. nlh = NLMSG_PUT(skb, pid, seq, t, size);
  454. nlh->nlmsg_flags = flags;
  455. data = NLMSG_DATA(nlh);
  456. memcpy(data, payload, size);
  457. return skb;
  458. nlmsg_failure: /* Used by NLMSG_PUT */
  459. if (skb)
  460. kfree_skb(skb);
  461. return NULL;
  462. }
  463. static int audit_send_reply_thread(void *arg)
  464. {
  465. struct audit_reply *reply = (struct audit_reply *)arg;
  466. mutex_lock(&audit_cmd_mutex);
  467. mutex_unlock(&audit_cmd_mutex);
  468. /* Ignore failure. It'll only happen if the sender goes away,
  469. because our timeout is set to infinite. */
  470. netlink_unicast(audit_sock, reply->skb, reply->pid, 0);
  471. kfree(reply);
  472. return 0;
  473. }
  474. /**
  475. * audit_send_reply - send an audit reply message via netlink
  476. * @pid: process id to send reply to
  477. * @seq: sequence number
  478. * @type: audit message type
  479. * @done: done (last) flag
  480. * @multi: multi-part message flag
  481. * @payload: payload data
  482. * @size: payload size
  483. *
  484. * Allocates an skb, builds the netlink message, and sends it to the pid.
  485. * No failure notifications.
  486. */
  487. void audit_send_reply(int pid, int seq, int type, int done, int multi,
  488. void *payload, int size)
  489. {
  490. struct sk_buff *skb;
  491. struct task_struct *tsk;
  492. struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
  493. GFP_KERNEL);
  494. if (!reply)
  495. return;
  496. skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
  497. if (!skb)
  498. return;
  499. reply->pid = pid;
  500. reply->skb = skb;
  501. tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
  502. if (IS_ERR(tsk)) {
  503. kfree(reply);
  504. kfree_skb(skb);
  505. }
  506. }
  507. /*
  508. * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
  509. * control messages.
  510. */
  511. static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
  512. {
  513. int err = 0;
  514. switch (msg_type) {
  515. case AUDIT_GET:
  516. case AUDIT_LIST:
  517. case AUDIT_LIST_RULES:
  518. case AUDIT_SET:
  519. case AUDIT_ADD:
  520. case AUDIT_ADD_RULE:
  521. case AUDIT_DEL:
  522. case AUDIT_DEL_RULE:
  523. case AUDIT_SIGNAL_INFO:
  524. case AUDIT_TTY_GET:
  525. case AUDIT_TTY_SET:
  526. case AUDIT_TRIM:
  527. case AUDIT_MAKE_EQUIV:
  528. if (security_netlink_recv(skb, CAP_AUDIT_CONTROL))
  529. err = -EPERM;
  530. break;
  531. case AUDIT_USER:
  532. case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
  533. case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
  534. if (security_netlink_recv(skb, CAP_AUDIT_WRITE))
  535. err = -EPERM;
  536. break;
  537. default: /* bad msg */
  538. err = -EINVAL;
  539. }
  540. return err;
  541. }
  542. static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type,
  543. u32 pid, u32 uid, uid_t auid, u32 ses,
  544. u32 sid)
  545. {
  546. int rc = 0;
  547. char *ctx = NULL;
  548. u32 len;
  549. if (!audit_enabled) {
  550. *ab = NULL;
  551. return rc;
  552. }
  553. *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
  554. audit_log_format(*ab, "user pid=%d uid=%u auid=%u ses=%u",
  555. pid, uid, auid, ses);
  556. if (sid) {
  557. rc = security_secid_to_secctx(sid, &ctx, &len);
  558. if (rc)
  559. audit_log_format(*ab, " ssid=%u", sid);
  560. else {
  561. audit_log_format(*ab, " subj=%s", ctx);
  562. security_release_secctx(ctx, len);
  563. }
  564. }
  565. return rc;
  566. }
  567. static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
  568. {
  569. u32 uid, pid, seq, sid;
  570. void *data;
  571. struct audit_status *status_get, status_set;
  572. int err;
  573. struct audit_buffer *ab;
  574. u16 msg_type = nlh->nlmsg_type;
  575. uid_t loginuid; /* loginuid of sender */
  576. u32 sessionid;
  577. struct audit_sig_info *sig_data;
  578. char *ctx = NULL;
  579. u32 len;
  580. err = audit_netlink_ok(skb, msg_type);
  581. if (err)
  582. return err;
  583. /* As soon as there's any sign of userspace auditd,
  584. * start kauditd to talk to it */
  585. if (!kauditd_task)
  586. kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
  587. if (IS_ERR(kauditd_task)) {
  588. err = PTR_ERR(kauditd_task);
  589. kauditd_task = NULL;
  590. return err;
  591. }
  592. pid = NETLINK_CREDS(skb)->pid;
  593. uid = NETLINK_CREDS(skb)->uid;
  594. loginuid = NETLINK_CB(skb).loginuid;
  595. sessionid = NETLINK_CB(skb).sessionid;
  596. sid = NETLINK_CB(skb).sid;
  597. seq = nlh->nlmsg_seq;
  598. data = NLMSG_DATA(nlh);
  599. switch (msg_type) {
  600. case AUDIT_GET:
  601. status_set.enabled = audit_enabled;
  602. status_set.failure = audit_failure;
  603. status_set.pid = audit_pid;
  604. status_set.rate_limit = audit_rate_limit;
  605. status_set.backlog_limit = audit_backlog_limit;
  606. status_set.lost = atomic_read(&audit_lost);
  607. status_set.backlog = skb_queue_len(&audit_skb_queue);
  608. audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0,
  609. &status_set, sizeof(status_set));
  610. break;
  611. case AUDIT_SET:
  612. if (nlh->nlmsg_len < sizeof(struct audit_status))
  613. return -EINVAL;
  614. status_get = (struct audit_status *)data;
  615. if (status_get->mask & AUDIT_STATUS_ENABLED) {
  616. err = audit_set_enabled(status_get->enabled,
  617. loginuid, sessionid, sid);
  618. if (err < 0) return err;
  619. }
  620. if (status_get->mask & AUDIT_STATUS_FAILURE) {
  621. err = audit_set_failure(status_get->failure,
  622. loginuid, sessionid, sid);
  623. if (err < 0) return err;
  624. }
  625. if (status_get->mask & AUDIT_STATUS_PID) {
  626. int new_pid = status_get->pid;
  627. if (audit_enabled != AUDIT_OFF)
  628. audit_log_config_change("audit_pid", new_pid,
  629. audit_pid, loginuid,
  630. sessionid, sid, 1);
  631. audit_pid = new_pid;
  632. audit_nlk_pid = NETLINK_CB(skb).pid;
  633. }
  634. if (status_get->mask & AUDIT_STATUS_RATE_LIMIT)
  635. err = audit_set_rate_limit(status_get->rate_limit,
  636. loginuid, sessionid, sid);
  637. if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
  638. err = audit_set_backlog_limit(status_get->backlog_limit,
  639. loginuid, sessionid, sid);
  640. break;
  641. case AUDIT_USER:
  642. case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
  643. case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
  644. if (!audit_enabled && msg_type != AUDIT_USER_AVC)
  645. return 0;
  646. err = audit_filter_user(&NETLINK_CB(skb), msg_type);
  647. if (err == 1) {
  648. err = 0;
  649. if (msg_type == AUDIT_USER_TTY) {
  650. err = audit_prepare_user_tty(pid, loginuid,
  651. sessionid);
  652. if (err)
  653. break;
  654. }
  655. audit_log_common_recv_msg(&ab, msg_type, pid, uid,
  656. loginuid, sessionid, sid);
  657. if (msg_type != AUDIT_USER_TTY)
  658. audit_log_format(ab, " msg='%.1024s'",
  659. (char *)data);
  660. else {
  661. int size;
  662. audit_log_format(ab, " msg=");
  663. size = nlmsg_len(nlh);
  664. audit_log_n_untrustedstring(ab, data, size);
  665. }
  666. audit_set_pid(ab, pid);
  667. audit_log_end(ab);
  668. }
  669. break;
  670. case AUDIT_ADD:
  671. case AUDIT_DEL:
  672. if (nlmsg_len(nlh) < sizeof(struct audit_rule))
  673. return -EINVAL;
  674. if (audit_enabled == AUDIT_LOCKED) {
  675. audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
  676. uid, loginuid, sessionid, sid);
  677. audit_log_format(ab, " audit_enabled=%d res=0",
  678. audit_enabled);
  679. audit_log_end(ab);
  680. return -EPERM;
  681. }
  682. /* fallthrough */
  683. case AUDIT_LIST:
  684. err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid,
  685. uid, seq, data, nlmsg_len(nlh),
  686. loginuid, sessionid, sid);
  687. break;
  688. case AUDIT_ADD_RULE:
  689. case AUDIT_DEL_RULE:
  690. if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
  691. return -EINVAL;
  692. if (audit_enabled == AUDIT_LOCKED) {
  693. audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
  694. uid, loginuid, sessionid, sid);
  695. audit_log_format(ab, " audit_enabled=%d res=0",
  696. audit_enabled);
  697. audit_log_end(ab);
  698. return -EPERM;
  699. }
  700. /* fallthrough */
  701. case AUDIT_LIST_RULES:
  702. err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid,
  703. uid, seq, data, nlmsg_len(nlh),
  704. loginuid, sessionid, sid);
  705. break;
  706. case AUDIT_TRIM:
  707. audit_trim_trees();
  708. audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
  709. uid, loginuid, sessionid, sid);
  710. audit_log_format(ab, " op=trim res=1");
  711. audit_log_end(ab);
  712. break;
  713. case AUDIT_MAKE_EQUIV: {
  714. void *bufp = data;
  715. u32 sizes[2];
  716. size_t msglen = nlmsg_len(nlh);
  717. char *old, *new;
  718. err = -EINVAL;
  719. if (msglen < 2 * sizeof(u32))
  720. break;
  721. memcpy(sizes, bufp, 2 * sizeof(u32));
  722. bufp += 2 * sizeof(u32);
  723. msglen -= 2 * sizeof(u32);
  724. old = audit_unpack_string(&bufp, &msglen, sizes[0]);
  725. if (IS_ERR(old)) {
  726. err = PTR_ERR(old);
  727. break;
  728. }
  729. new = audit_unpack_string(&bufp, &msglen, sizes[1]);
  730. if (IS_ERR(new)) {
  731. err = PTR_ERR(new);
  732. kfree(old);
  733. break;
  734. }
  735. /* OK, here comes... */
  736. err = audit_tag_tree(old, new);
  737. audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
  738. uid, loginuid, sessionid, sid);
  739. audit_log_format(ab, " op=make_equiv old=");
  740. audit_log_untrustedstring(ab, old);
  741. audit_log_format(ab, " new=");
  742. audit_log_untrustedstring(ab, new);
  743. audit_log_format(ab, " res=%d", !err);
  744. audit_log_end(ab);
  745. kfree(old);
  746. kfree(new);
  747. break;
  748. }
  749. case AUDIT_SIGNAL_INFO:
  750. err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
  751. if (err)
  752. return err;
  753. sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
  754. if (!sig_data) {
  755. security_release_secctx(ctx, len);
  756. return -ENOMEM;
  757. }
  758. sig_data->uid = audit_sig_uid;
  759. sig_data->pid = audit_sig_pid;
  760. memcpy(sig_data->ctx, ctx, len);
  761. security_release_secctx(ctx, len);
  762. audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
  763. 0, 0, sig_data, sizeof(*sig_data) + len);
  764. kfree(sig_data);
  765. break;
  766. case AUDIT_TTY_GET: {
  767. struct audit_tty_status s;
  768. struct task_struct *tsk;
  769. read_lock(&tasklist_lock);
  770. tsk = find_task_by_vpid(pid);
  771. if (!tsk)
  772. err = -ESRCH;
  773. else {
  774. spin_lock_irq(&tsk->sighand->siglock);
  775. s.enabled = tsk->signal->audit_tty != 0;
  776. spin_unlock_irq(&tsk->sighand->siglock);
  777. }
  778. read_unlock(&tasklist_lock);
  779. audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_TTY_GET, 0, 0,
  780. &s, sizeof(s));
  781. break;
  782. }
  783. case AUDIT_TTY_SET: {
  784. struct audit_tty_status *s;
  785. struct task_struct *tsk;
  786. if (nlh->nlmsg_len < sizeof(struct audit_tty_status))
  787. return -EINVAL;
  788. s = data;
  789. if (s->enabled != 0 && s->enabled != 1)
  790. return -EINVAL;
  791. read_lock(&tasklist_lock);
  792. tsk = find_task_by_vpid(pid);
  793. if (!tsk)
  794. err = -ESRCH;
  795. else {
  796. spin_lock_irq(&tsk->sighand->siglock);
  797. tsk->signal->audit_tty = s->enabled != 0;
  798. spin_unlock_irq(&tsk->sighand->siglock);
  799. }
  800. read_unlock(&tasklist_lock);
  801. break;
  802. }
  803. default:
  804. err = -EINVAL;
  805. break;
  806. }
  807. return err < 0 ? err : 0;
  808. }
  809. /*
  810. * Get message from skb (based on rtnetlink_rcv_skb). Each message is
  811. * processed by audit_receive_msg. Malformed skbs with wrong length are
  812. * discarded silently.
  813. */
  814. static void audit_receive_skb(struct sk_buff *skb)
  815. {
  816. int err;
  817. struct nlmsghdr *nlh;
  818. u32 rlen;
  819. while (skb->len >= NLMSG_SPACE(0)) {
  820. nlh = nlmsg_hdr(skb);
  821. if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len)
  822. return;
  823. rlen = NLMSG_ALIGN(nlh->nlmsg_len);
  824. if (rlen > skb->len)
  825. rlen = skb->len;
  826. if ((err = audit_receive_msg(skb, nlh))) {
  827. netlink_ack(skb, nlh, err);
  828. } else if (nlh->nlmsg_flags & NLM_F_ACK)
  829. netlink_ack(skb, nlh, 0);
  830. skb_pull(skb, rlen);
  831. }
  832. }
  833. /* Receive messages from netlink socket. */
  834. static void audit_receive(struct sk_buff *skb)
  835. {
  836. mutex_lock(&audit_cmd_mutex);
  837. audit_receive_skb(skb);
  838. mutex_unlock(&audit_cmd_mutex);
  839. }
  840. #ifdef CONFIG_AUDITSYSCALL
  841. static const struct inotify_operations audit_inotify_ops = {
  842. .handle_event = audit_handle_ievent,
  843. .destroy_watch = audit_free_parent,
  844. };
  845. #endif
  846. /* Initialize audit support at boot time. */
  847. static int __init audit_init(void)
  848. {
  849. int i;
  850. printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
  851. audit_default ? "enabled" : "disabled");
  852. audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0,
  853. audit_receive, NULL, THIS_MODULE);
  854. if (!audit_sock)
  855. audit_panic("cannot initialize netlink socket");
  856. else
  857. audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
  858. skb_queue_head_init(&audit_skb_queue);
  859. skb_queue_head_init(&audit_skb_hold_queue);
  860. audit_initialized = 1;
  861. audit_enabled = audit_default;
  862. audit_ever_enabled |= !!audit_default;
  863. audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
  864. #ifdef CONFIG_AUDITSYSCALL
  865. audit_ih = inotify_init(&audit_inotify_ops);
  866. if (IS_ERR(audit_ih))
  867. audit_panic("cannot initialize inotify handle");
  868. #endif
  869. for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
  870. INIT_LIST_HEAD(&audit_inode_hash[i]);
  871. return 0;
  872. }
  873. __initcall(audit_init);
  874. /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
  875. static int __init audit_enable(char *str)
  876. {
  877. audit_default = !!simple_strtol(str, NULL, 0);
  878. printk(KERN_INFO "audit: %s%s\n",
  879. audit_default ? "enabled" : "disabled",
  880. audit_initialized ? "" : " (after initialization)");
  881. if (audit_initialized) {
  882. audit_enabled = audit_default;
  883. audit_ever_enabled |= !!audit_default;
  884. }
  885. return 1;
  886. }
  887. __setup("audit=", audit_enable);
  888. static void audit_buffer_free(struct audit_buffer *ab)
  889. {
  890. unsigned long flags;
  891. if (!ab)
  892. return;
  893. if (ab->skb)
  894. kfree_skb(ab->skb);
  895. spin_lock_irqsave(&audit_freelist_lock, flags);
  896. if (audit_freelist_count > AUDIT_MAXFREE)
  897. kfree(ab);
  898. else {
  899. audit_freelist_count++;
  900. list_add(&ab->list, &audit_freelist);
  901. }
  902. spin_unlock_irqrestore(&audit_freelist_lock, flags);
  903. }
  904. static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
  905. gfp_t gfp_mask, int type)
  906. {
  907. unsigned long flags;
  908. struct audit_buffer *ab = NULL;
  909. struct nlmsghdr *nlh;
  910. spin_lock_irqsave(&audit_freelist_lock, flags);
  911. if (!list_empty(&audit_freelist)) {
  912. ab = list_entry(audit_freelist.next,
  913. struct audit_buffer, list);
  914. list_del(&ab->list);
  915. --audit_freelist_count;
  916. }
  917. spin_unlock_irqrestore(&audit_freelist_lock, flags);
  918. if (!ab) {
  919. ab = kmalloc(sizeof(*ab), gfp_mask);
  920. if (!ab)
  921. goto err;
  922. }
  923. ab->skb = alloc_skb(AUDIT_BUFSIZ, gfp_mask);
  924. if (!ab->skb)
  925. goto err;
  926. ab->ctx = ctx;
  927. ab->gfp_mask = gfp_mask;
  928. nlh = (struct nlmsghdr *)skb_put(ab->skb, NLMSG_SPACE(0));
  929. nlh->nlmsg_type = type;
  930. nlh->nlmsg_flags = 0;
  931. nlh->nlmsg_pid = 0;
  932. nlh->nlmsg_seq = 0;
  933. return ab;
  934. err:
  935. audit_buffer_free(ab);
  936. return NULL;
  937. }
  938. /**
  939. * audit_serial - compute a serial number for the audit record
  940. *
  941. * Compute a serial number for the audit record. Audit records are
  942. * written to user-space as soon as they are generated, so a complete
  943. * audit record may be written in several pieces. The timestamp of the
  944. * record and this serial number are used by the user-space tools to
  945. * determine which pieces belong to the same audit record. The
  946. * (timestamp,serial) tuple is unique for each syscall and is live from
  947. * syscall entry to syscall exit.
  948. *
  949. * NOTE: Another possibility is to store the formatted records off the
  950. * audit context (for those records that have a context), and emit them
  951. * all at syscall exit. However, this could delay the reporting of
  952. * significant errors until syscall exit (or never, if the system
  953. * halts).
  954. */
  955. unsigned int audit_serial(void)
  956. {
  957. static DEFINE_SPINLOCK(serial_lock);
  958. static unsigned int serial = 0;
  959. unsigned long flags;
  960. unsigned int ret;
  961. spin_lock_irqsave(&serial_lock, flags);
  962. do {
  963. ret = ++serial;
  964. } while (unlikely(!ret));
  965. spin_unlock_irqrestore(&serial_lock, flags);
  966. return ret;
  967. }
  968. static inline void audit_get_stamp(struct audit_context *ctx,
  969. struct timespec *t, unsigned int *serial)
  970. {
  971. if (ctx)
  972. auditsc_get_stamp(ctx, t, serial);
  973. else {
  974. *t = CURRENT_TIME;
  975. *serial = audit_serial();
  976. }
  977. }
  978. /* Obtain an audit buffer. This routine does locking to obtain the
  979. * audit buffer, but then no locking is required for calls to
  980. * audit_log_*format. If the tsk is a task that is currently in a
  981. * syscall, then the syscall is marked as auditable and an audit record
  982. * will be written at syscall exit. If there is no associated task, tsk
  983. * should be NULL. */
  984. /**
  985. * audit_log_start - obtain an audit buffer
  986. * @ctx: audit_context (may be NULL)
  987. * @gfp_mask: type of allocation
  988. * @type: audit message type
  989. *
  990. * Returns audit_buffer pointer on success or NULL on error.
  991. *
  992. * Obtain an audit buffer. This routine does locking to obtain the
  993. * audit buffer, but then no locking is required for calls to
  994. * audit_log_*format. If the task (ctx) is a task that is currently in a
  995. * syscall, then the syscall is marked as auditable and an audit record
  996. * will be written at syscall exit. If there is no associated task, then
  997. * task context (ctx) should be NULL.
  998. */
  999. struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
  1000. int type)
  1001. {
  1002. struct audit_buffer *ab = NULL;
  1003. struct timespec t;
  1004. unsigned int uninitialized_var(serial);
  1005. int reserve;
  1006. unsigned long timeout_start = jiffies;
  1007. if (!audit_initialized)
  1008. return NULL;
  1009. if (unlikely(audit_filter_type(type)))
  1010. return NULL;
  1011. if (gfp_mask & __GFP_WAIT)
  1012. reserve = 0;
  1013. else
  1014. reserve = 5; /* Allow atomic callers to go up to five
  1015. entries over the normal backlog limit */
  1016. while (audit_backlog_limit
  1017. && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
  1018. if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time
  1019. && time_before(jiffies, timeout_start + audit_backlog_wait_time)) {
  1020. /* Wait for auditd to drain the queue a little */
  1021. DECLARE_WAITQUEUE(wait, current);
  1022. set_current_state(TASK_INTERRUPTIBLE);
  1023. add_wait_queue(&audit_backlog_wait, &wait);
  1024. if (audit_backlog_limit &&
  1025. skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
  1026. schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies);
  1027. __set_current_state(TASK_RUNNING);
  1028. remove_wait_queue(&audit_backlog_wait, &wait);
  1029. continue;
  1030. }
  1031. if (audit_rate_check() && printk_ratelimit())
  1032. printk(KERN_WARNING
  1033. "audit: audit_backlog=%d > "
  1034. "audit_backlog_limit=%d\n",
  1035. skb_queue_len(&audit_skb_queue),
  1036. audit_backlog_limit);
  1037. audit_log_lost("backlog limit exceeded");
  1038. audit_backlog_wait_time = audit_backlog_wait_overflow;
  1039. wake_up(&audit_backlog_wait);
  1040. return NULL;
  1041. }
  1042. ab = audit_buffer_alloc(ctx, gfp_mask, type);
  1043. if (!ab) {
  1044. audit_log_lost("out of memory in audit_log_start");
  1045. return NULL;
  1046. }
  1047. audit_get_stamp(ab->ctx, &t, &serial);
  1048. audit_log_format(ab, "audit(%lu.%03lu:%u): ",
  1049. t.tv_sec, t.tv_nsec/1000000, serial);
  1050. return ab;
  1051. }
  1052. /**
  1053. * audit_expand - expand skb in the audit buffer
  1054. * @ab: audit_buffer
  1055. * @extra: space to add at tail of the skb
  1056. *
  1057. * Returns 0 (no space) on failed expansion, or available space if
  1058. * successful.
  1059. */
  1060. static inline int audit_expand(struct audit_buffer *ab, int extra)
  1061. {
  1062. struct sk_buff *skb = ab->skb;
  1063. int oldtail = skb_tailroom(skb);
  1064. int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
  1065. int newtail = skb_tailroom(skb);
  1066. if (ret < 0) {
  1067. audit_log_lost("out of memory in audit_expand");
  1068. return 0;
  1069. }
  1070. skb->truesize += newtail - oldtail;
  1071. return newtail;
  1072. }
  1073. /*
  1074. * Format an audit message into the audit buffer. If there isn't enough
  1075. * room in the audit buffer, more room will be allocated and vsnprint
  1076. * will be called a second time. Currently, we assume that a printk
  1077. * can't format message larger than 1024 bytes, so we don't either.
  1078. */
  1079. static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
  1080. va_list args)
  1081. {
  1082. int len, avail;
  1083. struct sk_buff *skb;
  1084. va_list args2;
  1085. if (!ab)
  1086. return;
  1087. BUG_ON(!ab->skb);
  1088. skb = ab->skb;
  1089. avail = skb_tailroom(skb);
  1090. if (avail == 0) {
  1091. avail = audit_expand(ab, AUDIT_BUFSIZ);
  1092. if (!avail)
  1093. goto out;
  1094. }
  1095. va_copy(args2, args);
  1096. len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
  1097. if (len >= avail) {
  1098. /* The printk buffer is 1024 bytes long, so if we get
  1099. * here and AUDIT_BUFSIZ is at least 1024, then we can
  1100. * log everything that printk could have logged. */
  1101. avail = audit_expand(ab,
  1102. max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
  1103. if (!avail)
  1104. goto out;
  1105. len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
  1106. }
  1107. va_end(args2);
  1108. if (len > 0)
  1109. skb_put(skb, len);
  1110. out:
  1111. return;
  1112. }
  1113. /**
  1114. * audit_log_format - format a message into the audit buffer.
  1115. * @ab: audit_buffer
  1116. * @fmt: format string
  1117. * @...: optional parameters matching @fmt string
  1118. *
  1119. * All the work is done in audit_log_vformat.
  1120. */
  1121. void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
  1122. {
  1123. va_list args;
  1124. if (!ab)
  1125. return;
  1126. va_start(args, fmt);
  1127. audit_log_vformat(ab, fmt, args);
  1128. va_end(args);
  1129. }
  1130. /**
  1131. * audit_log_hex - convert a buffer to hex and append it to the audit skb
  1132. * @ab: the audit_buffer
  1133. * @buf: buffer to convert to hex
  1134. * @len: length of @buf to be converted
  1135. *
  1136. * No return value; failure to expand is silently ignored.
  1137. *
  1138. * This function will take the passed buf and convert it into a string of
  1139. * ascii hex digits. The new string is placed onto the skb.
  1140. */
  1141. void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
  1142. size_t len)
  1143. {
  1144. int i, avail, new_len;
  1145. unsigned char *ptr;
  1146. struct sk_buff *skb;
  1147. static const unsigned char *hex = "0123456789ABCDEF";
  1148. if (!ab)
  1149. return;
  1150. BUG_ON(!ab->skb);
  1151. skb = ab->skb;
  1152. avail = skb_tailroom(skb);
  1153. new_len = len<<1;
  1154. if (new_len >= avail) {
  1155. /* Round the buffer request up to the next multiple */
  1156. new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
  1157. avail = audit_expand(ab, new_len);
  1158. if (!avail)
  1159. return;
  1160. }
  1161. ptr = skb_tail_pointer(skb);
  1162. for (i=0; i<len; i++) {
  1163. *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
  1164. *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */
  1165. }
  1166. *ptr = 0;
  1167. skb_put(skb, len << 1); /* new string is twice the old string */
  1168. }
  1169. /*
  1170. * Format a string of no more than slen characters into the audit buffer,
  1171. * enclosed in quote marks.
  1172. */
  1173. void audit_log_n_string(struct audit_buffer *ab, const char *string,
  1174. size_t slen)
  1175. {
  1176. int avail, new_len;
  1177. unsigned char *ptr;
  1178. struct sk_buff *skb;
  1179. if (!ab)
  1180. return;
  1181. BUG_ON(!ab->skb);
  1182. skb = ab->skb;
  1183. avail = skb_tailroom(skb);
  1184. new_len = slen + 3; /* enclosing quotes + null terminator */
  1185. if (new_len > avail) {
  1186. avail = audit_expand(ab, new_len);
  1187. if (!avail)
  1188. return;
  1189. }
  1190. ptr = skb_tail_pointer(skb);
  1191. *ptr++ = '"';
  1192. memcpy(ptr, string, slen);
  1193. ptr += slen;
  1194. *ptr++ = '"';
  1195. *ptr = 0;
  1196. skb_put(skb, slen + 2); /* don't include null terminator */
  1197. }
  1198. /**
  1199. * audit_string_contains_control - does a string need to be logged in hex
  1200. * @string: string to be checked
  1201. * @len: max length of the string to check
  1202. */
  1203. int audit_string_contains_control(const char *string, size_t len)
  1204. {
  1205. const unsigned char *p;
  1206. for (p = string; p < (const unsigned char *)string + len && *p; p++) {
  1207. if (*p == '"' || *p < 0x21 || *p > 0x7f)
  1208. return 1;
  1209. }
  1210. return 0;
  1211. }
  1212. /**
  1213. * audit_log_n_untrustedstring - log a string that may contain random characters
  1214. * @ab: audit_buffer
  1215. * @len: length of string (not including trailing null)
  1216. * @string: string to be logged
  1217. *
  1218. * This code will escape a string that is passed to it if the string
  1219. * contains a control character, unprintable character, double quote mark,
  1220. * or a space. Unescaped strings will start and end with a double quote mark.
  1221. * Strings that are escaped are printed in hex (2 digits per char).
  1222. *
  1223. * The caller specifies the number of characters in the string to log, which may
  1224. * or may not be the entire string.
  1225. */
  1226. void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
  1227. size_t len)
  1228. {
  1229. if (audit_string_contains_control(string, len))
  1230. audit_log_n_hex(ab, string, len);
  1231. else
  1232. audit_log_n_string(ab, string, len);
  1233. }
  1234. /**
  1235. * audit_log_untrustedstring - log a string that may contain random characters
  1236. * @ab: audit_buffer
  1237. * @string: string to be logged
  1238. *
  1239. * Same as audit_log_n_untrustedstring(), except that strlen is used to
  1240. * determine string length.
  1241. */
  1242. void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
  1243. {
  1244. audit_log_n_untrustedstring(ab, string, strlen(string));
  1245. }
  1246. /* This is a helper-function to print the escaped d_path */
  1247. void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
  1248. struct path *path)
  1249. {
  1250. char *p, *pathname;
  1251. if (prefix)
  1252. audit_log_format(ab, " %s", prefix);
  1253. /* We will allow 11 spaces for ' (deleted)' to be appended */
  1254. pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
  1255. if (!pathname) {
  1256. audit_log_format(ab, "<no memory>");
  1257. return;
  1258. }
  1259. p = d_path(path, pathname, PATH_MAX+11);
  1260. if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
  1261. /* FIXME: can we save some information here? */
  1262. audit_log_format(ab, "<too long>");
  1263. } else
  1264. audit_log_untrustedstring(ab, p);
  1265. kfree(pathname);
  1266. }
  1267. /**
  1268. * audit_log_end - end one audit record
  1269. * @ab: the audit_buffer
  1270. *
  1271. * The netlink_* functions cannot be called inside an irq context, so
  1272. * the audit buffer is placed on a queue and a tasklet is scheduled to
  1273. * remove them from the queue outside the irq context. May be called in
  1274. * any context.
  1275. */
  1276. void audit_log_end(struct audit_buffer *ab)
  1277. {
  1278. if (!ab)
  1279. return;
  1280. if (!audit_rate_check()) {
  1281. audit_log_lost("rate limit exceeded");
  1282. } else {
  1283. struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
  1284. nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
  1285. if (audit_pid) {
  1286. skb_queue_tail(&audit_skb_queue, ab->skb);
  1287. wake_up_interruptible(&kauditd_wait);
  1288. } else {
  1289. if (nlh->nlmsg_type != AUDIT_EOE) {
  1290. if (printk_ratelimit()) {
  1291. printk(KERN_NOTICE "type=%d %s\n",
  1292. nlh->nlmsg_type,
  1293. ab->skb->data + NLMSG_SPACE(0));
  1294. } else
  1295. audit_log_lost("printk limit exceeded\n");
  1296. }
  1297. audit_hold_skb(ab->skb);
  1298. }
  1299. ab->skb = NULL;
  1300. }
  1301. audit_buffer_free(ab);
  1302. }
  1303. /**
  1304. * audit_log - Log an audit record
  1305. * @ctx: audit context
  1306. * @gfp_mask: type of allocation
  1307. * @type: audit message type
  1308. * @fmt: format string to use
  1309. * @...: variable parameters matching the format string
  1310. *
  1311. * This is a convenience function that calls audit_log_start,
  1312. * audit_log_vformat, and audit_log_end. It may be called
  1313. * in any context.
  1314. */
  1315. void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
  1316. const char *fmt, ...)
  1317. {
  1318. struct audit_buffer *ab;
  1319. va_list args;
  1320. ab = audit_log_start(ctx, gfp_mask, type);
  1321. if (ab) {
  1322. va_start(args, fmt);
  1323. audit_log_vformat(ab, fmt, args);
  1324. va_end(args);
  1325. audit_log_end(ab);
  1326. }
  1327. }
  1328. EXPORT_SYMBOL(audit_log_start);
  1329. EXPORT_SYMBOL(audit_log_end);
  1330. EXPORT_SYMBOL(audit_log_format);
  1331. EXPORT_SYMBOL(audit_log);