loop.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572
  1. /*
  2. * linux/drivers/block/loop.c
  3. *
  4. * Written by Theodore Ts'o, 3/29/93
  5. *
  6. * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
  7. * permitted under the GNU General Public License.
  8. *
  9. * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
  10. * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
  11. *
  12. * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
  13. * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
  14. *
  15. * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
  16. *
  17. * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
  18. *
  19. * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
  20. *
  21. * Loadable modules and other fixes by AK, 1998
  22. *
  23. * Make real block number available to downstream transfer functions, enables
  24. * CBC (and relatives) mode encryption requiring unique IVs per data block.
  25. * Reed H. Petty, rhp@draper.net
  26. *
  27. * Maximum number of loop devices now dynamic via max_loop module parameter.
  28. * Russell Kroll <rkroll@exploits.org> 19990701
  29. *
  30. * Maximum number of loop devices when compiled-in now selectable by passing
  31. * max_loop=<1-255> to the kernel on boot.
  32. * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
  33. *
  34. * Completely rewrite request handling to be make_request_fn style and
  35. * non blocking, pushing work to a helper thread. Lots of fixes from
  36. * Al Viro too.
  37. * Jens Axboe <axboe@suse.de>, Nov 2000
  38. *
  39. * Support up to 256 loop devices
  40. * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
  41. *
  42. * Support for falling back on the write file operation when the address space
  43. * operations prepare_write and/or commit_write are not available on the
  44. * backing filesystem.
  45. * Anton Altaparmakov, 16 Feb 2005
  46. *
  47. * Still To Fix:
  48. * - Advisory locking is ignored here.
  49. * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
  50. *
  51. */
  52. #include <linux/module.h>
  53. #include <linux/moduleparam.h>
  54. #include <linux/sched.h>
  55. #include <linux/fs.h>
  56. #include <linux/file.h>
  57. #include <linux/stat.h>
  58. #include <linux/errno.h>
  59. #include <linux/major.h>
  60. #include <linux/wait.h>
  61. #include <linux/blkdev.h>
  62. #include <linux/blkpg.h>
  63. #include <linux/init.h>
  64. #include <linux/smp_lock.h>
  65. #include <linux/swap.h>
  66. #include <linux/slab.h>
  67. #include <linux/loop.h>
  68. #include <linux/compat.h>
  69. #include <linux/suspend.h>
  70. #include <linux/freezer.h>
  71. #include <linux/writeback.h>
  72. #include <linux/buffer_head.h> /* for invalidate_bdev() */
  73. #include <linux/completion.h>
  74. #include <linux/highmem.h>
  75. #include <linux/gfp.h>
  76. #include <linux/kthread.h>
  77. #include <linux/splice.h>
  78. #include <asm/uaccess.h>
  79. static LIST_HEAD(loop_devices);
  80. static DEFINE_MUTEX(loop_devices_mutex);
  81. /*
  82. * Transfer functions
  83. */
  84. static int transfer_none(struct loop_device *lo, int cmd,
  85. struct page *raw_page, unsigned raw_off,
  86. struct page *loop_page, unsigned loop_off,
  87. int size, sector_t real_block)
  88. {
  89. char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
  90. char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
  91. if (cmd == READ)
  92. memcpy(loop_buf, raw_buf, size);
  93. else
  94. memcpy(raw_buf, loop_buf, size);
  95. kunmap_atomic(raw_buf, KM_USER0);
  96. kunmap_atomic(loop_buf, KM_USER1);
  97. cond_resched();
  98. return 0;
  99. }
  100. static int transfer_xor(struct loop_device *lo, int cmd,
  101. struct page *raw_page, unsigned raw_off,
  102. struct page *loop_page, unsigned loop_off,
  103. int size, sector_t real_block)
  104. {
  105. char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
  106. char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
  107. char *in, *out, *key;
  108. int i, keysize;
  109. if (cmd == READ) {
  110. in = raw_buf;
  111. out = loop_buf;
  112. } else {
  113. in = loop_buf;
  114. out = raw_buf;
  115. }
  116. key = lo->lo_encrypt_key;
  117. keysize = lo->lo_encrypt_key_size;
  118. for (i = 0; i < size; i++)
  119. *out++ = *in++ ^ key[(i & 511) % keysize];
  120. kunmap_atomic(raw_buf, KM_USER0);
  121. kunmap_atomic(loop_buf, KM_USER1);
  122. cond_resched();
  123. return 0;
  124. }
  125. static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
  126. {
  127. if (unlikely(info->lo_encrypt_key_size <= 0))
  128. return -EINVAL;
  129. return 0;
  130. }
  131. static struct loop_func_table none_funcs = {
  132. .number = LO_CRYPT_NONE,
  133. .transfer = transfer_none,
  134. };
  135. static struct loop_func_table xor_funcs = {
  136. .number = LO_CRYPT_XOR,
  137. .transfer = transfer_xor,
  138. .init = xor_init
  139. };
  140. /* xfer_funcs[0] is special - its release function is never called */
  141. static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
  142. &none_funcs,
  143. &xor_funcs
  144. };
  145. static loff_t get_loop_size(struct loop_device *lo, struct file *file)
  146. {
  147. loff_t size, offset, loopsize;
  148. /* Compute loopsize in bytes */
  149. size = i_size_read(file->f_mapping->host);
  150. offset = lo->lo_offset;
  151. loopsize = size - offset;
  152. if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
  153. loopsize = lo->lo_sizelimit;
  154. /*
  155. * Unfortunately, if we want to do I/O on the device,
  156. * the number of 512-byte sectors has to fit into a sector_t.
  157. */
  158. return loopsize >> 9;
  159. }
  160. static int
  161. figure_loop_size(struct loop_device *lo)
  162. {
  163. loff_t size = get_loop_size(lo, lo->lo_backing_file);
  164. sector_t x = (sector_t)size;
  165. if (unlikely((loff_t)x != size))
  166. return -EFBIG;
  167. set_capacity(lo->lo_disk, x);
  168. return 0;
  169. }
  170. static inline int
  171. lo_do_transfer(struct loop_device *lo, int cmd,
  172. struct page *rpage, unsigned roffs,
  173. struct page *lpage, unsigned loffs,
  174. int size, sector_t rblock)
  175. {
  176. if (unlikely(!lo->transfer))
  177. return 0;
  178. return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
  179. }
  180. /**
  181. * do_lo_send_aops - helper for writing data to a loop device
  182. *
  183. * This is the fast version for backing filesystems which implement the address
  184. * space operations write_begin and write_end.
  185. */
  186. static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
  187. int bsize, loff_t pos, struct page *unused)
  188. {
  189. struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
  190. struct address_space *mapping = file->f_mapping;
  191. pgoff_t index;
  192. unsigned offset, bv_offs;
  193. int len, ret;
  194. mutex_lock(&mapping->host->i_mutex);
  195. index = pos >> PAGE_CACHE_SHIFT;
  196. offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
  197. bv_offs = bvec->bv_offset;
  198. len = bvec->bv_len;
  199. while (len > 0) {
  200. sector_t IV;
  201. unsigned size, copied;
  202. int transfer_result;
  203. struct page *page;
  204. void *fsdata;
  205. IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
  206. size = PAGE_CACHE_SIZE - offset;
  207. if (size > len)
  208. size = len;
  209. ret = pagecache_write_begin(file, mapping, pos, size, 0,
  210. &page, &fsdata);
  211. if (ret)
  212. goto fail;
  213. transfer_result = lo_do_transfer(lo, WRITE, page, offset,
  214. bvec->bv_page, bv_offs, size, IV);
  215. copied = size;
  216. if (unlikely(transfer_result))
  217. copied = 0;
  218. ret = pagecache_write_end(file, mapping, pos, size, copied,
  219. page, fsdata);
  220. if (ret < 0 || ret != copied)
  221. goto fail;
  222. if (unlikely(transfer_result))
  223. goto fail;
  224. bv_offs += copied;
  225. len -= copied;
  226. offset = 0;
  227. index++;
  228. pos += copied;
  229. }
  230. ret = 0;
  231. out:
  232. mutex_unlock(&mapping->host->i_mutex);
  233. return ret;
  234. fail:
  235. ret = -1;
  236. goto out;
  237. }
  238. /**
  239. * __do_lo_send_write - helper for writing data to a loop device
  240. *
  241. * This helper just factors out common code between do_lo_send_direct_write()
  242. * and do_lo_send_write().
  243. */
  244. static int __do_lo_send_write(struct file *file,
  245. u8 *buf, const int len, loff_t pos)
  246. {
  247. ssize_t bw;
  248. mm_segment_t old_fs = get_fs();
  249. set_fs(get_ds());
  250. bw = file->f_op->write(file, buf, len, &pos);
  251. set_fs(old_fs);
  252. if (likely(bw == len))
  253. return 0;
  254. printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
  255. (unsigned long long)pos, len);
  256. if (bw >= 0)
  257. bw = -EIO;
  258. return bw;
  259. }
  260. /**
  261. * do_lo_send_direct_write - helper for writing data to a loop device
  262. *
  263. * This is the fast, non-transforming version for backing filesystems which do
  264. * not implement the address space operations write_begin and write_end.
  265. * It uses the write file operation which should be present on all writeable
  266. * filesystems.
  267. */
  268. static int do_lo_send_direct_write(struct loop_device *lo,
  269. struct bio_vec *bvec, int bsize, loff_t pos, struct page *page)
  270. {
  271. ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
  272. kmap(bvec->bv_page) + bvec->bv_offset,
  273. bvec->bv_len, pos);
  274. kunmap(bvec->bv_page);
  275. cond_resched();
  276. return bw;
  277. }
  278. /**
  279. * do_lo_send_write - helper for writing data to a loop device
  280. *
  281. * This is the slow, transforming version for filesystems which do not
  282. * implement the address space operations write_begin and write_end. It
  283. * uses the write file operation which should be present on all writeable
  284. * filesystems.
  285. *
  286. * Using fops->write is slower than using aops->{prepare,commit}_write in the
  287. * transforming case because we need to double buffer the data as we cannot do
  288. * the transformations in place as we do not have direct access to the
  289. * destination pages of the backing file.
  290. */
  291. static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
  292. int bsize, loff_t pos, struct page *page)
  293. {
  294. int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
  295. bvec->bv_offset, bvec->bv_len, pos >> 9);
  296. if (likely(!ret))
  297. return __do_lo_send_write(lo->lo_backing_file,
  298. page_address(page), bvec->bv_len,
  299. pos);
  300. printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
  301. "length %i.\n", (unsigned long long)pos, bvec->bv_len);
  302. if (ret > 0)
  303. ret = -EIO;
  304. return ret;
  305. }
  306. static int lo_send(struct loop_device *lo, struct bio *bio, int bsize,
  307. loff_t pos)
  308. {
  309. int (*do_lo_send)(struct loop_device *, struct bio_vec *, int, loff_t,
  310. struct page *page);
  311. struct bio_vec *bvec;
  312. struct page *page = NULL;
  313. int i, ret = 0;
  314. do_lo_send = do_lo_send_aops;
  315. if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
  316. do_lo_send = do_lo_send_direct_write;
  317. if (lo->transfer != transfer_none) {
  318. page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
  319. if (unlikely(!page))
  320. goto fail;
  321. kmap(page);
  322. do_lo_send = do_lo_send_write;
  323. }
  324. }
  325. bio_for_each_segment(bvec, bio, i) {
  326. ret = do_lo_send(lo, bvec, bsize, pos, page);
  327. if (ret < 0)
  328. break;
  329. pos += bvec->bv_len;
  330. }
  331. if (page) {
  332. kunmap(page);
  333. __free_page(page);
  334. }
  335. out:
  336. return ret;
  337. fail:
  338. printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
  339. ret = -ENOMEM;
  340. goto out;
  341. }
  342. struct lo_read_data {
  343. struct loop_device *lo;
  344. struct page *page;
  345. unsigned offset;
  346. int bsize;
  347. };
  348. static int
  349. lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
  350. struct splice_desc *sd)
  351. {
  352. struct lo_read_data *p = sd->u.data;
  353. struct loop_device *lo = p->lo;
  354. struct page *page = buf->page;
  355. sector_t IV;
  356. size_t size;
  357. int ret;
  358. ret = buf->ops->confirm(pipe, buf);
  359. if (unlikely(ret))
  360. return ret;
  361. IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
  362. (buf->offset >> 9);
  363. size = sd->len;
  364. if (size > p->bsize)
  365. size = p->bsize;
  366. if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
  367. printk(KERN_ERR "loop: transfer error block %ld\n",
  368. page->index);
  369. size = -EINVAL;
  370. }
  371. flush_dcache_page(p->page);
  372. if (size > 0)
  373. p->offset += size;
  374. return size;
  375. }
  376. static int
  377. lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
  378. {
  379. return __splice_from_pipe(pipe, sd, lo_splice_actor);
  380. }
  381. static int
  382. do_lo_receive(struct loop_device *lo,
  383. struct bio_vec *bvec, int bsize, loff_t pos)
  384. {
  385. struct lo_read_data cookie;
  386. struct splice_desc sd;
  387. struct file *file;
  388. long retval;
  389. cookie.lo = lo;
  390. cookie.page = bvec->bv_page;
  391. cookie.offset = bvec->bv_offset;
  392. cookie.bsize = bsize;
  393. sd.len = 0;
  394. sd.total_len = bvec->bv_len;
  395. sd.flags = 0;
  396. sd.pos = pos;
  397. sd.u.data = &cookie;
  398. file = lo->lo_backing_file;
  399. retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
  400. if (retval < 0)
  401. return retval;
  402. return 0;
  403. }
  404. static int
  405. lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
  406. {
  407. struct bio_vec *bvec;
  408. int i, ret = 0;
  409. bio_for_each_segment(bvec, bio, i) {
  410. ret = do_lo_receive(lo, bvec, bsize, pos);
  411. if (ret < 0)
  412. break;
  413. pos += bvec->bv_len;
  414. }
  415. return ret;
  416. }
  417. static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
  418. {
  419. loff_t pos;
  420. int ret;
  421. pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
  422. if (bio_rw(bio) == WRITE)
  423. ret = lo_send(lo, bio, lo->lo_blocksize, pos);
  424. else
  425. ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
  426. return ret;
  427. }
  428. /*
  429. * Add bio to back of pending list
  430. */
  431. static void loop_add_bio(struct loop_device *lo, struct bio *bio)
  432. {
  433. if (lo->lo_biotail) {
  434. lo->lo_biotail->bi_next = bio;
  435. lo->lo_biotail = bio;
  436. } else
  437. lo->lo_bio = lo->lo_biotail = bio;
  438. }
  439. /*
  440. * Grab first pending buffer
  441. */
  442. static struct bio *loop_get_bio(struct loop_device *lo)
  443. {
  444. struct bio *bio;
  445. if ((bio = lo->lo_bio)) {
  446. if (bio == lo->lo_biotail)
  447. lo->lo_biotail = NULL;
  448. lo->lo_bio = bio->bi_next;
  449. bio->bi_next = NULL;
  450. }
  451. return bio;
  452. }
  453. static int loop_make_request(struct request_queue *q, struct bio *old_bio)
  454. {
  455. struct loop_device *lo = q->queuedata;
  456. int rw = bio_rw(old_bio);
  457. if (rw == READA)
  458. rw = READ;
  459. BUG_ON(!lo || (rw != READ && rw != WRITE));
  460. spin_lock_irq(&lo->lo_lock);
  461. if (lo->lo_state != Lo_bound)
  462. goto out;
  463. if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
  464. goto out;
  465. loop_add_bio(lo, old_bio);
  466. wake_up(&lo->lo_event);
  467. spin_unlock_irq(&lo->lo_lock);
  468. return 0;
  469. out:
  470. spin_unlock_irq(&lo->lo_lock);
  471. bio_io_error(old_bio);
  472. return 0;
  473. }
  474. /*
  475. * kick off io on the underlying address space
  476. */
  477. static void loop_unplug(struct request_queue *q)
  478. {
  479. struct loop_device *lo = q->queuedata;
  480. clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags);
  481. blk_run_address_space(lo->lo_backing_file->f_mapping);
  482. }
  483. struct switch_request {
  484. struct file *file;
  485. struct completion wait;
  486. };
  487. static void do_loop_switch(struct loop_device *, struct switch_request *);
  488. static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
  489. {
  490. if (unlikely(!bio->bi_bdev)) {
  491. do_loop_switch(lo, bio->bi_private);
  492. bio_put(bio);
  493. } else {
  494. int ret = do_bio_filebacked(lo, bio);
  495. bio_endio(bio, ret);
  496. }
  497. }
  498. /*
  499. * worker thread that handles reads/writes to file backed loop devices,
  500. * to avoid blocking in our make_request_fn. it also does loop decrypting
  501. * on reads for block backed loop, as that is too heavy to do from
  502. * b_end_io context where irqs may be disabled.
  503. *
  504. * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
  505. * calling kthread_stop(). Therefore once kthread_should_stop() is
  506. * true, make_request will not place any more requests. Therefore
  507. * once kthread_should_stop() is true and lo_bio is NULL, we are
  508. * done with the loop.
  509. */
  510. static int loop_thread(void *data)
  511. {
  512. struct loop_device *lo = data;
  513. struct bio *bio;
  514. set_user_nice(current, -20);
  515. while (!kthread_should_stop() || lo->lo_bio) {
  516. wait_event_interruptible(lo->lo_event,
  517. lo->lo_bio || kthread_should_stop());
  518. if (!lo->lo_bio)
  519. continue;
  520. spin_lock_irq(&lo->lo_lock);
  521. bio = loop_get_bio(lo);
  522. spin_unlock_irq(&lo->lo_lock);
  523. BUG_ON(!bio);
  524. loop_handle_bio(lo, bio);
  525. }
  526. return 0;
  527. }
  528. /*
  529. * loop_switch performs the hard work of switching a backing store.
  530. * First it needs to flush existing IO, it does this by sending a magic
  531. * BIO down the pipe. The completion of this BIO does the actual switch.
  532. */
  533. static int loop_switch(struct loop_device *lo, struct file *file)
  534. {
  535. struct switch_request w;
  536. struct bio *bio = bio_alloc(GFP_KERNEL, 0);
  537. if (!bio)
  538. return -ENOMEM;
  539. init_completion(&w.wait);
  540. w.file = file;
  541. bio->bi_private = &w;
  542. bio->bi_bdev = NULL;
  543. loop_make_request(lo->lo_queue, bio);
  544. wait_for_completion(&w.wait);
  545. return 0;
  546. }
  547. /*
  548. * Do the actual switch; called from the BIO completion routine
  549. */
  550. static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
  551. {
  552. struct file *file = p->file;
  553. struct file *old_file = lo->lo_backing_file;
  554. struct address_space *mapping = file->f_mapping;
  555. mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
  556. lo->lo_backing_file = file;
  557. lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
  558. mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
  559. lo->old_gfp_mask = mapping_gfp_mask(mapping);
  560. mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
  561. complete(&p->wait);
  562. }
  563. /*
  564. * loop_change_fd switched the backing store of a loopback device to
  565. * a new file. This is useful for operating system installers to free up
  566. * the original file and in High Availability environments to switch to
  567. * an alternative location for the content in case of server meltdown.
  568. * This can only work if the loop device is used read-only, and if the
  569. * new backing store is the same size and type as the old backing store.
  570. */
  571. static int loop_change_fd(struct loop_device *lo, struct file *lo_file,
  572. struct block_device *bdev, unsigned int arg)
  573. {
  574. struct file *file, *old_file;
  575. struct inode *inode;
  576. int error;
  577. error = -ENXIO;
  578. if (lo->lo_state != Lo_bound)
  579. goto out;
  580. /* the loop device has to be read-only */
  581. error = -EINVAL;
  582. if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
  583. goto out;
  584. error = -EBADF;
  585. file = fget(arg);
  586. if (!file)
  587. goto out;
  588. inode = file->f_mapping->host;
  589. old_file = lo->lo_backing_file;
  590. error = -EINVAL;
  591. if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
  592. goto out_putf;
  593. /* new backing store needs to support loop (eg splice_read) */
  594. if (!inode->i_fop->splice_read)
  595. goto out_putf;
  596. /* size of the new backing store needs to be the same */
  597. if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
  598. goto out_putf;
  599. /* and ... switch */
  600. error = loop_switch(lo, file);
  601. if (error)
  602. goto out_putf;
  603. fput(old_file);
  604. return 0;
  605. out_putf:
  606. fput(file);
  607. out:
  608. return error;
  609. }
  610. static inline int is_loop_device(struct file *file)
  611. {
  612. struct inode *i = file->f_mapping->host;
  613. return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
  614. }
  615. static int loop_set_fd(struct loop_device *lo, struct file *lo_file,
  616. struct block_device *bdev, unsigned int arg)
  617. {
  618. struct file *file, *f;
  619. struct inode *inode;
  620. struct address_space *mapping;
  621. unsigned lo_blocksize;
  622. int lo_flags = 0;
  623. int error;
  624. loff_t size;
  625. /* This is safe, since we have a reference from open(). */
  626. __module_get(THIS_MODULE);
  627. error = -EBADF;
  628. file = fget(arg);
  629. if (!file)
  630. goto out;
  631. error = -EBUSY;
  632. if (lo->lo_state != Lo_unbound)
  633. goto out_putf;
  634. /* Avoid recursion */
  635. f = file;
  636. while (is_loop_device(f)) {
  637. struct loop_device *l;
  638. if (f->f_mapping->host->i_rdev == lo_file->f_mapping->host->i_rdev)
  639. goto out_putf;
  640. l = f->f_mapping->host->i_bdev->bd_disk->private_data;
  641. if (l->lo_state == Lo_unbound) {
  642. error = -EINVAL;
  643. goto out_putf;
  644. }
  645. f = l->lo_backing_file;
  646. }
  647. mapping = file->f_mapping;
  648. inode = mapping->host;
  649. if (!(file->f_mode & FMODE_WRITE))
  650. lo_flags |= LO_FLAGS_READ_ONLY;
  651. error = -EINVAL;
  652. if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  653. const struct address_space_operations *aops = mapping->a_ops;
  654. /*
  655. * If we can't read - sorry. If we only can't write - well,
  656. * it's going to be read-only.
  657. */
  658. if (!file->f_op->splice_read)
  659. goto out_putf;
  660. if (aops->prepare_write || aops->write_begin)
  661. lo_flags |= LO_FLAGS_USE_AOPS;
  662. if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
  663. lo_flags |= LO_FLAGS_READ_ONLY;
  664. lo_blocksize = S_ISBLK(inode->i_mode) ?
  665. inode->i_bdev->bd_block_size : PAGE_SIZE;
  666. error = 0;
  667. } else {
  668. goto out_putf;
  669. }
  670. size = get_loop_size(lo, file);
  671. if ((loff_t)(sector_t)size != size) {
  672. error = -EFBIG;
  673. goto out_putf;
  674. }
  675. if (!(lo_file->f_mode & FMODE_WRITE))
  676. lo_flags |= LO_FLAGS_READ_ONLY;
  677. set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
  678. lo->lo_blocksize = lo_blocksize;
  679. lo->lo_device = bdev;
  680. lo->lo_flags = lo_flags;
  681. lo->lo_backing_file = file;
  682. lo->transfer = transfer_none;
  683. lo->ioctl = NULL;
  684. lo->lo_sizelimit = 0;
  685. lo->old_gfp_mask = mapping_gfp_mask(mapping);
  686. mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
  687. lo->lo_bio = lo->lo_biotail = NULL;
  688. /*
  689. * set queue make_request_fn, and add limits based on lower level
  690. * device
  691. */
  692. blk_queue_make_request(lo->lo_queue, loop_make_request);
  693. lo->lo_queue->queuedata = lo;
  694. lo->lo_queue->unplug_fn = loop_unplug;
  695. set_capacity(lo->lo_disk, size);
  696. bd_set_size(bdev, size << 9);
  697. set_blocksize(bdev, lo_blocksize);
  698. lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
  699. lo->lo_number);
  700. if (IS_ERR(lo->lo_thread)) {
  701. error = PTR_ERR(lo->lo_thread);
  702. goto out_clr;
  703. }
  704. lo->lo_state = Lo_bound;
  705. wake_up_process(lo->lo_thread);
  706. return 0;
  707. out_clr:
  708. lo->lo_thread = NULL;
  709. lo->lo_device = NULL;
  710. lo->lo_backing_file = NULL;
  711. lo->lo_flags = 0;
  712. set_capacity(lo->lo_disk, 0);
  713. invalidate_bdev(bdev);
  714. bd_set_size(bdev, 0);
  715. mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
  716. lo->lo_state = Lo_unbound;
  717. out_putf:
  718. fput(file);
  719. out:
  720. /* This is safe: open() is still holding a reference. */
  721. module_put(THIS_MODULE);
  722. return error;
  723. }
  724. static int
  725. loop_release_xfer(struct loop_device *lo)
  726. {
  727. int err = 0;
  728. struct loop_func_table *xfer = lo->lo_encryption;
  729. if (xfer) {
  730. if (xfer->release)
  731. err = xfer->release(lo);
  732. lo->transfer = NULL;
  733. lo->lo_encryption = NULL;
  734. module_put(xfer->owner);
  735. }
  736. return err;
  737. }
  738. static int
  739. loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
  740. const struct loop_info64 *i)
  741. {
  742. int err = 0;
  743. if (xfer) {
  744. struct module *owner = xfer->owner;
  745. if (!try_module_get(owner))
  746. return -EINVAL;
  747. if (xfer->init)
  748. err = xfer->init(lo, i);
  749. if (err)
  750. module_put(owner);
  751. else
  752. lo->lo_encryption = xfer;
  753. }
  754. return err;
  755. }
  756. static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
  757. {
  758. struct file *filp = lo->lo_backing_file;
  759. gfp_t gfp = lo->old_gfp_mask;
  760. if (lo->lo_state != Lo_bound)
  761. return -ENXIO;
  762. if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */
  763. return -EBUSY;
  764. if (filp == NULL)
  765. return -EINVAL;
  766. spin_lock_irq(&lo->lo_lock);
  767. lo->lo_state = Lo_rundown;
  768. spin_unlock_irq(&lo->lo_lock);
  769. kthread_stop(lo->lo_thread);
  770. lo->lo_backing_file = NULL;
  771. loop_release_xfer(lo);
  772. lo->transfer = NULL;
  773. lo->ioctl = NULL;
  774. lo->lo_device = NULL;
  775. lo->lo_encryption = NULL;
  776. lo->lo_offset = 0;
  777. lo->lo_sizelimit = 0;
  778. lo->lo_encrypt_key_size = 0;
  779. lo->lo_flags = 0;
  780. lo->lo_thread = NULL;
  781. memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
  782. memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
  783. memset(lo->lo_file_name, 0, LO_NAME_SIZE);
  784. invalidate_bdev(bdev);
  785. set_capacity(lo->lo_disk, 0);
  786. bd_set_size(bdev, 0);
  787. mapping_set_gfp_mask(filp->f_mapping, gfp);
  788. lo->lo_state = Lo_unbound;
  789. fput(filp);
  790. /* This is safe: open() is still holding a reference. */
  791. module_put(THIS_MODULE);
  792. return 0;
  793. }
  794. static int
  795. loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
  796. {
  797. int err;
  798. struct loop_func_table *xfer;
  799. if (lo->lo_encrypt_key_size && lo->lo_key_owner != current->uid &&
  800. !capable(CAP_SYS_ADMIN))
  801. return -EPERM;
  802. if (lo->lo_state != Lo_bound)
  803. return -ENXIO;
  804. if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
  805. return -EINVAL;
  806. err = loop_release_xfer(lo);
  807. if (err)
  808. return err;
  809. if (info->lo_encrypt_type) {
  810. unsigned int type = info->lo_encrypt_type;
  811. if (type >= MAX_LO_CRYPT)
  812. return -EINVAL;
  813. xfer = xfer_funcs[type];
  814. if (xfer == NULL)
  815. return -EINVAL;
  816. } else
  817. xfer = NULL;
  818. err = loop_init_xfer(lo, xfer, info);
  819. if (err)
  820. return err;
  821. if (lo->lo_offset != info->lo_offset ||
  822. lo->lo_sizelimit != info->lo_sizelimit) {
  823. lo->lo_offset = info->lo_offset;
  824. lo->lo_sizelimit = info->lo_sizelimit;
  825. if (figure_loop_size(lo))
  826. return -EFBIG;
  827. }
  828. memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
  829. memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
  830. lo->lo_file_name[LO_NAME_SIZE-1] = 0;
  831. lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
  832. if (!xfer)
  833. xfer = &none_funcs;
  834. lo->transfer = xfer->transfer;
  835. lo->ioctl = xfer->ioctl;
  836. if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
  837. (info->lo_flags & LO_FLAGS_AUTOCLEAR))
  838. lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
  839. lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
  840. lo->lo_init[0] = info->lo_init[0];
  841. lo->lo_init[1] = info->lo_init[1];
  842. if (info->lo_encrypt_key_size) {
  843. memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
  844. info->lo_encrypt_key_size);
  845. lo->lo_key_owner = current->uid;
  846. }
  847. return 0;
  848. }
  849. static int
  850. loop_get_status(struct loop_device *lo, struct loop_info64 *info)
  851. {
  852. struct file *file = lo->lo_backing_file;
  853. struct kstat stat;
  854. int error;
  855. if (lo->lo_state != Lo_bound)
  856. return -ENXIO;
  857. error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
  858. if (error)
  859. return error;
  860. memset(info, 0, sizeof(*info));
  861. info->lo_number = lo->lo_number;
  862. info->lo_device = huge_encode_dev(stat.dev);
  863. info->lo_inode = stat.ino;
  864. info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
  865. info->lo_offset = lo->lo_offset;
  866. info->lo_sizelimit = lo->lo_sizelimit;
  867. info->lo_flags = lo->lo_flags;
  868. memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
  869. memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
  870. info->lo_encrypt_type =
  871. lo->lo_encryption ? lo->lo_encryption->number : 0;
  872. if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
  873. info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
  874. memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
  875. lo->lo_encrypt_key_size);
  876. }
  877. return 0;
  878. }
  879. static void
  880. loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
  881. {
  882. memset(info64, 0, sizeof(*info64));
  883. info64->lo_number = info->lo_number;
  884. info64->lo_device = info->lo_device;
  885. info64->lo_inode = info->lo_inode;
  886. info64->lo_rdevice = info->lo_rdevice;
  887. info64->lo_offset = info->lo_offset;
  888. info64->lo_sizelimit = 0;
  889. info64->lo_encrypt_type = info->lo_encrypt_type;
  890. info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
  891. info64->lo_flags = info->lo_flags;
  892. info64->lo_init[0] = info->lo_init[0];
  893. info64->lo_init[1] = info->lo_init[1];
  894. if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  895. memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
  896. else
  897. memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
  898. memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
  899. }
  900. static int
  901. loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
  902. {
  903. memset(info, 0, sizeof(*info));
  904. info->lo_number = info64->lo_number;
  905. info->lo_device = info64->lo_device;
  906. info->lo_inode = info64->lo_inode;
  907. info->lo_rdevice = info64->lo_rdevice;
  908. info->lo_offset = info64->lo_offset;
  909. info->lo_encrypt_type = info64->lo_encrypt_type;
  910. info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
  911. info->lo_flags = info64->lo_flags;
  912. info->lo_init[0] = info64->lo_init[0];
  913. info->lo_init[1] = info64->lo_init[1];
  914. if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  915. memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
  916. else
  917. memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
  918. memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
  919. /* error in case values were truncated */
  920. if (info->lo_device != info64->lo_device ||
  921. info->lo_rdevice != info64->lo_rdevice ||
  922. info->lo_inode != info64->lo_inode ||
  923. info->lo_offset != info64->lo_offset)
  924. return -EOVERFLOW;
  925. return 0;
  926. }
  927. static int
  928. loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
  929. {
  930. struct loop_info info;
  931. struct loop_info64 info64;
  932. if (copy_from_user(&info, arg, sizeof (struct loop_info)))
  933. return -EFAULT;
  934. loop_info64_from_old(&info, &info64);
  935. return loop_set_status(lo, &info64);
  936. }
  937. static int
  938. loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
  939. {
  940. struct loop_info64 info64;
  941. if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
  942. return -EFAULT;
  943. return loop_set_status(lo, &info64);
  944. }
  945. static int
  946. loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
  947. struct loop_info info;
  948. struct loop_info64 info64;
  949. int err = 0;
  950. if (!arg)
  951. err = -EINVAL;
  952. if (!err)
  953. err = loop_get_status(lo, &info64);
  954. if (!err)
  955. err = loop_info64_to_old(&info64, &info);
  956. if (!err && copy_to_user(arg, &info, sizeof(info)))
  957. err = -EFAULT;
  958. return err;
  959. }
  960. static int
  961. loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
  962. struct loop_info64 info64;
  963. int err = 0;
  964. if (!arg)
  965. err = -EINVAL;
  966. if (!err)
  967. err = loop_get_status(lo, &info64);
  968. if (!err && copy_to_user(arg, &info64, sizeof(info64)))
  969. err = -EFAULT;
  970. return err;
  971. }
  972. static int lo_ioctl(struct inode * inode, struct file * file,
  973. unsigned int cmd, unsigned long arg)
  974. {
  975. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  976. int err;
  977. mutex_lock(&lo->lo_ctl_mutex);
  978. switch (cmd) {
  979. case LOOP_SET_FD:
  980. err = loop_set_fd(lo, file, inode->i_bdev, arg);
  981. break;
  982. case LOOP_CHANGE_FD:
  983. err = loop_change_fd(lo, file, inode->i_bdev, arg);
  984. break;
  985. case LOOP_CLR_FD:
  986. err = loop_clr_fd(lo, inode->i_bdev);
  987. break;
  988. case LOOP_SET_STATUS:
  989. err = loop_set_status_old(lo, (struct loop_info __user *) arg);
  990. break;
  991. case LOOP_GET_STATUS:
  992. err = loop_get_status_old(lo, (struct loop_info __user *) arg);
  993. break;
  994. case LOOP_SET_STATUS64:
  995. err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
  996. break;
  997. case LOOP_GET_STATUS64:
  998. err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
  999. break;
  1000. default:
  1001. err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
  1002. }
  1003. mutex_unlock(&lo->lo_ctl_mutex);
  1004. return err;
  1005. }
  1006. #ifdef CONFIG_COMPAT
  1007. struct compat_loop_info {
  1008. compat_int_t lo_number; /* ioctl r/o */
  1009. compat_dev_t lo_device; /* ioctl r/o */
  1010. compat_ulong_t lo_inode; /* ioctl r/o */
  1011. compat_dev_t lo_rdevice; /* ioctl r/o */
  1012. compat_int_t lo_offset;
  1013. compat_int_t lo_encrypt_type;
  1014. compat_int_t lo_encrypt_key_size; /* ioctl w/o */
  1015. compat_int_t lo_flags; /* ioctl r/o */
  1016. char lo_name[LO_NAME_SIZE];
  1017. unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
  1018. compat_ulong_t lo_init[2];
  1019. char reserved[4];
  1020. };
  1021. /*
  1022. * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
  1023. * - noinlined to reduce stack space usage in main part of driver
  1024. */
  1025. static noinline int
  1026. loop_info64_from_compat(const struct compat_loop_info __user *arg,
  1027. struct loop_info64 *info64)
  1028. {
  1029. struct compat_loop_info info;
  1030. if (copy_from_user(&info, arg, sizeof(info)))
  1031. return -EFAULT;
  1032. memset(info64, 0, sizeof(*info64));
  1033. info64->lo_number = info.lo_number;
  1034. info64->lo_device = info.lo_device;
  1035. info64->lo_inode = info.lo_inode;
  1036. info64->lo_rdevice = info.lo_rdevice;
  1037. info64->lo_offset = info.lo_offset;
  1038. info64->lo_sizelimit = 0;
  1039. info64->lo_encrypt_type = info.lo_encrypt_type;
  1040. info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
  1041. info64->lo_flags = info.lo_flags;
  1042. info64->lo_init[0] = info.lo_init[0];
  1043. info64->lo_init[1] = info.lo_init[1];
  1044. if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  1045. memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
  1046. else
  1047. memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
  1048. memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
  1049. return 0;
  1050. }
  1051. /*
  1052. * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
  1053. * - noinlined to reduce stack space usage in main part of driver
  1054. */
  1055. static noinline int
  1056. loop_info64_to_compat(const struct loop_info64 *info64,
  1057. struct compat_loop_info __user *arg)
  1058. {
  1059. struct compat_loop_info info;
  1060. memset(&info, 0, sizeof(info));
  1061. info.lo_number = info64->lo_number;
  1062. info.lo_device = info64->lo_device;
  1063. info.lo_inode = info64->lo_inode;
  1064. info.lo_rdevice = info64->lo_rdevice;
  1065. info.lo_offset = info64->lo_offset;
  1066. info.lo_encrypt_type = info64->lo_encrypt_type;
  1067. info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
  1068. info.lo_flags = info64->lo_flags;
  1069. info.lo_init[0] = info64->lo_init[0];
  1070. info.lo_init[1] = info64->lo_init[1];
  1071. if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
  1072. memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
  1073. else
  1074. memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
  1075. memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
  1076. /* error in case values were truncated */
  1077. if (info.lo_device != info64->lo_device ||
  1078. info.lo_rdevice != info64->lo_rdevice ||
  1079. info.lo_inode != info64->lo_inode ||
  1080. info.lo_offset != info64->lo_offset ||
  1081. info.lo_init[0] != info64->lo_init[0] ||
  1082. info.lo_init[1] != info64->lo_init[1])
  1083. return -EOVERFLOW;
  1084. if (copy_to_user(arg, &info, sizeof(info)))
  1085. return -EFAULT;
  1086. return 0;
  1087. }
  1088. static int
  1089. loop_set_status_compat(struct loop_device *lo,
  1090. const struct compat_loop_info __user *arg)
  1091. {
  1092. struct loop_info64 info64;
  1093. int ret;
  1094. ret = loop_info64_from_compat(arg, &info64);
  1095. if (ret < 0)
  1096. return ret;
  1097. return loop_set_status(lo, &info64);
  1098. }
  1099. static int
  1100. loop_get_status_compat(struct loop_device *lo,
  1101. struct compat_loop_info __user *arg)
  1102. {
  1103. struct loop_info64 info64;
  1104. int err = 0;
  1105. if (!arg)
  1106. err = -EINVAL;
  1107. if (!err)
  1108. err = loop_get_status(lo, &info64);
  1109. if (!err)
  1110. err = loop_info64_to_compat(&info64, arg);
  1111. return err;
  1112. }
  1113. static long lo_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  1114. {
  1115. struct inode *inode = file->f_path.dentry->d_inode;
  1116. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  1117. int err;
  1118. switch(cmd) {
  1119. case LOOP_SET_STATUS:
  1120. mutex_lock(&lo->lo_ctl_mutex);
  1121. err = loop_set_status_compat(
  1122. lo, (const struct compat_loop_info __user *) arg);
  1123. mutex_unlock(&lo->lo_ctl_mutex);
  1124. break;
  1125. case LOOP_GET_STATUS:
  1126. mutex_lock(&lo->lo_ctl_mutex);
  1127. err = loop_get_status_compat(
  1128. lo, (struct compat_loop_info __user *) arg);
  1129. mutex_unlock(&lo->lo_ctl_mutex);
  1130. break;
  1131. case LOOP_CLR_FD:
  1132. case LOOP_GET_STATUS64:
  1133. case LOOP_SET_STATUS64:
  1134. arg = (unsigned long) compat_ptr(arg);
  1135. case LOOP_SET_FD:
  1136. case LOOP_CHANGE_FD:
  1137. err = lo_ioctl(inode, file, cmd, arg);
  1138. break;
  1139. default:
  1140. err = -ENOIOCTLCMD;
  1141. break;
  1142. }
  1143. return err;
  1144. }
  1145. #endif
  1146. static int lo_open(struct inode *inode, struct file *file)
  1147. {
  1148. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  1149. mutex_lock(&lo->lo_ctl_mutex);
  1150. lo->lo_refcnt++;
  1151. mutex_unlock(&lo->lo_ctl_mutex);
  1152. return 0;
  1153. }
  1154. static int lo_release(struct inode *inode, struct file *file)
  1155. {
  1156. struct loop_device *lo = inode->i_bdev->bd_disk->private_data;
  1157. mutex_lock(&lo->lo_ctl_mutex);
  1158. --lo->lo_refcnt;
  1159. if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) && !lo->lo_refcnt)
  1160. loop_clr_fd(lo, inode->i_bdev);
  1161. mutex_unlock(&lo->lo_ctl_mutex);
  1162. return 0;
  1163. }
  1164. static struct block_device_operations lo_fops = {
  1165. .owner = THIS_MODULE,
  1166. .open = lo_open,
  1167. .release = lo_release,
  1168. .ioctl = lo_ioctl,
  1169. #ifdef CONFIG_COMPAT
  1170. .compat_ioctl = lo_compat_ioctl,
  1171. #endif
  1172. };
  1173. /*
  1174. * And now the modules code and kernel interface.
  1175. */
  1176. static int max_loop;
  1177. module_param(max_loop, int, 0);
  1178. MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
  1179. MODULE_LICENSE("GPL");
  1180. MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
  1181. int loop_register_transfer(struct loop_func_table *funcs)
  1182. {
  1183. unsigned int n = funcs->number;
  1184. if (n >= MAX_LO_CRYPT || xfer_funcs[n])
  1185. return -EINVAL;
  1186. xfer_funcs[n] = funcs;
  1187. return 0;
  1188. }
  1189. int loop_unregister_transfer(int number)
  1190. {
  1191. unsigned int n = number;
  1192. struct loop_device *lo;
  1193. struct loop_func_table *xfer;
  1194. if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
  1195. return -EINVAL;
  1196. xfer_funcs[n] = NULL;
  1197. list_for_each_entry(lo, &loop_devices, lo_list) {
  1198. mutex_lock(&lo->lo_ctl_mutex);
  1199. if (lo->lo_encryption == xfer)
  1200. loop_release_xfer(lo);
  1201. mutex_unlock(&lo->lo_ctl_mutex);
  1202. }
  1203. return 0;
  1204. }
  1205. EXPORT_SYMBOL(loop_register_transfer);
  1206. EXPORT_SYMBOL(loop_unregister_transfer);
  1207. static struct loop_device *loop_alloc(int i)
  1208. {
  1209. struct loop_device *lo;
  1210. struct gendisk *disk;
  1211. lo = kzalloc(sizeof(*lo), GFP_KERNEL);
  1212. if (!lo)
  1213. goto out;
  1214. lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
  1215. if (!lo->lo_queue)
  1216. goto out_free_dev;
  1217. disk = lo->lo_disk = alloc_disk(1);
  1218. if (!disk)
  1219. goto out_free_queue;
  1220. mutex_init(&lo->lo_ctl_mutex);
  1221. lo->lo_number = i;
  1222. lo->lo_thread = NULL;
  1223. init_waitqueue_head(&lo->lo_event);
  1224. spin_lock_init(&lo->lo_lock);
  1225. disk->major = LOOP_MAJOR;
  1226. disk->first_minor = i;
  1227. disk->fops = &lo_fops;
  1228. disk->private_data = lo;
  1229. disk->queue = lo->lo_queue;
  1230. sprintf(disk->disk_name, "loop%d", i);
  1231. return lo;
  1232. out_free_queue:
  1233. blk_cleanup_queue(lo->lo_queue);
  1234. out_free_dev:
  1235. kfree(lo);
  1236. out:
  1237. return NULL;
  1238. }
  1239. static void loop_free(struct loop_device *lo)
  1240. {
  1241. blk_cleanup_queue(lo->lo_queue);
  1242. put_disk(lo->lo_disk);
  1243. list_del(&lo->lo_list);
  1244. kfree(lo);
  1245. }
  1246. static struct loop_device *loop_init_one(int i)
  1247. {
  1248. struct loop_device *lo;
  1249. list_for_each_entry(lo, &loop_devices, lo_list) {
  1250. if (lo->lo_number == i)
  1251. return lo;
  1252. }
  1253. lo = loop_alloc(i);
  1254. if (lo) {
  1255. add_disk(lo->lo_disk);
  1256. list_add_tail(&lo->lo_list, &loop_devices);
  1257. }
  1258. return lo;
  1259. }
  1260. static void loop_del_one(struct loop_device *lo)
  1261. {
  1262. del_gendisk(lo->lo_disk);
  1263. loop_free(lo);
  1264. }
  1265. static struct kobject *loop_probe(dev_t dev, int *part, void *data)
  1266. {
  1267. struct loop_device *lo;
  1268. struct kobject *kobj;
  1269. mutex_lock(&loop_devices_mutex);
  1270. lo = loop_init_one(dev & MINORMASK);
  1271. kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
  1272. mutex_unlock(&loop_devices_mutex);
  1273. *part = 0;
  1274. return kobj;
  1275. }
  1276. static int __init loop_init(void)
  1277. {
  1278. int i, nr;
  1279. unsigned long range;
  1280. struct loop_device *lo, *next;
  1281. /*
  1282. * loop module now has a feature to instantiate underlying device
  1283. * structure on-demand, provided that there is an access dev node.
  1284. * However, this will not work well with user space tool that doesn't
  1285. * know about such "feature". In order to not break any existing
  1286. * tool, we do the following:
  1287. *
  1288. * (1) if max_loop is specified, create that many upfront, and this
  1289. * also becomes a hard limit.
  1290. * (2) if max_loop is not specified, create 8 loop device on module
  1291. * load, user can further extend loop device by create dev node
  1292. * themselves and have kernel automatically instantiate actual
  1293. * device on-demand.
  1294. */
  1295. if (max_loop > 1UL << MINORBITS)
  1296. return -EINVAL;
  1297. if (max_loop) {
  1298. nr = max_loop;
  1299. range = max_loop;
  1300. } else {
  1301. nr = 8;
  1302. range = 1UL << MINORBITS;
  1303. }
  1304. if (register_blkdev(LOOP_MAJOR, "loop"))
  1305. return -EIO;
  1306. for (i = 0; i < nr; i++) {
  1307. lo = loop_alloc(i);
  1308. if (!lo)
  1309. goto Enomem;
  1310. list_add_tail(&lo->lo_list, &loop_devices);
  1311. }
  1312. /* point of no return */
  1313. list_for_each_entry(lo, &loop_devices, lo_list)
  1314. add_disk(lo->lo_disk);
  1315. blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
  1316. THIS_MODULE, loop_probe, NULL, NULL);
  1317. printk(KERN_INFO "loop: module loaded\n");
  1318. return 0;
  1319. Enomem:
  1320. printk(KERN_INFO "loop: out of memory\n");
  1321. list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
  1322. loop_free(lo);
  1323. unregister_blkdev(LOOP_MAJOR, "loop");
  1324. return -ENOMEM;
  1325. }
  1326. static void __exit loop_exit(void)
  1327. {
  1328. unsigned long range;
  1329. struct loop_device *lo, *next;
  1330. range = max_loop ? max_loop : 1UL << MINORBITS;
  1331. list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
  1332. loop_del_one(lo);
  1333. blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
  1334. unregister_blkdev(LOOP_MAJOR, "loop");
  1335. }
  1336. module_init(loop_init);
  1337. module_exit(loop_exit);
  1338. #ifndef MODULE
  1339. static int __init max_loop_setup(char *str)
  1340. {
  1341. max_loop = simple_strtol(str, NULL, 0);
  1342. return 1;
  1343. }
  1344. __setup("max_loop=", max_loop_setup);
  1345. #endif