rt2800pci.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139
  1. /*
  2. Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
  3. Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
  4. Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
  5. Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
  6. Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
  7. Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
  8. Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
  9. Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
  10. <http://rt2x00.serialmonkey.com>
  11. This program is free software; you can redistribute it and/or modify
  12. it under the terms of the GNU General Public License as published by
  13. the Free Software Foundation; either version 2 of the License, or
  14. (at your option) any later version.
  15. This program is distributed in the hope that it will be useful,
  16. but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. GNU General Public License for more details.
  19. You should have received a copy of the GNU General Public License
  20. along with this program; if not, write to the
  21. Free Software Foundation, Inc.,
  22. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  23. */
  24. /*
  25. Module: rt2800pci
  26. Abstract: rt2800pci device specific routines.
  27. Supported chipsets: RT2800E & RT2800ED.
  28. */
  29. #include <linux/delay.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/init.h>
  32. #include <linux/kernel.h>
  33. #include <linux/module.h>
  34. #include <linux/pci.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/eeprom_93cx6.h>
  37. #include "rt2x00.h"
  38. #include "rt2x00pci.h"
  39. #include "rt2x00soc.h"
  40. #include "rt2800lib.h"
  41. #include "rt2800.h"
  42. #include "rt2800pci.h"
  43. /*
  44. * Allow hardware encryption to be disabled.
  45. */
  46. static int modparam_nohwcrypt = 0;
  47. module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
  48. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  49. static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
  50. {
  51. unsigned int i;
  52. u32 reg;
  53. /*
  54. * SOC devices don't support MCU requests.
  55. */
  56. if (rt2x00_is_soc(rt2x00dev))
  57. return;
  58. for (i = 0; i < 200; i++) {
  59. rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
  60. if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
  61. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
  62. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
  63. (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
  64. break;
  65. udelay(REGISTER_BUSY_DELAY);
  66. }
  67. if (i == 200)
  68. ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
  69. rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
  70. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
  71. }
  72. #ifdef CONFIG_RT2800PCI_SOC
  73. static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  74. {
  75. u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
  76. memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
  77. }
  78. #else
  79. static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
  80. {
  81. }
  82. #endif /* CONFIG_RT2800PCI_SOC */
  83. #ifdef CONFIG_RT2800PCI_PCI
  84. static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  85. {
  86. struct rt2x00_dev *rt2x00dev = eeprom->data;
  87. u32 reg;
  88. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  89. eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
  90. eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
  91. eeprom->reg_data_clock =
  92. !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
  93. eeprom->reg_chip_select =
  94. !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
  95. }
  96. static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  97. {
  98. struct rt2x00_dev *rt2x00dev = eeprom->data;
  99. u32 reg = 0;
  100. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
  101. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
  102. rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
  103. !!eeprom->reg_data_clock);
  104. rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
  105. !!eeprom->reg_chip_select);
  106. rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
  107. }
  108. static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  109. {
  110. struct eeprom_93cx6 eeprom;
  111. u32 reg;
  112. rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
  113. eeprom.data = rt2x00dev;
  114. eeprom.register_read = rt2800pci_eepromregister_read;
  115. eeprom.register_write = rt2800pci_eepromregister_write;
  116. switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE))
  117. {
  118. case 0:
  119. eeprom.width = PCI_EEPROM_WIDTH_93C46;
  120. break;
  121. case 1:
  122. eeprom.width = PCI_EEPROM_WIDTH_93C66;
  123. break;
  124. default:
  125. eeprom.width = PCI_EEPROM_WIDTH_93C86;
  126. break;
  127. }
  128. eeprom.reg_data_in = 0;
  129. eeprom.reg_data_out = 0;
  130. eeprom.reg_data_clock = 0;
  131. eeprom.reg_chip_select = 0;
  132. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  133. EEPROM_SIZE / sizeof(u16));
  134. }
  135. static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  136. {
  137. return rt2800_efuse_detect(rt2x00dev);
  138. }
  139. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  140. {
  141. rt2800_read_eeprom_efuse(rt2x00dev);
  142. }
  143. #else
  144. static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
  145. {
  146. }
  147. static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
  148. {
  149. return 0;
  150. }
  151. static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
  152. {
  153. }
  154. #endif /* CONFIG_RT2800PCI_PCI */
  155. /*
  156. * Firmware functions
  157. */
  158. static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
  159. {
  160. return FIRMWARE_RT2860;
  161. }
  162. static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev,
  163. const u8 *data, const size_t len)
  164. {
  165. u32 reg;
  166. /*
  167. * enable Host program ram write selection
  168. */
  169. reg = 0;
  170. rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
  171. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
  172. /*
  173. * Write firmware to device.
  174. */
  175. rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
  176. data, len);
  177. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
  178. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
  179. rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
  180. rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
  181. return 0;
  182. }
  183. /*
  184. * Initialization functions.
  185. */
  186. static bool rt2800pci_get_entry_state(struct queue_entry *entry)
  187. {
  188. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  189. u32 word;
  190. if (entry->queue->qid == QID_RX) {
  191. rt2x00_desc_read(entry_priv->desc, 1, &word);
  192. return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
  193. } else {
  194. rt2x00_desc_read(entry_priv->desc, 1, &word);
  195. return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
  196. }
  197. }
  198. static void rt2800pci_clear_entry(struct queue_entry *entry)
  199. {
  200. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  201. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  202. u32 word;
  203. if (entry->queue->qid == QID_RX) {
  204. rt2x00_desc_read(entry_priv->desc, 0, &word);
  205. rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
  206. rt2x00_desc_write(entry_priv->desc, 0, word);
  207. rt2x00_desc_read(entry_priv->desc, 1, &word);
  208. rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
  209. rt2x00_desc_write(entry_priv->desc, 1, word);
  210. } else {
  211. rt2x00_desc_read(entry_priv->desc, 1, &word);
  212. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
  213. rt2x00_desc_write(entry_priv->desc, 1, word);
  214. }
  215. }
  216. static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
  217. {
  218. struct queue_entry_priv_pci *entry_priv;
  219. u32 reg;
  220. /*
  221. * Initialize registers.
  222. */
  223. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  224. rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
  225. rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
  226. rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
  227. rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
  228. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  229. rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
  230. rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
  231. rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
  232. rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
  233. entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
  234. rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
  235. rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
  236. rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
  237. rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
  238. entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
  239. rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
  240. rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
  241. rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
  242. rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
  243. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  244. rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
  245. rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
  246. rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
  247. rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
  248. /*
  249. * Enable global DMA configuration
  250. */
  251. rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
  252. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
  253. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
  254. rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
  255. rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
  256. rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
  257. return 0;
  258. }
  259. /*
  260. * Device state switch handlers.
  261. */
  262. static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  263. enum dev_state state)
  264. {
  265. u32 reg;
  266. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  267. rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
  268. (state == STATE_RADIO_RX_ON) ||
  269. (state == STATE_RADIO_RX_ON_LINK));
  270. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  271. }
  272. static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  273. enum dev_state state)
  274. {
  275. int mask = (state == STATE_RADIO_IRQ_ON) ||
  276. (state == STATE_RADIO_IRQ_ON_ISR);
  277. u32 reg;
  278. /*
  279. * When interrupts are being enabled, the interrupt registers
  280. * should clear the register to assure a clean state.
  281. */
  282. if (state == STATE_RADIO_IRQ_ON) {
  283. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  284. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  285. }
  286. rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  287. rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, 0);
  288. rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, 0);
  289. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
  290. rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, 0);
  291. rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, 0);
  292. rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, 0);
  293. rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, 0);
  294. rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, 0);
  295. rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, 0);
  296. rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, 0);
  297. rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, 0);
  298. rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
  299. rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
  300. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
  301. rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
  302. rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, 0);
  303. rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, 0);
  304. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, 0);
  305. rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
  306. }
  307. static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev)
  308. {
  309. u32 reg;
  310. /*
  311. * Reset DMA indexes
  312. */
  313. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  314. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  315. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  316. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  317. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  318. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  319. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  320. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  321. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  322. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  323. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  324. rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003);
  325. rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
  326. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_CSR, 1);
  327. rt2x00_set_field32(&reg, MAC_SYS_CTRL_RESET_BBP, 1);
  328. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
  329. rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000);
  330. return 0;
  331. }
  332. static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  333. {
  334. if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
  335. rt2800pci_init_queues(rt2x00dev)))
  336. return -EIO;
  337. return rt2800_enable_radio(rt2x00dev);
  338. }
  339. static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  340. {
  341. u32 reg;
  342. rt2800_disable_radio(rt2x00dev);
  343. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
  344. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  345. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
  346. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
  347. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
  348. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
  349. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
  350. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
  351. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
  352. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  353. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
  354. rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
  355. }
  356. static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
  357. enum dev_state state)
  358. {
  359. /*
  360. * Always put the device to sleep (even when we intend to wakeup!)
  361. * if the device is booting and wasn't asleep it will return
  362. * failure when attempting to wakeup.
  363. */
  364. rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
  365. if (state == STATE_AWAKE) {
  366. rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
  367. rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
  368. }
  369. return 0;
  370. }
  371. static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  372. enum dev_state state)
  373. {
  374. int retval = 0;
  375. switch (state) {
  376. case STATE_RADIO_ON:
  377. /*
  378. * Before the radio can be enabled, the device first has
  379. * to be woken up. After that it needs a bit of time
  380. * to be fully awake and then the radio can be enabled.
  381. */
  382. rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
  383. msleep(1);
  384. retval = rt2800pci_enable_radio(rt2x00dev);
  385. break;
  386. case STATE_RADIO_OFF:
  387. /*
  388. * After the radio has been disabled, the device should
  389. * be put to sleep for powersaving.
  390. */
  391. rt2800pci_disable_radio(rt2x00dev);
  392. rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
  393. break;
  394. case STATE_RADIO_RX_ON:
  395. case STATE_RADIO_RX_ON_LINK:
  396. case STATE_RADIO_RX_OFF:
  397. case STATE_RADIO_RX_OFF_LINK:
  398. rt2800pci_toggle_rx(rt2x00dev, state);
  399. break;
  400. case STATE_RADIO_IRQ_ON:
  401. case STATE_RADIO_IRQ_ON_ISR:
  402. case STATE_RADIO_IRQ_OFF:
  403. case STATE_RADIO_IRQ_OFF_ISR:
  404. rt2800pci_toggle_irq(rt2x00dev, state);
  405. break;
  406. case STATE_DEEP_SLEEP:
  407. case STATE_SLEEP:
  408. case STATE_STANDBY:
  409. case STATE_AWAKE:
  410. retval = rt2800pci_set_state(rt2x00dev, state);
  411. break;
  412. default:
  413. retval = -ENOTSUPP;
  414. break;
  415. }
  416. if (unlikely(retval))
  417. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  418. state, retval);
  419. return retval;
  420. }
  421. /*
  422. * TX descriptor initialization
  423. */
  424. static __le32 *rt2800pci_get_txwi(struct queue_entry *entry)
  425. {
  426. return (__le32 *) entry->skb->data;
  427. }
  428. static void rt2800pci_write_tx_desc(struct queue_entry *entry,
  429. struct txentry_desc *txdesc)
  430. {
  431. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  432. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  433. __le32 *txd = entry_priv->desc;
  434. u32 word;
  435. /*
  436. * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
  437. * must contains a TXWI structure + 802.11 header + padding + 802.11
  438. * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
  439. * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
  440. * data. It means that LAST_SEC0 is always 0.
  441. */
  442. /*
  443. * Initialize TX descriptor
  444. */
  445. rt2x00_desc_read(txd, 0, &word);
  446. rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
  447. rt2x00_desc_write(txd, 0, word);
  448. rt2x00_desc_read(txd, 1, &word);
  449. rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len);
  450. rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
  451. !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  452. rt2x00_set_field32(&word, TXD_W1_BURST,
  453. test_bit(ENTRY_TXD_BURST, &txdesc->flags));
  454. rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
  455. rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
  456. rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
  457. rt2x00_desc_write(txd, 1, word);
  458. rt2x00_desc_read(txd, 2, &word);
  459. rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
  460. skbdesc->skb_dma + TXWI_DESC_SIZE);
  461. rt2x00_desc_write(txd, 2, word);
  462. rt2x00_desc_read(txd, 3, &word);
  463. rt2x00_set_field32(&word, TXD_W3_WIV,
  464. !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
  465. rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
  466. rt2x00_desc_write(txd, 3, word);
  467. /*
  468. * Register descriptor details in skb frame descriptor.
  469. */
  470. skbdesc->desc = txd;
  471. skbdesc->desc_len = TXD_DESC_SIZE;
  472. }
  473. /*
  474. * TX data initialization
  475. */
  476. static void rt2800pci_kick_tx_queue(struct data_queue *queue)
  477. {
  478. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  479. struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
  480. unsigned int qidx = 0;
  481. if (queue->qid == QID_MGMT)
  482. qidx = 5;
  483. else
  484. qidx = queue->qid;
  485. rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), entry->entry_idx);
  486. }
  487. static void rt2800pci_kill_tx_queue(struct data_queue *queue)
  488. {
  489. struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
  490. u32 reg;
  491. if (queue->qid == QID_BEACON) {
  492. rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
  493. return;
  494. }
  495. rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
  496. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (queue->qid == QID_AC_BE));
  497. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (queue->qid == QID_AC_BK));
  498. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (queue->qid == QID_AC_VI));
  499. rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (queue->qid == QID_AC_VO));
  500. rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
  501. }
  502. /*
  503. * RX control handlers
  504. */
  505. static void rt2800pci_fill_rxdone(struct queue_entry *entry,
  506. struct rxdone_entry_desc *rxdesc)
  507. {
  508. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  509. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  510. __le32 *rxd = entry_priv->desc;
  511. u32 word;
  512. rt2x00_desc_read(rxd, 3, &word);
  513. if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
  514. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  515. /*
  516. * Unfortunately we don't know the cipher type used during
  517. * decryption. This prevents us from correct providing
  518. * correct statistics through debugfs.
  519. */
  520. rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
  521. if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
  522. /*
  523. * Hardware has stripped IV/EIV data from 802.11 frame during
  524. * decryption. Unfortunately the descriptor doesn't contain
  525. * any fields with the EIV/IV data either, so they can't
  526. * be restored by rt2x00lib.
  527. */
  528. rxdesc->flags |= RX_FLAG_IV_STRIPPED;
  529. if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
  530. rxdesc->flags |= RX_FLAG_DECRYPTED;
  531. else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
  532. rxdesc->flags |= RX_FLAG_MMIC_ERROR;
  533. }
  534. if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
  535. rxdesc->dev_flags |= RXDONE_MY_BSS;
  536. if (rt2x00_get_field32(word, RXD_W3_L2PAD))
  537. rxdesc->dev_flags |= RXDONE_L2PAD;
  538. /*
  539. * Process the RXWI structure that is at the start of the buffer.
  540. */
  541. rt2800_process_rxwi(entry, rxdesc);
  542. /*
  543. * Set RX IDX in register to inform hardware that we have handled
  544. * this entry and it is available for reuse again.
  545. */
  546. rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
  547. }
  548. /*
  549. * Interrupt functions.
  550. */
  551. static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
  552. {
  553. struct ieee80211_conf conf = { .flags = 0 };
  554. struct rt2x00lib_conf libconf = { .conf = &conf };
  555. rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
  556. }
  557. static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
  558. {
  559. struct data_queue *queue;
  560. struct queue_entry *entry;
  561. u32 status;
  562. u8 qid;
  563. while (!kfifo_is_empty(&rt2x00dev->txstatus_fifo)) {
  564. /* Now remove the tx status from the FIFO */
  565. if (kfifo_out(&rt2x00dev->txstatus_fifo, &status,
  566. sizeof(status)) != sizeof(status)) {
  567. WARN_ON(1);
  568. break;
  569. }
  570. qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_TYPE) - 1;
  571. if (qid >= QID_RX) {
  572. /*
  573. * Unknown queue, this shouldn't happen. Just drop
  574. * this tx status.
  575. */
  576. WARNING(rt2x00dev, "Got TX status report with "
  577. "unexpected pid %u, dropping", qid);
  578. break;
  579. }
  580. queue = rt2x00queue_get_queue(rt2x00dev, qid);
  581. if (unlikely(queue == NULL)) {
  582. /*
  583. * The queue is NULL, this shouldn't happen. Stop
  584. * processing here and drop the tx status
  585. */
  586. WARNING(rt2x00dev, "Got TX status for an unavailable "
  587. "queue %u, dropping", qid);
  588. break;
  589. }
  590. if (rt2x00queue_empty(queue)) {
  591. /*
  592. * The queue is empty. Stop processing here
  593. * and drop the tx status.
  594. */
  595. WARNING(rt2x00dev, "Got TX status for an empty "
  596. "queue %u, dropping", qid);
  597. break;
  598. }
  599. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  600. rt2800_txdone_entry(entry, status);
  601. }
  602. }
  603. static void rt2800pci_txstatus_tasklet(unsigned long data)
  604. {
  605. rt2800pci_txdone((struct rt2x00_dev *)data);
  606. }
  607. static irqreturn_t rt2800pci_interrupt_thread(int irq, void *dev_instance)
  608. {
  609. struct rt2x00_dev *rt2x00dev = dev_instance;
  610. u32 reg = rt2x00dev->irqvalue[0];
  611. /*
  612. * 1 - Pre TBTT interrupt.
  613. */
  614. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT))
  615. rt2x00lib_pretbtt(rt2x00dev);
  616. /*
  617. * 2 - Beacondone interrupt.
  618. */
  619. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT))
  620. rt2x00lib_beacondone(rt2x00dev);
  621. /*
  622. * 3 - Rx ring done interrupt.
  623. */
  624. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
  625. rt2x00pci_rxdone(rt2x00dev);
  626. /*
  627. * 4 - Auto wakeup interrupt.
  628. */
  629. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
  630. rt2800pci_wakeup(rt2x00dev);
  631. /* Enable interrupts again. */
  632. rt2x00dev->ops->lib->set_device_state(rt2x00dev,
  633. STATE_RADIO_IRQ_ON_ISR);
  634. return IRQ_HANDLED;
  635. }
  636. static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev)
  637. {
  638. u32 status;
  639. int i;
  640. /*
  641. * The TX_FIFO_STATUS interrupt needs special care. We should
  642. * read TX_STA_FIFO but we should do it immediately as otherwise
  643. * the register can overflow and we would lose status reports.
  644. *
  645. * Hence, read the TX_STA_FIFO register and copy all tx status
  646. * reports into a kernel FIFO which is handled in the txstatus
  647. * tasklet. We use a tasklet to process the tx status reports
  648. * because we can schedule the tasklet multiple times (when the
  649. * interrupt fires again during tx status processing).
  650. *
  651. * Furthermore we don't disable the TX_FIFO_STATUS
  652. * interrupt here but leave it enabled so that the TX_STA_FIFO
  653. * can also be read while the interrupt thread gets executed.
  654. *
  655. * Since we have only one producer and one consumer we don't
  656. * need to lock the kfifo.
  657. */
  658. for (i = 0; i < TX_ENTRIES; i++) {
  659. rt2800_register_read(rt2x00dev, TX_STA_FIFO, &status);
  660. if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID))
  661. break;
  662. if (kfifo_is_full(&rt2x00dev->txstatus_fifo)) {
  663. WARNING(rt2x00dev, "TX status FIFO overrun,"
  664. " drop tx status report.\n");
  665. break;
  666. }
  667. if (kfifo_in(&rt2x00dev->txstatus_fifo, &status,
  668. sizeof(status)) != sizeof(status)) {
  669. WARNING(rt2x00dev, "TX status FIFO overrun,"
  670. "drop tx status report.\n");
  671. break;
  672. }
  673. }
  674. /* Schedule the tasklet for processing the tx status. */
  675. tasklet_schedule(&rt2x00dev->txstatus_tasklet);
  676. }
  677. static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
  678. {
  679. struct rt2x00_dev *rt2x00dev = dev_instance;
  680. u32 reg;
  681. irqreturn_t ret = IRQ_HANDLED;
  682. /* Read status and ACK all interrupts */
  683. rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
  684. rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
  685. if (!reg)
  686. return IRQ_NONE;
  687. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  688. return IRQ_HANDLED;
  689. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
  690. rt2800pci_txstatus_interrupt(rt2x00dev);
  691. if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT) ||
  692. rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT) ||
  693. rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE) ||
  694. rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP)) {
  695. /*
  696. * All other interrupts are handled in the interrupt thread.
  697. * Store irqvalue for use in the interrupt thread.
  698. */
  699. rt2x00dev->irqvalue[0] = reg;
  700. /*
  701. * Disable interrupts, will be enabled again in the
  702. * interrupt thread.
  703. */
  704. rt2x00dev->ops->lib->set_device_state(rt2x00dev,
  705. STATE_RADIO_IRQ_OFF_ISR);
  706. /*
  707. * Leave the TX_FIFO_STATUS interrupt enabled to not lose any
  708. * tx status reports.
  709. */
  710. rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
  711. rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, 1);
  712. rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
  713. ret = IRQ_WAKE_THREAD;
  714. }
  715. return ret;
  716. }
  717. /*
  718. * Device probe functions.
  719. */
  720. static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  721. {
  722. /*
  723. * Read EEPROM into buffer
  724. */
  725. if (rt2x00_is_soc(rt2x00dev))
  726. rt2800pci_read_eeprom_soc(rt2x00dev);
  727. else if (rt2800pci_efuse_detect(rt2x00dev))
  728. rt2800pci_read_eeprom_efuse(rt2x00dev);
  729. else
  730. rt2800pci_read_eeprom_pci(rt2x00dev);
  731. return rt2800_validate_eeprom(rt2x00dev);
  732. }
  733. static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  734. {
  735. int retval;
  736. /*
  737. * Allocate eeprom data.
  738. */
  739. retval = rt2800pci_validate_eeprom(rt2x00dev);
  740. if (retval)
  741. return retval;
  742. retval = rt2800_init_eeprom(rt2x00dev);
  743. if (retval)
  744. return retval;
  745. /*
  746. * Initialize hw specifications.
  747. */
  748. retval = rt2800_probe_hw_mode(rt2x00dev);
  749. if (retval)
  750. return retval;
  751. /*
  752. * This device has multiple filters for control frames
  753. * and has a separate filter for PS Poll frames.
  754. */
  755. __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
  756. __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
  757. /*
  758. * This device has a pre tbtt interrupt and thus fetches
  759. * a new beacon directly prior to transmission.
  760. */
  761. __set_bit(DRIVER_SUPPORT_PRE_TBTT_INTERRUPT, &rt2x00dev->flags);
  762. /*
  763. * This device requires firmware.
  764. */
  765. if (!rt2x00_is_soc(rt2x00dev))
  766. __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
  767. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  768. __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
  769. __set_bit(DRIVER_REQUIRE_TXSTATUS_FIFO, &rt2x00dev->flags);
  770. if (!modparam_nohwcrypt)
  771. __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
  772. __set_bit(DRIVER_SUPPORT_LINK_TUNING, &rt2x00dev->flags);
  773. /*
  774. * Set the rssi offset.
  775. */
  776. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  777. return 0;
  778. }
  779. static const struct ieee80211_ops rt2800pci_mac80211_ops = {
  780. .tx = rt2x00mac_tx,
  781. .start = rt2x00mac_start,
  782. .stop = rt2x00mac_stop,
  783. .add_interface = rt2x00mac_add_interface,
  784. .remove_interface = rt2x00mac_remove_interface,
  785. .config = rt2x00mac_config,
  786. .configure_filter = rt2x00mac_configure_filter,
  787. .set_key = rt2x00mac_set_key,
  788. .sw_scan_start = rt2x00mac_sw_scan_start,
  789. .sw_scan_complete = rt2x00mac_sw_scan_complete,
  790. .get_stats = rt2x00mac_get_stats,
  791. .get_tkip_seq = rt2800_get_tkip_seq,
  792. .set_rts_threshold = rt2800_set_rts_threshold,
  793. .bss_info_changed = rt2x00mac_bss_info_changed,
  794. .conf_tx = rt2800_conf_tx,
  795. .get_tsf = rt2800_get_tsf,
  796. .rfkill_poll = rt2x00mac_rfkill_poll,
  797. .ampdu_action = rt2800_ampdu_action,
  798. };
  799. static const struct rt2800_ops rt2800pci_rt2800_ops = {
  800. .register_read = rt2x00pci_register_read,
  801. .register_read_lock = rt2x00pci_register_read, /* same for PCI */
  802. .register_write = rt2x00pci_register_write,
  803. .register_write_lock = rt2x00pci_register_write, /* same for PCI */
  804. .register_multiread = rt2x00pci_register_multiread,
  805. .register_multiwrite = rt2x00pci_register_multiwrite,
  806. .regbusy_read = rt2x00pci_regbusy_read,
  807. .drv_write_firmware = rt2800pci_write_firmware,
  808. .drv_init_registers = rt2800pci_init_registers,
  809. .drv_get_txwi = rt2800pci_get_txwi,
  810. };
  811. static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
  812. .irq_handler = rt2800pci_interrupt,
  813. .irq_handler_thread = rt2800pci_interrupt_thread,
  814. .txstatus_tasklet = rt2800pci_txstatus_tasklet,
  815. .probe_hw = rt2800pci_probe_hw,
  816. .get_firmware_name = rt2800pci_get_firmware_name,
  817. .check_firmware = rt2800_check_firmware,
  818. .load_firmware = rt2800_load_firmware,
  819. .initialize = rt2x00pci_initialize,
  820. .uninitialize = rt2x00pci_uninitialize,
  821. .get_entry_state = rt2800pci_get_entry_state,
  822. .clear_entry = rt2800pci_clear_entry,
  823. .set_device_state = rt2800pci_set_device_state,
  824. .rfkill_poll = rt2800_rfkill_poll,
  825. .link_stats = rt2800_link_stats,
  826. .reset_tuner = rt2800_reset_tuner,
  827. .link_tuner = rt2800_link_tuner,
  828. .write_tx_desc = rt2800pci_write_tx_desc,
  829. .write_tx_data = rt2800_write_tx_data,
  830. .write_beacon = rt2800_write_beacon,
  831. .kick_tx_queue = rt2800pci_kick_tx_queue,
  832. .kill_tx_queue = rt2800pci_kill_tx_queue,
  833. .fill_rxdone = rt2800pci_fill_rxdone,
  834. .config_shared_key = rt2800_config_shared_key,
  835. .config_pairwise_key = rt2800_config_pairwise_key,
  836. .config_filter = rt2800_config_filter,
  837. .config_intf = rt2800_config_intf,
  838. .config_erp = rt2800_config_erp,
  839. .config_ant = rt2800_config_ant,
  840. .config = rt2800_config,
  841. };
  842. static const struct data_queue_desc rt2800pci_queue_rx = {
  843. .entry_num = RX_ENTRIES,
  844. .data_size = AGGREGATION_SIZE,
  845. .desc_size = RXD_DESC_SIZE,
  846. .priv_size = sizeof(struct queue_entry_priv_pci),
  847. };
  848. static const struct data_queue_desc rt2800pci_queue_tx = {
  849. .entry_num = TX_ENTRIES,
  850. .data_size = AGGREGATION_SIZE,
  851. .desc_size = TXD_DESC_SIZE,
  852. .priv_size = sizeof(struct queue_entry_priv_pci),
  853. };
  854. static const struct data_queue_desc rt2800pci_queue_bcn = {
  855. .entry_num = 8 * BEACON_ENTRIES,
  856. .data_size = 0, /* No DMA required for beacons */
  857. .desc_size = TXWI_DESC_SIZE,
  858. .priv_size = sizeof(struct queue_entry_priv_pci),
  859. };
  860. static const struct rt2x00_ops rt2800pci_ops = {
  861. .name = KBUILD_MODNAME,
  862. .max_sta_intf = 1,
  863. .max_ap_intf = 8,
  864. .eeprom_size = EEPROM_SIZE,
  865. .rf_size = RF_SIZE,
  866. .tx_queues = NUM_TX_QUEUES,
  867. .extra_tx_headroom = TXWI_DESC_SIZE,
  868. .rx = &rt2800pci_queue_rx,
  869. .tx = &rt2800pci_queue_tx,
  870. .bcn = &rt2800pci_queue_bcn,
  871. .lib = &rt2800pci_rt2x00_ops,
  872. .drv = &rt2800pci_rt2800_ops,
  873. .hw = &rt2800pci_mac80211_ops,
  874. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  875. .debugfs = &rt2800_rt2x00debug,
  876. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  877. };
  878. /*
  879. * RT2800pci module information.
  880. */
  881. #ifdef CONFIG_RT2800PCI_PCI
  882. static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
  883. { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
  884. { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
  885. { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
  886. { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
  887. { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
  888. { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
  889. { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
  890. { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
  891. { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
  892. { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
  893. { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
  894. { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
  895. #ifdef CONFIG_RT2800PCI_RT30XX
  896. { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
  897. { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
  898. { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
  899. { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
  900. #endif
  901. #ifdef CONFIG_RT2800PCI_RT35XX
  902. { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
  903. { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
  904. { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
  905. { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
  906. { PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
  907. #endif
  908. { 0, }
  909. };
  910. #endif /* CONFIG_RT2800PCI_PCI */
  911. MODULE_AUTHOR(DRV_PROJECT);
  912. MODULE_VERSION(DRV_VERSION);
  913. MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
  914. MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
  915. #ifdef CONFIG_RT2800PCI_PCI
  916. MODULE_FIRMWARE(FIRMWARE_RT2860);
  917. MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
  918. #endif /* CONFIG_RT2800PCI_PCI */
  919. MODULE_LICENSE("GPL");
  920. #ifdef CONFIG_RT2800PCI_SOC
  921. static int rt2800soc_probe(struct platform_device *pdev)
  922. {
  923. return rt2x00soc_probe(pdev, &rt2800pci_ops);
  924. }
  925. static struct platform_driver rt2800soc_driver = {
  926. .driver = {
  927. .name = "rt2800_wmac",
  928. .owner = THIS_MODULE,
  929. .mod_name = KBUILD_MODNAME,
  930. },
  931. .probe = rt2800soc_probe,
  932. .remove = __devexit_p(rt2x00soc_remove),
  933. .suspend = rt2x00soc_suspend,
  934. .resume = rt2x00soc_resume,
  935. };
  936. #endif /* CONFIG_RT2800PCI_SOC */
  937. #ifdef CONFIG_RT2800PCI_PCI
  938. static struct pci_driver rt2800pci_driver = {
  939. .name = KBUILD_MODNAME,
  940. .id_table = rt2800pci_device_table,
  941. .probe = rt2x00pci_probe,
  942. .remove = __devexit_p(rt2x00pci_remove),
  943. .suspend = rt2x00pci_suspend,
  944. .resume = rt2x00pci_resume,
  945. };
  946. #endif /* CONFIG_RT2800PCI_PCI */
  947. static int __init rt2800pci_init(void)
  948. {
  949. int ret = 0;
  950. #ifdef CONFIG_RT2800PCI_SOC
  951. ret = platform_driver_register(&rt2800soc_driver);
  952. if (ret)
  953. return ret;
  954. #endif
  955. #ifdef CONFIG_RT2800PCI_PCI
  956. ret = pci_register_driver(&rt2800pci_driver);
  957. if (ret) {
  958. #ifdef CONFIG_RT2800PCI_SOC
  959. platform_driver_unregister(&rt2800soc_driver);
  960. #endif
  961. return ret;
  962. }
  963. #endif
  964. return ret;
  965. }
  966. static void __exit rt2800pci_exit(void)
  967. {
  968. #ifdef CONFIG_RT2800PCI_PCI
  969. pci_unregister_driver(&rt2800pci_driver);
  970. #endif
  971. #ifdef CONFIG_RT2800PCI_SOC
  972. platform_driver_unregister(&rt2800soc_driver);
  973. #endif
  974. }
  975. module_init(rt2800pci_init);
  976. module_exit(rt2800pci_exit);