kvm_main.c 77 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86_emulate.h"
  19. #include "segment_descriptor.h"
  20. #include "irq.h"
  21. #include <linux/kvm.h>
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/mm.h>
  27. #include <linux/miscdevice.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/reboot.h>
  30. #include <linux/debugfs.h>
  31. #include <linux/highmem.h>
  32. #include <linux/file.h>
  33. #include <linux/sysdev.h>
  34. #include <linux/cpu.h>
  35. #include <linux/sched.h>
  36. #include <linux/cpumask.h>
  37. #include <linux/smp.h>
  38. #include <linux/anon_inodes.h>
  39. #include <asm/processor.h>
  40. #include <asm/msr.h>
  41. #include <asm/io.h>
  42. #include <asm/uaccess.h>
  43. #include <asm/desc.h>
  44. MODULE_AUTHOR("Qumranet");
  45. MODULE_LICENSE("GPL");
  46. static DEFINE_SPINLOCK(kvm_lock);
  47. static LIST_HEAD(vm_list);
  48. static cpumask_t cpus_hardware_enabled;
  49. struct kvm_arch_ops *kvm_arch_ops;
  50. struct kmem_cache *kvm_vcpu_cache;
  51. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  52. static __read_mostly struct preempt_ops kvm_preempt_ops;
  53. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  54. static struct kvm_stats_debugfs_item {
  55. const char *name;
  56. int offset;
  57. struct dentry *dentry;
  58. } debugfs_entries[] = {
  59. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  60. { "pf_guest", STAT_OFFSET(pf_guest) },
  61. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  62. { "invlpg", STAT_OFFSET(invlpg) },
  63. { "exits", STAT_OFFSET(exits) },
  64. { "io_exits", STAT_OFFSET(io_exits) },
  65. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  66. { "signal_exits", STAT_OFFSET(signal_exits) },
  67. { "irq_window", STAT_OFFSET(irq_window_exits) },
  68. { "halt_exits", STAT_OFFSET(halt_exits) },
  69. { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
  70. { "request_irq", STAT_OFFSET(request_irq_exits) },
  71. { "irq_exits", STAT_OFFSET(irq_exits) },
  72. { "light_exits", STAT_OFFSET(light_exits) },
  73. { "efer_reload", STAT_OFFSET(efer_reload) },
  74. { NULL }
  75. };
  76. static struct dentry *debugfs_dir;
  77. #define MAX_IO_MSRS 256
  78. #define CR0_RESERVED_BITS \
  79. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  80. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  81. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  82. #define CR4_RESERVED_BITS \
  83. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  84. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  85. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  86. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  87. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  88. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  89. #ifdef CONFIG_X86_64
  90. // LDT or TSS descriptor in the GDT. 16 bytes.
  91. struct segment_descriptor_64 {
  92. struct segment_descriptor s;
  93. u32 base_higher;
  94. u32 pad_zero;
  95. };
  96. #endif
  97. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  98. unsigned long arg);
  99. unsigned long segment_base(u16 selector)
  100. {
  101. struct descriptor_table gdt;
  102. struct segment_descriptor *d;
  103. unsigned long table_base;
  104. typedef unsigned long ul;
  105. unsigned long v;
  106. if (selector == 0)
  107. return 0;
  108. asm ("sgdt %0" : "=m"(gdt));
  109. table_base = gdt.base;
  110. if (selector & 4) { /* from ldt */
  111. u16 ldt_selector;
  112. asm ("sldt %0" : "=g"(ldt_selector));
  113. table_base = segment_base(ldt_selector);
  114. }
  115. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  116. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  117. #ifdef CONFIG_X86_64
  118. if (d->system == 0
  119. && (d->type == 2 || d->type == 9 || d->type == 11))
  120. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  121. #endif
  122. return v;
  123. }
  124. EXPORT_SYMBOL_GPL(segment_base);
  125. static inline int valid_vcpu(int n)
  126. {
  127. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  128. }
  129. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  130. {
  131. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  132. return;
  133. vcpu->guest_fpu_loaded = 1;
  134. fx_save(&vcpu->host_fx_image);
  135. fx_restore(&vcpu->guest_fx_image);
  136. }
  137. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  138. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  139. {
  140. if (!vcpu->guest_fpu_loaded)
  141. return;
  142. vcpu->guest_fpu_loaded = 0;
  143. fx_save(&vcpu->guest_fx_image);
  144. fx_restore(&vcpu->host_fx_image);
  145. }
  146. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  147. /*
  148. * Switches to specified vcpu, until a matching vcpu_put()
  149. */
  150. static void vcpu_load(struct kvm_vcpu *vcpu)
  151. {
  152. int cpu;
  153. mutex_lock(&vcpu->mutex);
  154. cpu = get_cpu();
  155. preempt_notifier_register(&vcpu->preempt_notifier);
  156. kvm_arch_ops->vcpu_load(vcpu, cpu);
  157. put_cpu();
  158. }
  159. static void vcpu_put(struct kvm_vcpu *vcpu)
  160. {
  161. preempt_disable();
  162. kvm_arch_ops->vcpu_put(vcpu);
  163. preempt_notifier_unregister(&vcpu->preempt_notifier);
  164. preempt_enable();
  165. mutex_unlock(&vcpu->mutex);
  166. }
  167. static void ack_flush(void *_completed)
  168. {
  169. atomic_t *completed = _completed;
  170. atomic_inc(completed);
  171. }
  172. void kvm_flush_remote_tlbs(struct kvm *kvm)
  173. {
  174. int i, cpu, needed;
  175. cpumask_t cpus;
  176. struct kvm_vcpu *vcpu;
  177. atomic_t completed;
  178. atomic_set(&completed, 0);
  179. cpus_clear(cpus);
  180. needed = 0;
  181. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  182. vcpu = kvm->vcpus[i];
  183. if (!vcpu)
  184. continue;
  185. if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
  186. continue;
  187. cpu = vcpu->cpu;
  188. if (cpu != -1 && cpu != raw_smp_processor_id())
  189. if (!cpu_isset(cpu, cpus)) {
  190. cpu_set(cpu, cpus);
  191. ++needed;
  192. }
  193. }
  194. /*
  195. * We really want smp_call_function_mask() here. But that's not
  196. * available, so ipi all cpus in parallel and wait for them
  197. * to complete.
  198. */
  199. for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
  200. smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
  201. while (atomic_read(&completed) != needed) {
  202. cpu_relax();
  203. barrier();
  204. }
  205. }
  206. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  207. {
  208. struct page *page;
  209. int r;
  210. mutex_init(&vcpu->mutex);
  211. vcpu->cpu = -1;
  212. vcpu->mmu.root_hpa = INVALID_PAGE;
  213. vcpu->kvm = kvm;
  214. vcpu->vcpu_id = id;
  215. init_waitqueue_head(&vcpu->wq);
  216. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  217. if (!page) {
  218. r = -ENOMEM;
  219. goto fail;
  220. }
  221. vcpu->run = page_address(page);
  222. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  223. if (!page) {
  224. r = -ENOMEM;
  225. goto fail_free_run;
  226. }
  227. vcpu->pio_data = page_address(page);
  228. r = kvm_mmu_create(vcpu);
  229. if (r < 0)
  230. goto fail_free_pio_data;
  231. return 0;
  232. fail_free_pio_data:
  233. free_page((unsigned long)vcpu->pio_data);
  234. fail_free_run:
  235. free_page((unsigned long)vcpu->run);
  236. fail:
  237. return -ENOMEM;
  238. }
  239. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  240. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  241. {
  242. kvm_mmu_destroy(vcpu);
  243. kvm_free_apic(vcpu->apic);
  244. free_page((unsigned long)vcpu->pio_data);
  245. free_page((unsigned long)vcpu->run);
  246. }
  247. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  248. static struct kvm *kvm_create_vm(void)
  249. {
  250. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  251. if (!kvm)
  252. return ERR_PTR(-ENOMEM);
  253. kvm_io_bus_init(&kvm->pio_bus);
  254. mutex_init(&kvm->lock);
  255. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  256. kvm_io_bus_init(&kvm->mmio_bus);
  257. spin_lock(&kvm_lock);
  258. list_add(&kvm->vm_list, &vm_list);
  259. spin_unlock(&kvm_lock);
  260. return kvm;
  261. }
  262. /*
  263. * Free any memory in @free but not in @dont.
  264. */
  265. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  266. struct kvm_memory_slot *dont)
  267. {
  268. int i;
  269. if (!dont || free->phys_mem != dont->phys_mem)
  270. if (free->phys_mem) {
  271. for (i = 0; i < free->npages; ++i)
  272. if (free->phys_mem[i])
  273. __free_page(free->phys_mem[i]);
  274. vfree(free->phys_mem);
  275. }
  276. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  277. vfree(free->dirty_bitmap);
  278. free->phys_mem = NULL;
  279. free->npages = 0;
  280. free->dirty_bitmap = NULL;
  281. }
  282. static void kvm_free_physmem(struct kvm *kvm)
  283. {
  284. int i;
  285. for (i = 0; i < kvm->nmemslots; ++i)
  286. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  287. }
  288. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  289. {
  290. int i;
  291. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  292. if (vcpu->pio.guest_pages[i]) {
  293. __free_page(vcpu->pio.guest_pages[i]);
  294. vcpu->pio.guest_pages[i] = NULL;
  295. }
  296. }
  297. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  298. {
  299. vcpu_load(vcpu);
  300. kvm_mmu_unload(vcpu);
  301. vcpu_put(vcpu);
  302. }
  303. static void kvm_free_vcpus(struct kvm *kvm)
  304. {
  305. unsigned int i;
  306. /*
  307. * Unpin any mmu pages first.
  308. */
  309. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  310. if (kvm->vcpus[i])
  311. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  312. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  313. if (kvm->vcpus[i]) {
  314. kvm_arch_ops->vcpu_free(kvm->vcpus[i]);
  315. kvm->vcpus[i] = NULL;
  316. }
  317. }
  318. }
  319. static void kvm_destroy_vm(struct kvm *kvm)
  320. {
  321. spin_lock(&kvm_lock);
  322. list_del(&kvm->vm_list);
  323. spin_unlock(&kvm_lock);
  324. kvm_io_bus_destroy(&kvm->pio_bus);
  325. kvm_io_bus_destroy(&kvm->mmio_bus);
  326. kfree(kvm->vpic);
  327. kfree(kvm->vioapic);
  328. kvm_free_vcpus(kvm);
  329. kvm_free_physmem(kvm);
  330. kfree(kvm);
  331. }
  332. static int kvm_vm_release(struct inode *inode, struct file *filp)
  333. {
  334. struct kvm *kvm = filp->private_data;
  335. kvm_destroy_vm(kvm);
  336. return 0;
  337. }
  338. static void inject_gp(struct kvm_vcpu *vcpu)
  339. {
  340. kvm_arch_ops->inject_gp(vcpu, 0);
  341. }
  342. /*
  343. * Load the pae pdptrs. Return true is they are all valid.
  344. */
  345. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  346. {
  347. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  348. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  349. int i;
  350. u64 *pdpt;
  351. int ret;
  352. struct page *page;
  353. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  354. mutex_lock(&vcpu->kvm->lock);
  355. page = gfn_to_page(vcpu->kvm, pdpt_gfn);
  356. if (!page) {
  357. ret = 0;
  358. goto out;
  359. }
  360. pdpt = kmap_atomic(page, KM_USER0);
  361. memcpy(pdpte, pdpt+offset, sizeof(pdpte));
  362. kunmap_atomic(pdpt, KM_USER0);
  363. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  364. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  365. ret = 0;
  366. goto out;
  367. }
  368. }
  369. ret = 1;
  370. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  371. out:
  372. mutex_unlock(&vcpu->kvm->lock);
  373. return ret;
  374. }
  375. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  376. {
  377. if (cr0 & CR0_RESERVED_BITS) {
  378. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  379. cr0, vcpu->cr0);
  380. inject_gp(vcpu);
  381. return;
  382. }
  383. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  384. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  385. inject_gp(vcpu);
  386. return;
  387. }
  388. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  389. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  390. "and a clear PE flag\n");
  391. inject_gp(vcpu);
  392. return;
  393. }
  394. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  395. #ifdef CONFIG_X86_64
  396. if ((vcpu->shadow_efer & EFER_LME)) {
  397. int cs_db, cs_l;
  398. if (!is_pae(vcpu)) {
  399. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  400. "in long mode while PAE is disabled\n");
  401. inject_gp(vcpu);
  402. return;
  403. }
  404. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  405. if (cs_l) {
  406. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  407. "in long mode while CS.L == 1\n");
  408. inject_gp(vcpu);
  409. return;
  410. }
  411. } else
  412. #endif
  413. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  414. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  415. "reserved bits\n");
  416. inject_gp(vcpu);
  417. return;
  418. }
  419. }
  420. kvm_arch_ops->set_cr0(vcpu, cr0);
  421. vcpu->cr0 = cr0;
  422. mutex_lock(&vcpu->kvm->lock);
  423. kvm_mmu_reset_context(vcpu);
  424. mutex_unlock(&vcpu->kvm->lock);
  425. return;
  426. }
  427. EXPORT_SYMBOL_GPL(set_cr0);
  428. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  429. {
  430. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  431. }
  432. EXPORT_SYMBOL_GPL(lmsw);
  433. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  434. {
  435. if (cr4 & CR4_RESERVED_BITS) {
  436. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  437. inject_gp(vcpu);
  438. return;
  439. }
  440. if (is_long_mode(vcpu)) {
  441. if (!(cr4 & X86_CR4_PAE)) {
  442. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  443. "in long mode\n");
  444. inject_gp(vcpu);
  445. return;
  446. }
  447. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  448. && !load_pdptrs(vcpu, vcpu->cr3)) {
  449. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  450. inject_gp(vcpu);
  451. return;
  452. }
  453. if (cr4 & X86_CR4_VMXE) {
  454. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  455. inject_gp(vcpu);
  456. return;
  457. }
  458. kvm_arch_ops->set_cr4(vcpu, cr4);
  459. mutex_lock(&vcpu->kvm->lock);
  460. kvm_mmu_reset_context(vcpu);
  461. mutex_unlock(&vcpu->kvm->lock);
  462. }
  463. EXPORT_SYMBOL_GPL(set_cr4);
  464. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  465. {
  466. if (is_long_mode(vcpu)) {
  467. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  468. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  469. inject_gp(vcpu);
  470. return;
  471. }
  472. } else {
  473. if (is_pae(vcpu)) {
  474. if (cr3 & CR3_PAE_RESERVED_BITS) {
  475. printk(KERN_DEBUG
  476. "set_cr3: #GP, reserved bits\n");
  477. inject_gp(vcpu);
  478. return;
  479. }
  480. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  481. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  482. "reserved bits\n");
  483. inject_gp(vcpu);
  484. return;
  485. }
  486. } else {
  487. if (cr3 & CR3_NONPAE_RESERVED_BITS) {
  488. printk(KERN_DEBUG
  489. "set_cr3: #GP, reserved bits\n");
  490. inject_gp(vcpu);
  491. return;
  492. }
  493. }
  494. }
  495. mutex_lock(&vcpu->kvm->lock);
  496. /*
  497. * Does the new cr3 value map to physical memory? (Note, we
  498. * catch an invalid cr3 even in real-mode, because it would
  499. * cause trouble later on when we turn on paging anyway.)
  500. *
  501. * A real CPU would silently accept an invalid cr3 and would
  502. * attempt to use it - with largely undefined (and often hard
  503. * to debug) behavior on the guest side.
  504. */
  505. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  506. inject_gp(vcpu);
  507. else {
  508. vcpu->cr3 = cr3;
  509. vcpu->mmu.new_cr3(vcpu);
  510. }
  511. mutex_unlock(&vcpu->kvm->lock);
  512. }
  513. EXPORT_SYMBOL_GPL(set_cr3);
  514. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  515. {
  516. if (cr8 & CR8_RESERVED_BITS) {
  517. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  518. inject_gp(vcpu);
  519. return;
  520. }
  521. if (irqchip_in_kernel(vcpu->kvm))
  522. kvm_lapic_set_tpr(vcpu, cr8);
  523. else
  524. vcpu->cr8 = cr8;
  525. }
  526. EXPORT_SYMBOL_GPL(set_cr8);
  527. unsigned long get_cr8(struct kvm_vcpu *vcpu)
  528. {
  529. if (irqchip_in_kernel(vcpu->kvm))
  530. return kvm_lapic_get_cr8(vcpu);
  531. else
  532. return vcpu->cr8;
  533. }
  534. EXPORT_SYMBOL_GPL(get_cr8);
  535. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  536. {
  537. if (irqchip_in_kernel(vcpu->kvm))
  538. return vcpu->apic_base;
  539. else
  540. return vcpu->apic_base;
  541. }
  542. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  543. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  544. {
  545. /* TODO: reserve bits check */
  546. if (irqchip_in_kernel(vcpu->kvm))
  547. kvm_lapic_set_base(vcpu, data);
  548. else
  549. vcpu->apic_base = data;
  550. }
  551. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  552. void fx_init(struct kvm_vcpu *vcpu)
  553. {
  554. unsigned after_mxcsr_mask;
  555. /* Initialize guest FPU by resetting ours and saving into guest's */
  556. preempt_disable();
  557. fx_save(&vcpu->host_fx_image);
  558. fpu_init();
  559. fx_save(&vcpu->guest_fx_image);
  560. fx_restore(&vcpu->host_fx_image);
  561. preempt_enable();
  562. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  563. vcpu->guest_fx_image.mxcsr = 0x1f80;
  564. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  565. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  566. }
  567. EXPORT_SYMBOL_GPL(fx_init);
  568. /*
  569. * Allocate some memory and give it an address in the guest physical address
  570. * space.
  571. *
  572. * Discontiguous memory is allowed, mostly for framebuffers.
  573. */
  574. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  575. struct kvm_memory_region *mem)
  576. {
  577. int r;
  578. gfn_t base_gfn;
  579. unsigned long npages;
  580. unsigned long i;
  581. struct kvm_memory_slot *memslot;
  582. struct kvm_memory_slot old, new;
  583. int memory_config_version;
  584. r = -EINVAL;
  585. /* General sanity checks */
  586. if (mem->memory_size & (PAGE_SIZE - 1))
  587. goto out;
  588. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  589. goto out;
  590. if (mem->slot >= KVM_MEMORY_SLOTS)
  591. goto out;
  592. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  593. goto out;
  594. memslot = &kvm->memslots[mem->slot];
  595. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  596. npages = mem->memory_size >> PAGE_SHIFT;
  597. if (!npages)
  598. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  599. raced:
  600. mutex_lock(&kvm->lock);
  601. memory_config_version = kvm->memory_config_version;
  602. new = old = *memslot;
  603. new.base_gfn = base_gfn;
  604. new.npages = npages;
  605. new.flags = mem->flags;
  606. /* Disallow changing a memory slot's size. */
  607. r = -EINVAL;
  608. if (npages && old.npages && npages != old.npages)
  609. goto out_unlock;
  610. /* Check for overlaps */
  611. r = -EEXIST;
  612. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  613. struct kvm_memory_slot *s = &kvm->memslots[i];
  614. if (s == memslot)
  615. continue;
  616. if (!((base_gfn + npages <= s->base_gfn) ||
  617. (base_gfn >= s->base_gfn + s->npages)))
  618. goto out_unlock;
  619. }
  620. /*
  621. * Do memory allocations outside lock. memory_config_version will
  622. * detect any races.
  623. */
  624. mutex_unlock(&kvm->lock);
  625. /* Deallocate if slot is being removed */
  626. if (!npages)
  627. new.phys_mem = NULL;
  628. /* Free page dirty bitmap if unneeded */
  629. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  630. new.dirty_bitmap = NULL;
  631. r = -ENOMEM;
  632. /* Allocate if a slot is being created */
  633. if (npages && !new.phys_mem) {
  634. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  635. if (!new.phys_mem)
  636. goto out_free;
  637. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  638. for (i = 0; i < npages; ++i) {
  639. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  640. | __GFP_ZERO);
  641. if (!new.phys_mem[i])
  642. goto out_free;
  643. set_page_private(new.phys_mem[i],0);
  644. }
  645. }
  646. /* Allocate page dirty bitmap if needed */
  647. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  648. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  649. new.dirty_bitmap = vmalloc(dirty_bytes);
  650. if (!new.dirty_bitmap)
  651. goto out_free;
  652. memset(new.dirty_bitmap, 0, dirty_bytes);
  653. }
  654. mutex_lock(&kvm->lock);
  655. if (memory_config_version != kvm->memory_config_version) {
  656. mutex_unlock(&kvm->lock);
  657. kvm_free_physmem_slot(&new, &old);
  658. goto raced;
  659. }
  660. r = -EAGAIN;
  661. if (kvm->busy)
  662. goto out_unlock;
  663. if (mem->slot >= kvm->nmemslots)
  664. kvm->nmemslots = mem->slot + 1;
  665. *memslot = new;
  666. ++kvm->memory_config_version;
  667. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  668. kvm_flush_remote_tlbs(kvm);
  669. mutex_unlock(&kvm->lock);
  670. kvm_free_physmem_slot(&old, &new);
  671. return 0;
  672. out_unlock:
  673. mutex_unlock(&kvm->lock);
  674. out_free:
  675. kvm_free_physmem_slot(&new, &old);
  676. out:
  677. return r;
  678. }
  679. /*
  680. * Get (and clear) the dirty memory log for a memory slot.
  681. */
  682. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  683. struct kvm_dirty_log *log)
  684. {
  685. struct kvm_memory_slot *memslot;
  686. int r, i;
  687. int n;
  688. unsigned long any = 0;
  689. mutex_lock(&kvm->lock);
  690. /*
  691. * Prevent changes to guest memory configuration even while the lock
  692. * is not taken.
  693. */
  694. ++kvm->busy;
  695. mutex_unlock(&kvm->lock);
  696. r = -EINVAL;
  697. if (log->slot >= KVM_MEMORY_SLOTS)
  698. goto out;
  699. memslot = &kvm->memslots[log->slot];
  700. r = -ENOENT;
  701. if (!memslot->dirty_bitmap)
  702. goto out;
  703. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  704. for (i = 0; !any && i < n/sizeof(long); ++i)
  705. any = memslot->dirty_bitmap[i];
  706. r = -EFAULT;
  707. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  708. goto out;
  709. /* If nothing is dirty, don't bother messing with page tables. */
  710. if (any) {
  711. mutex_lock(&kvm->lock);
  712. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  713. kvm_flush_remote_tlbs(kvm);
  714. memset(memslot->dirty_bitmap, 0, n);
  715. mutex_unlock(&kvm->lock);
  716. }
  717. r = 0;
  718. out:
  719. mutex_lock(&kvm->lock);
  720. --kvm->busy;
  721. mutex_unlock(&kvm->lock);
  722. return r;
  723. }
  724. /*
  725. * Set a new alias region. Aliases map a portion of physical memory into
  726. * another portion. This is useful for memory windows, for example the PC
  727. * VGA region.
  728. */
  729. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  730. struct kvm_memory_alias *alias)
  731. {
  732. int r, n;
  733. struct kvm_mem_alias *p;
  734. r = -EINVAL;
  735. /* General sanity checks */
  736. if (alias->memory_size & (PAGE_SIZE - 1))
  737. goto out;
  738. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  739. goto out;
  740. if (alias->slot >= KVM_ALIAS_SLOTS)
  741. goto out;
  742. if (alias->guest_phys_addr + alias->memory_size
  743. < alias->guest_phys_addr)
  744. goto out;
  745. if (alias->target_phys_addr + alias->memory_size
  746. < alias->target_phys_addr)
  747. goto out;
  748. mutex_lock(&kvm->lock);
  749. p = &kvm->aliases[alias->slot];
  750. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  751. p->npages = alias->memory_size >> PAGE_SHIFT;
  752. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  753. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  754. if (kvm->aliases[n - 1].npages)
  755. break;
  756. kvm->naliases = n;
  757. kvm_mmu_zap_all(kvm);
  758. mutex_unlock(&kvm->lock);
  759. return 0;
  760. out:
  761. return r;
  762. }
  763. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  764. {
  765. int r;
  766. r = 0;
  767. switch (chip->chip_id) {
  768. case KVM_IRQCHIP_PIC_MASTER:
  769. memcpy (&chip->chip.pic,
  770. &pic_irqchip(kvm)->pics[0],
  771. sizeof(struct kvm_pic_state));
  772. break;
  773. case KVM_IRQCHIP_PIC_SLAVE:
  774. memcpy (&chip->chip.pic,
  775. &pic_irqchip(kvm)->pics[1],
  776. sizeof(struct kvm_pic_state));
  777. break;
  778. case KVM_IRQCHIP_IOAPIC:
  779. memcpy (&chip->chip.ioapic,
  780. ioapic_irqchip(kvm),
  781. sizeof(struct kvm_ioapic_state));
  782. break;
  783. default:
  784. r = -EINVAL;
  785. break;
  786. }
  787. return r;
  788. }
  789. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  790. {
  791. int r;
  792. r = 0;
  793. switch (chip->chip_id) {
  794. case KVM_IRQCHIP_PIC_MASTER:
  795. memcpy (&pic_irqchip(kvm)->pics[0],
  796. &chip->chip.pic,
  797. sizeof(struct kvm_pic_state));
  798. break;
  799. case KVM_IRQCHIP_PIC_SLAVE:
  800. memcpy (&pic_irqchip(kvm)->pics[1],
  801. &chip->chip.pic,
  802. sizeof(struct kvm_pic_state));
  803. break;
  804. case KVM_IRQCHIP_IOAPIC:
  805. memcpy (ioapic_irqchip(kvm),
  806. &chip->chip.ioapic,
  807. sizeof(struct kvm_ioapic_state));
  808. break;
  809. default:
  810. r = -EINVAL;
  811. break;
  812. }
  813. kvm_pic_update_irq(pic_irqchip(kvm));
  814. return r;
  815. }
  816. static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  817. {
  818. int i;
  819. struct kvm_mem_alias *alias;
  820. for (i = 0; i < kvm->naliases; ++i) {
  821. alias = &kvm->aliases[i];
  822. if (gfn >= alias->base_gfn
  823. && gfn < alias->base_gfn + alias->npages)
  824. return alias->target_gfn + gfn - alias->base_gfn;
  825. }
  826. return gfn;
  827. }
  828. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  829. {
  830. int i;
  831. for (i = 0; i < kvm->nmemslots; ++i) {
  832. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  833. if (gfn >= memslot->base_gfn
  834. && gfn < memslot->base_gfn + memslot->npages)
  835. return memslot;
  836. }
  837. return NULL;
  838. }
  839. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  840. {
  841. gfn = unalias_gfn(kvm, gfn);
  842. return __gfn_to_memslot(kvm, gfn);
  843. }
  844. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  845. {
  846. struct kvm_memory_slot *slot;
  847. gfn = unalias_gfn(kvm, gfn);
  848. slot = __gfn_to_memslot(kvm, gfn);
  849. if (!slot)
  850. return NULL;
  851. return slot->phys_mem[gfn - slot->base_gfn];
  852. }
  853. EXPORT_SYMBOL_GPL(gfn_to_page);
  854. /* WARNING: Does not work on aliased pages. */
  855. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  856. {
  857. struct kvm_memory_slot *memslot;
  858. memslot = __gfn_to_memslot(kvm, gfn);
  859. if (memslot && memslot->dirty_bitmap) {
  860. unsigned long rel_gfn = gfn - memslot->base_gfn;
  861. /* avoid RMW */
  862. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  863. set_bit(rel_gfn, memslot->dirty_bitmap);
  864. }
  865. }
  866. int emulator_read_std(unsigned long addr,
  867. void *val,
  868. unsigned int bytes,
  869. struct kvm_vcpu *vcpu)
  870. {
  871. void *data = val;
  872. while (bytes) {
  873. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  874. unsigned offset = addr & (PAGE_SIZE-1);
  875. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  876. unsigned long pfn;
  877. struct page *page;
  878. void *page_virt;
  879. if (gpa == UNMAPPED_GVA)
  880. return X86EMUL_PROPAGATE_FAULT;
  881. pfn = gpa >> PAGE_SHIFT;
  882. page = gfn_to_page(vcpu->kvm, pfn);
  883. if (!page)
  884. return X86EMUL_UNHANDLEABLE;
  885. page_virt = kmap_atomic(page, KM_USER0);
  886. memcpy(data, page_virt + offset, tocopy);
  887. kunmap_atomic(page_virt, KM_USER0);
  888. bytes -= tocopy;
  889. data += tocopy;
  890. addr += tocopy;
  891. }
  892. return X86EMUL_CONTINUE;
  893. }
  894. EXPORT_SYMBOL_GPL(emulator_read_std);
  895. static int emulator_write_std(unsigned long addr,
  896. const void *val,
  897. unsigned int bytes,
  898. struct kvm_vcpu *vcpu)
  899. {
  900. pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
  901. return X86EMUL_UNHANDLEABLE;
  902. }
  903. /*
  904. * Only apic need an MMIO device hook, so shortcut now..
  905. */
  906. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  907. gpa_t addr)
  908. {
  909. struct kvm_io_device *dev;
  910. if (vcpu->apic) {
  911. dev = &vcpu->apic->dev;
  912. if (dev->in_range(dev, addr))
  913. return dev;
  914. }
  915. return NULL;
  916. }
  917. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  918. gpa_t addr)
  919. {
  920. struct kvm_io_device *dev;
  921. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  922. if (dev == NULL)
  923. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  924. return dev;
  925. }
  926. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  927. gpa_t addr)
  928. {
  929. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  930. }
  931. static int emulator_read_emulated(unsigned long addr,
  932. void *val,
  933. unsigned int bytes,
  934. struct kvm_vcpu *vcpu)
  935. {
  936. struct kvm_io_device *mmio_dev;
  937. gpa_t gpa;
  938. if (vcpu->mmio_read_completed) {
  939. memcpy(val, vcpu->mmio_data, bytes);
  940. vcpu->mmio_read_completed = 0;
  941. return X86EMUL_CONTINUE;
  942. } else if (emulator_read_std(addr, val, bytes, vcpu)
  943. == X86EMUL_CONTINUE)
  944. return X86EMUL_CONTINUE;
  945. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  946. if (gpa == UNMAPPED_GVA)
  947. return X86EMUL_PROPAGATE_FAULT;
  948. /*
  949. * Is this MMIO handled locally?
  950. */
  951. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  952. if (mmio_dev) {
  953. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  954. return X86EMUL_CONTINUE;
  955. }
  956. vcpu->mmio_needed = 1;
  957. vcpu->mmio_phys_addr = gpa;
  958. vcpu->mmio_size = bytes;
  959. vcpu->mmio_is_write = 0;
  960. return X86EMUL_UNHANDLEABLE;
  961. }
  962. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  963. const void *val, int bytes)
  964. {
  965. struct page *page;
  966. void *virt;
  967. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  968. return 0;
  969. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  970. if (!page)
  971. return 0;
  972. mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
  973. virt = kmap_atomic(page, KM_USER0);
  974. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  975. memcpy(virt + offset_in_page(gpa), val, bytes);
  976. kunmap_atomic(virt, KM_USER0);
  977. return 1;
  978. }
  979. static int emulator_write_emulated_onepage(unsigned long addr,
  980. const void *val,
  981. unsigned int bytes,
  982. struct kvm_vcpu *vcpu)
  983. {
  984. struct kvm_io_device *mmio_dev;
  985. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  986. if (gpa == UNMAPPED_GVA) {
  987. kvm_arch_ops->inject_page_fault(vcpu, addr, 2);
  988. return X86EMUL_PROPAGATE_FAULT;
  989. }
  990. if (emulator_write_phys(vcpu, gpa, val, bytes))
  991. return X86EMUL_CONTINUE;
  992. /*
  993. * Is this MMIO handled locally?
  994. */
  995. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  996. if (mmio_dev) {
  997. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  998. return X86EMUL_CONTINUE;
  999. }
  1000. vcpu->mmio_needed = 1;
  1001. vcpu->mmio_phys_addr = gpa;
  1002. vcpu->mmio_size = bytes;
  1003. vcpu->mmio_is_write = 1;
  1004. memcpy(vcpu->mmio_data, val, bytes);
  1005. return X86EMUL_CONTINUE;
  1006. }
  1007. int emulator_write_emulated(unsigned long addr,
  1008. const void *val,
  1009. unsigned int bytes,
  1010. struct kvm_vcpu *vcpu)
  1011. {
  1012. /* Crossing a page boundary? */
  1013. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1014. int rc, now;
  1015. now = -addr & ~PAGE_MASK;
  1016. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1017. if (rc != X86EMUL_CONTINUE)
  1018. return rc;
  1019. addr += now;
  1020. val += now;
  1021. bytes -= now;
  1022. }
  1023. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1024. }
  1025. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1026. static int emulator_cmpxchg_emulated(unsigned long addr,
  1027. const void *old,
  1028. const void *new,
  1029. unsigned int bytes,
  1030. struct kvm_vcpu *vcpu)
  1031. {
  1032. static int reported;
  1033. if (!reported) {
  1034. reported = 1;
  1035. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1036. }
  1037. return emulator_write_emulated(addr, new, bytes, vcpu);
  1038. }
  1039. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1040. {
  1041. return kvm_arch_ops->get_segment_base(vcpu, seg);
  1042. }
  1043. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1044. {
  1045. return X86EMUL_CONTINUE;
  1046. }
  1047. int emulate_clts(struct kvm_vcpu *vcpu)
  1048. {
  1049. unsigned long cr0;
  1050. cr0 = vcpu->cr0 & ~X86_CR0_TS;
  1051. kvm_arch_ops->set_cr0(vcpu, cr0);
  1052. return X86EMUL_CONTINUE;
  1053. }
  1054. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  1055. {
  1056. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1057. switch (dr) {
  1058. case 0 ... 3:
  1059. *dest = kvm_arch_ops->get_dr(vcpu, dr);
  1060. return X86EMUL_CONTINUE;
  1061. default:
  1062. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  1063. return X86EMUL_UNHANDLEABLE;
  1064. }
  1065. }
  1066. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1067. {
  1068. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1069. int exception;
  1070. kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1071. if (exception) {
  1072. /* FIXME: better handling */
  1073. return X86EMUL_UNHANDLEABLE;
  1074. }
  1075. return X86EMUL_CONTINUE;
  1076. }
  1077. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  1078. {
  1079. static int reported;
  1080. u8 opcodes[4];
  1081. unsigned long rip = ctxt->vcpu->rip;
  1082. unsigned long rip_linear;
  1083. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  1084. if (reported)
  1085. return;
  1086. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt->vcpu);
  1087. printk(KERN_ERR "emulation failed but !mmio_needed?"
  1088. " rip %lx %02x %02x %02x %02x\n",
  1089. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1090. reported = 1;
  1091. }
  1092. struct x86_emulate_ops emulate_ops = {
  1093. .read_std = emulator_read_std,
  1094. .write_std = emulator_write_std,
  1095. .read_emulated = emulator_read_emulated,
  1096. .write_emulated = emulator_write_emulated,
  1097. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1098. };
  1099. int emulate_instruction(struct kvm_vcpu *vcpu,
  1100. struct kvm_run *run,
  1101. unsigned long cr2,
  1102. u16 error_code)
  1103. {
  1104. struct x86_emulate_ctxt emulate_ctxt;
  1105. int r;
  1106. int cs_db, cs_l;
  1107. vcpu->mmio_fault_cr2 = cr2;
  1108. kvm_arch_ops->cache_regs(vcpu);
  1109. kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1110. emulate_ctxt.vcpu = vcpu;
  1111. emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
  1112. emulate_ctxt.cr2 = cr2;
  1113. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  1114. ? X86EMUL_MODE_REAL : cs_l
  1115. ? X86EMUL_MODE_PROT64 : cs_db
  1116. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1117. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1118. emulate_ctxt.cs_base = 0;
  1119. emulate_ctxt.ds_base = 0;
  1120. emulate_ctxt.es_base = 0;
  1121. emulate_ctxt.ss_base = 0;
  1122. } else {
  1123. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  1124. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  1125. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  1126. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  1127. }
  1128. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  1129. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  1130. vcpu->mmio_is_write = 0;
  1131. vcpu->pio.string = 0;
  1132. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  1133. if (vcpu->pio.string)
  1134. return EMULATE_DO_MMIO;
  1135. if ((r || vcpu->mmio_is_write) && run) {
  1136. run->exit_reason = KVM_EXIT_MMIO;
  1137. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1138. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1139. run->mmio.len = vcpu->mmio_size;
  1140. run->mmio.is_write = vcpu->mmio_is_write;
  1141. }
  1142. if (r) {
  1143. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1144. return EMULATE_DONE;
  1145. if (!vcpu->mmio_needed) {
  1146. report_emulation_failure(&emulate_ctxt);
  1147. return EMULATE_FAIL;
  1148. }
  1149. return EMULATE_DO_MMIO;
  1150. }
  1151. kvm_arch_ops->decache_regs(vcpu);
  1152. kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  1153. if (vcpu->mmio_is_write) {
  1154. vcpu->mmio_needed = 0;
  1155. return EMULATE_DO_MMIO;
  1156. }
  1157. return EMULATE_DONE;
  1158. }
  1159. EXPORT_SYMBOL_GPL(emulate_instruction);
  1160. /*
  1161. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1162. */
  1163. static void kvm_vcpu_kernel_halt(struct kvm_vcpu *vcpu)
  1164. {
  1165. DECLARE_WAITQUEUE(wait, current);
  1166. add_wait_queue(&vcpu->wq, &wait);
  1167. /*
  1168. * We will block until either an interrupt or a signal wakes us up
  1169. */
  1170. while(!(irqchip_in_kernel(vcpu->kvm) && kvm_cpu_has_interrupt(vcpu))
  1171. && !vcpu->irq_summary
  1172. && !signal_pending(current)) {
  1173. set_current_state(TASK_INTERRUPTIBLE);
  1174. vcpu_put(vcpu);
  1175. schedule();
  1176. vcpu_load(vcpu);
  1177. }
  1178. remove_wait_queue(&vcpu->wq, &wait);
  1179. set_current_state(TASK_RUNNING);
  1180. }
  1181. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1182. {
  1183. ++vcpu->stat.halt_exits;
  1184. if (irqchip_in_kernel(vcpu->kvm)) {
  1185. kvm_vcpu_kernel_halt(vcpu);
  1186. return 1;
  1187. } else {
  1188. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1189. return 0;
  1190. }
  1191. }
  1192. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1193. int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1194. {
  1195. unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
  1196. kvm_arch_ops->cache_regs(vcpu);
  1197. ret = -KVM_EINVAL;
  1198. #ifdef CONFIG_X86_64
  1199. if (is_long_mode(vcpu)) {
  1200. nr = vcpu->regs[VCPU_REGS_RAX];
  1201. a0 = vcpu->regs[VCPU_REGS_RDI];
  1202. a1 = vcpu->regs[VCPU_REGS_RSI];
  1203. a2 = vcpu->regs[VCPU_REGS_RDX];
  1204. a3 = vcpu->regs[VCPU_REGS_RCX];
  1205. a4 = vcpu->regs[VCPU_REGS_R8];
  1206. a5 = vcpu->regs[VCPU_REGS_R9];
  1207. } else
  1208. #endif
  1209. {
  1210. nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
  1211. a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
  1212. a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
  1213. a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
  1214. a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
  1215. a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
  1216. a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
  1217. }
  1218. switch (nr) {
  1219. default:
  1220. run->hypercall.nr = nr;
  1221. run->hypercall.args[0] = a0;
  1222. run->hypercall.args[1] = a1;
  1223. run->hypercall.args[2] = a2;
  1224. run->hypercall.args[3] = a3;
  1225. run->hypercall.args[4] = a4;
  1226. run->hypercall.args[5] = a5;
  1227. run->hypercall.ret = ret;
  1228. run->hypercall.longmode = is_long_mode(vcpu);
  1229. kvm_arch_ops->decache_regs(vcpu);
  1230. return 0;
  1231. }
  1232. vcpu->regs[VCPU_REGS_RAX] = ret;
  1233. kvm_arch_ops->decache_regs(vcpu);
  1234. return 1;
  1235. }
  1236. EXPORT_SYMBOL_GPL(kvm_hypercall);
  1237. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1238. {
  1239. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1240. }
  1241. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1242. {
  1243. struct descriptor_table dt = { limit, base };
  1244. kvm_arch_ops->set_gdt(vcpu, &dt);
  1245. }
  1246. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1247. {
  1248. struct descriptor_table dt = { limit, base };
  1249. kvm_arch_ops->set_idt(vcpu, &dt);
  1250. }
  1251. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1252. unsigned long *rflags)
  1253. {
  1254. lmsw(vcpu, msw);
  1255. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1256. }
  1257. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1258. {
  1259. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1260. switch (cr) {
  1261. case 0:
  1262. return vcpu->cr0;
  1263. case 2:
  1264. return vcpu->cr2;
  1265. case 3:
  1266. return vcpu->cr3;
  1267. case 4:
  1268. return vcpu->cr4;
  1269. default:
  1270. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1271. return 0;
  1272. }
  1273. }
  1274. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1275. unsigned long *rflags)
  1276. {
  1277. switch (cr) {
  1278. case 0:
  1279. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1280. *rflags = kvm_arch_ops->get_rflags(vcpu);
  1281. break;
  1282. case 2:
  1283. vcpu->cr2 = val;
  1284. break;
  1285. case 3:
  1286. set_cr3(vcpu, val);
  1287. break;
  1288. case 4:
  1289. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1290. break;
  1291. default:
  1292. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1293. }
  1294. }
  1295. /*
  1296. * Register the para guest with the host:
  1297. */
  1298. static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
  1299. {
  1300. struct kvm_vcpu_para_state *para_state;
  1301. hpa_t para_state_hpa, hypercall_hpa;
  1302. struct page *para_state_page;
  1303. unsigned char *hypercall;
  1304. gpa_t hypercall_gpa;
  1305. printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
  1306. printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
  1307. /*
  1308. * Needs to be page aligned:
  1309. */
  1310. if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
  1311. goto err_gp;
  1312. para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
  1313. printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
  1314. if (is_error_hpa(para_state_hpa))
  1315. goto err_gp;
  1316. mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
  1317. para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
  1318. para_state = kmap(para_state_page);
  1319. printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
  1320. printk(KERN_DEBUG ".... size: %d\n", para_state->size);
  1321. para_state->host_version = KVM_PARA_API_VERSION;
  1322. /*
  1323. * We cannot support guests that try to register themselves
  1324. * with a newer API version than the host supports:
  1325. */
  1326. if (para_state->guest_version > KVM_PARA_API_VERSION) {
  1327. para_state->ret = -KVM_EINVAL;
  1328. goto err_kunmap_skip;
  1329. }
  1330. hypercall_gpa = para_state->hypercall_gpa;
  1331. hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
  1332. printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
  1333. if (is_error_hpa(hypercall_hpa)) {
  1334. para_state->ret = -KVM_EINVAL;
  1335. goto err_kunmap_skip;
  1336. }
  1337. printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
  1338. vcpu->para_state_page = para_state_page;
  1339. vcpu->para_state_gpa = para_state_gpa;
  1340. vcpu->hypercall_gpa = hypercall_gpa;
  1341. mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
  1342. hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
  1343. KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
  1344. kvm_arch_ops->patch_hypercall(vcpu, hypercall);
  1345. kunmap_atomic(hypercall, KM_USER1);
  1346. para_state->ret = 0;
  1347. err_kunmap_skip:
  1348. kunmap(para_state_page);
  1349. return 0;
  1350. err_gp:
  1351. return 1;
  1352. }
  1353. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1354. {
  1355. u64 data;
  1356. switch (msr) {
  1357. case 0xc0010010: /* SYSCFG */
  1358. case 0xc0010015: /* HWCR */
  1359. case MSR_IA32_PLATFORM_ID:
  1360. case MSR_IA32_P5_MC_ADDR:
  1361. case MSR_IA32_P5_MC_TYPE:
  1362. case MSR_IA32_MC0_CTL:
  1363. case MSR_IA32_MCG_STATUS:
  1364. case MSR_IA32_MCG_CAP:
  1365. case MSR_IA32_MC0_MISC:
  1366. case MSR_IA32_MC0_MISC+4:
  1367. case MSR_IA32_MC0_MISC+8:
  1368. case MSR_IA32_MC0_MISC+12:
  1369. case MSR_IA32_MC0_MISC+16:
  1370. case MSR_IA32_UCODE_REV:
  1371. case MSR_IA32_PERF_STATUS:
  1372. case MSR_IA32_EBL_CR_POWERON:
  1373. /* MTRR registers */
  1374. case 0xfe:
  1375. case 0x200 ... 0x2ff:
  1376. data = 0;
  1377. break;
  1378. case 0xcd: /* fsb frequency */
  1379. data = 3;
  1380. break;
  1381. case MSR_IA32_APICBASE:
  1382. data = kvm_get_apic_base(vcpu);
  1383. break;
  1384. case MSR_IA32_MISC_ENABLE:
  1385. data = vcpu->ia32_misc_enable_msr;
  1386. break;
  1387. #ifdef CONFIG_X86_64
  1388. case MSR_EFER:
  1389. data = vcpu->shadow_efer;
  1390. break;
  1391. #endif
  1392. default:
  1393. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1394. return 1;
  1395. }
  1396. *pdata = data;
  1397. return 0;
  1398. }
  1399. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1400. /*
  1401. * Reads an msr value (of 'msr_index') into 'pdata'.
  1402. * Returns 0 on success, non-0 otherwise.
  1403. * Assumes vcpu_load() was already called.
  1404. */
  1405. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1406. {
  1407. return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
  1408. }
  1409. #ifdef CONFIG_X86_64
  1410. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1411. {
  1412. if (efer & EFER_RESERVED_BITS) {
  1413. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1414. efer);
  1415. inject_gp(vcpu);
  1416. return;
  1417. }
  1418. if (is_paging(vcpu)
  1419. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1420. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1421. inject_gp(vcpu);
  1422. return;
  1423. }
  1424. kvm_arch_ops->set_efer(vcpu, efer);
  1425. efer &= ~EFER_LMA;
  1426. efer |= vcpu->shadow_efer & EFER_LMA;
  1427. vcpu->shadow_efer = efer;
  1428. }
  1429. #endif
  1430. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1431. {
  1432. switch (msr) {
  1433. #ifdef CONFIG_X86_64
  1434. case MSR_EFER:
  1435. set_efer(vcpu, data);
  1436. break;
  1437. #endif
  1438. case MSR_IA32_MC0_STATUS:
  1439. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1440. __FUNCTION__, data);
  1441. break;
  1442. case MSR_IA32_MCG_STATUS:
  1443. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1444. __FUNCTION__, data);
  1445. break;
  1446. case MSR_IA32_UCODE_REV:
  1447. case MSR_IA32_UCODE_WRITE:
  1448. case 0x200 ... 0x2ff: /* MTRRs */
  1449. break;
  1450. case MSR_IA32_APICBASE:
  1451. kvm_set_apic_base(vcpu, data);
  1452. break;
  1453. case MSR_IA32_MISC_ENABLE:
  1454. vcpu->ia32_misc_enable_msr = data;
  1455. break;
  1456. /*
  1457. * This is the 'probe whether the host is KVM' logic:
  1458. */
  1459. case MSR_KVM_API_MAGIC:
  1460. return vcpu_register_para(vcpu, data);
  1461. default:
  1462. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
  1463. return 1;
  1464. }
  1465. return 0;
  1466. }
  1467. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1468. /*
  1469. * Writes msr value into into the appropriate "register".
  1470. * Returns 0 on success, non-0 otherwise.
  1471. * Assumes vcpu_load() was already called.
  1472. */
  1473. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1474. {
  1475. return kvm_arch_ops->set_msr(vcpu, msr_index, data);
  1476. }
  1477. void kvm_resched(struct kvm_vcpu *vcpu)
  1478. {
  1479. if (!need_resched())
  1480. return;
  1481. cond_resched();
  1482. }
  1483. EXPORT_SYMBOL_GPL(kvm_resched);
  1484. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1485. {
  1486. int i;
  1487. u32 function;
  1488. struct kvm_cpuid_entry *e, *best;
  1489. kvm_arch_ops->cache_regs(vcpu);
  1490. function = vcpu->regs[VCPU_REGS_RAX];
  1491. vcpu->regs[VCPU_REGS_RAX] = 0;
  1492. vcpu->regs[VCPU_REGS_RBX] = 0;
  1493. vcpu->regs[VCPU_REGS_RCX] = 0;
  1494. vcpu->regs[VCPU_REGS_RDX] = 0;
  1495. best = NULL;
  1496. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1497. e = &vcpu->cpuid_entries[i];
  1498. if (e->function == function) {
  1499. best = e;
  1500. break;
  1501. }
  1502. /*
  1503. * Both basic or both extended?
  1504. */
  1505. if (((e->function ^ function) & 0x80000000) == 0)
  1506. if (!best || e->function > best->function)
  1507. best = e;
  1508. }
  1509. if (best) {
  1510. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1511. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1512. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1513. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1514. }
  1515. kvm_arch_ops->decache_regs(vcpu);
  1516. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1517. }
  1518. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1519. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1520. {
  1521. void *p = vcpu->pio_data;
  1522. void *q;
  1523. unsigned bytes;
  1524. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1525. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1526. PAGE_KERNEL);
  1527. if (!q) {
  1528. free_pio_guest_pages(vcpu);
  1529. return -ENOMEM;
  1530. }
  1531. q += vcpu->pio.guest_page_offset;
  1532. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1533. if (vcpu->pio.in)
  1534. memcpy(q, p, bytes);
  1535. else
  1536. memcpy(p, q, bytes);
  1537. q -= vcpu->pio.guest_page_offset;
  1538. vunmap(q);
  1539. free_pio_guest_pages(vcpu);
  1540. return 0;
  1541. }
  1542. static int complete_pio(struct kvm_vcpu *vcpu)
  1543. {
  1544. struct kvm_pio_request *io = &vcpu->pio;
  1545. long delta;
  1546. int r;
  1547. kvm_arch_ops->cache_regs(vcpu);
  1548. if (!io->string) {
  1549. if (io->in)
  1550. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1551. io->size);
  1552. } else {
  1553. if (io->in) {
  1554. r = pio_copy_data(vcpu);
  1555. if (r) {
  1556. kvm_arch_ops->cache_regs(vcpu);
  1557. return r;
  1558. }
  1559. }
  1560. delta = 1;
  1561. if (io->rep) {
  1562. delta *= io->cur_count;
  1563. /*
  1564. * The size of the register should really depend on
  1565. * current address size.
  1566. */
  1567. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1568. }
  1569. if (io->down)
  1570. delta = -delta;
  1571. delta *= io->size;
  1572. if (io->in)
  1573. vcpu->regs[VCPU_REGS_RDI] += delta;
  1574. else
  1575. vcpu->regs[VCPU_REGS_RSI] += delta;
  1576. }
  1577. kvm_arch_ops->decache_regs(vcpu);
  1578. io->count -= io->cur_count;
  1579. io->cur_count = 0;
  1580. if (!io->count)
  1581. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1582. return 0;
  1583. }
  1584. static void kernel_pio(struct kvm_io_device *pio_dev,
  1585. struct kvm_vcpu *vcpu,
  1586. void *pd)
  1587. {
  1588. /* TODO: String I/O for in kernel device */
  1589. mutex_lock(&vcpu->kvm->lock);
  1590. if (vcpu->pio.in)
  1591. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1592. vcpu->pio.size,
  1593. pd);
  1594. else
  1595. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1596. vcpu->pio.size,
  1597. pd);
  1598. mutex_unlock(&vcpu->kvm->lock);
  1599. }
  1600. static void pio_string_write(struct kvm_io_device *pio_dev,
  1601. struct kvm_vcpu *vcpu)
  1602. {
  1603. struct kvm_pio_request *io = &vcpu->pio;
  1604. void *pd = vcpu->pio_data;
  1605. int i;
  1606. mutex_lock(&vcpu->kvm->lock);
  1607. for (i = 0; i < io->cur_count; i++) {
  1608. kvm_iodevice_write(pio_dev, io->port,
  1609. io->size,
  1610. pd);
  1611. pd += io->size;
  1612. }
  1613. mutex_unlock(&vcpu->kvm->lock);
  1614. }
  1615. int kvm_emulate_pio (struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1616. int size, unsigned port)
  1617. {
  1618. struct kvm_io_device *pio_dev;
  1619. vcpu->run->exit_reason = KVM_EXIT_IO;
  1620. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1621. vcpu->run->io.size = vcpu->pio.size = size;
  1622. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1623. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
  1624. vcpu->run->io.port = vcpu->pio.port = port;
  1625. vcpu->pio.in = in;
  1626. vcpu->pio.string = 0;
  1627. vcpu->pio.down = 0;
  1628. vcpu->pio.guest_page_offset = 0;
  1629. vcpu->pio.rep = 0;
  1630. kvm_arch_ops->cache_regs(vcpu);
  1631. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1632. kvm_arch_ops->decache_regs(vcpu);
  1633. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1634. if (pio_dev) {
  1635. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1636. complete_pio(vcpu);
  1637. return 1;
  1638. }
  1639. return 0;
  1640. }
  1641. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1642. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1643. int size, unsigned long count, int down,
  1644. gva_t address, int rep, unsigned port)
  1645. {
  1646. unsigned now, in_page;
  1647. int i, ret = 0;
  1648. int nr_pages = 1;
  1649. struct page *page;
  1650. struct kvm_io_device *pio_dev;
  1651. vcpu->run->exit_reason = KVM_EXIT_IO;
  1652. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1653. vcpu->run->io.size = vcpu->pio.size = size;
  1654. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1655. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
  1656. vcpu->run->io.port = vcpu->pio.port = port;
  1657. vcpu->pio.in = in;
  1658. vcpu->pio.string = 1;
  1659. vcpu->pio.down = down;
  1660. vcpu->pio.guest_page_offset = offset_in_page(address);
  1661. vcpu->pio.rep = rep;
  1662. if (!count) {
  1663. kvm_arch_ops->skip_emulated_instruction(vcpu);
  1664. return 1;
  1665. }
  1666. if (!down)
  1667. in_page = PAGE_SIZE - offset_in_page(address);
  1668. else
  1669. in_page = offset_in_page(address) + size;
  1670. now = min(count, (unsigned long)in_page / size);
  1671. if (!now) {
  1672. /*
  1673. * String I/O straddles page boundary. Pin two guest pages
  1674. * so that we satisfy atomicity constraints. Do just one
  1675. * transaction to avoid complexity.
  1676. */
  1677. nr_pages = 2;
  1678. now = 1;
  1679. }
  1680. if (down) {
  1681. /*
  1682. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1683. */
  1684. pr_unimpl(vcpu, "guest string pio down\n");
  1685. inject_gp(vcpu);
  1686. return 1;
  1687. }
  1688. vcpu->run->io.count = now;
  1689. vcpu->pio.cur_count = now;
  1690. for (i = 0; i < nr_pages; ++i) {
  1691. mutex_lock(&vcpu->kvm->lock);
  1692. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1693. if (page)
  1694. get_page(page);
  1695. vcpu->pio.guest_pages[i] = page;
  1696. mutex_unlock(&vcpu->kvm->lock);
  1697. if (!page) {
  1698. inject_gp(vcpu);
  1699. free_pio_guest_pages(vcpu);
  1700. return 1;
  1701. }
  1702. }
  1703. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1704. if (!vcpu->pio.in) {
  1705. /* string PIO write */
  1706. ret = pio_copy_data(vcpu);
  1707. if (ret >= 0 && pio_dev) {
  1708. pio_string_write(pio_dev, vcpu);
  1709. complete_pio(vcpu);
  1710. if (vcpu->pio.count == 0)
  1711. ret = 1;
  1712. }
  1713. } else if (pio_dev)
  1714. pr_unimpl(vcpu, "no string pio read support yet, "
  1715. "port %x size %d count %ld\n",
  1716. port, size, count);
  1717. return ret;
  1718. }
  1719. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  1720. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1721. {
  1722. int r;
  1723. sigset_t sigsaved;
  1724. vcpu_load(vcpu);
  1725. if (vcpu->sigset_active)
  1726. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1727. /* re-sync apic's tpr */
  1728. set_cr8(vcpu, kvm_run->cr8);
  1729. if (vcpu->pio.cur_count) {
  1730. r = complete_pio(vcpu);
  1731. if (r)
  1732. goto out;
  1733. }
  1734. if (vcpu->mmio_needed) {
  1735. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1736. vcpu->mmio_read_completed = 1;
  1737. vcpu->mmio_needed = 0;
  1738. r = emulate_instruction(vcpu, kvm_run,
  1739. vcpu->mmio_fault_cr2, 0);
  1740. if (r == EMULATE_DO_MMIO) {
  1741. /*
  1742. * Read-modify-write. Back to userspace.
  1743. */
  1744. r = 0;
  1745. goto out;
  1746. }
  1747. }
  1748. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1749. kvm_arch_ops->cache_regs(vcpu);
  1750. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1751. kvm_arch_ops->decache_regs(vcpu);
  1752. }
  1753. r = kvm_arch_ops->run(vcpu, kvm_run);
  1754. out:
  1755. if (vcpu->sigset_active)
  1756. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1757. vcpu_put(vcpu);
  1758. return r;
  1759. }
  1760. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1761. struct kvm_regs *regs)
  1762. {
  1763. vcpu_load(vcpu);
  1764. kvm_arch_ops->cache_regs(vcpu);
  1765. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1766. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1767. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1768. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1769. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1770. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1771. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1772. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1773. #ifdef CONFIG_X86_64
  1774. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1775. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1776. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1777. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1778. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1779. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1780. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1781. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1782. #endif
  1783. regs->rip = vcpu->rip;
  1784. regs->rflags = kvm_arch_ops->get_rflags(vcpu);
  1785. /*
  1786. * Don't leak debug flags in case they were set for guest debugging
  1787. */
  1788. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1789. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1790. vcpu_put(vcpu);
  1791. return 0;
  1792. }
  1793. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1794. struct kvm_regs *regs)
  1795. {
  1796. vcpu_load(vcpu);
  1797. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1798. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1799. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1800. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1801. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1802. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1803. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1804. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1805. #ifdef CONFIG_X86_64
  1806. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1807. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1808. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1809. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1810. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1811. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1812. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1813. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1814. #endif
  1815. vcpu->rip = regs->rip;
  1816. kvm_arch_ops->set_rflags(vcpu, regs->rflags);
  1817. kvm_arch_ops->decache_regs(vcpu);
  1818. vcpu_put(vcpu);
  1819. return 0;
  1820. }
  1821. static void get_segment(struct kvm_vcpu *vcpu,
  1822. struct kvm_segment *var, int seg)
  1823. {
  1824. return kvm_arch_ops->get_segment(vcpu, var, seg);
  1825. }
  1826. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1827. struct kvm_sregs *sregs)
  1828. {
  1829. struct descriptor_table dt;
  1830. vcpu_load(vcpu);
  1831. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1832. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1833. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1834. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1835. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1836. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1837. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1838. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1839. kvm_arch_ops->get_idt(vcpu, &dt);
  1840. sregs->idt.limit = dt.limit;
  1841. sregs->idt.base = dt.base;
  1842. kvm_arch_ops->get_gdt(vcpu, &dt);
  1843. sregs->gdt.limit = dt.limit;
  1844. sregs->gdt.base = dt.base;
  1845. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1846. sregs->cr0 = vcpu->cr0;
  1847. sregs->cr2 = vcpu->cr2;
  1848. sregs->cr3 = vcpu->cr3;
  1849. sregs->cr4 = vcpu->cr4;
  1850. sregs->cr8 = get_cr8(vcpu);
  1851. sregs->efer = vcpu->shadow_efer;
  1852. sregs->apic_base = kvm_get_apic_base(vcpu);
  1853. if (irqchip_in_kernel(vcpu->kvm))
  1854. memset(sregs->interrupt_bitmap, 0,
  1855. sizeof sregs->interrupt_bitmap);
  1856. else
  1857. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1858. sizeof sregs->interrupt_bitmap);
  1859. vcpu_put(vcpu);
  1860. return 0;
  1861. }
  1862. static void set_segment(struct kvm_vcpu *vcpu,
  1863. struct kvm_segment *var, int seg)
  1864. {
  1865. return kvm_arch_ops->set_segment(vcpu, var, seg);
  1866. }
  1867. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1868. struct kvm_sregs *sregs)
  1869. {
  1870. int mmu_reset_needed = 0;
  1871. int i;
  1872. struct descriptor_table dt;
  1873. vcpu_load(vcpu);
  1874. dt.limit = sregs->idt.limit;
  1875. dt.base = sregs->idt.base;
  1876. kvm_arch_ops->set_idt(vcpu, &dt);
  1877. dt.limit = sregs->gdt.limit;
  1878. dt.base = sregs->gdt.base;
  1879. kvm_arch_ops->set_gdt(vcpu, &dt);
  1880. vcpu->cr2 = sregs->cr2;
  1881. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1882. vcpu->cr3 = sregs->cr3;
  1883. set_cr8(vcpu, sregs->cr8);
  1884. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1885. #ifdef CONFIG_X86_64
  1886. kvm_arch_ops->set_efer(vcpu, sregs->efer);
  1887. #endif
  1888. kvm_set_apic_base(vcpu, sregs->apic_base);
  1889. kvm_arch_ops->decache_cr4_guest_bits(vcpu);
  1890. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1891. kvm_arch_ops->set_cr0(vcpu, sregs->cr0);
  1892. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1893. kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
  1894. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1895. load_pdptrs(vcpu, vcpu->cr3);
  1896. if (mmu_reset_needed)
  1897. kvm_mmu_reset_context(vcpu);
  1898. if (!irqchip_in_kernel(vcpu->kvm)) {
  1899. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1900. sizeof vcpu->irq_pending);
  1901. vcpu->irq_summary = 0;
  1902. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  1903. if (vcpu->irq_pending[i])
  1904. __set_bit(i, &vcpu->irq_summary);
  1905. }
  1906. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1907. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1908. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1909. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1910. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1911. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1912. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1913. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1914. vcpu_put(vcpu);
  1915. return 0;
  1916. }
  1917. /*
  1918. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1919. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1920. *
  1921. * This list is modified at module load time to reflect the
  1922. * capabilities of the host cpu.
  1923. */
  1924. static u32 msrs_to_save[] = {
  1925. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1926. MSR_K6_STAR,
  1927. #ifdef CONFIG_X86_64
  1928. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1929. #endif
  1930. MSR_IA32_TIME_STAMP_COUNTER,
  1931. };
  1932. static unsigned num_msrs_to_save;
  1933. static u32 emulated_msrs[] = {
  1934. MSR_IA32_MISC_ENABLE,
  1935. };
  1936. static __init void kvm_init_msr_list(void)
  1937. {
  1938. u32 dummy[2];
  1939. unsigned i, j;
  1940. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1941. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1942. continue;
  1943. if (j < i)
  1944. msrs_to_save[j] = msrs_to_save[i];
  1945. j++;
  1946. }
  1947. num_msrs_to_save = j;
  1948. }
  1949. /*
  1950. * Adapt set_msr() to msr_io()'s calling convention
  1951. */
  1952. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1953. {
  1954. return kvm_set_msr(vcpu, index, *data);
  1955. }
  1956. /*
  1957. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1958. *
  1959. * @return number of msrs set successfully.
  1960. */
  1961. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1962. struct kvm_msr_entry *entries,
  1963. int (*do_msr)(struct kvm_vcpu *vcpu,
  1964. unsigned index, u64 *data))
  1965. {
  1966. int i;
  1967. vcpu_load(vcpu);
  1968. for (i = 0; i < msrs->nmsrs; ++i)
  1969. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1970. break;
  1971. vcpu_put(vcpu);
  1972. return i;
  1973. }
  1974. /*
  1975. * Read or write a bunch of msrs. Parameters are user addresses.
  1976. *
  1977. * @return number of msrs set successfully.
  1978. */
  1979. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1980. int (*do_msr)(struct kvm_vcpu *vcpu,
  1981. unsigned index, u64 *data),
  1982. int writeback)
  1983. {
  1984. struct kvm_msrs msrs;
  1985. struct kvm_msr_entry *entries;
  1986. int r, n;
  1987. unsigned size;
  1988. r = -EFAULT;
  1989. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1990. goto out;
  1991. r = -E2BIG;
  1992. if (msrs.nmsrs >= MAX_IO_MSRS)
  1993. goto out;
  1994. r = -ENOMEM;
  1995. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1996. entries = vmalloc(size);
  1997. if (!entries)
  1998. goto out;
  1999. r = -EFAULT;
  2000. if (copy_from_user(entries, user_msrs->entries, size))
  2001. goto out_free;
  2002. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  2003. if (r < 0)
  2004. goto out_free;
  2005. r = -EFAULT;
  2006. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  2007. goto out_free;
  2008. r = n;
  2009. out_free:
  2010. vfree(entries);
  2011. out:
  2012. return r;
  2013. }
  2014. /*
  2015. * Translate a guest virtual address to a guest physical address.
  2016. */
  2017. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  2018. struct kvm_translation *tr)
  2019. {
  2020. unsigned long vaddr = tr->linear_address;
  2021. gpa_t gpa;
  2022. vcpu_load(vcpu);
  2023. mutex_lock(&vcpu->kvm->lock);
  2024. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  2025. tr->physical_address = gpa;
  2026. tr->valid = gpa != UNMAPPED_GVA;
  2027. tr->writeable = 1;
  2028. tr->usermode = 0;
  2029. mutex_unlock(&vcpu->kvm->lock);
  2030. vcpu_put(vcpu);
  2031. return 0;
  2032. }
  2033. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2034. struct kvm_interrupt *irq)
  2035. {
  2036. if (irq->irq < 0 || irq->irq >= 256)
  2037. return -EINVAL;
  2038. if (irqchip_in_kernel(vcpu->kvm))
  2039. return -ENXIO;
  2040. vcpu_load(vcpu);
  2041. set_bit(irq->irq, vcpu->irq_pending);
  2042. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  2043. vcpu_put(vcpu);
  2044. return 0;
  2045. }
  2046. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  2047. struct kvm_debug_guest *dbg)
  2048. {
  2049. int r;
  2050. vcpu_load(vcpu);
  2051. r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
  2052. vcpu_put(vcpu);
  2053. return r;
  2054. }
  2055. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  2056. unsigned long address,
  2057. int *type)
  2058. {
  2059. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  2060. unsigned long pgoff;
  2061. struct page *page;
  2062. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2063. if (pgoff == 0)
  2064. page = virt_to_page(vcpu->run);
  2065. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  2066. page = virt_to_page(vcpu->pio_data);
  2067. else
  2068. return NOPAGE_SIGBUS;
  2069. get_page(page);
  2070. if (type != NULL)
  2071. *type = VM_FAULT_MINOR;
  2072. return page;
  2073. }
  2074. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  2075. .nopage = kvm_vcpu_nopage,
  2076. };
  2077. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  2078. {
  2079. vma->vm_ops = &kvm_vcpu_vm_ops;
  2080. return 0;
  2081. }
  2082. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  2083. {
  2084. struct kvm_vcpu *vcpu = filp->private_data;
  2085. fput(vcpu->kvm->filp);
  2086. return 0;
  2087. }
  2088. static struct file_operations kvm_vcpu_fops = {
  2089. .release = kvm_vcpu_release,
  2090. .unlocked_ioctl = kvm_vcpu_ioctl,
  2091. .compat_ioctl = kvm_vcpu_ioctl,
  2092. .mmap = kvm_vcpu_mmap,
  2093. };
  2094. /*
  2095. * Allocates an inode for the vcpu.
  2096. */
  2097. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  2098. {
  2099. int fd, r;
  2100. struct inode *inode;
  2101. struct file *file;
  2102. r = anon_inode_getfd(&fd, &inode, &file,
  2103. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  2104. if (r)
  2105. return r;
  2106. atomic_inc(&vcpu->kvm->filp->f_count);
  2107. return fd;
  2108. }
  2109. /*
  2110. * Creates some virtual cpus. Good luck creating more than one.
  2111. */
  2112. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  2113. {
  2114. int r;
  2115. struct kvm_vcpu *vcpu;
  2116. if (!valid_vcpu(n))
  2117. return -EINVAL;
  2118. vcpu = kvm_arch_ops->vcpu_create(kvm, n);
  2119. if (IS_ERR(vcpu))
  2120. return PTR_ERR(vcpu);
  2121. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  2122. /* We do fxsave: this must be aligned. */
  2123. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  2124. vcpu_load(vcpu);
  2125. r = kvm_mmu_setup(vcpu);
  2126. vcpu_put(vcpu);
  2127. if (r < 0)
  2128. goto free_vcpu;
  2129. mutex_lock(&kvm->lock);
  2130. if (kvm->vcpus[n]) {
  2131. r = -EEXIST;
  2132. mutex_unlock(&kvm->lock);
  2133. goto mmu_unload;
  2134. }
  2135. kvm->vcpus[n] = vcpu;
  2136. mutex_unlock(&kvm->lock);
  2137. /* Now it's all set up, let userspace reach it */
  2138. r = create_vcpu_fd(vcpu);
  2139. if (r < 0)
  2140. goto unlink;
  2141. return r;
  2142. unlink:
  2143. mutex_lock(&kvm->lock);
  2144. kvm->vcpus[n] = NULL;
  2145. mutex_unlock(&kvm->lock);
  2146. mmu_unload:
  2147. vcpu_load(vcpu);
  2148. kvm_mmu_unload(vcpu);
  2149. vcpu_put(vcpu);
  2150. free_vcpu:
  2151. kvm_arch_ops->vcpu_free(vcpu);
  2152. return r;
  2153. }
  2154. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  2155. {
  2156. u64 efer;
  2157. int i;
  2158. struct kvm_cpuid_entry *e, *entry;
  2159. rdmsrl(MSR_EFER, efer);
  2160. entry = NULL;
  2161. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  2162. e = &vcpu->cpuid_entries[i];
  2163. if (e->function == 0x80000001) {
  2164. entry = e;
  2165. break;
  2166. }
  2167. }
  2168. if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
  2169. entry->edx &= ~(1 << 20);
  2170. printk(KERN_INFO "kvm: guest NX capability removed\n");
  2171. }
  2172. }
  2173. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  2174. struct kvm_cpuid *cpuid,
  2175. struct kvm_cpuid_entry __user *entries)
  2176. {
  2177. int r;
  2178. r = -E2BIG;
  2179. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2180. goto out;
  2181. r = -EFAULT;
  2182. if (copy_from_user(&vcpu->cpuid_entries, entries,
  2183. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2184. goto out;
  2185. vcpu->cpuid_nent = cpuid->nent;
  2186. cpuid_fix_nx_cap(vcpu);
  2187. return 0;
  2188. out:
  2189. return r;
  2190. }
  2191. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2192. {
  2193. if (sigset) {
  2194. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2195. vcpu->sigset_active = 1;
  2196. vcpu->sigset = *sigset;
  2197. } else
  2198. vcpu->sigset_active = 0;
  2199. return 0;
  2200. }
  2201. /*
  2202. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2203. * we have asm/x86/processor.h
  2204. */
  2205. struct fxsave {
  2206. u16 cwd;
  2207. u16 swd;
  2208. u16 twd;
  2209. u16 fop;
  2210. u64 rip;
  2211. u64 rdp;
  2212. u32 mxcsr;
  2213. u32 mxcsr_mask;
  2214. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2215. #ifdef CONFIG_X86_64
  2216. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2217. #else
  2218. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2219. #endif
  2220. };
  2221. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2222. {
  2223. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2224. vcpu_load(vcpu);
  2225. memcpy(fpu->fpr, fxsave->st_space, 128);
  2226. fpu->fcw = fxsave->cwd;
  2227. fpu->fsw = fxsave->swd;
  2228. fpu->ftwx = fxsave->twd;
  2229. fpu->last_opcode = fxsave->fop;
  2230. fpu->last_ip = fxsave->rip;
  2231. fpu->last_dp = fxsave->rdp;
  2232. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2233. vcpu_put(vcpu);
  2234. return 0;
  2235. }
  2236. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2237. {
  2238. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2239. vcpu_load(vcpu);
  2240. memcpy(fxsave->st_space, fpu->fpr, 128);
  2241. fxsave->cwd = fpu->fcw;
  2242. fxsave->swd = fpu->fsw;
  2243. fxsave->twd = fpu->ftwx;
  2244. fxsave->fop = fpu->last_opcode;
  2245. fxsave->rip = fpu->last_ip;
  2246. fxsave->rdp = fpu->last_dp;
  2247. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2248. vcpu_put(vcpu);
  2249. return 0;
  2250. }
  2251. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  2252. struct kvm_lapic_state *s)
  2253. {
  2254. vcpu_load(vcpu);
  2255. memcpy(s->regs, vcpu->apic->regs, sizeof *s);
  2256. vcpu_put(vcpu);
  2257. return 0;
  2258. }
  2259. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  2260. struct kvm_lapic_state *s)
  2261. {
  2262. vcpu_load(vcpu);
  2263. memcpy(vcpu->apic->regs, s->regs, sizeof *s);
  2264. kvm_apic_post_state_restore(vcpu);
  2265. vcpu_put(vcpu);
  2266. return 0;
  2267. }
  2268. static long kvm_vcpu_ioctl(struct file *filp,
  2269. unsigned int ioctl, unsigned long arg)
  2270. {
  2271. struct kvm_vcpu *vcpu = filp->private_data;
  2272. void __user *argp = (void __user *)arg;
  2273. int r = -EINVAL;
  2274. switch (ioctl) {
  2275. case KVM_RUN:
  2276. r = -EINVAL;
  2277. if (arg)
  2278. goto out;
  2279. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2280. break;
  2281. case KVM_GET_REGS: {
  2282. struct kvm_regs kvm_regs;
  2283. memset(&kvm_regs, 0, sizeof kvm_regs);
  2284. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2285. if (r)
  2286. goto out;
  2287. r = -EFAULT;
  2288. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2289. goto out;
  2290. r = 0;
  2291. break;
  2292. }
  2293. case KVM_SET_REGS: {
  2294. struct kvm_regs kvm_regs;
  2295. r = -EFAULT;
  2296. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2297. goto out;
  2298. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2299. if (r)
  2300. goto out;
  2301. r = 0;
  2302. break;
  2303. }
  2304. case KVM_GET_SREGS: {
  2305. struct kvm_sregs kvm_sregs;
  2306. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2307. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2308. if (r)
  2309. goto out;
  2310. r = -EFAULT;
  2311. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2312. goto out;
  2313. r = 0;
  2314. break;
  2315. }
  2316. case KVM_SET_SREGS: {
  2317. struct kvm_sregs kvm_sregs;
  2318. r = -EFAULT;
  2319. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2320. goto out;
  2321. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2322. if (r)
  2323. goto out;
  2324. r = 0;
  2325. break;
  2326. }
  2327. case KVM_TRANSLATE: {
  2328. struct kvm_translation tr;
  2329. r = -EFAULT;
  2330. if (copy_from_user(&tr, argp, sizeof tr))
  2331. goto out;
  2332. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2333. if (r)
  2334. goto out;
  2335. r = -EFAULT;
  2336. if (copy_to_user(argp, &tr, sizeof tr))
  2337. goto out;
  2338. r = 0;
  2339. break;
  2340. }
  2341. case KVM_INTERRUPT: {
  2342. struct kvm_interrupt irq;
  2343. r = -EFAULT;
  2344. if (copy_from_user(&irq, argp, sizeof irq))
  2345. goto out;
  2346. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2347. if (r)
  2348. goto out;
  2349. r = 0;
  2350. break;
  2351. }
  2352. case KVM_DEBUG_GUEST: {
  2353. struct kvm_debug_guest dbg;
  2354. r = -EFAULT;
  2355. if (copy_from_user(&dbg, argp, sizeof dbg))
  2356. goto out;
  2357. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2358. if (r)
  2359. goto out;
  2360. r = 0;
  2361. break;
  2362. }
  2363. case KVM_GET_MSRS:
  2364. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2365. break;
  2366. case KVM_SET_MSRS:
  2367. r = msr_io(vcpu, argp, do_set_msr, 0);
  2368. break;
  2369. case KVM_SET_CPUID: {
  2370. struct kvm_cpuid __user *cpuid_arg = argp;
  2371. struct kvm_cpuid cpuid;
  2372. r = -EFAULT;
  2373. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2374. goto out;
  2375. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2376. if (r)
  2377. goto out;
  2378. break;
  2379. }
  2380. case KVM_SET_SIGNAL_MASK: {
  2381. struct kvm_signal_mask __user *sigmask_arg = argp;
  2382. struct kvm_signal_mask kvm_sigmask;
  2383. sigset_t sigset, *p;
  2384. p = NULL;
  2385. if (argp) {
  2386. r = -EFAULT;
  2387. if (copy_from_user(&kvm_sigmask, argp,
  2388. sizeof kvm_sigmask))
  2389. goto out;
  2390. r = -EINVAL;
  2391. if (kvm_sigmask.len != sizeof sigset)
  2392. goto out;
  2393. r = -EFAULT;
  2394. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2395. sizeof sigset))
  2396. goto out;
  2397. p = &sigset;
  2398. }
  2399. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2400. break;
  2401. }
  2402. case KVM_GET_FPU: {
  2403. struct kvm_fpu fpu;
  2404. memset(&fpu, 0, sizeof fpu);
  2405. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2406. if (r)
  2407. goto out;
  2408. r = -EFAULT;
  2409. if (copy_to_user(argp, &fpu, sizeof fpu))
  2410. goto out;
  2411. r = 0;
  2412. break;
  2413. }
  2414. case KVM_SET_FPU: {
  2415. struct kvm_fpu fpu;
  2416. r = -EFAULT;
  2417. if (copy_from_user(&fpu, argp, sizeof fpu))
  2418. goto out;
  2419. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2420. if (r)
  2421. goto out;
  2422. r = 0;
  2423. break;
  2424. }
  2425. case KVM_GET_LAPIC: {
  2426. struct kvm_lapic_state lapic;
  2427. memset(&lapic, 0, sizeof lapic);
  2428. r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
  2429. if (r)
  2430. goto out;
  2431. r = -EFAULT;
  2432. if (copy_to_user(argp, &lapic, sizeof lapic))
  2433. goto out;
  2434. r = 0;
  2435. break;
  2436. }
  2437. case KVM_SET_LAPIC: {
  2438. struct kvm_lapic_state lapic;
  2439. r = -EFAULT;
  2440. if (copy_from_user(&lapic, argp, sizeof lapic))
  2441. goto out;
  2442. r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
  2443. if (r)
  2444. goto out;
  2445. r = 0;
  2446. break;
  2447. }
  2448. default:
  2449. ;
  2450. }
  2451. out:
  2452. return r;
  2453. }
  2454. static long kvm_vm_ioctl(struct file *filp,
  2455. unsigned int ioctl, unsigned long arg)
  2456. {
  2457. struct kvm *kvm = filp->private_data;
  2458. void __user *argp = (void __user *)arg;
  2459. int r = -EINVAL;
  2460. switch (ioctl) {
  2461. case KVM_CREATE_VCPU:
  2462. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2463. if (r < 0)
  2464. goto out;
  2465. break;
  2466. case KVM_SET_MEMORY_REGION: {
  2467. struct kvm_memory_region kvm_mem;
  2468. r = -EFAULT;
  2469. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2470. goto out;
  2471. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
  2472. if (r)
  2473. goto out;
  2474. break;
  2475. }
  2476. case KVM_GET_DIRTY_LOG: {
  2477. struct kvm_dirty_log log;
  2478. r = -EFAULT;
  2479. if (copy_from_user(&log, argp, sizeof log))
  2480. goto out;
  2481. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2482. if (r)
  2483. goto out;
  2484. break;
  2485. }
  2486. case KVM_SET_MEMORY_ALIAS: {
  2487. struct kvm_memory_alias alias;
  2488. r = -EFAULT;
  2489. if (copy_from_user(&alias, argp, sizeof alias))
  2490. goto out;
  2491. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2492. if (r)
  2493. goto out;
  2494. break;
  2495. }
  2496. case KVM_CREATE_IRQCHIP:
  2497. r = -ENOMEM;
  2498. kvm->vpic = kvm_create_pic(kvm);
  2499. if (kvm->vpic) {
  2500. r = kvm_ioapic_init(kvm);
  2501. if (r) {
  2502. kfree(kvm->vpic);
  2503. kvm->vpic = NULL;
  2504. goto out;
  2505. }
  2506. }
  2507. else
  2508. goto out;
  2509. break;
  2510. case KVM_IRQ_LINE: {
  2511. struct kvm_irq_level irq_event;
  2512. r = -EFAULT;
  2513. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2514. goto out;
  2515. if (irqchip_in_kernel(kvm)) {
  2516. mutex_lock(&kvm->lock);
  2517. if (irq_event.irq < 16)
  2518. kvm_pic_set_irq(pic_irqchip(kvm),
  2519. irq_event.irq,
  2520. irq_event.level);
  2521. kvm_ioapic_set_irq(kvm->vioapic,
  2522. irq_event.irq,
  2523. irq_event.level);
  2524. mutex_unlock(&kvm->lock);
  2525. r = 0;
  2526. }
  2527. break;
  2528. }
  2529. case KVM_GET_IRQCHIP: {
  2530. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2531. struct kvm_irqchip chip;
  2532. r = -EFAULT;
  2533. if (copy_from_user(&chip, argp, sizeof chip))
  2534. goto out;
  2535. r = -ENXIO;
  2536. if (!irqchip_in_kernel(kvm))
  2537. goto out;
  2538. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  2539. if (r)
  2540. goto out;
  2541. r = -EFAULT;
  2542. if (copy_to_user(argp, &chip, sizeof chip))
  2543. goto out;
  2544. r = 0;
  2545. break;
  2546. }
  2547. case KVM_SET_IRQCHIP: {
  2548. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2549. struct kvm_irqchip chip;
  2550. r = -EFAULT;
  2551. if (copy_from_user(&chip, argp, sizeof chip))
  2552. goto out;
  2553. r = -ENXIO;
  2554. if (!irqchip_in_kernel(kvm))
  2555. goto out;
  2556. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  2557. if (r)
  2558. goto out;
  2559. r = 0;
  2560. break;
  2561. }
  2562. default:
  2563. ;
  2564. }
  2565. out:
  2566. return r;
  2567. }
  2568. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2569. unsigned long address,
  2570. int *type)
  2571. {
  2572. struct kvm *kvm = vma->vm_file->private_data;
  2573. unsigned long pgoff;
  2574. struct page *page;
  2575. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2576. page = gfn_to_page(kvm, pgoff);
  2577. if (!page)
  2578. return NOPAGE_SIGBUS;
  2579. get_page(page);
  2580. if (type != NULL)
  2581. *type = VM_FAULT_MINOR;
  2582. return page;
  2583. }
  2584. static struct vm_operations_struct kvm_vm_vm_ops = {
  2585. .nopage = kvm_vm_nopage,
  2586. };
  2587. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2588. {
  2589. vma->vm_ops = &kvm_vm_vm_ops;
  2590. return 0;
  2591. }
  2592. static struct file_operations kvm_vm_fops = {
  2593. .release = kvm_vm_release,
  2594. .unlocked_ioctl = kvm_vm_ioctl,
  2595. .compat_ioctl = kvm_vm_ioctl,
  2596. .mmap = kvm_vm_mmap,
  2597. };
  2598. static int kvm_dev_ioctl_create_vm(void)
  2599. {
  2600. int fd, r;
  2601. struct inode *inode;
  2602. struct file *file;
  2603. struct kvm *kvm;
  2604. kvm = kvm_create_vm();
  2605. if (IS_ERR(kvm))
  2606. return PTR_ERR(kvm);
  2607. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2608. if (r) {
  2609. kvm_destroy_vm(kvm);
  2610. return r;
  2611. }
  2612. kvm->filp = file;
  2613. return fd;
  2614. }
  2615. static long kvm_dev_ioctl(struct file *filp,
  2616. unsigned int ioctl, unsigned long arg)
  2617. {
  2618. void __user *argp = (void __user *)arg;
  2619. long r = -EINVAL;
  2620. switch (ioctl) {
  2621. case KVM_GET_API_VERSION:
  2622. r = -EINVAL;
  2623. if (arg)
  2624. goto out;
  2625. r = KVM_API_VERSION;
  2626. break;
  2627. case KVM_CREATE_VM:
  2628. r = -EINVAL;
  2629. if (arg)
  2630. goto out;
  2631. r = kvm_dev_ioctl_create_vm();
  2632. break;
  2633. case KVM_GET_MSR_INDEX_LIST: {
  2634. struct kvm_msr_list __user *user_msr_list = argp;
  2635. struct kvm_msr_list msr_list;
  2636. unsigned n;
  2637. r = -EFAULT;
  2638. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2639. goto out;
  2640. n = msr_list.nmsrs;
  2641. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2642. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2643. goto out;
  2644. r = -E2BIG;
  2645. if (n < num_msrs_to_save)
  2646. goto out;
  2647. r = -EFAULT;
  2648. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2649. num_msrs_to_save * sizeof(u32)))
  2650. goto out;
  2651. if (copy_to_user(user_msr_list->indices
  2652. + num_msrs_to_save * sizeof(u32),
  2653. &emulated_msrs,
  2654. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2655. goto out;
  2656. r = 0;
  2657. break;
  2658. }
  2659. case KVM_CHECK_EXTENSION: {
  2660. int ext = (long)argp;
  2661. switch (ext) {
  2662. case KVM_CAP_IRQCHIP:
  2663. case KVM_CAP_HLT:
  2664. r = 1;
  2665. break;
  2666. default:
  2667. r = 0;
  2668. break;
  2669. }
  2670. break;
  2671. }
  2672. case KVM_GET_VCPU_MMAP_SIZE:
  2673. r = -EINVAL;
  2674. if (arg)
  2675. goto out;
  2676. r = 2 * PAGE_SIZE;
  2677. break;
  2678. default:
  2679. ;
  2680. }
  2681. out:
  2682. return r;
  2683. }
  2684. static struct file_operations kvm_chardev_ops = {
  2685. .unlocked_ioctl = kvm_dev_ioctl,
  2686. .compat_ioctl = kvm_dev_ioctl,
  2687. };
  2688. static struct miscdevice kvm_dev = {
  2689. KVM_MINOR,
  2690. "kvm",
  2691. &kvm_chardev_ops,
  2692. };
  2693. /*
  2694. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2695. * cached on it.
  2696. */
  2697. static void decache_vcpus_on_cpu(int cpu)
  2698. {
  2699. struct kvm *vm;
  2700. struct kvm_vcpu *vcpu;
  2701. int i;
  2702. spin_lock(&kvm_lock);
  2703. list_for_each_entry(vm, &vm_list, vm_list)
  2704. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2705. vcpu = vm->vcpus[i];
  2706. if (!vcpu)
  2707. continue;
  2708. /*
  2709. * If the vcpu is locked, then it is running on some
  2710. * other cpu and therefore it is not cached on the
  2711. * cpu in question.
  2712. *
  2713. * If it's not locked, check the last cpu it executed
  2714. * on.
  2715. */
  2716. if (mutex_trylock(&vcpu->mutex)) {
  2717. if (vcpu->cpu == cpu) {
  2718. kvm_arch_ops->vcpu_decache(vcpu);
  2719. vcpu->cpu = -1;
  2720. }
  2721. mutex_unlock(&vcpu->mutex);
  2722. }
  2723. }
  2724. spin_unlock(&kvm_lock);
  2725. }
  2726. static void hardware_enable(void *junk)
  2727. {
  2728. int cpu = raw_smp_processor_id();
  2729. if (cpu_isset(cpu, cpus_hardware_enabled))
  2730. return;
  2731. cpu_set(cpu, cpus_hardware_enabled);
  2732. kvm_arch_ops->hardware_enable(NULL);
  2733. }
  2734. static void hardware_disable(void *junk)
  2735. {
  2736. int cpu = raw_smp_processor_id();
  2737. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2738. return;
  2739. cpu_clear(cpu, cpus_hardware_enabled);
  2740. decache_vcpus_on_cpu(cpu);
  2741. kvm_arch_ops->hardware_disable(NULL);
  2742. }
  2743. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2744. void *v)
  2745. {
  2746. int cpu = (long)v;
  2747. switch (val) {
  2748. case CPU_DYING:
  2749. case CPU_DYING_FROZEN:
  2750. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2751. cpu);
  2752. hardware_disable(NULL);
  2753. break;
  2754. case CPU_UP_CANCELED:
  2755. case CPU_UP_CANCELED_FROZEN:
  2756. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2757. cpu);
  2758. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2759. break;
  2760. case CPU_ONLINE:
  2761. case CPU_ONLINE_FROZEN:
  2762. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2763. cpu);
  2764. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2765. break;
  2766. }
  2767. return NOTIFY_OK;
  2768. }
  2769. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2770. void *v)
  2771. {
  2772. if (val == SYS_RESTART) {
  2773. /*
  2774. * Some (well, at least mine) BIOSes hang on reboot if
  2775. * in vmx root mode.
  2776. */
  2777. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2778. on_each_cpu(hardware_disable, NULL, 0, 1);
  2779. }
  2780. return NOTIFY_OK;
  2781. }
  2782. static struct notifier_block kvm_reboot_notifier = {
  2783. .notifier_call = kvm_reboot,
  2784. .priority = 0,
  2785. };
  2786. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2787. {
  2788. memset(bus, 0, sizeof(*bus));
  2789. }
  2790. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2791. {
  2792. int i;
  2793. for (i = 0; i < bus->dev_count; i++) {
  2794. struct kvm_io_device *pos = bus->devs[i];
  2795. kvm_iodevice_destructor(pos);
  2796. }
  2797. }
  2798. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2799. {
  2800. int i;
  2801. for (i = 0; i < bus->dev_count; i++) {
  2802. struct kvm_io_device *pos = bus->devs[i];
  2803. if (pos->in_range(pos, addr))
  2804. return pos;
  2805. }
  2806. return NULL;
  2807. }
  2808. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2809. {
  2810. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2811. bus->devs[bus->dev_count++] = dev;
  2812. }
  2813. static struct notifier_block kvm_cpu_notifier = {
  2814. .notifier_call = kvm_cpu_hotplug,
  2815. .priority = 20, /* must be > scheduler priority */
  2816. };
  2817. static u64 stat_get(void *_offset)
  2818. {
  2819. unsigned offset = (long)_offset;
  2820. u64 total = 0;
  2821. struct kvm *kvm;
  2822. struct kvm_vcpu *vcpu;
  2823. int i;
  2824. spin_lock(&kvm_lock);
  2825. list_for_each_entry(kvm, &vm_list, vm_list)
  2826. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2827. vcpu = kvm->vcpus[i];
  2828. if (vcpu)
  2829. total += *(u32 *)((void *)vcpu + offset);
  2830. }
  2831. spin_unlock(&kvm_lock);
  2832. return total;
  2833. }
  2834. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  2835. static __init void kvm_init_debug(void)
  2836. {
  2837. struct kvm_stats_debugfs_item *p;
  2838. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2839. for (p = debugfs_entries; p->name; ++p)
  2840. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2841. (void *)(long)p->offset,
  2842. &stat_fops);
  2843. }
  2844. static void kvm_exit_debug(void)
  2845. {
  2846. struct kvm_stats_debugfs_item *p;
  2847. for (p = debugfs_entries; p->name; ++p)
  2848. debugfs_remove(p->dentry);
  2849. debugfs_remove(debugfs_dir);
  2850. }
  2851. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2852. {
  2853. hardware_disable(NULL);
  2854. return 0;
  2855. }
  2856. static int kvm_resume(struct sys_device *dev)
  2857. {
  2858. hardware_enable(NULL);
  2859. return 0;
  2860. }
  2861. static struct sysdev_class kvm_sysdev_class = {
  2862. set_kset_name("kvm"),
  2863. .suspend = kvm_suspend,
  2864. .resume = kvm_resume,
  2865. };
  2866. static struct sys_device kvm_sysdev = {
  2867. .id = 0,
  2868. .cls = &kvm_sysdev_class,
  2869. };
  2870. hpa_t bad_page_address;
  2871. static inline
  2872. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2873. {
  2874. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2875. }
  2876. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2877. {
  2878. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2879. kvm_arch_ops->vcpu_load(vcpu, cpu);
  2880. }
  2881. static void kvm_sched_out(struct preempt_notifier *pn,
  2882. struct task_struct *next)
  2883. {
  2884. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2885. kvm_arch_ops->vcpu_put(vcpu);
  2886. }
  2887. int kvm_init_arch(struct kvm_arch_ops *ops, unsigned int vcpu_size,
  2888. struct module *module)
  2889. {
  2890. int r;
  2891. int cpu;
  2892. if (kvm_arch_ops) {
  2893. printk(KERN_ERR "kvm: already loaded the other module\n");
  2894. return -EEXIST;
  2895. }
  2896. if (!ops->cpu_has_kvm_support()) {
  2897. printk(KERN_ERR "kvm: no hardware support\n");
  2898. return -EOPNOTSUPP;
  2899. }
  2900. if (ops->disabled_by_bios()) {
  2901. printk(KERN_ERR "kvm: disabled by bios\n");
  2902. return -EOPNOTSUPP;
  2903. }
  2904. kvm_arch_ops = ops;
  2905. r = kvm_arch_ops->hardware_setup();
  2906. if (r < 0)
  2907. goto out;
  2908. for_each_online_cpu(cpu) {
  2909. smp_call_function_single(cpu,
  2910. kvm_arch_ops->check_processor_compatibility,
  2911. &r, 0, 1);
  2912. if (r < 0)
  2913. goto out_free_0;
  2914. }
  2915. on_each_cpu(hardware_enable, NULL, 0, 1);
  2916. r = register_cpu_notifier(&kvm_cpu_notifier);
  2917. if (r)
  2918. goto out_free_1;
  2919. register_reboot_notifier(&kvm_reboot_notifier);
  2920. r = sysdev_class_register(&kvm_sysdev_class);
  2921. if (r)
  2922. goto out_free_2;
  2923. r = sysdev_register(&kvm_sysdev);
  2924. if (r)
  2925. goto out_free_3;
  2926. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2927. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2928. __alignof__(struct kvm_vcpu), 0, 0);
  2929. if (!kvm_vcpu_cache) {
  2930. r = -ENOMEM;
  2931. goto out_free_4;
  2932. }
  2933. kvm_chardev_ops.owner = module;
  2934. r = misc_register(&kvm_dev);
  2935. if (r) {
  2936. printk (KERN_ERR "kvm: misc device register failed\n");
  2937. goto out_free;
  2938. }
  2939. kvm_preempt_ops.sched_in = kvm_sched_in;
  2940. kvm_preempt_ops.sched_out = kvm_sched_out;
  2941. return r;
  2942. out_free:
  2943. kmem_cache_destroy(kvm_vcpu_cache);
  2944. out_free_4:
  2945. sysdev_unregister(&kvm_sysdev);
  2946. out_free_3:
  2947. sysdev_class_unregister(&kvm_sysdev_class);
  2948. out_free_2:
  2949. unregister_reboot_notifier(&kvm_reboot_notifier);
  2950. unregister_cpu_notifier(&kvm_cpu_notifier);
  2951. out_free_1:
  2952. on_each_cpu(hardware_disable, NULL, 0, 1);
  2953. out_free_0:
  2954. kvm_arch_ops->hardware_unsetup();
  2955. out:
  2956. kvm_arch_ops = NULL;
  2957. return r;
  2958. }
  2959. void kvm_exit_arch(void)
  2960. {
  2961. misc_deregister(&kvm_dev);
  2962. kmem_cache_destroy(kvm_vcpu_cache);
  2963. sysdev_unregister(&kvm_sysdev);
  2964. sysdev_class_unregister(&kvm_sysdev_class);
  2965. unregister_reboot_notifier(&kvm_reboot_notifier);
  2966. unregister_cpu_notifier(&kvm_cpu_notifier);
  2967. on_each_cpu(hardware_disable, NULL, 0, 1);
  2968. kvm_arch_ops->hardware_unsetup();
  2969. kvm_arch_ops = NULL;
  2970. }
  2971. static __init int kvm_init(void)
  2972. {
  2973. static struct page *bad_page;
  2974. int r;
  2975. r = kvm_mmu_module_init();
  2976. if (r)
  2977. goto out4;
  2978. kvm_init_debug();
  2979. kvm_init_msr_list();
  2980. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  2981. r = -ENOMEM;
  2982. goto out;
  2983. }
  2984. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  2985. memset(__va(bad_page_address), 0, PAGE_SIZE);
  2986. return 0;
  2987. out:
  2988. kvm_exit_debug();
  2989. kvm_mmu_module_exit();
  2990. out4:
  2991. return r;
  2992. }
  2993. static __exit void kvm_exit(void)
  2994. {
  2995. kvm_exit_debug();
  2996. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  2997. kvm_mmu_module_exit();
  2998. }
  2999. module_init(kvm_init)
  3000. module_exit(kvm_exit)
  3001. EXPORT_SYMBOL_GPL(kvm_init_arch);
  3002. EXPORT_SYMBOL_GPL(kvm_exit_arch);