mv_xor.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355
  1. /*
  2. * offload engine driver for the Marvell XOR engine
  3. * Copyright (C) 2007, 2008, Marvell International Ltd.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms and conditions of the GNU General Public License,
  7. * version 2, as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/slab.h>
  21. #include <linux/delay.h>
  22. #include <linux/dma-mapping.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/platform_device.h>
  26. #include <linux/memory.h>
  27. #include <plat/mv_xor.h>
  28. #include "dmaengine.h"
  29. #include "mv_xor.h"
  30. static void mv_xor_issue_pending(struct dma_chan *chan);
  31. #define to_mv_xor_chan(chan) \
  32. container_of(chan, struct mv_xor_chan, common)
  33. #define to_mv_xor_device(dev) \
  34. container_of(dev, struct mv_xor_device, common)
  35. #define to_mv_xor_slot(tx) \
  36. container_of(tx, struct mv_xor_desc_slot, async_tx)
  37. static void mv_desc_init(struct mv_xor_desc_slot *desc, unsigned long flags)
  38. {
  39. struct mv_xor_desc *hw_desc = desc->hw_desc;
  40. hw_desc->status = (1 << 31);
  41. hw_desc->phy_next_desc = 0;
  42. hw_desc->desc_command = (1 << 31);
  43. }
  44. static u32 mv_desc_get_dest_addr(struct mv_xor_desc_slot *desc)
  45. {
  46. struct mv_xor_desc *hw_desc = desc->hw_desc;
  47. return hw_desc->phy_dest_addr;
  48. }
  49. static u32 mv_desc_get_src_addr(struct mv_xor_desc_slot *desc,
  50. int src_idx)
  51. {
  52. struct mv_xor_desc *hw_desc = desc->hw_desc;
  53. return hw_desc->phy_src_addr[src_idx];
  54. }
  55. static void mv_desc_set_byte_count(struct mv_xor_desc_slot *desc,
  56. u32 byte_count)
  57. {
  58. struct mv_xor_desc *hw_desc = desc->hw_desc;
  59. hw_desc->byte_count = byte_count;
  60. }
  61. static void mv_desc_set_next_desc(struct mv_xor_desc_slot *desc,
  62. u32 next_desc_addr)
  63. {
  64. struct mv_xor_desc *hw_desc = desc->hw_desc;
  65. BUG_ON(hw_desc->phy_next_desc);
  66. hw_desc->phy_next_desc = next_desc_addr;
  67. }
  68. static void mv_desc_clear_next_desc(struct mv_xor_desc_slot *desc)
  69. {
  70. struct mv_xor_desc *hw_desc = desc->hw_desc;
  71. hw_desc->phy_next_desc = 0;
  72. }
  73. static void mv_desc_set_block_fill_val(struct mv_xor_desc_slot *desc, u32 val)
  74. {
  75. desc->value = val;
  76. }
  77. static void mv_desc_set_dest_addr(struct mv_xor_desc_slot *desc,
  78. dma_addr_t addr)
  79. {
  80. struct mv_xor_desc *hw_desc = desc->hw_desc;
  81. hw_desc->phy_dest_addr = addr;
  82. }
  83. static int mv_chan_memset_slot_count(size_t len)
  84. {
  85. return 1;
  86. }
  87. #define mv_chan_memcpy_slot_count(c) mv_chan_memset_slot_count(c)
  88. static void mv_desc_set_src_addr(struct mv_xor_desc_slot *desc,
  89. int index, dma_addr_t addr)
  90. {
  91. struct mv_xor_desc *hw_desc = desc->hw_desc;
  92. hw_desc->phy_src_addr[index] = addr;
  93. if (desc->type == DMA_XOR)
  94. hw_desc->desc_command |= (1 << index);
  95. }
  96. static u32 mv_chan_get_current_desc(struct mv_xor_chan *chan)
  97. {
  98. return __raw_readl(XOR_CURR_DESC(chan));
  99. }
  100. static void mv_chan_set_next_descriptor(struct mv_xor_chan *chan,
  101. u32 next_desc_addr)
  102. {
  103. __raw_writel(next_desc_addr, XOR_NEXT_DESC(chan));
  104. }
  105. static void mv_chan_set_dest_pointer(struct mv_xor_chan *chan, u32 desc_addr)
  106. {
  107. __raw_writel(desc_addr, XOR_DEST_POINTER(chan));
  108. }
  109. static void mv_chan_set_block_size(struct mv_xor_chan *chan, u32 block_size)
  110. {
  111. __raw_writel(block_size, XOR_BLOCK_SIZE(chan));
  112. }
  113. static void mv_chan_set_value(struct mv_xor_chan *chan, u32 value)
  114. {
  115. __raw_writel(value, XOR_INIT_VALUE_LOW(chan));
  116. __raw_writel(value, XOR_INIT_VALUE_HIGH(chan));
  117. }
  118. static void mv_chan_unmask_interrupts(struct mv_xor_chan *chan)
  119. {
  120. u32 val = __raw_readl(XOR_INTR_MASK(chan));
  121. val |= XOR_INTR_MASK_VALUE << (chan->idx * 16);
  122. __raw_writel(val, XOR_INTR_MASK(chan));
  123. }
  124. static u32 mv_chan_get_intr_cause(struct mv_xor_chan *chan)
  125. {
  126. u32 intr_cause = __raw_readl(XOR_INTR_CAUSE(chan));
  127. intr_cause = (intr_cause >> (chan->idx * 16)) & 0xFFFF;
  128. return intr_cause;
  129. }
  130. static int mv_is_err_intr(u32 intr_cause)
  131. {
  132. if (intr_cause & ((1<<4)|(1<<5)|(1<<6)|(1<<7)|(1<<8)|(1<<9)))
  133. return 1;
  134. return 0;
  135. }
  136. static void mv_xor_device_clear_eoc_cause(struct mv_xor_chan *chan)
  137. {
  138. u32 val = ~(1 << (chan->idx * 16));
  139. dev_dbg(chan->device->common.dev, "%s, val 0x%08x\n", __func__, val);
  140. __raw_writel(val, XOR_INTR_CAUSE(chan));
  141. }
  142. static void mv_xor_device_clear_err_status(struct mv_xor_chan *chan)
  143. {
  144. u32 val = 0xFFFF0000 >> (chan->idx * 16);
  145. __raw_writel(val, XOR_INTR_CAUSE(chan));
  146. }
  147. static int mv_can_chain(struct mv_xor_desc_slot *desc)
  148. {
  149. struct mv_xor_desc_slot *chain_old_tail = list_entry(
  150. desc->chain_node.prev, struct mv_xor_desc_slot, chain_node);
  151. if (chain_old_tail->type != desc->type)
  152. return 0;
  153. if (desc->type == DMA_MEMSET)
  154. return 0;
  155. return 1;
  156. }
  157. static void mv_set_mode(struct mv_xor_chan *chan,
  158. enum dma_transaction_type type)
  159. {
  160. u32 op_mode;
  161. u32 config = __raw_readl(XOR_CONFIG(chan));
  162. switch (type) {
  163. case DMA_XOR:
  164. op_mode = XOR_OPERATION_MODE_XOR;
  165. break;
  166. case DMA_MEMCPY:
  167. op_mode = XOR_OPERATION_MODE_MEMCPY;
  168. break;
  169. case DMA_MEMSET:
  170. op_mode = XOR_OPERATION_MODE_MEMSET;
  171. break;
  172. default:
  173. dev_printk(KERN_ERR, chan->device->common.dev,
  174. "error: unsupported operation %d.\n",
  175. type);
  176. BUG();
  177. return;
  178. }
  179. config &= ~0x7;
  180. config |= op_mode;
  181. __raw_writel(config, XOR_CONFIG(chan));
  182. chan->current_type = type;
  183. }
  184. static void mv_chan_activate(struct mv_xor_chan *chan)
  185. {
  186. u32 activation;
  187. dev_dbg(chan->device->common.dev, " activate chan.\n");
  188. activation = __raw_readl(XOR_ACTIVATION(chan));
  189. activation |= 0x1;
  190. __raw_writel(activation, XOR_ACTIVATION(chan));
  191. }
  192. static char mv_chan_is_busy(struct mv_xor_chan *chan)
  193. {
  194. u32 state = __raw_readl(XOR_ACTIVATION(chan));
  195. state = (state >> 4) & 0x3;
  196. return (state == 1) ? 1 : 0;
  197. }
  198. static int mv_chan_xor_slot_count(size_t len, int src_cnt)
  199. {
  200. return 1;
  201. }
  202. /**
  203. * mv_xor_free_slots - flags descriptor slots for reuse
  204. * @slot: Slot to free
  205. * Caller must hold &mv_chan->lock while calling this function
  206. */
  207. static void mv_xor_free_slots(struct mv_xor_chan *mv_chan,
  208. struct mv_xor_desc_slot *slot)
  209. {
  210. dev_dbg(mv_chan->device->common.dev, "%s %d slot %p\n",
  211. __func__, __LINE__, slot);
  212. slot->slots_per_op = 0;
  213. }
  214. /*
  215. * mv_xor_start_new_chain - program the engine to operate on new chain headed by
  216. * sw_desc
  217. * Caller must hold &mv_chan->lock while calling this function
  218. */
  219. static void mv_xor_start_new_chain(struct mv_xor_chan *mv_chan,
  220. struct mv_xor_desc_slot *sw_desc)
  221. {
  222. dev_dbg(mv_chan->device->common.dev, "%s %d: sw_desc %p\n",
  223. __func__, __LINE__, sw_desc);
  224. if (sw_desc->type != mv_chan->current_type)
  225. mv_set_mode(mv_chan, sw_desc->type);
  226. if (sw_desc->type == DMA_MEMSET) {
  227. /* for memset requests we need to program the engine, no
  228. * descriptors used.
  229. */
  230. struct mv_xor_desc *hw_desc = sw_desc->hw_desc;
  231. mv_chan_set_dest_pointer(mv_chan, hw_desc->phy_dest_addr);
  232. mv_chan_set_block_size(mv_chan, sw_desc->unmap_len);
  233. mv_chan_set_value(mv_chan, sw_desc->value);
  234. } else {
  235. /* set the hardware chain */
  236. mv_chan_set_next_descriptor(mv_chan, sw_desc->async_tx.phys);
  237. }
  238. mv_chan->pending += sw_desc->slot_cnt;
  239. mv_xor_issue_pending(&mv_chan->common);
  240. }
  241. static dma_cookie_t
  242. mv_xor_run_tx_complete_actions(struct mv_xor_desc_slot *desc,
  243. struct mv_xor_chan *mv_chan, dma_cookie_t cookie)
  244. {
  245. BUG_ON(desc->async_tx.cookie < 0);
  246. if (desc->async_tx.cookie > 0) {
  247. cookie = desc->async_tx.cookie;
  248. /* call the callback (must not sleep or submit new
  249. * operations to this channel)
  250. */
  251. if (desc->async_tx.callback)
  252. desc->async_tx.callback(
  253. desc->async_tx.callback_param);
  254. /* unmap dma addresses
  255. * (unmap_single vs unmap_page?)
  256. */
  257. if (desc->group_head && desc->unmap_len) {
  258. struct mv_xor_desc_slot *unmap = desc->group_head;
  259. struct device *dev =
  260. &mv_chan->device->pdev->dev;
  261. u32 len = unmap->unmap_len;
  262. enum dma_ctrl_flags flags = desc->async_tx.flags;
  263. u32 src_cnt;
  264. dma_addr_t addr;
  265. dma_addr_t dest;
  266. src_cnt = unmap->unmap_src_cnt;
  267. dest = mv_desc_get_dest_addr(unmap);
  268. if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
  269. enum dma_data_direction dir;
  270. if (src_cnt > 1) /* is xor ? */
  271. dir = DMA_BIDIRECTIONAL;
  272. else
  273. dir = DMA_FROM_DEVICE;
  274. dma_unmap_page(dev, dest, len, dir);
  275. }
  276. if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  277. while (src_cnt--) {
  278. addr = mv_desc_get_src_addr(unmap,
  279. src_cnt);
  280. if (addr == dest)
  281. continue;
  282. dma_unmap_page(dev, addr, len,
  283. DMA_TO_DEVICE);
  284. }
  285. }
  286. desc->group_head = NULL;
  287. }
  288. }
  289. /* run dependent operations */
  290. dma_run_dependencies(&desc->async_tx);
  291. return cookie;
  292. }
  293. static int
  294. mv_xor_clean_completed_slots(struct mv_xor_chan *mv_chan)
  295. {
  296. struct mv_xor_desc_slot *iter, *_iter;
  297. dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
  298. list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
  299. completed_node) {
  300. if (async_tx_test_ack(&iter->async_tx)) {
  301. list_del(&iter->completed_node);
  302. mv_xor_free_slots(mv_chan, iter);
  303. }
  304. }
  305. return 0;
  306. }
  307. static int
  308. mv_xor_clean_slot(struct mv_xor_desc_slot *desc,
  309. struct mv_xor_chan *mv_chan)
  310. {
  311. dev_dbg(mv_chan->device->common.dev, "%s %d: desc %p flags %d\n",
  312. __func__, __LINE__, desc, desc->async_tx.flags);
  313. list_del(&desc->chain_node);
  314. /* the client is allowed to attach dependent operations
  315. * until 'ack' is set
  316. */
  317. if (!async_tx_test_ack(&desc->async_tx)) {
  318. /* move this slot to the completed_slots */
  319. list_add_tail(&desc->completed_node, &mv_chan->completed_slots);
  320. return 0;
  321. }
  322. mv_xor_free_slots(mv_chan, desc);
  323. return 0;
  324. }
  325. static void __mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
  326. {
  327. struct mv_xor_desc_slot *iter, *_iter;
  328. dma_cookie_t cookie = 0;
  329. int busy = mv_chan_is_busy(mv_chan);
  330. u32 current_desc = mv_chan_get_current_desc(mv_chan);
  331. int seen_current = 0;
  332. dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
  333. dev_dbg(mv_chan->device->common.dev, "current_desc %x\n", current_desc);
  334. mv_xor_clean_completed_slots(mv_chan);
  335. /* free completed slots from the chain starting with
  336. * the oldest descriptor
  337. */
  338. list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
  339. chain_node) {
  340. prefetch(_iter);
  341. prefetch(&_iter->async_tx);
  342. /* do not advance past the current descriptor loaded into the
  343. * hardware channel, subsequent descriptors are either in
  344. * process or have not been submitted
  345. */
  346. if (seen_current)
  347. break;
  348. /* stop the search if we reach the current descriptor and the
  349. * channel is busy
  350. */
  351. if (iter->async_tx.phys == current_desc) {
  352. seen_current = 1;
  353. if (busy)
  354. break;
  355. }
  356. cookie = mv_xor_run_tx_complete_actions(iter, mv_chan, cookie);
  357. if (mv_xor_clean_slot(iter, mv_chan))
  358. break;
  359. }
  360. if ((busy == 0) && !list_empty(&mv_chan->chain)) {
  361. struct mv_xor_desc_slot *chain_head;
  362. chain_head = list_entry(mv_chan->chain.next,
  363. struct mv_xor_desc_slot,
  364. chain_node);
  365. mv_xor_start_new_chain(mv_chan, chain_head);
  366. }
  367. if (cookie > 0)
  368. mv_chan->common.completed_cookie = cookie;
  369. }
  370. static void
  371. mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
  372. {
  373. spin_lock_bh(&mv_chan->lock);
  374. __mv_xor_slot_cleanup(mv_chan);
  375. spin_unlock_bh(&mv_chan->lock);
  376. }
  377. static void mv_xor_tasklet(unsigned long data)
  378. {
  379. struct mv_xor_chan *chan = (struct mv_xor_chan *) data;
  380. mv_xor_slot_cleanup(chan);
  381. }
  382. static struct mv_xor_desc_slot *
  383. mv_xor_alloc_slots(struct mv_xor_chan *mv_chan, int num_slots,
  384. int slots_per_op)
  385. {
  386. struct mv_xor_desc_slot *iter, *_iter, *alloc_start = NULL;
  387. LIST_HEAD(chain);
  388. int slots_found, retry = 0;
  389. /* start search from the last allocated descrtiptor
  390. * if a contiguous allocation can not be found start searching
  391. * from the beginning of the list
  392. */
  393. retry:
  394. slots_found = 0;
  395. if (retry == 0)
  396. iter = mv_chan->last_used;
  397. else
  398. iter = list_entry(&mv_chan->all_slots,
  399. struct mv_xor_desc_slot,
  400. slot_node);
  401. list_for_each_entry_safe_continue(
  402. iter, _iter, &mv_chan->all_slots, slot_node) {
  403. prefetch(_iter);
  404. prefetch(&_iter->async_tx);
  405. if (iter->slots_per_op) {
  406. /* give up after finding the first busy slot
  407. * on the second pass through the list
  408. */
  409. if (retry)
  410. break;
  411. slots_found = 0;
  412. continue;
  413. }
  414. /* start the allocation if the slot is correctly aligned */
  415. if (!slots_found++)
  416. alloc_start = iter;
  417. if (slots_found == num_slots) {
  418. struct mv_xor_desc_slot *alloc_tail = NULL;
  419. struct mv_xor_desc_slot *last_used = NULL;
  420. iter = alloc_start;
  421. while (num_slots) {
  422. int i;
  423. /* pre-ack all but the last descriptor */
  424. async_tx_ack(&iter->async_tx);
  425. list_add_tail(&iter->chain_node, &chain);
  426. alloc_tail = iter;
  427. iter->async_tx.cookie = 0;
  428. iter->slot_cnt = num_slots;
  429. iter->xor_check_result = NULL;
  430. for (i = 0; i < slots_per_op; i++) {
  431. iter->slots_per_op = slots_per_op - i;
  432. last_used = iter;
  433. iter = list_entry(iter->slot_node.next,
  434. struct mv_xor_desc_slot,
  435. slot_node);
  436. }
  437. num_slots -= slots_per_op;
  438. }
  439. alloc_tail->group_head = alloc_start;
  440. alloc_tail->async_tx.cookie = -EBUSY;
  441. list_splice(&chain, &alloc_tail->tx_list);
  442. mv_chan->last_used = last_used;
  443. mv_desc_clear_next_desc(alloc_start);
  444. mv_desc_clear_next_desc(alloc_tail);
  445. return alloc_tail;
  446. }
  447. }
  448. if (!retry++)
  449. goto retry;
  450. /* try to free some slots if the allocation fails */
  451. tasklet_schedule(&mv_chan->irq_tasklet);
  452. return NULL;
  453. }
  454. /************************ DMA engine API functions ****************************/
  455. static dma_cookie_t
  456. mv_xor_tx_submit(struct dma_async_tx_descriptor *tx)
  457. {
  458. struct mv_xor_desc_slot *sw_desc = to_mv_xor_slot(tx);
  459. struct mv_xor_chan *mv_chan = to_mv_xor_chan(tx->chan);
  460. struct mv_xor_desc_slot *grp_start, *old_chain_tail;
  461. dma_cookie_t cookie;
  462. int new_hw_chain = 1;
  463. dev_dbg(mv_chan->device->common.dev,
  464. "%s sw_desc %p: async_tx %p\n",
  465. __func__, sw_desc, &sw_desc->async_tx);
  466. grp_start = sw_desc->group_head;
  467. spin_lock_bh(&mv_chan->lock);
  468. cookie = dma_cookie_assign(tx);
  469. if (list_empty(&mv_chan->chain))
  470. list_splice_init(&sw_desc->tx_list, &mv_chan->chain);
  471. else {
  472. new_hw_chain = 0;
  473. old_chain_tail = list_entry(mv_chan->chain.prev,
  474. struct mv_xor_desc_slot,
  475. chain_node);
  476. list_splice_init(&grp_start->tx_list,
  477. &old_chain_tail->chain_node);
  478. if (!mv_can_chain(grp_start))
  479. goto submit_done;
  480. dev_dbg(mv_chan->device->common.dev, "Append to last desc %x\n",
  481. old_chain_tail->async_tx.phys);
  482. /* fix up the hardware chain */
  483. mv_desc_set_next_desc(old_chain_tail, grp_start->async_tx.phys);
  484. /* if the channel is not busy */
  485. if (!mv_chan_is_busy(mv_chan)) {
  486. u32 current_desc = mv_chan_get_current_desc(mv_chan);
  487. /*
  488. * and the curren desc is the end of the chain before
  489. * the append, then we need to start the channel
  490. */
  491. if (current_desc == old_chain_tail->async_tx.phys)
  492. new_hw_chain = 1;
  493. }
  494. }
  495. if (new_hw_chain)
  496. mv_xor_start_new_chain(mv_chan, grp_start);
  497. submit_done:
  498. spin_unlock_bh(&mv_chan->lock);
  499. return cookie;
  500. }
  501. /* returns the number of allocated descriptors */
  502. static int mv_xor_alloc_chan_resources(struct dma_chan *chan)
  503. {
  504. char *hw_desc;
  505. int idx;
  506. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  507. struct mv_xor_desc_slot *slot = NULL;
  508. struct mv_xor_platform_data *plat_data =
  509. mv_chan->device->pdev->dev.platform_data;
  510. int num_descs_in_pool = plat_data->pool_size/MV_XOR_SLOT_SIZE;
  511. /* Allocate descriptor slots */
  512. idx = mv_chan->slots_allocated;
  513. while (idx < num_descs_in_pool) {
  514. slot = kzalloc(sizeof(*slot), GFP_KERNEL);
  515. if (!slot) {
  516. printk(KERN_INFO "MV XOR Channel only initialized"
  517. " %d descriptor slots", idx);
  518. break;
  519. }
  520. hw_desc = (char *) mv_chan->device->dma_desc_pool_virt;
  521. slot->hw_desc = (void *) &hw_desc[idx * MV_XOR_SLOT_SIZE];
  522. dma_async_tx_descriptor_init(&slot->async_tx, chan);
  523. slot->async_tx.tx_submit = mv_xor_tx_submit;
  524. INIT_LIST_HEAD(&slot->chain_node);
  525. INIT_LIST_HEAD(&slot->slot_node);
  526. INIT_LIST_HEAD(&slot->tx_list);
  527. hw_desc = (char *) mv_chan->device->dma_desc_pool;
  528. slot->async_tx.phys =
  529. (dma_addr_t) &hw_desc[idx * MV_XOR_SLOT_SIZE];
  530. slot->idx = idx++;
  531. spin_lock_bh(&mv_chan->lock);
  532. mv_chan->slots_allocated = idx;
  533. list_add_tail(&slot->slot_node, &mv_chan->all_slots);
  534. spin_unlock_bh(&mv_chan->lock);
  535. }
  536. if (mv_chan->slots_allocated && !mv_chan->last_used)
  537. mv_chan->last_used = list_entry(mv_chan->all_slots.next,
  538. struct mv_xor_desc_slot,
  539. slot_node);
  540. dev_dbg(mv_chan->device->common.dev,
  541. "allocated %d descriptor slots last_used: %p\n",
  542. mv_chan->slots_allocated, mv_chan->last_used);
  543. return mv_chan->slots_allocated ? : -ENOMEM;
  544. }
  545. static struct dma_async_tx_descriptor *
  546. mv_xor_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  547. size_t len, unsigned long flags)
  548. {
  549. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  550. struct mv_xor_desc_slot *sw_desc, *grp_start;
  551. int slot_cnt;
  552. dev_dbg(mv_chan->device->common.dev,
  553. "%s dest: %x src %x len: %u flags: %ld\n",
  554. __func__, dest, src, len, flags);
  555. if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
  556. return NULL;
  557. BUG_ON(len > MV_XOR_MAX_BYTE_COUNT);
  558. spin_lock_bh(&mv_chan->lock);
  559. slot_cnt = mv_chan_memcpy_slot_count(len);
  560. sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
  561. if (sw_desc) {
  562. sw_desc->type = DMA_MEMCPY;
  563. sw_desc->async_tx.flags = flags;
  564. grp_start = sw_desc->group_head;
  565. mv_desc_init(grp_start, flags);
  566. mv_desc_set_byte_count(grp_start, len);
  567. mv_desc_set_dest_addr(sw_desc->group_head, dest);
  568. mv_desc_set_src_addr(grp_start, 0, src);
  569. sw_desc->unmap_src_cnt = 1;
  570. sw_desc->unmap_len = len;
  571. }
  572. spin_unlock_bh(&mv_chan->lock);
  573. dev_dbg(mv_chan->device->common.dev,
  574. "%s sw_desc %p async_tx %p\n",
  575. __func__, sw_desc, sw_desc ? &sw_desc->async_tx : 0);
  576. return sw_desc ? &sw_desc->async_tx : NULL;
  577. }
  578. static struct dma_async_tx_descriptor *
  579. mv_xor_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
  580. size_t len, unsigned long flags)
  581. {
  582. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  583. struct mv_xor_desc_slot *sw_desc, *grp_start;
  584. int slot_cnt;
  585. dev_dbg(mv_chan->device->common.dev,
  586. "%s dest: %x len: %u flags: %ld\n",
  587. __func__, dest, len, flags);
  588. if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
  589. return NULL;
  590. BUG_ON(len > MV_XOR_MAX_BYTE_COUNT);
  591. spin_lock_bh(&mv_chan->lock);
  592. slot_cnt = mv_chan_memset_slot_count(len);
  593. sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
  594. if (sw_desc) {
  595. sw_desc->type = DMA_MEMSET;
  596. sw_desc->async_tx.flags = flags;
  597. grp_start = sw_desc->group_head;
  598. mv_desc_init(grp_start, flags);
  599. mv_desc_set_byte_count(grp_start, len);
  600. mv_desc_set_dest_addr(sw_desc->group_head, dest);
  601. mv_desc_set_block_fill_val(grp_start, value);
  602. sw_desc->unmap_src_cnt = 1;
  603. sw_desc->unmap_len = len;
  604. }
  605. spin_unlock_bh(&mv_chan->lock);
  606. dev_dbg(mv_chan->device->common.dev,
  607. "%s sw_desc %p async_tx %p \n",
  608. __func__, sw_desc, &sw_desc->async_tx);
  609. return sw_desc ? &sw_desc->async_tx : NULL;
  610. }
  611. static struct dma_async_tx_descriptor *
  612. mv_xor_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
  613. unsigned int src_cnt, size_t len, unsigned long flags)
  614. {
  615. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  616. struct mv_xor_desc_slot *sw_desc, *grp_start;
  617. int slot_cnt;
  618. if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
  619. return NULL;
  620. BUG_ON(len > MV_XOR_MAX_BYTE_COUNT);
  621. dev_dbg(mv_chan->device->common.dev,
  622. "%s src_cnt: %d len: dest %x %u flags: %ld\n",
  623. __func__, src_cnt, len, dest, flags);
  624. spin_lock_bh(&mv_chan->lock);
  625. slot_cnt = mv_chan_xor_slot_count(len, src_cnt);
  626. sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
  627. if (sw_desc) {
  628. sw_desc->type = DMA_XOR;
  629. sw_desc->async_tx.flags = flags;
  630. grp_start = sw_desc->group_head;
  631. mv_desc_init(grp_start, flags);
  632. /* the byte count field is the same as in memcpy desc*/
  633. mv_desc_set_byte_count(grp_start, len);
  634. mv_desc_set_dest_addr(sw_desc->group_head, dest);
  635. sw_desc->unmap_src_cnt = src_cnt;
  636. sw_desc->unmap_len = len;
  637. while (src_cnt--)
  638. mv_desc_set_src_addr(grp_start, src_cnt, src[src_cnt]);
  639. }
  640. spin_unlock_bh(&mv_chan->lock);
  641. dev_dbg(mv_chan->device->common.dev,
  642. "%s sw_desc %p async_tx %p \n",
  643. __func__, sw_desc, &sw_desc->async_tx);
  644. return sw_desc ? &sw_desc->async_tx : NULL;
  645. }
  646. static void mv_xor_free_chan_resources(struct dma_chan *chan)
  647. {
  648. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  649. struct mv_xor_desc_slot *iter, *_iter;
  650. int in_use_descs = 0;
  651. mv_xor_slot_cleanup(mv_chan);
  652. spin_lock_bh(&mv_chan->lock);
  653. list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
  654. chain_node) {
  655. in_use_descs++;
  656. list_del(&iter->chain_node);
  657. }
  658. list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
  659. completed_node) {
  660. in_use_descs++;
  661. list_del(&iter->completed_node);
  662. }
  663. list_for_each_entry_safe_reverse(
  664. iter, _iter, &mv_chan->all_slots, slot_node) {
  665. list_del(&iter->slot_node);
  666. kfree(iter);
  667. mv_chan->slots_allocated--;
  668. }
  669. mv_chan->last_used = NULL;
  670. dev_dbg(mv_chan->device->common.dev, "%s slots_allocated %d\n",
  671. __func__, mv_chan->slots_allocated);
  672. spin_unlock_bh(&mv_chan->lock);
  673. if (in_use_descs)
  674. dev_err(mv_chan->device->common.dev,
  675. "freeing %d in use descriptors!\n", in_use_descs);
  676. }
  677. /**
  678. * mv_xor_status - poll the status of an XOR transaction
  679. * @chan: XOR channel handle
  680. * @cookie: XOR transaction identifier
  681. * @txstate: XOR transactions state holder (or NULL)
  682. */
  683. static enum dma_status mv_xor_status(struct dma_chan *chan,
  684. dma_cookie_t cookie,
  685. struct dma_tx_state *txstate)
  686. {
  687. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  688. enum dma_status ret;
  689. ret = dma_cookie_status(chan, cookie, txstate);
  690. if (ret == DMA_SUCCESS) {
  691. mv_xor_clean_completed_slots(mv_chan);
  692. return ret;
  693. }
  694. mv_xor_slot_cleanup(mv_chan);
  695. return dma_cookie_status(chan, cookie, txstate);
  696. }
  697. static void mv_dump_xor_regs(struct mv_xor_chan *chan)
  698. {
  699. u32 val;
  700. val = __raw_readl(XOR_CONFIG(chan));
  701. dev_printk(KERN_ERR, chan->device->common.dev,
  702. "config 0x%08x.\n", val);
  703. val = __raw_readl(XOR_ACTIVATION(chan));
  704. dev_printk(KERN_ERR, chan->device->common.dev,
  705. "activation 0x%08x.\n", val);
  706. val = __raw_readl(XOR_INTR_CAUSE(chan));
  707. dev_printk(KERN_ERR, chan->device->common.dev,
  708. "intr cause 0x%08x.\n", val);
  709. val = __raw_readl(XOR_INTR_MASK(chan));
  710. dev_printk(KERN_ERR, chan->device->common.dev,
  711. "intr mask 0x%08x.\n", val);
  712. val = __raw_readl(XOR_ERROR_CAUSE(chan));
  713. dev_printk(KERN_ERR, chan->device->common.dev,
  714. "error cause 0x%08x.\n", val);
  715. val = __raw_readl(XOR_ERROR_ADDR(chan));
  716. dev_printk(KERN_ERR, chan->device->common.dev,
  717. "error addr 0x%08x.\n", val);
  718. }
  719. static void mv_xor_err_interrupt_handler(struct mv_xor_chan *chan,
  720. u32 intr_cause)
  721. {
  722. if (intr_cause & (1 << 4)) {
  723. dev_dbg(chan->device->common.dev,
  724. "ignore this error\n");
  725. return;
  726. }
  727. dev_printk(KERN_ERR, chan->device->common.dev,
  728. "error on chan %d. intr cause 0x%08x.\n",
  729. chan->idx, intr_cause);
  730. mv_dump_xor_regs(chan);
  731. BUG();
  732. }
  733. static irqreturn_t mv_xor_interrupt_handler(int irq, void *data)
  734. {
  735. struct mv_xor_chan *chan = data;
  736. u32 intr_cause = mv_chan_get_intr_cause(chan);
  737. dev_dbg(chan->device->common.dev, "intr cause %x\n", intr_cause);
  738. if (mv_is_err_intr(intr_cause))
  739. mv_xor_err_interrupt_handler(chan, intr_cause);
  740. tasklet_schedule(&chan->irq_tasklet);
  741. mv_xor_device_clear_eoc_cause(chan);
  742. return IRQ_HANDLED;
  743. }
  744. static void mv_xor_issue_pending(struct dma_chan *chan)
  745. {
  746. struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
  747. if (mv_chan->pending >= MV_XOR_THRESHOLD) {
  748. mv_chan->pending = 0;
  749. mv_chan_activate(mv_chan);
  750. }
  751. }
  752. /*
  753. * Perform a transaction to verify the HW works.
  754. */
  755. #define MV_XOR_TEST_SIZE 2000
  756. static int __devinit mv_xor_memcpy_self_test(struct mv_xor_device *device)
  757. {
  758. int i;
  759. void *src, *dest;
  760. dma_addr_t src_dma, dest_dma;
  761. struct dma_chan *dma_chan;
  762. dma_cookie_t cookie;
  763. struct dma_async_tx_descriptor *tx;
  764. int err = 0;
  765. struct mv_xor_chan *mv_chan;
  766. src = kmalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
  767. if (!src)
  768. return -ENOMEM;
  769. dest = kzalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
  770. if (!dest) {
  771. kfree(src);
  772. return -ENOMEM;
  773. }
  774. /* Fill in src buffer */
  775. for (i = 0; i < MV_XOR_TEST_SIZE; i++)
  776. ((u8 *) src)[i] = (u8)i;
  777. /* Start copy, using first DMA channel */
  778. dma_chan = container_of(device->common.channels.next,
  779. struct dma_chan,
  780. device_node);
  781. if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
  782. err = -ENODEV;
  783. goto out;
  784. }
  785. dest_dma = dma_map_single(dma_chan->device->dev, dest,
  786. MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
  787. src_dma = dma_map_single(dma_chan->device->dev, src,
  788. MV_XOR_TEST_SIZE, DMA_TO_DEVICE);
  789. tx = mv_xor_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
  790. MV_XOR_TEST_SIZE, 0);
  791. cookie = mv_xor_tx_submit(tx);
  792. mv_xor_issue_pending(dma_chan);
  793. async_tx_ack(tx);
  794. msleep(1);
  795. if (mv_xor_status(dma_chan, cookie, NULL) !=
  796. DMA_SUCCESS) {
  797. dev_printk(KERN_ERR, dma_chan->device->dev,
  798. "Self-test copy timed out, disabling\n");
  799. err = -ENODEV;
  800. goto free_resources;
  801. }
  802. mv_chan = to_mv_xor_chan(dma_chan);
  803. dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
  804. MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
  805. if (memcmp(src, dest, MV_XOR_TEST_SIZE)) {
  806. dev_printk(KERN_ERR, dma_chan->device->dev,
  807. "Self-test copy failed compare, disabling\n");
  808. err = -ENODEV;
  809. goto free_resources;
  810. }
  811. free_resources:
  812. mv_xor_free_chan_resources(dma_chan);
  813. out:
  814. kfree(src);
  815. kfree(dest);
  816. return err;
  817. }
  818. #define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */
  819. static int __devinit
  820. mv_xor_xor_self_test(struct mv_xor_device *device)
  821. {
  822. int i, src_idx;
  823. struct page *dest;
  824. struct page *xor_srcs[MV_XOR_NUM_SRC_TEST];
  825. dma_addr_t dma_srcs[MV_XOR_NUM_SRC_TEST];
  826. dma_addr_t dest_dma;
  827. struct dma_async_tx_descriptor *tx;
  828. struct dma_chan *dma_chan;
  829. dma_cookie_t cookie;
  830. u8 cmp_byte = 0;
  831. u32 cmp_word;
  832. int err = 0;
  833. struct mv_xor_chan *mv_chan;
  834. for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
  835. xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
  836. if (!xor_srcs[src_idx]) {
  837. while (src_idx--)
  838. __free_page(xor_srcs[src_idx]);
  839. return -ENOMEM;
  840. }
  841. }
  842. dest = alloc_page(GFP_KERNEL);
  843. if (!dest) {
  844. while (src_idx--)
  845. __free_page(xor_srcs[src_idx]);
  846. return -ENOMEM;
  847. }
  848. /* Fill in src buffers */
  849. for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
  850. u8 *ptr = page_address(xor_srcs[src_idx]);
  851. for (i = 0; i < PAGE_SIZE; i++)
  852. ptr[i] = (1 << src_idx);
  853. }
  854. for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++)
  855. cmp_byte ^= (u8) (1 << src_idx);
  856. cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
  857. (cmp_byte << 8) | cmp_byte;
  858. memset(page_address(dest), 0, PAGE_SIZE);
  859. dma_chan = container_of(device->common.channels.next,
  860. struct dma_chan,
  861. device_node);
  862. if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
  863. err = -ENODEV;
  864. goto out;
  865. }
  866. /* test xor */
  867. dest_dma = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE,
  868. DMA_FROM_DEVICE);
  869. for (i = 0; i < MV_XOR_NUM_SRC_TEST; i++)
  870. dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
  871. 0, PAGE_SIZE, DMA_TO_DEVICE);
  872. tx = mv_xor_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
  873. MV_XOR_NUM_SRC_TEST, PAGE_SIZE, 0);
  874. cookie = mv_xor_tx_submit(tx);
  875. mv_xor_issue_pending(dma_chan);
  876. async_tx_ack(tx);
  877. msleep(8);
  878. if (mv_xor_status(dma_chan, cookie, NULL) !=
  879. DMA_SUCCESS) {
  880. dev_printk(KERN_ERR, dma_chan->device->dev,
  881. "Self-test xor timed out, disabling\n");
  882. err = -ENODEV;
  883. goto free_resources;
  884. }
  885. mv_chan = to_mv_xor_chan(dma_chan);
  886. dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
  887. PAGE_SIZE, DMA_FROM_DEVICE);
  888. for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
  889. u32 *ptr = page_address(dest);
  890. if (ptr[i] != cmp_word) {
  891. dev_printk(KERN_ERR, dma_chan->device->dev,
  892. "Self-test xor failed compare, disabling."
  893. " index %d, data %x, expected %x\n", i,
  894. ptr[i], cmp_word);
  895. err = -ENODEV;
  896. goto free_resources;
  897. }
  898. }
  899. free_resources:
  900. mv_xor_free_chan_resources(dma_chan);
  901. out:
  902. src_idx = MV_XOR_NUM_SRC_TEST;
  903. while (src_idx--)
  904. __free_page(xor_srcs[src_idx]);
  905. __free_page(dest);
  906. return err;
  907. }
  908. static int __devexit mv_xor_remove(struct platform_device *dev)
  909. {
  910. struct mv_xor_device *device = platform_get_drvdata(dev);
  911. struct dma_chan *chan, *_chan;
  912. struct mv_xor_chan *mv_chan;
  913. struct mv_xor_platform_data *plat_data = dev->dev.platform_data;
  914. dma_async_device_unregister(&device->common);
  915. dma_free_coherent(&dev->dev, plat_data->pool_size,
  916. device->dma_desc_pool_virt, device->dma_desc_pool);
  917. list_for_each_entry_safe(chan, _chan, &device->common.channels,
  918. device_node) {
  919. mv_chan = to_mv_xor_chan(chan);
  920. list_del(&chan->device_node);
  921. }
  922. return 0;
  923. }
  924. static int __devinit mv_xor_probe(struct platform_device *pdev)
  925. {
  926. int ret = 0;
  927. int irq;
  928. struct mv_xor_device *adev;
  929. struct mv_xor_chan *mv_chan;
  930. struct dma_device *dma_dev;
  931. struct mv_xor_platform_data *plat_data = pdev->dev.platform_data;
  932. adev = devm_kzalloc(&pdev->dev, sizeof(*adev), GFP_KERNEL);
  933. if (!adev)
  934. return -ENOMEM;
  935. dma_dev = &adev->common;
  936. /* allocate coherent memory for hardware descriptors
  937. * note: writecombine gives slightly better performance, but
  938. * requires that we explicitly flush the writes
  939. */
  940. adev->dma_desc_pool_virt = dma_alloc_writecombine(&pdev->dev,
  941. plat_data->pool_size,
  942. &adev->dma_desc_pool,
  943. GFP_KERNEL);
  944. if (!adev->dma_desc_pool_virt)
  945. return -ENOMEM;
  946. adev->id = plat_data->hw_id;
  947. /* discover transaction capabilites from the platform data */
  948. dma_dev->cap_mask = plat_data->cap_mask;
  949. adev->pdev = pdev;
  950. platform_set_drvdata(pdev, adev);
  951. adev->shared = platform_get_drvdata(plat_data->shared);
  952. INIT_LIST_HEAD(&dma_dev->channels);
  953. /* set base routines */
  954. dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources;
  955. dma_dev->device_free_chan_resources = mv_xor_free_chan_resources;
  956. dma_dev->device_tx_status = mv_xor_status;
  957. dma_dev->device_issue_pending = mv_xor_issue_pending;
  958. dma_dev->dev = &pdev->dev;
  959. /* set prep routines based on capability */
  960. if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
  961. dma_dev->device_prep_dma_memcpy = mv_xor_prep_dma_memcpy;
  962. if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask))
  963. dma_dev->device_prep_dma_memset = mv_xor_prep_dma_memset;
  964. if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
  965. dma_dev->max_xor = 8;
  966. dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor;
  967. }
  968. mv_chan = devm_kzalloc(&pdev->dev, sizeof(*mv_chan), GFP_KERNEL);
  969. if (!mv_chan) {
  970. ret = -ENOMEM;
  971. goto err_free_dma;
  972. }
  973. mv_chan->device = adev;
  974. mv_chan->idx = plat_data->hw_id;
  975. mv_chan->mmr_base = adev->shared->xor_base;
  976. if (!mv_chan->mmr_base) {
  977. ret = -ENOMEM;
  978. goto err_free_dma;
  979. }
  980. tasklet_init(&mv_chan->irq_tasklet, mv_xor_tasklet, (unsigned long)
  981. mv_chan);
  982. /* clear errors before enabling interrupts */
  983. mv_xor_device_clear_err_status(mv_chan);
  984. irq = platform_get_irq(pdev, 0);
  985. if (irq < 0) {
  986. ret = irq;
  987. goto err_free_dma;
  988. }
  989. ret = devm_request_irq(&pdev->dev, irq,
  990. mv_xor_interrupt_handler,
  991. 0, dev_name(&pdev->dev), mv_chan);
  992. if (ret)
  993. goto err_free_dma;
  994. mv_chan_unmask_interrupts(mv_chan);
  995. mv_set_mode(mv_chan, DMA_MEMCPY);
  996. spin_lock_init(&mv_chan->lock);
  997. INIT_LIST_HEAD(&mv_chan->chain);
  998. INIT_LIST_HEAD(&mv_chan->completed_slots);
  999. INIT_LIST_HEAD(&mv_chan->all_slots);
  1000. mv_chan->common.device = dma_dev;
  1001. list_add_tail(&mv_chan->common.device_node, &dma_dev->channels);
  1002. if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
  1003. ret = mv_xor_memcpy_self_test(adev);
  1004. dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
  1005. if (ret)
  1006. goto err_free_dma;
  1007. }
  1008. if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
  1009. ret = mv_xor_xor_self_test(adev);
  1010. dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
  1011. if (ret)
  1012. goto err_free_dma;
  1013. }
  1014. dev_printk(KERN_INFO, &pdev->dev, "Marvell XOR: "
  1015. "( %s%s%s%s)\n",
  1016. dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
  1017. dma_has_cap(DMA_MEMSET, dma_dev->cap_mask) ? "fill " : "",
  1018. dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
  1019. dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
  1020. dma_async_device_register(dma_dev);
  1021. goto out;
  1022. err_free_dma:
  1023. dma_free_coherent(&adev->pdev->dev, plat_data->pool_size,
  1024. adev->dma_desc_pool_virt, adev->dma_desc_pool);
  1025. out:
  1026. return ret;
  1027. }
  1028. static void
  1029. mv_xor_conf_mbus_windows(struct mv_xor_shared_private *msp,
  1030. const struct mbus_dram_target_info *dram)
  1031. {
  1032. void __iomem *base = msp->xor_base;
  1033. u32 win_enable = 0;
  1034. int i;
  1035. for (i = 0; i < 8; i++) {
  1036. writel(0, base + WINDOW_BASE(i));
  1037. writel(0, base + WINDOW_SIZE(i));
  1038. if (i < 4)
  1039. writel(0, base + WINDOW_REMAP_HIGH(i));
  1040. }
  1041. for (i = 0; i < dram->num_cs; i++) {
  1042. const struct mbus_dram_window *cs = dram->cs + i;
  1043. writel((cs->base & 0xffff0000) |
  1044. (cs->mbus_attr << 8) |
  1045. dram->mbus_dram_target_id, base + WINDOW_BASE(i));
  1046. writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i));
  1047. win_enable |= (1 << i);
  1048. win_enable |= 3 << (16 + (2 * i));
  1049. }
  1050. writel(win_enable, base + WINDOW_BAR_ENABLE(0));
  1051. writel(win_enable, base + WINDOW_BAR_ENABLE(1));
  1052. }
  1053. static struct platform_driver mv_xor_driver = {
  1054. .probe = mv_xor_probe,
  1055. .remove = __devexit_p(mv_xor_remove),
  1056. .driver = {
  1057. .owner = THIS_MODULE,
  1058. .name = MV_XOR_NAME,
  1059. },
  1060. };
  1061. static int mv_xor_shared_probe(struct platform_device *pdev)
  1062. {
  1063. const struct mbus_dram_target_info *dram;
  1064. struct mv_xor_shared_private *msp;
  1065. struct resource *res;
  1066. dev_printk(KERN_NOTICE, &pdev->dev, "Marvell shared XOR driver\n");
  1067. msp = devm_kzalloc(&pdev->dev, sizeof(*msp), GFP_KERNEL);
  1068. if (!msp)
  1069. return -ENOMEM;
  1070. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1071. if (!res)
  1072. return -ENODEV;
  1073. msp->xor_base = devm_ioremap(&pdev->dev, res->start,
  1074. resource_size(res));
  1075. if (!msp->xor_base)
  1076. return -EBUSY;
  1077. res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1078. if (!res)
  1079. return -ENODEV;
  1080. msp->xor_high_base = devm_ioremap(&pdev->dev, res->start,
  1081. resource_size(res));
  1082. if (!msp->xor_high_base)
  1083. return -EBUSY;
  1084. platform_set_drvdata(pdev, msp);
  1085. /*
  1086. * (Re-)program MBUS remapping windows if we are asked to.
  1087. */
  1088. dram = mv_mbus_dram_info();
  1089. if (dram)
  1090. mv_xor_conf_mbus_windows(msp, dram);
  1091. return 0;
  1092. }
  1093. static int mv_xor_shared_remove(struct platform_device *pdev)
  1094. {
  1095. return 0;
  1096. }
  1097. static struct platform_driver mv_xor_shared_driver = {
  1098. .probe = mv_xor_shared_probe,
  1099. .remove = mv_xor_shared_remove,
  1100. .driver = {
  1101. .owner = THIS_MODULE,
  1102. .name = MV_XOR_SHARED_NAME,
  1103. },
  1104. };
  1105. static int __init mv_xor_init(void)
  1106. {
  1107. int rc;
  1108. rc = platform_driver_register(&mv_xor_shared_driver);
  1109. if (!rc) {
  1110. rc = platform_driver_register(&mv_xor_driver);
  1111. if (rc)
  1112. platform_driver_unregister(&mv_xor_shared_driver);
  1113. }
  1114. return rc;
  1115. }
  1116. module_init(mv_xor_init);
  1117. /* it's currently unsafe to unload this module */
  1118. #if 0
  1119. static void __exit mv_xor_exit(void)
  1120. {
  1121. platform_driver_unregister(&mv_xor_driver);
  1122. platform_driver_unregister(&mv_xor_shared_driver);
  1123. return;
  1124. }
  1125. module_exit(mv_xor_exit);
  1126. #endif
  1127. MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>");
  1128. MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine");
  1129. MODULE_LICENSE("GPL");