xfrm_state.c 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242
  1. /*
  2. * xfrm_state.c
  3. *
  4. * Changes:
  5. * Mitsuru KANDA @USAGI
  6. * Kazunori MIYAZAWA @USAGI
  7. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  8. * IPv6 support
  9. * YOSHIFUJI Hideaki @USAGI
  10. * Split up af-specific functions
  11. * Derek Atkins <derek@ihtfp.com>
  12. * Add UDP Encapsulation
  13. *
  14. */
  15. #include <linux/workqueue.h>
  16. #include <net/xfrm.h>
  17. #include <linux/pfkeyv2.h>
  18. #include <linux/ipsec.h>
  19. #include <linux/module.h>
  20. #include <linux/cache.h>
  21. #include <linux/audit.h>
  22. #include <asm/uaccess.h>
  23. #include <linux/ktime.h>
  24. #include <linux/slab.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/kernel.h>
  27. #include "xfrm_hash.h"
  28. /* Each xfrm_state may be linked to two tables:
  29. 1. Hash table by (spi,daddr,ah/esp) to find SA by SPI. (input,ctl)
  30. 2. Hash table by (daddr,family,reqid) to find what SAs exist for given
  31. destination/tunnel endpoint. (output)
  32. */
  33. static DEFINE_SPINLOCK(xfrm_state_lock);
  34. static unsigned int xfrm_state_hashmax __read_mostly = 1 * 1024 * 1024;
  35. static struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family);
  36. static void xfrm_state_put_afinfo(struct xfrm_state_afinfo *afinfo);
  37. static inline unsigned int xfrm_dst_hash(struct net *net,
  38. const xfrm_address_t *daddr,
  39. const xfrm_address_t *saddr,
  40. u32 reqid,
  41. unsigned short family)
  42. {
  43. return __xfrm_dst_hash(daddr, saddr, reqid, family, net->xfrm.state_hmask);
  44. }
  45. static inline unsigned int xfrm_src_hash(struct net *net,
  46. const xfrm_address_t *daddr,
  47. const xfrm_address_t *saddr,
  48. unsigned short family)
  49. {
  50. return __xfrm_src_hash(daddr, saddr, family, net->xfrm.state_hmask);
  51. }
  52. static inline unsigned int
  53. xfrm_spi_hash(struct net *net, const xfrm_address_t *daddr,
  54. __be32 spi, u8 proto, unsigned short family)
  55. {
  56. return __xfrm_spi_hash(daddr, spi, proto, family, net->xfrm.state_hmask);
  57. }
  58. static void xfrm_hash_transfer(struct hlist_head *list,
  59. struct hlist_head *ndsttable,
  60. struct hlist_head *nsrctable,
  61. struct hlist_head *nspitable,
  62. unsigned int nhashmask)
  63. {
  64. struct hlist_node *entry, *tmp;
  65. struct xfrm_state *x;
  66. hlist_for_each_entry_safe(x, entry, tmp, list, bydst) {
  67. unsigned int h;
  68. h = __xfrm_dst_hash(&x->id.daddr, &x->props.saddr,
  69. x->props.reqid, x->props.family,
  70. nhashmask);
  71. hlist_add_head(&x->bydst, ndsttable+h);
  72. h = __xfrm_src_hash(&x->id.daddr, &x->props.saddr,
  73. x->props.family,
  74. nhashmask);
  75. hlist_add_head(&x->bysrc, nsrctable+h);
  76. if (x->id.spi) {
  77. h = __xfrm_spi_hash(&x->id.daddr, x->id.spi,
  78. x->id.proto, x->props.family,
  79. nhashmask);
  80. hlist_add_head(&x->byspi, nspitable+h);
  81. }
  82. }
  83. }
  84. static unsigned long xfrm_hash_new_size(unsigned int state_hmask)
  85. {
  86. return ((state_hmask + 1) << 1) * sizeof(struct hlist_head);
  87. }
  88. static DEFINE_MUTEX(hash_resize_mutex);
  89. static void xfrm_hash_resize(struct work_struct *work)
  90. {
  91. struct net *net = container_of(work, struct net, xfrm.state_hash_work);
  92. struct hlist_head *ndst, *nsrc, *nspi, *odst, *osrc, *ospi;
  93. unsigned long nsize, osize;
  94. unsigned int nhashmask, ohashmask;
  95. int i;
  96. mutex_lock(&hash_resize_mutex);
  97. nsize = xfrm_hash_new_size(net->xfrm.state_hmask);
  98. ndst = xfrm_hash_alloc(nsize);
  99. if (!ndst)
  100. goto out_unlock;
  101. nsrc = xfrm_hash_alloc(nsize);
  102. if (!nsrc) {
  103. xfrm_hash_free(ndst, nsize);
  104. goto out_unlock;
  105. }
  106. nspi = xfrm_hash_alloc(nsize);
  107. if (!nspi) {
  108. xfrm_hash_free(ndst, nsize);
  109. xfrm_hash_free(nsrc, nsize);
  110. goto out_unlock;
  111. }
  112. spin_lock_bh(&xfrm_state_lock);
  113. nhashmask = (nsize / sizeof(struct hlist_head)) - 1U;
  114. for (i = net->xfrm.state_hmask; i >= 0; i--)
  115. xfrm_hash_transfer(net->xfrm.state_bydst+i, ndst, nsrc, nspi,
  116. nhashmask);
  117. odst = net->xfrm.state_bydst;
  118. osrc = net->xfrm.state_bysrc;
  119. ospi = net->xfrm.state_byspi;
  120. ohashmask = net->xfrm.state_hmask;
  121. net->xfrm.state_bydst = ndst;
  122. net->xfrm.state_bysrc = nsrc;
  123. net->xfrm.state_byspi = nspi;
  124. net->xfrm.state_hmask = nhashmask;
  125. spin_unlock_bh(&xfrm_state_lock);
  126. osize = (ohashmask + 1) * sizeof(struct hlist_head);
  127. xfrm_hash_free(odst, osize);
  128. xfrm_hash_free(osrc, osize);
  129. xfrm_hash_free(ospi, osize);
  130. out_unlock:
  131. mutex_unlock(&hash_resize_mutex);
  132. }
  133. static DEFINE_RWLOCK(xfrm_state_afinfo_lock);
  134. static struct xfrm_state_afinfo *xfrm_state_afinfo[NPROTO];
  135. static DEFINE_SPINLOCK(xfrm_state_gc_lock);
  136. int __xfrm_state_delete(struct xfrm_state *x);
  137. int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol);
  138. void km_state_expired(struct xfrm_state *x, int hard, u32 portid);
  139. static struct xfrm_state_afinfo *xfrm_state_lock_afinfo(unsigned int family)
  140. {
  141. struct xfrm_state_afinfo *afinfo;
  142. if (unlikely(family >= NPROTO))
  143. return NULL;
  144. write_lock_bh(&xfrm_state_afinfo_lock);
  145. afinfo = xfrm_state_afinfo[family];
  146. if (unlikely(!afinfo))
  147. write_unlock_bh(&xfrm_state_afinfo_lock);
  148. return afinfo;
  149. }
  150. static void xfrm_state_unlock_afinfo(struct xfrm_state_afinfo *afinfo)
  151. __releases(xfrm_state_afinfo_lock)
  152. {
  153. write_unlock_bh(&xfrm_state_afinfo_lock);
  154. }
  155. int xfrm_register_type(const struct xfrm_type *type, unsigned short family)
  156. {
  157. struct xfrm_state_afinfo *afinfo = xfrm_state_lock_afinfo(family);
  158. const struct xfrm_type **typemap;
  159. int err = 0;
  160. if (unlikely(afinfo == NULL))
  161. return -EAFNOSUPPORT;
  162. typemap = afinfo->type_map;
  163. if (likely(typemap[type->proto] == NULL))
  164. typemap[type->proto] = type;
  165. else
  166. err = -EEXIST;
  167. xfrm_state_unlock_afinfo(afinfo);
  168. return err;
  169. }
  170. EXPORT_SYMBOL(xfrm_register_type);
  171. int xfrm_unregister_type(const struct xfrm_type *type, unsigned short family)
  172. {
  173. struct xfrm_state_afinfo *afinfo = xfrm_state_lock_afinfo(family);
  174. const struct xfrm_type **typemap;
  175. int err = 0;
  176. if (unlikely(afinfo == NULL))
  177. return -EAFNOSUPPORT;
  178. typemap = afinfo->type_map;
  179. if (unlikely(typemap[type->proto] != type))
  180. err = -ENOENT;
  181. else
  182. typemap[type->proto] = NULL;
  183. xfrm_state_unlock_afinfo(afinfo);
  184. return err;
  185. }
  186. EXPORT_SYMBOL(xfrm_unregister_type);
  187. static const struct xfrm_type *xfrm_get_type(u8 proto, unsigned short family)
  188. {
  189. struct xfrm_state_afinfo *afinfo;
  190. const struct xfrm_type **typemap;
  191. const struct xfrm_type *type;
  192. int modload_attempted = 0;
  193. retry:
  194. afinfo = xfrm_state_get_afinfo(family);
  195. if (unlikely(afinfo == NULL))
  196. return NULL;
  197. typemap = afinfo->type_map;
  198. type = typemap[proto];
  199. if (unlikely(type && !try_module_get(type->owner)))
  200. type = NULL;
  201. if (!type && !modload_attempted) {
  202. xfrm_state_put_afinfo(afinfo);
  203. request_module("xfrm-type-%d-%d", family, proto);
  204. modload_attempted = 1;
  205. goto retry;
  206. }
  207. xfrm_state_put_afinfo(afinfo);
  208. return type;
  209. }
  210. static void xfrm_put_type(const struct xfrm_type *type)
  211. {
  212. module_put(type->owner);
  213. }
  214. int xfrm_register_mode(struct xfrm_mode *mode, int family)
  215. {
  216. struct xfrm_state_afinfo *afinfo;
  217. struct xfrm_mode **modemap;
  218. int err;
  219. if (unlikely(mode->encap >= XFRM_MODE_MAX))
  220. return -EINVAL;
  221. afinfo = xfrm_state_lock_afinfo(family);
  222. if (unlikely(afinfo == NULL))
  223. return -EAFNOSUPPORT;
  224. err = -EEXIST;
  225. modemap = afinfo->mode_map;
  226. if (modemap[mode->encap])
  227. goto out;
  228. err = -ENOENT;
  229. if (!try_module_get(afinfo->owner))
  230. goto out;
  231. mode->afinfo = afinfo;
  232. modemap[mode->encap] = mode;
  233. err = 0;
  234. out:
  235. xfrm_state_unlock_afinfo(afinfo);
  236. return err;
  237. }
  238. EXPORT_SYMBOL(xfrm_register_mode);
  239. int xfrm_unregister_mode(struct xfrm_mode *mode, int family)
  240. {
  241. struct xfrm_state_afinfo *afinfo;
  242. struct xfrm_mode **modemap;
  243. int err;
  244. if (unlikely(mode->encap >= XFRM_MODE_MAX))
  245. return -EINVAL;
  246. afinfo = xfrm_state_lock_afinfo(family);
  247. if (unlikely(afinfo == NULL))
  248. return -EAFNOSUPPORT;
  249. err = -ENOENT;
  250. modemap = afinfo->mode_map;
  251. if (likely(modemap[mode->encap] == mode)) {
  252. modemap[mode->encap] = NULL;
  253. module_put(mode->afinfo->owner);
  254. err = 0;
  255. }
  256. xfrm_state_unlock_afinfo(afinfo);
  257. return err;
  258. }
  259. EXPORT_SYMBOL(xfrm_unregister_mode);
  260. static struct xfrm_mode *xfrm_get_mode(unsigned int encap, int family)
  261. {
  262. struct xfrm_state_afinfo *afinfo;
  263. struct xfrm_mode *mode;
  264. int modload_attempted = 0;
  265. if (unlikely(encap >= XFRM_MODE_MAX))
  266. return NULL;
  267. retry:
  268. afinfo = xfrm_state_get_afinfo(family);
  269. if (unlikely(afinfo == NULL))
  270. return NULL;
  271. mode = afinfo->mode_map[encap];
  272. if (unlikely(mode && !try_module_get(mode->owner)))
  273. mode = NULL;
  274. if (!mode && !modload_attempted) {
  275. xfrm_state_put_afinfo(afinfo);
  276. request_module("xfrm-mode-%d-%d", family, encap);
  277. modload_attempted = 1;
  278. goto retry;
  279. }
  280. xfrm_state_put_afinfo(afinfo);
  281. return mode;
  282. }
  283. static void xfrm_put_mode(struct xfrm_mode *mode)
  284. {
  285. module_put(mode->owner);
  286. }
  287. static void xfrm_state_gc_destroy(struct xfrm_state *x)
  288. {
  289. tasklet_hrtimer_cancel(&x->mtimer);
  290. del_timer_sync(&x->rtimer);
  291. kfree(x->aalg);
  292. kfree(x->ealg);
  293. kfree(x->calg);
  294. kfree(x->encap);
  295. kfree(x->coaddr);
  296. kfree(x->replay_esn);
  297. kfree(x->preplay_esn);
  298. if (x->inner_mode)
  299. xfrm_put_mode(x->inner_mode);
  300. if (x->inner_mode_iaf)
  301. xfrm_put_mode(x->inner_mode_iaf);
  302. if (x->outer_mode)
  303. xfrm_put_mode(x->outer_mode);
  304. if (x->type) {
  305. x->type->destructor(x);
  306. xfrm_put_type(x->type);
  307. }
  308. security_xfrm_state_free(x);
  309. kfree(x);
  310. }
  311. static void xfrm_state_gc_task(struct work_struct *work)
  312. {
  313. struct net *net = container_of(work, struct net, xfrm.state_gc_work);
  314. struct xfrm_state *x;
  315. struct hlist_node *entry, *tmp;
  316. struct hlist_head gc_list;
  317. spin_lock_bh(&xfrm_state_gc_lock);
  318. hlist_move_list(&net->xfrm.state_gc_list, &gc_list);
  319. spin_unlock_bh(&xfrm_state_gc_lock);
  320. hlist_for_each_entry_safe(x, entry, tmp, &gc_list, gclist)
  321. xfrm_state_gc_destroy(x);
  322. wake_up(&net->xfrm.km_waitq);
  323. }
  324. static inline unsigned long make_jiffies(long secs)
  325. {
  326. if (secs >= (MAX_SCHEDULE_TIMEOUT-1)/HZ)
  327. return MAX_SCHEDULE_TIMEOUT-1;
  328. else
  329. return secs*HZ;
  330. }
  331. static enum hrtimer_restart xfrm_timer_handler(struct hrtimer * me)
  332. {
  333. struct tasklet_hrtimer *thr = container_of(me, struct tasklet_hrtimer, timer);
  334. struct xfrm_state *x = container_of(thr, struct xfrm_state, mtimer);
  335. struct net *net = xs_net(x);
  336. unsigned long now = get_seconds();
  337. long next = LONG_MAX;
  338. int warn = 0;
  339. int err = 0;
  340. spin_lock(&x->lock);
  341. if (x->km.state == XFRM_STATE_DEAD)
  342. goto out;
  343. if (x->km.state == XFRM_STATE_EXPIRED)
  344. goto expired;
  345. if (x->lft.hard_add_expires_seconds) {
  346. long tmo = x->lft.hard_add_expires_seconds +
  347. x->curlft.add_time - now;
  348. if (tmo <= 0) {
  349. if (x->xflags & XFRM_SOFT_EXPIRE) {
  350. /* enter hard expire without soft expire first?!
  351. * setting a new date could trigger this.
  352. * workarbound: fix x->curflt.add_time by below:
  353. */
  354. x->curlft.add_time = now - x->saved_tmo - 1;
  355. tmo = x->lft.hard_add_expires_seconds - x->saved_tmo;
  356. } else
  357. goto expired;
  358. }
  359. if (tmo < next)
  360. next = tmo;
  361. }
  362. if (x->lft.hard_use_expires_seconds) {
  363. long tmo = x->lft.hard_use_expires_seconds +
  364. (x->curlft.use_time ? : now) - now;
  365. if (tmo <= 0)
  366. goto expired;
  367. if (tmo < next)
  368. next = tmo;
  369. }
  370. if (x->km.dying)
  371. goto resched;
  372. if (x->lft.soft_add_expires_seconds) {
  373. long tmo = x->lft.soft_add_expires_seconds +
  374. x->curlft.add_time - now;
  375. if (tmo <= 0) {
  376. warn = 1;
  377. x->xflags &= ~XFRM_SOFT_EXPIRE;
  378. } else if (tmo < next) {
  379. next = tmo;
  380. x->xflags |= XFRM_SOFT_EXPIRE;
  381. x->saved_tmo = tmo;
  382. }
  383. }
  384. if (x->lft.soft_use_expires_seconds) {
  385. long tmo = x->lft.soft_use_expires_seconds +
  386. (x->curlft.use_time ? : now) - now;
  387. if (tmo <= 0)
  388. warn = 1;
  389. else if (tmo < next)
  390. next = tmo;
  391. }
  392. x->km.dying = warn;
  393. if (warn)
  394. km_state_expired(x, 0, 0);
  395. resched:
  396. if (next != LONG_MAX){
  397. tasklet_hrtimer_start(&x->mtimer, ktime_set(next, 0), HRTIMER_MODE_REL);
  398. }
  399. goto out;
  400. expired:
  401. if (x->km.state == XFRM_STATE_ACQ && x->id.spi == 0) {
  402. x->km.state = XFRM_STATE_EXPIRED;
  403. wake_up(&net->xfrm.km_waitq);
  404. next = 2;
  405. goto resched;
  406. }
  407. err = __xfrm_state_delete(x);
  408. if (!err && x->id.spi)
  409. km_state_expired(x, 1, 0);
  410. xfrm_audit_state_delete(x, err ? 0 : 1,
  411. audit_get_loginuid(current),
  412. audit_get_sessionid(current), 0);
  413. out:
  414. spin_unlock(&x->lock);
  415. return HRTIMER_NORESTART;
  416. }
  417. static void xfrm_replay_timer_handler(unsigned long data);
  418. struct xfrm_state *xfrm_state_alloc(struct net *net)
  419. {
  420. struct xfrm_state *x;
  421. x = kzalloc(sizeof(struct xfrm_state), GFP_ATOMIC);
  422. if (x) {
  423. write_pnet(&x->xs_net, net);
  424. atomic_set(&x->refcnt, 1);
  425. atomic_set(&x->tunnel_users, 0);
  426. INIT_LIST_HEAD(&x->km.all);
  427. INIT_HLIST_NODE(&x->bydst);
  428. INIT_HLIST_NODE(&x->bysrc);
  429. INIT_HLIST_NODE(&x->byspi);
  430. tasklet_hrtimer_init(&x->mtimer, xfrm_timer_handler, CLOCK_REALTIME, HRTIMER_MODE_ABS);
  431. setup_timer(&x->rtimer, xfrm_replay_timer_handler,
  432. (unsigned long)x);
  433. x->curlft.add_time = get_seconds();
  434. x->lft.soft_byte_limit = XFRM_INF;
  435. x->lft.soft_packet_limit = XFRM_INF;
  436. x->lft.hard_byte_limit = XFRM_INF;
  437. x->lft.hard_packet_limit = XFRM_INF;
  438. x->replay_maxage = 0;
  439. x->replay_maxdiff = 0;
  440. x->inner_mode = NULL;
  441. x->inner_mode_iaf = NULL;
  442. spin_lock_init(&x->lock);
  443. }
  444. return x;
  445. }
  446. EXPORT_SYMBOL(xfrm_state_alloc);
  447. void __xfrm_state_destroy(struct xfrm_state *x)
  448. {
  449. struct net *net = xs_net(x);
  450. WARN_ON(x->km.state != XFRM_STATE_DEAD);
  451. spin_lock_bh(&xfrm_state_gc_lock);
  452. hlist_add_head(&x->gclist, &net->xfrm.state_gc_list);
  453. spin_unlock_bh(&xfrm_state_gc_lock);
  454. schedule_work(&net->xfrm.state_gc_work);
  455. }
  456. EXPORT_SYMBOL(__xfrm_state_destroy);
  457. int __xfrm_state_delete(struct xfrm_state *x)
  458. {
  459. struct net *net = xs_net(x);
  460. int err = -ESRCH;
  461. if (x->km.state != XFRM_STATE_DEAD) {
  462. x->km.state = XFRM_STATE_DEAD;
  463. spin_lock(&xfrm_state_lock);
  464. list_del(&x->km.all);
  465. hlist_del(&x->bydst);
  466. hlist_del(&x->bysrc);
  467. if (x->id.spi)
  468. hlist_del(&x->byspi);
  469. net->xfrm.state_num--;
  470. spin_unlock(&xfrm_state_lock);
  471. /* All xfrm_state objects are created by xfrm_state_alloc.
  472. * The xfrm_state_alloc call gives a reference, and that
  473. * is what we are dropping here.
  474. */
  475. xfrm_state_put(x);
  476. err = 0;
  477. }
  478. return err;
  479. }
  480. EXPORT_SYMBOL(__xfrm_state_delete);
  481. int xfrm_state_delete(struct xfrm_state *x)
  482. {
  483. int err;
  484. spin_lock_bh(&x->lock);
  485. err = __xfrm_state_delete(x);
  486. spin_unlock_bh(&x->lock);
  487. return err;
  488. }
  489. EXPORT_SYMBOL(xfrm_state_delete);
  490. #ifdef CONFIG_SECURITY_NETWORK_XFRM
  491. static inline int
  492. xfrm_state_flush_secctx_check(struct net *net, u8 proto, struct xfrm_audit *audit_info)
  493. {
  494. int i, err = 0;
  495. for (i = 0; i <= net->xfrm.state_hmask; i++) {
  496. struct hlist_node *entry;
  497. struct xfrm_state *x;
  498. hlist_for_each_entry(x, entry, net->xfrm.state_bydst+i, bydst) {
  499. if (xfrm_id_proto_match(x->id.proto, proto) &&
  500. (err = security_xfrm_state_delete(x)) != 0) {
  501. xfrm_audit_state_delete(x, 0,
  502. audit_info->loginuid,
  503. audit_info->sessionid,
  504. audit_info->secid);
  505. return err;
  506. }
  507. }
  508. }
  509. return err;
  510. }
  511. #else
  512. static inline int
  513. xfrm_state_flush_secctx_check(struct net *net, u8 proto, struct xfrm_audit *audit_info)
  514. {
  515. return 0;
  516. }
  517. #endif
  518. int xfrm_state_flush(struct net *net, u8 proto, struct xfrm_audit *audit_info)
  519. {
  520. int i, err = 0, cnt = 0;
  521. spin_lock_bh(&xfrm_state_lock);
  522. err = xfrm_state_flush_secctx_check(net, proto, audit_info);
  523. if (err)
  524. goto out;
  525. err = -ESRCH;
  526. for (i = 0; i <= net->xfrm.state_hmask; i++) {
  527. struct hlist_node *entry;
  528. struct xfrm_state *x;
  529. restart:
  530. hlist_for_each_entry(x, entry, net->xfrm.state_bydst+i, bydst) {
  531. if (!xfrm_state_kern(x) &&
  532. xfrm_id_proto_match(x->id.proto, proto)) {
  533. xfrm_state_hold(x);
  534. spin_unlock_bh(&xfrm_state_lock);
  535. err = xfrm_state_delete(x);
  536. xfrm_audit_state_delete(x, err ? 0 : 1,
  537. audit_info->loginuid,
  538. audit_info->sessionid,
  539. audit_info->secid);
  540. xfrm_state_put(x);
  541. if (!err)
  542. cnt++;
  543. spin_lock_bh(&xfrm_state_lock);
  544. goto restart;
  545. }
  546. }
  547. }
  548. if (cnt)
  549. err = 0;
  550. out:
  551. spin_unlock_bh(&xfrm_state_lock);
  552. wake_up(&net->xfrm.km_waitq);
  553. return err;
  554. }
  555. EXPORT_SYMBOL(xfrm_state_flush);
  556. void xfrm_sad_getinfo(struct net *net, struct xfrmk_sadinfo *si)
  557. {
  558. spin_lock_bh(&xfrm_state_lock);
  559. si->sadcnt = net->xfrm.state_num;
  560. si->sadhcnt = net->xfrm.state_hmask;
  561. si->sadhmcnt = xfrm_state_hashmax;
  562. spin_unlock_bh(&xfrm_state_lock);
  563. }
  564. EXPORT_SYMBOL(xfrm_sad_getinfo);
  565. static int
  566. xfrm_init_tempstate(struct xfrm_state *x, const struct flowi *fl,
  567. const struct xfrm_tmpl *tmpl,
  568. const xfrm_address_t *daddr, const xfrm_address_t *saddr,
  569. unsigned short family)
  570. {
  571. struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
  572. if (!afinfo)
  573. return -1;
  574. afinfo->init_tempsel(&x->sel, fl);
  575. if (family != tmpl->encap_family) {
  576. xfrm_state_put_afinfo(afinfo);
  577. afinfo = xfrm_state_get_afinfo(tmpl->encap_family);
  578. if (!afinfo)
  579. return -1;
  580. }
  581. afinfo->init_temprop(x, tmpl, daddr, saddr);
  582. xfrm_state_put_afinfo(afinfo);
  583. return 0;
  584. }
  585. static struct xfrm_state *__xfrm_state_lookup(struct net *net, u32 mark,
  586. const xfrm_address_t *daddr,
  587. __be32 spi, u8 proto,
  588. unsigned short family)
  589. {
  590. unsigned int h = xfrm_spi_hash(net, daddr, spi, proto, family);
  591. struct xfrm_state *x;
  592. struct hlist_node *entry;
  593. hlist_for_each_entry(x, entry, net->xfrm.state_byspi+h, byspi) {
  594. if (x->props.family != family ||
  595. x->id.spi != spi ||
  596. x->id.proto != proto ||
  597. xfrm_addr_cmp(&x->id.daddr, daddr, family))
  598. continue;
  599. if ((mark & x->mark.m) != x->mark.v)
  600. continue;
  601. xfrm_state_hold(x);
  602. return x;
  603. }
  604. return NULL;
  605. }
  606. static struct xfrm_state *__xfrm_state_lookup_byaddr(struct net *net, u32 mark,
  607. const xfrm_address_t *daddr,
  608. const xfrm_address_t *saddr,
  609. u8 proto, unsigned short family)
  610. {
  611. unsigned int h = xfrm_src_hash(net, daddr, saddr, family);
  612. struct xfrm_state *x;
  613. struct hlist_node *entry;
  614. hlist_for_each_entry(x, entry, net->xfrm.state_bysrc+h, bysrc) {
  615. if (x->props.family != family ||
  616. x->id.proto != proto ||
  617. xfrm_addr_cmp(&x->id.daddr, daddr, family) ||
  618. xfrm_addr_cmp(&x->props.saddr, saddr, family))
  619. continue;
  620. if ((mark & x->mark.m) != x->mark.v)
  621. continue;
  622. xfrm_state_hold(x);
  623. return x;
  624. }
  625. return NULL;
  626. }
  627. static inline struct xfrm_state *
  628. __xfrm_state_locate(struct xfrm_state *x, int use_spi, int family)
  629. {
  630. struct net *net = xs_net(x);
  631. u32 mark = x->mark.v & x->mark.m;
  632. if (use_spi)
  633. return __xfrm_state_lookup(net, mark, &x->id.daddr,
  634. x->id.spi, x->id.proto, family);
  635. else
  636. return __xfrm_state_lookup_byaddr(net, mark,
  637. &x->id.daddr,
  638. &x->props.saddr,
  639. x->id.proto, family);
  640. }
  641. static void xfrm_hash_grow_check(struct net *net, int have_hash_collision)
  642. {
  643. if (have_hash_collision &&
  644. (net->xfrm.state_hmask + 1) < xfrm_state_hashmax &&
  645. net->xfrm.state_num > net->xfrm.state_hmask)
  646. schedule_work(&net->xfrm.state_hash_work);
  647. }
  648. static void xfrm_state_look_at(struct xfrm_policy *pol, struct xfrm_state *x,
  649. const struct flowi *fl, unsigned short family,
  650. struct xfrm_state **best, int *acq_in_progress,
  651. int *error)
  652. {
  653. /* Resolution logic:
  654. * 1. There is a valid state with matching selector. Done.
  655. * 2. Valid state with inappropriate selector. Skip.
  656. *
  657. * Entering area of "sysdeps".
  658. *
  659. * 3. If state is not valid, selector is temporary, it selects
  660. * only session which triggered previous resolution. Key
  661. * manager will do something to install a state with proper
  662. * selector.
  663. */
  664. if (x->km.state == XFRM_STATE_VALID) {
  665. if ((x->sel.family &&
  666. !xfrm_selector_match(&x->sel, fl, x->sel.family)) ||
  667. !security_xfrm_state_pol_flow_match(x, pol, fl))
  668. return;
  669. if (!*best ||
  670. (*best)->km.dying > x->km.dying ||
  671. ((*best)->km.dying == x->km.dying &&
  672. (*best)->curlft.add_time < x->curlft.add_time))
  673. *best = x;
  674. } else if (x->km.state == XFRM_STATE_ACQ) {
  675. *acq_in_progress = 1;
  676. } else if (x->km.state == XFRM_STATE_ERROR ||
  677. x->km.state == XFRM_STATE_EXPIRED) {
  678. if (xfrm_selector_match(&x->sel, fl, x->sel.family) &&
  679. security_xfrm_state_pol_flow_match(x, pol, fl))
  680. *error = -ESRCH;
  681. }
  682. }
  683. struct xfrm_state *
  684. xfrm_state_find(const xfrm_address_t *daddr, const xfrm_address_t *saddr,
  685. const struct flowi *fl, struct xfrm_tmpl *tmpl,
  686. struct xfrm_policy *pol, int *err,
  687. unsigned short family)
  688. {
  689. static xfrm_address_t saddr_wildcard = { };
  690. struct net *net = xp_net(pol);
  691. unsigned int h, h_wildcard;
  692. struct hlist_node *entry;
  693. struct xfrm_state *x, *x0, *to_put;
  694. int acquire_in_progress = 0;
  695. int error = 0;
  696. struct xfrm_state *best = NULL;
  697. u32 mark = pol->mark.v & pol->mark.m;
  698. unsigned short encap_family = tmpl->encap_family;
  699. to_put = NULL;
  700. spin_lock_bh(&xfrm_state_lock);
  701. h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family);
  702. hlist_for_each_entry(x, entry, net->xfrm.state_bydst+h, bydst) {
  703. if (x->props.family == encap_family &&
  704. x->props.reqid == tmpl->reqid &&
  705. (mark & x->mark.m) == x->mark.v &&
  706. !(x->props.flags & XFRM_STATE_WILDRECV) &&
  707. xfrm_state_addr_check(x, daddr, saddr, encap_family) &&
  708. tmpl->mode == x->props.mode &&
  709. tmpl->id.proto == x->id.proto &&
  710. (tmpl->id.spi == x->id.spi || !tmpl->id.spi))
  711. xfrm_state_look_at(pol, x, fl, encap_family,
  712. &best, &acquire_in_progress, &error);
  713. }
  714. if (best)
  715. goto found;
  716. h_wildcard = xfrm_dst_hash(net, daddr, &saddr_wildcard, tmpl->reqid, encap_family);
  717. hlist_for_each_entry(x, entry, net->xfrm.state_bydst+h_wildcard, bydst) {
  718. if (x->props.family == encap_family &&
  719. x->props.reqid == tmpl->reqid &&
  720. (mark & x->mark.m) == x->mark.v &&
  721. !(x->props.flags & XFRM_STATE_WILDRECV) &&
  722. xfrm_state_addr_check(x, daddr, saddr, encap_family) &&
  723. tmpl->mode == x->props.mode &&
  724. tmpl->id.proto == x->id.proto &&
  725. (tmpl->id.spi == x->id.spi || !tmpl->id.spi))
  726. xfrm_state_look_at(pol, x, fl, encap_family,
  727. &best, &acquire_in_progress, &error);
  728. }
  729. found:
  730. x = best;
  731. if (!x && !error && !acquire_in_progress) {
  732. if (tmpl->id.spi &&
  733. (x0 = __xfrm_state_lookup(net, mark, daddr, tmpl->id.spi,
  734. tmpl->id.proto, encap_family)) != NULL) {
  735. to_put = x0;
  736. error = -EEXIST;
  737. goto out;
  738. }
  739. x = xfrm_state_alloc(net);
  740. if (x == NULL) {
  741. error = -ENOMEM;
  742. goto out;
  743. }
  744. /* Initialize temporary state matching only
  745. * to current session. */
  746. xfrm_init_tempstate(x, fl, tmpl, daddr, saddr, family);
  747. memcpy(&x->mark, &pol->mark, sizeof(x->mark));
  748. error = security_xfrm_state_alloc_acquire(x, pol->security, fl->flowi_secid);
  749. if (error) {
  750. x->km.state = XFRM_STATE_DEAD;
  751. to_put = x;
  752. x = NULL;
  753. goto out;
  754. }
  755. if (km_query(x, tmpl, pol) == 0) {
  756. x->km.state = XFRM_STATE_ACQ;
  757. list_add(&x->km.all, &net->xfrm.state_all);
  758. hlist_add_head(&x->bydst, net->xfrm.state_bydst+h);
  759. h = xfrm_src_hash(net, daddr, saddr, encap_family);
  760. hlist_add_head(&x->bysrc, net->xfrm.state_bysrc+h);
  761. if (x->id.spi) {
  762. h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, encap_family);
  763. hlist_add_head(&x->byspi, net->xfrm.state_byspi+h);
  764. }
  765. x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires;
  766. tasklet_hrtimer_start(&x->mtimer, ktime_set(net->xfrm.sysctl_acq_expires, 0), HRTIMER_MODE_REL);
  767. net->xfrm.state_num++;
  768. xfrm_hash_grow_check(net, x->bydst.next != NULL);
  769. } else {
  770. x->km.state = XFRM_STATE_DEAD;
  771. to_put = x;
  772. x = NULL;
  773. error = -ESRCH;
  774. }
  775. }
  776. out:
  777. if (x)
  778. xfrm_state_hold(x);
  779. else
  780. *err = acquire_in_progress ? -EAGAIN : error;
  781. spin_unlock_bh(&xfrm_state_lock);
  782. if (to_put)
  783. xfrm_state_put(to_put);
  784. return x;
  785. }
  786. struct xfrm_state *
  787. xfrm_stateonly_find(struct net *net, u32 mark,
  788. xfrm_address_t *daddr, xfrm_address_t *saddr,
  789. unsigned short family, u8 mode, u8 proto, u32 reqid)
  790. {
  791. unsigned int h;
  792. struct xfrm_state *rx = NULL, *x = NULL;
  793. struct hlist_node *entry;
  794. spin_lock(&xfrm_state_lock);
  795. h = xfrm_dst_hash(net, daddr, saddr, reqid, family);
  796. hlist_for_each_entry(x, entry, net->xfrm.state_bydst+h, bydst) {
  797. if (x->props.family == family &&
  798. x->props.reqid == reqid &&
  799. (mark & x->mark.m) == x->mark.v &&
  800. !(x->props.flags & XFRM_STATE_WILDRECV) &&
  801. xfrm_state_addr_check(x, daddr, saddr, family) &&
  802. mode == x->props.mode &&
  803. proto == x->id.proto &&
  804. x->km.state == XFRM_STATE_VALID) {
  805. rx = x;
  806. break;
  807. }
  808. }
  809. if (rx)
  810. xfrm_state_hold(rx);
  811. spin_unlock(&xfrm_state_lock);
  812. return rx;
  813. }
  814. EXPORT_SYMBOL(xfrm_stateonly_find);
  815. static void __xfrm_state_insert(struct xfrm_state *x)
  816. {
  817. struct net *net = xs_net(x);
  818. unsigned int h;
  819. list_add(&x->km.all, &net->xfrm.state_all);
  820. h = xfrm_dst_hash(net, &x->id.daddr, &x->props.saddr,
  821. x->props.reqid, x->props.family);
  822. hlist_add_head(&x->bydst, net->xfrm.state_bydst+h);
  823. h = xfrm_src_hash(net, &x->id.daddr, &x->props.saddr, x->props.family);
  824. hlist_add_head(&x->bysrc, net->xfrm.state_bysrc+h);
  825. if (x->id.spi) {
  826. h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto,
  827. x->props.family);
  828. hlist_add_head(&x->byspi, net->xfrm.state_byspi+h);
  829. }
  830. tasklet_hrtimer_start(&x->mtimer, ktime_set(1, 0), HRTIMER_MODE_REL);
  831. if (x->replay_maxage)
  832. mod_timer(&x->rtimer, jiffies + x->replay_maxage);
  833. wake_up(&net->xfrm.km_waitq);
  834. net->xfrm.state_num++;
  835. xfrm_hash_grow_check(net, x->bydst.next != NULL);
  836. }
  837. /* xfrm_state_lock is held */
  838. static void __xfrm_state_bump_genids(struct xfrm_state *xnew)
  839. {
  840. struct net *net = xs_net(xnew);
  841. unsigned short family = xnew->props.family;
  842. u32 reqid = xnew->props.reqid;
  843. struct xfrm_state *x;
  844. struct hlist_node *entry;
  845. unsigned int h;
  846. u32 mark = xnew->mark.v & xnew->mark.m;
  847. h = xfrm_dst_hash(net, &xnew->id.daddr, &xnew->props.saddr, reqid, family);
  848. hlist_for_each_entry(x, entry, net->xfrm.state_bydst+h, bydst) {
  849. if (x->props.family == family &&
  850. x->props.reqid == reqid &&
  851. (mark & x->mark.m) == x->mark.v &&
  852. !xfrm_addr_cmp(&x->id.daddr, &xnew->id.daddr, family) &&
  853. !xfrm_addr_cmp(&x->props.saddr, &xnew->props.saddr, family))
  854. x->genid++;
  855. }
  856. }
  857. void xfrm_state_insert(struct xfrm_state *x)
  858. {
  859. spin_lock_bh(&xfrm_state_lock);
  860. __xfrm_state_bump_genids(x);
  861. __xfrm_state_insert(x);
  862. spin_unlock_bh(&xfrm_state_lock);
  863. }
  864. EXPORT_SYMBOL(xfrm_state_insert);
  865. /* xfrm_state_lock is held */
  866. static struct xfrm_state *__find_acq_core(struct net *net, struct xfrm_mark *m,
  867. unsigned short family, u8 mode,
  868. u32 reqid, u8 proto,
  869. const xfrm_address_t *daddr,
  870. const xfrm_address_t *saddr, int create)
  871. {
  872. unsigned int h = xfrm_dst_hash(net, daddr, saddr, reqid, family);
  873. struct hlist_node *entry;
  874. struct xfrm_state *x;
  875. u32 mark = m->v & m->m;
  876. hlist_for_each_entry(x, entry, net->xfrm.state_bydst+h, bydst) {
  877. if (x->props.reqid != reqid ||
  878. x->props.mode != mode ||
  879. x->props.family != family ||
  880. x->km.state != XFRM_STATE_ACQ ||
  881. x->id.spi != 0 ||
  882. x->id.proto != proto ||
  883. (mark & x->mark.m) != x->mark.v ||
  884. xfrm_addr_cmp(&x->id.daddr, daddr, family) ||
  885. xfrm_addr_cmp(&x->props.saddr, saddr, family))
  886. continue;
  887. xfrm_state_hold(x);
  888. return x;
  889. }
  890. if (!create)
  891. return NULL;
  892. x = xfrm_state_alloc(net);
  893. if (likely(x)) {
  894. switch (family) {
  895. case AF_INET:
  896. x->sel.daddr.a4 = daddr->a4;
  897. x->sel.saddr.a4 = saddr->a4;
  898. x->sel.prefixlen_d = 32;
  899. x->sel.prefixlen_s = 32;
  900. x->props.saddr.a4 = saddr->a4;
  901. x->id.daddr.a4 = daddr->a4;
  902. break;
  903. case AF_INET6:
  904. *(struct in6_addr *)x->sel.daddr.a6 = *(struct in6_addr *)daddr;
  905. *(struct in6_addr *)x->sel.saddr.a6 = *(struct in6_addr *)saddr;
  906. x->sel.prefixlen_d = 128;
  907. x->sel.prefixlen_s = 128;
  908. *(struct in6_addr *)x->props.saddr.a6 = *(struct in6_addr *)saddr;
  909. *(struct in6_addr *)x->id.daddr.a6 = *(struct in6_addr *)daddr;
  910. break;
  911. }
  912. x->km.state = XFRM_STATE_ACQ;
  913. x->id.proto = proto;
  914. x->props.family = family;
  915. x->props.mode = mode;
  916. x->props.reqid = reqid;
  917. x->mark.v = m->v;
  918. x->mark.m = m->m;
  919. x->lft.hard_add_expires_seconds = net->xfrm.sysctl_acq_expires;
  920. xfrm_state_hold(x);
  921. tasklet_hrtimer_start(&x->mtimer, ktime_set(net->xfrm.sysctl_acq_expires, 0), HRTIMER_MODE_REL);
  922. list_add(&x->km.all, &net->xfrm.state_all);
  923. hlist_add_head(&x->bydst, net->xfrm.state_bydst+h);
  924. h = xfrm_src_hash(net, daddr, saddr, family);
  925. hlist_add_head(&x->bysrc, net->xfrm.state_bysrc+h);
  926. net->xfrm.state_num++;
  927. xfrm_hash_grow_check(net, x->bydst.next != NULL);
  928. }
  929. return x;
  930. }
  931. static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq);
  932. int xfrm_state_add(struct xfrm_state *x)
  933. {
  934. struct net *net = xs_net(x);
  935. struct xfrm_state *x1, *to_put;
  936. int family;
  937. int err;
  938. u32 mark = x->mark.v & x->mark.m;
  939. int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY);
  940. family = x->props.family;
  941. to_put = NULL;
  942. spin_lock_bh(&xfrm_state_lock);
  943. x1 = __xfrm_state_locate(x, use_spi, family);
  944. if (x1) {
  945. to_put = x1;
  946. x1 = NULL;
  947. err = -EEXIST;
  948. goto out;
  949. }
  950. if (use_spi && x->km.seq) {
  951. x1 = __xfrm_find_acq_byseq(net, mark, x->km.seq);
  952. if (x1 && ((x1->id.proto != x->id.proto) ||
  953. xfrm_addr_cmp(&x1->id.daddr, &x->id.daddr, family))) {
  954. to_put = x1;
  955. x1 = NULL;
  956. }
  957. }
  958. if (use_spi && !x1)
  959. x1 = __find_acq_core(net, &x->mark, family, x->props.mode,
  960. x->props.reqid, x->id.proto,
  961. &x->id.daddr, &x->props.saddr, 0);
  962. __xfrm_state_bump_genids(x);
  963. __xfrm_state_insert(x);
  964. err = 0;
  965. out:
  966. spin_unlock_bh(&xfrm_state_lock);
  967. if (x1) {
  968. xfrm_state_delete(x1);
  969. xfrm_state_put(x1);
  970. }
  971. if (to_put)
  972. xfrm_state_put(to_put);
  973. return err;
  974. }
  975. EXPORT_SYMBOL(xfrm_state_add);
  976. #ifdef CONFIG_XFRM_MIGRATE
  977. static struct xfrm_state *xfrm_state_clone(struct xfrm_state *orig, int *errp)
  978. {
  979. struct net *net = xs_net(orig);
  980. int err = -ENOMEM;
  981. struct xfrm_state *x = xfrm_state_alloc(net);
  982. if (!x)
  983. goto out;
  984. memcpy(&x->id, &orig->id, sizeof(x->id));
  985. memcpy(&x->sel, &orig->sel, sizeof(x->sel));
  986. memcpy(&x->lft, &orig->lft, sizeof(x->lft));
  987. x->props.mode = orig->props.mode;
  988. x->props.replay_window = orig->props.replay_window;
  989. x->props.reqid = orig->props.reqid;
  990. x->props.family = orig->props.family;
  991. x->props.saddr = orig->props.saddr;
  992. if (orig->aalg) {
  993. x->aalg = xfrm_algo_auth_clone(orig->aalg);
  994. if (!x->aalg)
  995. goto error;
  996. }
  997. x->props.aalgo = orig->props.aalgo;
  998. if (orig->ealg) {
  999. x->ealg = xfrm_algo_clone(orig->ealg);
  1000. if (!x->ealg)
  1001. goto error;
  1002. }
  1003. x->props.ealgo = orig->props.ealgo;
  1004. if (orig->calg) {
  1005. x->calg = xfrm_algo_clone(orig->calg);
  1006. if (!x->calg)
  1007. goto error;
  1008. }
  1009. x->props.calgo = orig->props.calgo;
  1010. if (orig->encap) {
  1011. x->encap = kmemdup(orig->encap, sizeof(*x->encap), GFP_KERNEL);
  1012. if (!x->encap)
  1013. goto error;
  1014. }
  1015. if (orig->coaddr) {
  1016. x->coaddr = kmemdup(orig->coaddr, sizeof(*x->coaddr),
  1017. GFP_KERNEL);
  1018. if (!x->coaddr)
  1019. goto error;
  1020. }
  1021. if (orig->replay_esn) {
  1022. err = xfrm_replay_clone(x, orig);
  1023. if (err)
  1024. goto error;
  1025. }
  1026. memcpy(&x->mark, &orig->mark, sizeof(x->mark));
  1027. err = xfrm_init_state(x);
  1028. if (err)
  1029. goto error;
  1030. x->props.flags = orig->props.flags;
  1031. x->curlft.add_time = orig->curlft.add_time;
  1032. x->km.state = orig->km.state;
  1033. x->km.seq = orig->km.seq;
  1034. return x;
  1035. error:
  1036. xfrm_state_put(x);
  1037. out:
  1038. if (errp)
  1039. *errp = err;
  1040. return NULL;
  1041. }
  1042. /* xfrm_state_lock is held */
  1043. struct xfrm_state * xfrm_migrate_state_find(struct xfrm_migrate *m)
  1044. {
  1045. unsigned int h;
  1046. struct xfrm_state *x;
  1047. struct hlist_node *entry;
  1048. if (m->reqid) {
  1049. h = xfrm_dst_hash(&init_net, &m->old_daddr, &m->old_saddr,
  1050. m->reqid, m->old_family);
  1051. hlist_for_each_entry(x, entry, init_net.xfrm.state_bydst+h, bydst) {
  1052. if (x->props.mode != m->mode ||
  1053. x->id.proto != m->proto)
  1054. continue;
  1055. if (m->reqid && x->props.reqid != m->reqid)
  1056. continue;
  1057. if (xfrm_addr_cmp(&x->id.daddr, &m->old_daddr,
  1058. m->old_family) ||
  1059. xfrm_addr_cmp(&x->props.saddr, &m->old_saddr,
  1060. m->old_family))
  1061. continue;
  1062. xfrm_state_hold(x);
  1063. return x;
  1064. }
  1065. } else {
  1066. h = xfrm_src_hash(&init_net, &m->old_daddr, &m->old_saddr,
  1067. m->old_family);
  1068. hlist_for_each_entry(x, entry, init_net.xfrm.state_bysrc+h, bysrc) {
  1069. if (x->props.mode != m->mode ||
  1070. x->id.proto != m->proto)
  1071. continue;
  1072. if (xfrm_addr_cmp(&x->id.daddr, &m->old_daddr,
  1073. m->old_family) ||
  1074. xfrm_addr_cmp(&x->props.saddr, &m->old_saddr,
  1075. m->old_family))
  1076. continue;
  1077. xfrm_state_hold(x);
  1078. return x;
  1079. }
  1080. }
  1081. return NULL;
  1082. }
  1083. EXPORT_SYMBOL(xfrm_migrate_state_find);
  1084. struct xfrm_state * xfrm_state_migrate(struct xfrm_state *x,
  1085. struct xfrm_migrate *m)
  1086. {
  1087. struct xfrm_state *xc;
  1088. int err;
  1089. xc = xfrm_state_clone(x, &err);
  1090. if (!xc)
  1091. return NULL;
  1092. memcpy(&xc->id.daddr, &m->new_daddr, sizeof(xc->id.daddr));
  1093. memcpy(&xc->props.saddr, &m->new_saddr, sizeof(xc->props.saddr));
  1094. /* add state */
  1095. if (!xfrm_addr_cmp(&x->id.daddr, &m->new_daddr, m->new_family)) {
  1096. /* a care is needed when the destination address of the
  1097. state is to be updated as it is a part of triplet */
  1098. xfrm_state_insert(xc);
  1099. } else {
  1100. if ((err = xfrm_state_add(xc)) < 0)
  1101. goto error;
  1102. }
  1103. return xc;
  1104. error:
  1105. xfrm_state_put(xc);
  1106. return NULL;
  1107. }
  1108. EXPORT_SYMBOL(xfrm_state_migrate);
  1109. #endif
  1110. int xfrm_state_update(struct xfrm_state *x)
  1111. {
  1112. struct xfrm_state *x1, *to_put;
  1113. int err;
  1114. int use_spi = xfrm_id_proto_match(x->id.proto, IPSEC_PROTO_ANY);
  1115. to_put = NULL;
  1116. spin_lock_bh(&xfrm_state_lock);
  1117. x1 = __xfrm_state_locate(x, use_spi, x->props.family);
  1118. err = -ESRCH;
  1119. if (!x1)
  1120. goto out;
  1121. if (xfrm_state_kern(x1)) {
  1122. to_put = x1;
  1123. err = -EEXIST;
  1124. goto out;
  1125. }
  1126. if (x1->km.state == XFRM_STATE_ACQ) {
  1127. __xfrm_state_insert(x);
  1128. x = NULL;
  1129. }
  1130. err = 0;
  1131. out:
  1132. spin_unlock_bh(&xfrm_state_lock);
  1133. if (to_put)
  1134. xfrm_state_put(to_put);
  1135. if (err)
  1136. return err;
  1137. if (!x) {
  1138. xfrm_state_delete(x1);
  1139. xfrm_state_put(x1);
  1140. return 0;
  1141. }
  1142. err = -EINVAL;
  1143. spin_lock_bh(&x1->lock);
  1144. if (likely(x1->km.state == XFRM_STATE_VALID)) {
  1145. if (x->encap && x1->encap)
  1146. memcpy(x1->encap, x->encap, sizeof(*x1->encap));
  1147. if (x->coaddr && x1->coaddr) {
  1148. memcpy(x1->coaddr, x->coaddr, sizeof(*x1->coaddr));
  1149. }
  1150. if (!use_spi && memcmp(&x1->sel, &x->sel, sizeof(x1->sel)))
  1151. memcpy(&x1->sel, &x->sel, sizeof(x1->sel));
  1152. memcpy(&x1->lft, &x->lft, sizeof(x1->lft));
  1153. x1->km.dying = 0;
  1154. tasklet_hrtimer_start(&x1->mtimer, ktime_set(1, 0), HRTIMER_MODE_REL);
  1155. if (x1->curlft.use_time)
  1156. xfrm_state_check_expire(x1);
  1157. err = 0;
  1158. x->km.state = XFRM_STATE_DEAD;
  1159. __xfrm_state_put(x);
  1160. }
  1161. spin_unlock_bh(&x1->lock);
  1162. xfrm_state_put(x1);
  1163. return err;
  1164. }
  1165. EXPORT_SYMBOL(xfrm_state_update);
  1166. int xfrm_state_check_expire(struct xfrm_state *x)
  1167. {
  1168. if (!x->curlft.use_time)
  1169. x->curlft.use_time = get_seconds();
  1170. if (x->km.state != XFRM_STATE_VALID)
  1171. return -EINVAL;
  1172. if (x->curlft.bytes >= x->lft.hard_byte_limit ||
  1173. x->curlft.packets >= x->lft.hard_packet_limit) {
  1174. x->km.state = XFRM_STATE_EXPIRED;
  1175. tasklet_hrtimer_start(&x->mtimer, ktime_set(0,0), HRTIMER_MODE_REL);
  1176. return -EINVAL;
  1177. }
  1178. if (!x->km.dying &&
  1179. (x->curlft.bytes >= x->lft.soft_byte_limit ||
  1180. x->curlft.packets >= x->lft.soft_packet_limit)) {
  1181. x->km.dying = 1;
  1182. km_state_expired(x, 0, 0);
  1183. }
  1184. return 0;
  1185. }
  1186. EXPORT_SYMBOL(xfrm_state_check_expire);
  1187. struct xfrm_state *
  1188. xfrm_state_lookup(struct net *net, u32 mark, const xfrm_address_t *daddr, __be32 spi,
  1189. u8 proto, unsigned short family)
  1190. {
  1191. struct xfrm_state *x;
  1192. spin_lock_bh(&xfrm_state_lock);
  1193. x = __xfrm_state_lookup(net, mark, daddr, spi, proto, family);
  1194. spin_unlock_bh(&xfrm_state_lock);
  1195. return x;
  1196. }
  1197. EXPORT_SYMBOL(xfrm_state_lookup);
  1198. struct xfrm_state *
  1199. xfrm_state_lookup_byaddr(struct net *net, u32 mark,
  1200. const xfrm_address_t *daddr, const xfrm_address_t *saddr,
  1201. u8 proto, unsigned short family)
  1202. {
  1203. struct xfrm_state *x;
  1204. spin_lock_bh(&xfrm_state_lock);
  1205. x = __xfrm_state_lookup_byaddr(net, mark, daddr, saddr, proto, family);
  1206. spin_unlock_bh(&xfrm_state_lock);
  1207. return x;
  1208. }
  1209. EXPORT_SYMBOL(xfrm_state_lookup_byaddr);
  1210. struct xfrm_state *
  1211. xfrm_find_acq(struct net *net, struct xfrm_mark *mark, u8 mode, u32 reqid, u8 proto,
  1212. const xfrm_address_t *daddr, const xfrm_address_t *saddr,
  1213. int create, unsigned short family)
  1214. {
  1215. struct xfrm_state *x;
  1216. spin_lock_bh(&xfrm_state_lock);
  1217. x = __find_acq_core(net, mark, family, mode, reqid, proto, daddr, saddr, create);
  1218. spin_unlock_bh(&xfrm_state_lock);
  1219. return x;
  1220. }
  1221. EXPORT_SYMBOL(xfrm_find_acq);
  1222. #ifdef CONFIG_XFRM_SUB_POLICY
  1223. int
  1224. xfrm_tmpl_sort(struct xfrm_tmpl **dst, struct xfrm_tmpl **src, int n,
  1225. unsigned short family)
  1226. {
  1227. int err = 0;
  1228. struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
  1229. if (!afinfo)
  1230. return -EAFNOSUPPORT;
  1231. spin_lock_bh(&xfrm_state_lock);
  1232. if (afinfo->tmpl_sort)
  1233. err = afinfo->tmpl_sort(dst, src, n);
  1234. spin_unlock_bh(&xfrm_state_lock);
  1235. xfrm_state_put_afinfo(afinfo);
  1236. return err;
  1237. }
  1238. EXPORT_SYMBOL(xfrm_tmpl_sort);
  1239. int
  1240. xfrm_state_sort(struct xfrm_state **dst, struct xfrm_state **src, int n,
  1241. unsigned short family)
  1242. {
  1243. int err = 0;
  1244. struct xfrm_state_afinfo *afinfo = xfrm_state_get_afinfo(family);
  1245. if (!afinfo)
  1246. return -EAFNOSUPPORT;
  1247. spin_lock_bh(&xfrm_state_lock);
  1248. if (afinfo->state_sort)
  1249. err = afinfo->state_sort(dst, src, n);
  1250. spin_unlock_bh(&xfrm_state_lock);
  1251. xfrm_state_put_afinfo(afinfo);
  1252. return err;
  1253. }
  1254. EXPORT_SYMBOL(xfrm_state_sort);
  1255. #endif
  1256. /* Silly enough, but I'm lazy to build resolution list */
  1257. static struct xfrm_state *__xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq)
  1258. {
  1259. int i;
  1260. for (i = 0; i <= net->xfrm.state_hmask; i++) {
  1261. struct hlist_node *entry;
  1262. struct xfrm_state *x;
  1263. hlist_for_each_entry(x, entry, net->xfrm.state_bydst+i, bydst) {
  1264. if (x->km.seq == seq &&
  1265. (mark & x->mark.m) == x->mark.v &&
  1266. x->km.state == XFRM_STATE_ACQ) {
  1267. xfrm_state_hold(x);
  1268. return x;
  1269. }
  1270. }
  1271. }
  1272. return NULL;
  1273. }
  1274. struct xfrm_state *xfrm_find_acq_byseq(struct net *net, u32 mark, u32 seq)
  1275. {
  1276. struct xfrm_state *x;
  1277. spin_lock_bh(&xfrm_state_lock);
  1278. x = __xfrm_find_acq_byseq(net, mark, seq);
  1279. spin_unlock_bh(&xfrm_state_lock);
  1280. return x;
  1281. }
  1282. EXPORT_SYMBOL(xfrm_find_acq_byseq);
  1283. u32 xfrm_get_acqseq(void)
  1284. {
  1285. u32 res;
  1286. static atomic_t acqseq;
  1287. do {
  1288. res = atomic_inc_return(&acqseq);
  1289. } while (!res);
  1290. return res;
  1291. }
  1292. EXPORT_SYMBOL(xfrm_get_acqseq);
  1293. int xfrm_alloc_spi(struct xfrm_state *x, u32 low, u32 high)
  1294. {
  1295. struct net *net = xs_net(x);
  1296. unsigned int h;
  1297. struct xfrm_state *x0;
  1298. int err = -ENOENT;
  1299. __be32 minspi = htonl(low);
  1300. __be32 maxspi = htonl(high);
  1301. u32 mark = x->mark.v & x->mark.m;
  1302. spin_lock_bh(&x->lock);
  1303. if (x->km.state == XFRM_STATE_DEAD)
  1304. goto unlock;
  1305. err = 0;
  1306. if (x->id.spi)
  1307. goto unlock;
  1308. err = -ENOENT;
  1309. if (minspi == maxspi) {
  1310. x0 = xfrm_state_lookup(net, mark, &x->id.daddr, minspi, x->id.proto, x->props.family);
  1311. if (x0) {
  1312. xfrm_state_put(x0);
  1313. goto unlock;
  1314. }
  1315. x->id.spi = minspi;
  1316. } else {
  1317. u32 spi = 0;
  1318. for (h=0; h<high-low+1; h++) {
  1319. spi = low + net_random()%(high-low+1);
  1320. x0 = xfrm_state_lookup(net, mark, &x->id.daddr, htonl(spi), x->id.proto, x->props.family);
  1321. if (x0 == NULL) {
  1322. x->id.spi = htonl(spi);
  1323. break;
  1324. }
  1325. xfrm_state_put(x0);
  1326. }
  1327. }
  1328. if (x->id.spi) {
  1329. spin_lock_bh(&xfrm_state_lock);
  1330. h = xfrm_spi_hash(net, &x->id.daddr, x->id.spi, x->id.proto, x->props.family);
  1331. hlist_add_head(&x->byspi, net->xfrm.state_byspi+h);
  1332. spin_unlock_bh(&xfrm_state_lock);
  1333. err = 0;
  1334. }
  1335. unlock:
  1336. spin_unlock_bh(&x->lock);
  1337. return err;
  1338. }
  1339. EXPORT_SYMBOL(xfrm_alloc_spi);
  1340. int xfrm_state_walk(struct net *net, struct xfrm_state_walk *walk,
  1341. int (*func)(struct xfrm_state *, int, void*),
  1342. void *data)
  1343. {
  1344. struct xfrm_state *state;
  1345. struct xfrm_state_walk *x;
  1346. int err = 0;
  1347. if (walk->seq != 0 && list_empty(&walk->all))
  1348. return 0;
  1349. spin_lock_bh(&xfrm_state_lock);
  1350. if (list_empty(&walk->all))
  1351. x = list_first_entry(&net->xfrm.state_all, struct xfrm_state_walk, all);
  1352. else
  1353. x = list_entry(&walk->all, struct xfrm_state_walk, all);
  1354. list_for_each_entry_from(x, &net->xfrm.state_all, all) {
  1355. if (x->state == XFRM_STATE_DEAD)
  1356. continue;
  1357. state = container_of(x, struct xfrm_state, km);
  1358. if (!xfrm_id_proto_match(state->id.proto, walk->proto))
  1359. continue;
  1360. err = func(state, walk->seq, data);
  1361. if (err) {
  1362. list_move_tail(&walk->all, &x->all);
  1363. goto out;
  1364. }
  1365. walk->seq++;
  1366. }
  1367. if (walk->seq == 0) {
  1368. err = -ENOENT;
  1369. goto out;
  1370. }
  1371. list_del_init(&walk->all);
  1372. out:
  1373. spin_unlock_bh(&xfrm_state_lock);
  1374. return err;
  1375. }
  1376. EXPORT_SYMBOL(xfrm_state_walk);
  1377. void xfrm_state_walk_init(struct xfrm_state_walk *walk, u8 proto)
  1378. {
  1379. INIT_LIST_HEAD(&walk->all);
  1380. walk->proto = proto;
  1381. walk->state = XFRM_STATE_DEAD;
  1382. walk->seq = 0;
  1383. }
  1384. EXPORT_SYMBOL(xfrm_state_walk_init);
  1385. void xfrm_state_walk_done(struct xfrm_state_walk *walk)
  1386. {
  1387. if (list_empty(&walk->all))
  1388. return;
  1389. spin_lock_bh(&xfrm_state_lock);
  1390. list_del(&walk->all);
  1391. spin_unlock_bh(&xfrm_state_lock);
  1392. }
  1393. EXPORT_SYMBOL(xfrm_state_walk_done);
  1394. static void xfrm_replay_timer_handler(unsigned long data)
  1395. {
  1396. struct xfrm_state *x = (struct xfrm_state*)data;
  1397. spin_lock(&x->lock);
  1398. if (x->km.state == XFRM_STATE_VALID) {
  1399. if (xfrm_aevent_is_on(xs_net(x)))
  1400. x->repl->notify(x, XFRM_REPLAY_TIMEOUT);
  1401. else
  1402. x->xflags |= XFRM_TIME_DEFER;
  1403. }
  1404. spin_unlock(&x->lock);
  1405. }
  1406. static LIST_HEAD(xfrm_km_list);
  1407. static DEFINE_RWLOCK(xfrm_km_lock);
  1408. void km_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c)
  1409. {
  1410. struct xfrm_mgr *km;
  1411. read_lock(&xfrm_km_lock);
  1412. list_for_each_entry(km, &xfrm_km_list, list)
  1413. if (km->notify_policy)
  1414. km->notify_policy(xp, dir, c);
  1415. read_unlock(&xfrm_km_lock);
  1416. }
  1417. void km_state_notify(struct xfrm_state *x, const struct km_event *c)
  1418. {
  1419. struct xfrm_mgr *km;
  1420. read_lock(&xfrm_km_lock);
  1421. list_for_each_entry(km, &xfrm_km_list, list)
  1422. if (km->notify)
  1423. km->notify(x, c);
  1424. read_unlock(&xfrm_km_lock);
  1425. }
  1426. EXPORT_SYMBOL(km_policy_notify);
  1427. EXPORT_SYMBOL(km_state_notify);
  1428. void km_state_expired(struct xfrm_state *x, int hard, u32 portid)
  1429. {
  1430. struct net *net = xs_net(x);
  1431. struct km_event c;
  1432. c.data.hard = hard;
  1433. c.portid = portid;
  1434. c.event = XFRM_MSG_EXPIRE;
  1435. km_state_notify(x, &c);
  1436. if (hard)
  1437. wake_up(&net->xfrm.km_waitq);
  1438. }
  1439. EXPORT_SYMBOL(km_state_expired);
  1440. /*
  1441. * We send to all registered managers regardless of failure
  1442. * We are happy with one success
  1443. */
  1444. int km_query(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *pol)
  1445. {
  1446. int err = -EINVAL, acqret;
  1447. struct xfrm_mgr *km;
  1448. read_lock(&xfrm_km_lock);
  1449. list_for_each_entry(km, &xfrm_km_list, list) {
  1450. acqret = km->acquire(x, t, pol);
  1451. if (!acqret)
  1452. err = acqret;
  1453. }
  1454. read_unlock(&xfrm_km_lock);
  1455. return err;
  1456. }
  1457. EXPORT_SYMBOL(km_query);
  1458. int km_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  1459. {
  1460. int err = -EINVAL;
  1461. struct xfrm_mgr *km;
  1462. read_lock(&xfrm_km_lock);
  1463. list_for_each_entry(km, &xfrm_km_list, list) {
  1464. if (km->new_mapping)
  1465. err = km->new_mapping(x, ipaddr, sport);
  1466. if (!err)
  1467. break;
  1468. }
  1469. read_unlock(&xfrm_km_lock);
  1470. return err;
  1471. }
  1472. EXPORT_SYMBOL(km_new_mapping);
  1473. void km_policy_expired(struct xfrm_policy *pol, int dir, int hard, u32 portid)
  1474. {
  1475. struct net *net = xp_net(pol);
  1476. struct km_event c;
  1477. c.data.hard = hard;
  1478. c.portid = portid;
  1479. c.event = XFRM_MSG_POLEXPIRE;
  1480. km_policy_notify(pol, dir, &c);
  1481. if (hard)
  1482. wake_up(&net->xfrm.km_waitq);
  1483. }
  1484. EXPORT_SYMBOL(km_policy_expired);
  1485. #ifdef CONFIG_XFRM_MIGRATE
  1486. int km_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
  1487. const struct xfrm_migrate *m, int num_migrate,
  1488. const struct xfrm_kmaddress *k)
  1489. {
  1490. int err = -EINVAL;
  1491. int ret;
  1492. struct xfrm_mgr *km;
  1493. read_lock(&xfrm_km_lock);
  1494. list_for_each_entry(km, &xfrm_km_list, list) {
  1495. if (km->migrate) {
  1496. ret = km->migrate(sel, dir, type, m, num_migrate, k);
  1497. if (!ret)
  1498. err = ret;
  1499. }
  1500. }
  1501. read_unlock(&xfrm_km_lock);
  1502. return err;
  1503. }
  1504. EXPORT_SYMBOL(km_migrate);
  1505. #endif
  1506. int km_report(struct net *net, u8 proto, struct xfrm_selector *sel, xfrm_address_t *addr)
  1507. {
  1508. int err = -EINVAL;
  1509. int ret;
  1510. struct xfrm_mgr *km;
  1511. read_lock(&xfrm_km_lock);
  1512. list_for_each_entry(km, &xfrm_km_list, list) {
  1513. if (km->report) {
  1514. ret = km->report(net, proto, sel, addr);
  1515. if (!ret)
  1516. err = ret;
  1517. }
  1518. }
  1519. read_unlock(&xfrm_km_lock);
  1520. return err;
  1521. }
  1522. EXPORT_SYMBOL(km_report);
  1523. int xfrm_user_policy(struct sock *sk, int optname, u8 __user *optval, int optlen)
  1524. {
  1525. int err;
  1526. u8 *data;
  1527. struct xfrm_mgr *km;
  1528. struct xfrm_policy *pol = NULL;
  1529. if (optlen <= 0 || optlen > PAGE_SIZE)
  1530. return -EMSGSIZE;
  1531. data = kmalloc(optlen, GFP_KERNEL);
  1532. if (!data)
  1533. return -ENOMEM;
  1534. err = -EFAULT;
  1535. if (copy_from_user(data, optval, optlen))
  1536. goto out;
  1537. err = -EINVAL;
  1538. read_lock(&xfrm_km_lock);
  1539. list_for_each_entry(km, &xfrm_km_list, list) {
  1540. pol = km->compile_policy(sk, optname, data,
  1541. optlen, &err);
  1542. if (err >= 0)
  1543. break;
  1544. }
  1545. read_unlock(&xfrm_km_lock);
  1546. if (err >= 0) {
  1547. xfrm_sk_policy_insert(sk, err, pol);
  1548. xfrm_pol_put(pol);
  1549. err = 0;
  1550. }
  1551. out:
  1552. kfree(data);
  1553. return err;
  1554. }
  1555. EXPORT_SYMBOL(xfrm_user_policy);
  1556. int xfrm_register_km(struct xfrm_mgr *km)
  1557. {
  1558. write_lock_bh(&xfrm_km_lock);
  1559. list_add_tail(&km->list, &xfrm_km_list);
  1560. write_unlock_bh(&xfrm_km_lock);
  1561. return 0;
  1562. }
  1563. EXPORT_SYMBOL(xfrm_register_km);
  1564. int xfrm_unregister_km(struct xfrm_mgr *km)
  1565. {
  1566. write_lock_bh(&xfrm_km_lock);
  1567. list_del(&km->list);
  1568. write_unlock_bh(&xfrm_km_lock);
  1569. return 0;
  1570. }
  1571. EXPORT_SYMBOL(xfrm_unregister_km);
  1572. int xfrm_state_register_afinfo(struct xfrm_state_afinfo *afinfo)
  1573. {
  1574. int err = 0;
  1575. if (unlikely(afinfo == NULL))
  1576. return -EINVAL;
  1577. if (unlikely(afinfo->family >= NPROTO))
  1578. return -EAFNOSUPPORT;
  1579. write_lock_bh(&xfrm_state_afinfo_lock);
  1580. if (unlikely(xfrm_state_afinfo[afinfo->family] != NULL))
  1581. err = -ENOBUFS;
  1582. else
  1583. xfrm_state_afinfo[afinfo->family] = afinfo;
  1584. write_unlock_bh(&xfrm_state_afinfo_lock);
  1585. return err;
  1586. }
  1587. EXPORT_SYMBOL(xfrm_state_register_afinfo);
  1588. int xfrm_state_unregister_afinfo(struct xfrm_state_afinfo *afinfo)
  1589. {
  1590. int err = 0;
  1591. if (unlikely(afinfo == NULL))
  1592. return -EINVAL;
  1593. if (unlikely(afinfo->family >= NPROTO))
  1594. return -EAFNOSUPPORT;
  1595. write_lock_bh(&xfrm_state_afinfo_lock);
  1596. if (likely(xfrm_state_afinfo[afinfo->family] != NULL)) {
  1597. if (unlikely(xfrm_state_afinfo[afinfo->family] != afinfo))
  1598. err = -EINVAL;
  1599. else
  1600. xfrm_state_afinfo[afinfo->family] = NULL;
  1601. }
  1602. write_unlock_bh(&xfrm_state_afinfo_lock);
  1603. return err;
  1604. }
  1605. EXPORT_SYMBOL(xfrm_state_unregister_afinfo);
  1606. static struct xfrm_state_afinfo *xfrm_state_get_afinfo(unsigned int family)
  1607. {
  1608. struct xfrm_state_afinfo *afinfo;
  1609. if (unlikely(family >= NPROTO))
  1610. return NULL;
  1611. read_lock(&xfrm_state_afinfo_lock);
  1612. afinfo = xfrm_state_afinfo[family];
  1613. if (unlikely(!afinfo))
  1614. read_unlock(&xfrm_state_afinfo_lock);
  1615. return afinfo;
  1616. }
  1617. static void xfrm_state_put_afinfo(struct xfrm_state_afinfo *afinfo)
  1618. __releases(xfrm_state_afinfo_lock)
  1619. {
  1620. read_unlock(&xfrm_state_afinfo_lock);
  1621. }
  1622. /* Temporarily located here until net/xfrm/xfrm_tunnel.c is created */
  1623. void xfrm_state_delete_tunnel(struct xfrm_state *x)
  1624. {
  1625. if (x->tunnel) {
  1626. struct xfrm_state *t = x->tunnel;
  1627. if (atomic_read(&t->tunnel_users) == 2)
  1628. xfrm_state_delete(t);
  1629. atomic_dec(&t->tunnel_users);
  1630. xfrm_state_put(t);
  1631. x->tunnel = NULL;
  1632. }
  1633. }
  1634. EXPORT_SYMBOL(xfrm_state_delete_tunnel);
  1635. int xfrm_state_mtu(struct xfrm_state *x, int mtu)
  1636. {
  1637. int res;
  1638. spin_lock_bh(&x->lock);
  1639. if (x->km.state == XFRM_STATE_VALID &&
  1640. x->type && x->type->get_mtu)
  1641. res = x->type->get_mtu(x, mtu);
  1642. else
  1643. res = mtu - x->props.header_len;
  1644. spin_unlock_bh(&x->lock);
  1645. return res;
  1646. }
  1647. int __xfrm_init_state(struct xfrm_state *x, bool init_replay)
  1648. {
  1649. struct xfrm_state_afinfo *afinfo;
  1650. struct xfrm_mode *inner_mode;
  1651. int family = x->props.family;
  1652. int err;
  1653. err = -EAFNOSUPPORT;
  1654. afinfo = xfrm_state_get_afinfo(family);
  1655. if (!afinfo)
  1656. goto error;
  1657. err = 0;
  1658. if (afinfo->init_flags)
  1659. err = afinfo->init_flags(x);
  1660. xfrm_state_put_afinfo(afinfo);
  1661. if (err)
  1662. goto error;
  1663. err = -EPROTONOSUPPORT;
  1664. if (x->sel.family != AF_UNSPEC) {
  1665. inner_mode = xfrm_get_mode(x->props.mode, x->sel.family);
  1666. if (inner_mode == NULL)
  1667. goto error;
  1668. if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL) &&
  1669. family != x->sel.family) {
  1670. xfrm_put_mode(inner_mode);
  1671. goto error;
  1672. }
  1673. x->inner_mode = inner_mode;
  1674. } else {
  1675. struct xfrm_mode *inner_mode_iaf;
  1676. int iafamily = AF_INET;
  1677. inner_mode = xfrm_get_mode(x->props.mode, x->props.family);
  1678. if (inner_mode == NULL)
  1679. goto error;
  1680. if (!(inner_mode->flags & XFRM_MODE_FLAG_TUNNEL)) {
  1681. xfrm_put_mode(inner_mode);
  1682. goto error;
  1683. }
  1684. x->inner_mode = inner_mode;
  1685. if (x->props.family == AF_INET)
  1686. iafamily = AF_INET6;
  1687. inner_mode_iaf = xfrm_get_mode(x->props.mode, iafamily);
  1688. if (inner_mode_iaf) {
  1689. if (inner_mode_iaf->flags & XFRM_MODE_FLAG_TUNNEL)
  1690. x->inner_mode_iaf = inner_mode_iaf;
  1691. else
  1692. xfrm_put_mode(inner_mode_iaf);
  1693. }
  1694. }
  1695. x->type = xfrm_get_type(x->id.proto, family);
  1696. if (x->type == NULL)
  1697. goto error;
  1698. err = x->type->init_state(x);
  1699. if (err)
  1700. goto error;
  1701. x->outer_mode = xfrm_get_mode(x->props.mode, family);
  1702. if (x->outer_mode == NULL) {
  1703. err = -EPROTONOSUPPORT;
  1704. goto error;
  1705. }
  1706. if (init_replay) {
  1707. err = xfrm_init_replay(x);
  1708. if (err)
  1709. goto error;
  1710. }
  1711. x->km.state = XFRM_STATE_VALID;
  1712. error:
  1713. return err;
  1714. }
  1715. EXPORT_SYMBOL(__xfrm_init_state);
  1716. int xfrm_init_state(struct xfrm_state *x)
  1717. {
  1718. return __xfrm_init_state(x, true);
  1719. }
  1720. EXPORT_SYMBOL(xfrm_init_state);
  1721. int __net_init xfrm_state_init(struct net *net)
  1722. {
  1723. unsigned int sz;
  1724. INIT_LIST_HEAD(&net->xfrm.state_all);
  1725. sz = sizeof(struct hlist_head) * 8;
  1726. net->xfrm.state_bydst = xfrm_hash_alloc(sz);
  1727. if (!net->xfrm.state_bydst)
  1728. goto out_bydst;
  1729. net->xfrm.state_bysrc = xfrm_hash_alloc(sz);
  1730. if (!net->xfrm.state_bysrc)
  1731. goto out_bysrc;
  1732. net->xfrm.state_byspi = xfrm_hash_alloc(sz);
  1733. if (!net->xfrm.state_byspi)
  1734. goto out_byspi;
  1735. net->xfrm.state_hmask = ((sz / sizeof(struct hlist_head)) - 1);
  1736. net->xfrm.state_num = 0;
  1737. INIT_WORK(&net->xfrm.state_hash_work, xfrm_hash_resize);
  1738. INIT_HLIST_HEAD(&net->xfrm.state_gc_list);
  1739. INIT_WORK(&net->xfrm.state_gc_work, xfrm_state_gc_task);
  1740. init_waitqueue_head(&net->xfrm.km_waitq);
  1741. return 0;
  1742. out_byspi:
  1743. xfrm_hash_free(net->xfrm.state_bysrc, sz);
  1744. out_bysrc:
  1745. xfrm_hash_free(net->xfrm.state_bydst, sz);
  1746. out_bydst:
  1747. return -ENOMEM;
  1748. }
  1749. void xfrm_state_fini(struct net *net)
  1750. {
  1751. struct xfrm_audit audit_info;
  1752. unsigned int sz;
  1753. flush_work(&net->xfrm.state_hash_work);
  1754. audit_info.loginuid = INVALID_UID;
  1755. audit_info.sessionid = -1;
  1756. audit_info.secid = 0;
  1757. xfrm_state_flush(net, IPSEC_PROTO_ANY, &audit_info);
  1758. flush_work(&net->xfrm.state_gc_work);
  1759. WARN_ON(!list_empty(&net->xfrm.state_all));
  1760. sz = (net->xfrm.state_hmask + 1) * sizeof(struct hlist_head);
  1761. WARN_ON(!hlist_empty(net->xfrm.state_byspi));
  1762. xfrm_hash_free(net->xfrm.state_byspi, sz);
  1763. WARN_ON(!hlist_empty(net->xfrm.state_bysrc));
  1764. xfrm_hash_free(net->xfrm.state_bysrc, sz);
  1765. WARN_ON(!hlist_empty(net->xfrm.state_bydst));
  1766. xfrm_hash_free(net->xfrm.state_bydst, sz);
  1767. }
  1768. #ifdef CONFIG_AUDITSYSCALL
  1769. static void xfrm_audit_helper_sainfo(struct xfrm_state *x,
  1770. struct audit_buffer *audit_buf)
  1771. {
  1772. struct xfrm_sec_ctx *ctx = x->security;
  1773. u32 spi = ntohl(x->id.spi);
  1774. if (ctx)
  1775. audit_log_format(audit_buf, " sec_alg=%u sec_doi=%u sec_obj=%s",
  1776. ctx->ctx_alg, ctx->ctx_doi, ctx->ctx_str);
  1777. switch(x->props.family) {
  1778. case AF_INET:
  1779. audit_log_format(audit_buf, " src=%pI4 dst=%pI4",
  1780. &x->props.saddr.a4, &x->id.daddr.a4);
  1781. break;
  1782. case AF_INET6:
  1783. audit_log_format(audit_buf, " src=%pI6 dst=%pI6",
  1784. x->props.saddr.a6, x->id.daddr.a6);
  1785. break;
  1786. }
  1787. audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi);
  1788. }
  1789. static void xfrm_audit_helper_pktinfo(struct sk_buff *skb, u16 family,
  1790. struct audit_buffer *audit_buf)
  1791. {
  1792. const struct iphdr *iph4;
  1793. const struct ipv6hdr *iph6;
  1794. switch (family) {
  1795. case AF_INET:
  1796. iph4 = ip_hdr(skb);
  1797. audit_log_format(audit_buf, " src=%pI4 dst=%pI4",
  1798. &iph4->saddr, &iph4->daddr);
  1799. break;
  1800. case AF_INET6:
  1801. iph6 = ipv6_hdr(skb);
  1802. audit_log_format(audit_buf,
  1803. " src=%pI6 dst=%pI6 flowlbl=0x%x%02x%02x",
  1804. &iph6->saddr,&iph6->daddr,
  1805. iph6->flow_lbl[0] & 0x0f,
  1806. iph6->flow_lbl[1],
  1807. iph6->flow_lbl[2]);
  1808. break;
  1809. }
  1810. }
  1811. void xfrm_audit_state_add(struct xfrm_state *x, int result,
  1812. kuid_t auid, u32 sessionid, u32 secid)
  1813. {
  1814. struct audit_buffer *audit_buf;
  1815. audit_buf = xfrm_audit_start("SAD-add");
  1816. if (audit_buf == NULL)
  1817. return;
  1818. xfrm_audit_helper_usrinfo(auid, sessionid, secid, audit_buf);
  1819. xfrm_audit_helper_sainfo(x, audit_buf);
  1820. audit_log_format(audit_buf, " res=%u", result);
  1821. audit_log_end(audit_buf);
  1822. }
  1823. EXPORT_SYMBOL_GPL(xfrm_audit_state_add);
  1824. void xfrm_audit_state_delete(struct xfrm_state *x, int result,
  1825. kuid_t auid, u32 sessionid, u32 secid)
  1826. {
  1827. struct audit_buffer *audit_buf;
  1828. audit_buf = xfrm_audit_start("SAD-delete");
  1829. if (audit_buf == NULL)
  1830. return;
  1831. xfrm_audit_helper_usrinfo(auid, sessionid, secid, audit_buf);
  1832. xfrm_audit_helper_sainfo(x, audit_buf);
  1833. audit_log_format(audit_buf, " res=%u", result);
  1834. audit_log_end(audit_buf);
  1835. }
  1836. EXPORT_SYMBOL_GPL(xfrm_audit_state_delete);
  1837. void xfrm_audit_state_replay_overflow(struct xfrm_state *x,
  1838. struct sk_buff *skb)
  1839. {
  1840. struct audit_buffer *audit_buf;
  1841. u32 spi;
  1842. audit_buf = xfrm_audit_start("SA-replay-overflow");
  1843. if (audit_buf == NULL)
  1844. return;
  1845. xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
  1846. /* don't record the sequence number because it's inherent in this kind
  1847. * of audit message */
  1848. spi = ntohl(x->id.spi);
  1849. audit_log_format(audit_buf, " spi=%u(0x%x)", spi, spi);
  1850. audit_log_end(audit_buf);
  1851. }
  1852. EXPORT_SYMBOL_GPL(xfrm_audit_state_replay_overflow);
  1853. void xfrm_audit_state_replay(struct xfrm_state *x,
  1854. struct sk_buff *skb, __be32 net_seq)
  1855. {
  1856. struct audit_buffer *audit_buf;
  1857. u32 spi;
  1858. audit_buf = xfrm_audit_start("SA-replayed-pkt");
  1859. if (audit_buf == NULL)
  1860. return;
  1861. xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
  1862. spi = ntohl(x->id.spi);
  1863. audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
  1864. spi, spi, ntohl(net_seq));
  1865. audit_log_end(audit_buf);
  1866. }
  1867. EXPORT_SYMBOL_GPL(xfrm_audit_state_replay);
  1868. void xfrm_audit_state_notfound_simple(struct sk_buff *skb, u16 family)
  1869. {
  1870. struct audit_buffer *audit_buf;
  1871. audit_buf = xfrm_audit_start("SA-notfound");
  1872. if (audit_buf == NULL)
  1873. return;
  1874. xfrm_audit_helper_pktinfo(skb, family, audit_buf);
  1875. audit_log_end(audit_buf);
  1876. }
  1877. EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound_simple);
  1878. void xfrm_audit_state_notfound(struct sk_buff *skb, u16 family,
  1879. __be32 net_spi, __be32 net_seq)
  1880. {
  1881. struct audit_buffer *audit_buf;
  1882. u32 spi;
  1883. audit_buf = xfrm_audit_start("SA-notfound");
  1884. if (audit_buf == NULL)
  1885. return;
  1886. xfrm_audit_helper_pktinfo(skb, family, audit_buf);
  1887. spi = ntohl(net_spi);
  1888. audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
  1889. spi, spi, ntohl(net_seq));
  1890. audit_log_end(audit_buf);
  1891. }
  1892. EXPORT_SYMBOL_GPL(xfrm_audit_state_notfound);
  1893. void xfrm_audit_state_icvfail(struct xfrm_state *x,
  1894. struct sk_buff *skb, u8 proto)
  1895. {
  1896. struct audit_buffer *audit_buf;
  1897. __be32 net_spi;
  1898. __be32 net_seq;
  1899. audit_buf = xfrm_audit_start("SA-icv-failure");
  1900. if (audit_buf == NULL)
  1901. return;
  1902. xfrm_audit_helper_pktinfo(skb, x->props.family, audit_buf);
  1903. if (xfrm_parse_spi(skb, proto, &net_spi, &net_seq) == 0) {
  1904. u32 spi = ntohl(net_spi);
  1905. audit_log_format(audit_buf, " spi=%u(0x%x) seqno=%u",
  1906. spi, spi, ntohl(net_seq));
  1907. }
  1908. audit_log_end(audit_buf);
  1909. }
  1910. EXPORT_SYMBOL_GPL(xfrm_audit_state_icvfail);
  1911. #endif /* CONFIG_AUDITSYSCALL */