core.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927
  1. /*
  2. * Copyright (C) 2012 Intel Corporation. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the
  16. * Free Software Foundation, Inc.,
  17. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18. */
  19. #define pr_fmt(fmt) "hci: %s: " fmt, __func__
  20. #include <linux/init.h>
  21. #include <linux/kernel.h>
  22. #include <linux/module.h>
  23. #include <linux/nfc.h>
  24. #include <net/nfc/nfc.h>
  25. #include <net/nfc/hci.h>
  26. #include <net/nfc/llc.h>
  27. #include "hci.h"
  28. /* Largest headroom needed for outgoing HCI commands */
  29. #define HCI_CMDS_HEADROOM 1
  30. int nfc_hci_result_to_errno(u8 result)
  31. {
  32. switch (result) {
  33. case NFC_HCI_ANY_OK:
  34. return 0;
  35. case NFC_HCI_ANY_E_REG_PAR_UNKNOWN:
  36. return -EOPNOTSUPP;
  37. case NFC_HCI_ANY_E_TIMEOUT:
  38. return -ETIME;
  39. default:
  40. return -1;
  41. }
  42. }
  43. EXPORT_SYMBOL(nfc_hci_result_to_errno);
  44. static void nfc_hci_msg_tx_work(struct work_struct *work)
  45. {
  46. struct nfc_hci_dev *hdev = container_of(work, struct nfc_hci_dev,
  47. msg_tx_work);
  48. struct hci_msg *msg;
  49. struct sk_buff *skb;
  50. int r = 0;
  51. mutex_lock(&hdev->msg_tx_mutex);
  52. if (hdev->cmd_pending_msg) {
  53. if (timer_pending(&hdev->cmd_timer) == 0) {
  54. if (hdev->cmd_pending_msg->cb)
  55. hdev->cmd_pending_msg->cb(hdev->
  56. cmd_pending_msg->
  57. cb_context,
  58. NULL,
  59. -ETIME);
  60. kfree(hdev->cmd_pending_msg);
  61. hdev->cmd_pending_msg = NULL;
  62. } else {
  63. goto exit;
  64. }
  65. }
  66. next_msg:
  67. if (list_empty(&hdev->msg_tx_queue))
  68. goto exit;
  69. msg = list_first_entry(&hdev->msg_tx_queue, struct hci_msg, msg_l);
  70. list_del(&msg->msg_l);
  71. pr_debug("msg_tx_queue has a cmd to send\n");
  72. while ((skb = skb_dequeue(&msg->msg_frags)) != NULL) {
  73. r = nfc_llc_xmit_from_hci(hdev->llc, skb);
  74. if (r < 0) {
  75. kfree_skb(skb);
  76. skb_queue_purge(&msg->msg_frags);
  77. if (msg->cb)
  78. msg->cb(msg->cb_context, NULL, r);
  79. kfree(msg);
  80. break;
  81. }
  82. }
  83. if (r)
  84. goto next_msg;
  85. if (msg->wait_response == false) {
  86. kfree(msg);
  87. goto next_msg;
  88. }
  89. hdev->cmd_pending_msg = msg;
  90. mod_timer(&hdev->cmd_timer, jiffies +
  91. msecs_to_jiffies(hdev->cmd_pending_msg->completion_delay));
  92. exit:
  93. mutex_unlock(&hdev->msg_tx_mutex);
  94. }
  95. static void nfc_hci_msg_rx_work(struct work_struct *work)
  96. {
  97. struct nfc_hci_dev *hdev = container_of(work, struct nfc_hci_dev,
  98. msg_rx_work);
  99. struct sk_buff *skb;
  100. struct hcp_message *message;
  101. u8 pipe;
  102. u8 type;
  103. u8 instruction;
  104. while ((skb = skb_dequeue(&hdev->msg_rx_queue)) != NULL) {
  105. pipe = skb->data[0];
  106. skb_pull(skb, NFC_HCI_HCP_PACKET_HEADER_LEN);
  107. message = (struct hcp_message *)skb->data;
  108. type = HCP_MSG_GET_TYPE(message->header);
  109. instruction = HCP_MSG_GET_CMD(message->header);
  110. skb_pull(skb, NFC_HCI_HCP_MESSAGE_HEADER_LEN);
  111. nfc_hci_hcp_message_rx(hdev, pipe, type, instruction, skb);
  112. }
  113. }
  114. static void __nfc_hci_cmd_completion(struct nfc_hci_dev *hdev, int err,
  115. struct sk_buff *skb)
  116. {
  117. del_timer_sync(&hdev->cmd_timer);
  118. if (hdev->cmd_pending_msg->cb)
  119. hdev->cmd_pending_msg->cb(hdev->cmd_pending_msg->cb_context,
  120. skb, err);
  121. else
  122. kfree_skb(skb);
  123. kfree(hdev->cmd_pending_msg);
  124. hdev->cmd_pending_msg = NULL;
  125. schedule_work(&hdev->msg_tx_work);
  126. }
  127. void nfc_hci_resp_received(struct nfc_hci_dev *hdev, u8 result,
  128. struct sk_buff *skb)
  129. {
  130. mutex_lock(&hdev->msg_tx_mutex);
  131. if (hdev->cmd_pending_msg == NULL) {
  132. kfree_skb(skb);
  133. goto exit;
  134. }
  135. __nfc_hci_cmd_completion(hdev, nfc_hci_result_to_errno(result), skb);
  136. exit:
  137. mutex_unlock(&hdev->msg_tx_mutex);
  138. }
  139. void nfc_hci_cmd_received(struct nfc_hci_dev *hdev, u8 pipe, u8 cmd,
  140. struct sk_buff *skb)
  141. {
  142. kfree_skb(skb);
  143. }
  144. u32 nfc_hci_sak_to_protocol(u8 sak)
  145. {
  146. switch (NFC_HCI_TYPE_A_SEL_PROT(sak)) {
  147. case NFC_HCI_TYPE_A_SEL_PROT_MIFARE:
  148. return NFC_PROTO_MIFARE_MASK;
  149. case NFC_HCI_TYPE_A_SEL_PROT_ISO14443:
  150. return NFC_PROTO_ISO14443_MASK;
  151. case NFC_HCI_TYPE_A_SEL_PROT_DEP:
  152. return NFC_PROTO_NFC_DEP_MASK;
  153. case NFC_HCI_TYPE_A_SEL_PROT_ISO14443_DEP:
  154. return NFC_PROTO_ISO14443_MASK | NFC_PROTO_NFC_DEP_MASK;
  155. default:
  156. return 0xffffffff;
  157. }
  158. }
  159. EXPORT_SYMBOL(nfc_hci_sak_to_protocol);
  160. int nfc_hci_target_discovered(struct nfc_hci_dev *hdev, u8 gate)
  161. {
  162. struct nfc_target *targets;
  163. struct sk_buff *atqa_skb = NULL;
  164. struct sk_buff *sak_skb = NULL;
  165. struct sk_buff *uid_skb = NULL;
  166. int r;
  167. pr_debug("from gate %d\n", gate);
  168. targets = kzalloc(sizeof(struct nfc_target), GFP_KERNEL);
  169. if (targets == NULL)
  170. return -ENOMEM;
  171. switch (gate) {
  172. case NFC_HCI_RF_READER_A_GATE:
  173. r = nfc_hci_get_param(hdev, NFC_HCI_RF_READER_A_GATE,
  174. NFC_HCI_RF_READER_A_ATQA, &atqa_skb);
  175. if (r < 0)
  176. goto exit;
  177. r = nfc_hci_get_param(hdev, NFC_HCI_RF_READER_A_GATE,
  178. NFC_HCI_RF_READER_A_SAK, &sak_skb);
  179. if (r < 0)
  180. goto exit;
  181. if (atqa_skb->len != 2 || sak_skb->len != 1) {
  182. r = -EPROTO;
  183. goto exit;
  184. }
  185. targets->supported_protocols =
  186. nfc_hci_sak_to_protocol(sak_skb->data[0]);
  187. if (targets->supported_protocols == 0xffffffff) {
  188. r = -EPROTO;
  189. goto exit;
  190. }
  191. targets->sens_res = be16_to_cpu(*(u16 *)atqa_skb->data);
  192. targets->sel_res = sak_skb->data[0];
  193. r = nfc_hci_get_param(hdev, NFC_HCI_RF_READER_A_GATE,
  194. NFC_HCI_RF_READER_A_UID, &uid_skb);
  195. if (r < 0)
  196. goto exit;
  197. if (uid_skb->len == 0 || uid_skb->len > NFC_NFCID1_MAXSIZE) {
  198. r = -EPROTO;
  199. goto exit;
  200. }
  201. memcpy(targets->nfcid1, uid_skb->data, uid_skb->len);
  202. targets->nfcid1_len = uid_skb->len;
  203. if (hdev->ops->complete_target_discovered) {
  204. r = hdev->ops->complete_target_discovered(hdev, gate,
  205. targets);
  206. if (r < 0)
  207. goto exit;
  208. }
  209. break;
  210. case NFC_HCI_RF_READER_B_GATE:
  211. targets->supported_protocols = NFC_PROTO_ISO14443_B_MASK;
  212. break;
  213. default:
  214. if (hdev->ops->target_from_gate)
  215. r = hdev->ops->target_from_gate(hdev, gate, targets);
  216. else
  217. r = -EPROTO;
  218. if (r < 0)
  219. goto exit;
  220. if (hdev->ops->complete_target_discovered) {
  221. r = hdev->ops->complete_target_discovered(hdev, gate,
  222. targets);
  223. if (r < 0)
  224. goto exit;
  225. }
  226. break;
  227. }
  228. /* if driver set the new gate, we will skip the old one */
  229. if (targets->hci_reader_gate == 0x00)
  230. targets->hci_reader_gate = gate;
  231. r = nfc_targets_found(hdev->ndev, targets, 1);
  232. exit:
  233. kfree(targets);
  234. kfree_skb(atqa_skb);
  235. kfree_skb(sak_skb);
  236. kfree_skb(uid_skb);
  237. return r;
  238. }
  239. EXPORT_SYMBOL(nfc_hci_target_discovered);
  240. void nfc_hci_event_received(struct nfc_hci_dev *hdev, u8 pipe, u8 event,
  241. struct sk_buff *skb)
  242. {
  243. int r = 0;
  244. u8 gate = nfc_hci_pipe2gate(hdev, pipe);
  245. if (gate == 0xff) {
  246. pr_err("Discarded event %x to unopened pipe %x\n", event, pipe);
  247. goto exit;
  248. }
  249. switch (event) {
  250. case NFC_HCI_EVT_TARGET_DISCOVERED:
  251. if (skb->len < 1) { /* no status data? */
  252. r = -EPROTO;
  253. goto exit;
  254. }
  255. if (skb->data[0] == 3) {
  256. /* TODO: Multiple targets in field, none activated
  257. * poll is supposedly stopped, but there is no
  258. * single target to activate, so nothing to report
  259. * up.
  260. * if we need to restart poll, we must save the
  261. * protocols from the initial poll and reuse here.
  262. */
  263. }
  264. if (skb->data[0] != 0) {
  265. r = -EPROTO;
  266. goto exit;
  267. }
  268. r = nfc_hci_target_discovered(hdev, gate);
  269. break;
  270. default:
  271. if (hdev->ops->event_received) {
  272. hdev->ops->event_received(hdev, gate, event, skb);
  273. return;
  274. }
  275. break;
  276. }
  277. exit:
  278. kfree_skb(skb);
  279. if (r) {
  280. /* TODO: There was an error dispatching the event,
  281. * how to propagate up to nfc core?
  282. */
  283. }
  284. }
  285. static void nfc_hci_cmd_timeout(unsigned long data)
  286. {
  287. struct nfc_hci_dev *hdev = (struct nfc_hci_dev *)data;
  288. schedule_work(&hdev->msg_tx_work);
  289. }
  290. static int hci_dev_connect_gates(struct nfc_hci_dev *hdev, u8 gate_count,
  291. struct nfc_hci_gate *gates)
  292. {
  293. int r;
  294. while (gate_count--) {
  295. r = nfc_hci_connect_gate(hdev, NFC_HCI_HOST_CONTROLLER_ID,
  296. gates->gate, gates->pipe);
  297. if (r < 0)
  298. return r;
  299. gates++;
  300. }
  301. return 0;
  302. }
  303. static int hci_dev_session_init(struct nfc_hci_dev *hdev)
  304. {
  305. struct sk_buff *skb = NULL;
  306. int r;
  307. if (hdev->init_data.gates[0].gate != NFC_HCI_ADMIN_GATE)
  308. return -EPROTO;
  309. r = nfc_hci_connect_gate(hdev, NFC_HCI_HOST_CONTROLLER_ID,
  310. hdev->init_data.gates[0].gate,
  311. hdev->init_data.gates[0].pipe);
  312. if (r < 0)
  313. goto exit;
  314. r = nfc_hci_get_param(hdev, NFC_HCI_ADMIN_GATE,
  315. NFC_HCI_ADMIN_SESSION_IDENTITY, &skb);
  316. if (r < 0)
  317. goto disconnect_all;
  318. if (skb->len && skb->len == strlen(hdev->init_data.session_id))
  319. if (memcmp(hdev->init_data.session_id, skb->data,
  320. skb->len) == 0) {
  321. /* TODO ELa: restore gate<->pipe table from
  322. * some TBD location.
  323. * note: it doesn't seem possible to get the chip
  324. * currently open gate/pipe table.
  325. * It is only possible to obtain the supported
  326. * gate list.
  327. */
  328. /* goto exit
  329. * For now, always do a full initialization */
  330. }
  331. r = nfc_hci_disconnect_all_gates(hdev);
  332. if (r < 0)
  333. goto exit;
  334. r = hci_dev_connect_gates(hdev, hdev->init_data.gate_count,
  335. hdev->init_data.gates);
  336. if (r < 0)
  337. goto disconnect_all;
  338. r = nfc_hci_set_param(hdev, NFC_HCI_ADMIN_GATE,
  339. NFC_HCI_ADMIN_SESSION_IDENTITY,
  340. hdev->init_data.session_id,
  341. strlen(hdev->init_data.session_id));
  342. if (r == 0)
  343. goto exit;
  344. disconnect_all:
  345. nfc_hci_disconnect_all_gates(hdev);
  346. exit:
  347. kfree_skb(skb);
  348. return r;
  349. }
  350. static int hci_dev_version(struct nfc_hci_dev *hdev)
  351. {
  352. int r;
  353. struct sk_buff *skb;
  354. r = nfc_hci_get_param(hdev, NFC_HCI_ID_MGMT_GATE,
  355. NFC_HCI_ID_MGMT_VERSION_SW, &skb);
  356. if (r == -EOPNOTSUPP) {
  357. pr_info("Software/Hardware info not available\n");
  358. return 0;
  359. }
  360. if (r < 0)
  361. return r;
  362. if (skb->len != 3) {
  363. kfree_skb(skb);
  364. return -EINVAL;
  365. }
  366. hdev->sw_romlib = (skb->data[0] & 0xf0) >> 4;
  367. hdev->sw_patch = skb->data[0] & 0x0f;
  368. hdev->sw_flashlib_major = skb->data[1];
  369. hdev->sw_flashlib_minor = skb->data[2];
  370. kfree_skb(skb);
  371. r = nfc_hci_get_param(hdev, NFC_HCI_ID_MGMT_GATE,
  372. NFC_HCI_ID_MGMT_VERSION_HW, &skb);
  373. if (r < 0)
  374. return r;
  375. if (skb->len != 3) {
  376. kfree_skb(skb);
  377. return -EINVAL;
  378. }
  379. hdev->hw_derivative = (skb->data[0] & 0xe0) >> 5;
  380. hdev->hw_version = skb->data[0] & 0x1f;
  381. hdev->hw_mpw = (skb->data[1] & 0xc0) >> 6;
  382. hdev->hw_software = skb->data[1] & 0x3f;
  383. hdev->hw_bsid = skb->data[2];
  384. kfree_skb(skb);
  385. pr_info("SOFTWARE INFO:\n");
  386. pr_info("RomLib : %d\n", hdev->sw_romlib);
  387. pr_info("Patch : %d\n", hdev->sw_patch);
  388. pr_info("FlashLib Major : %d\n", hdev->sw_flashlib_major);
  389. pr_info("FlashLib Minor : %d\n", hdev->sw_flashlib_minor);
  390. pr_info("HARDWARE INFO:\n");
  391. pr_info("Derivative : %d\n", hdev->hw_derivative);
  392. pr_info("HW Version : %d\n", hdev->hw_version);
  393. pr_info("#MPW : %d\n", hdev->hw_mpw);
  394. pr_info("Software : %d\n", hdev->hw_software);
  395. pr_info("BSID Version : %d\n", hdev->hw_bsid);
  396. return 0;
  397. }
  398. static int hci_dev_up(struct nfc_dev *nfc_dev)
  399. {
  400. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  401. int r = 0;
  402. if (hdev->ops->open) {
  403. r = hdev->ops->open(hdev);
  404. if (r < 0)
  405. return r;
  406. }
  407. r = nfc_llc_start(hdev->llc);
  408. if (r < 0)
  409. goto exit_close;
  410. r = hci_dev_session_init(hdev);
  411. if (r < 0)
  412. goto exit_llc;
  413. r = nfc_hci_send_event(hdev, NFC_HCI_RF_READER_A_GATE,
  414. NFC_HCI_EVT_END_OPERATION, NULL, 0);
  415. if (r < 0)
  416. goto exit_llc;
  417. if (hdev->ops->hci_ready) {
  418. r = hdev->ops->hci_ready(hdev);
  419. if (r < 0)
  420. goto exit_llc;
  421. }
  422. r = hci_dev_version(hdev);
  423. if (r < 0)
  424. goto exit_llc;
  425. return 0;
  426. exit_llc:
  427. nfc_llc_stop(hdev->llc);
  428. exit_close:
  429. if (hdev->ops->close)
  430. hdev->ops->close(hdev);
  431. return r;
  432. }
  433. static int hci_dev_down(struct nfc_dev *nfc_dev)
  434. {
  435. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  436. nfc_llc_stop(hdev->llc);
  437. if (hdev->ops->close)
  438. hdev->ops->close(hdev);
  439. memset(hdev->gate2pipe, NFC_HCI_INVALID_PIPE, sizeof(hdev->gate2pipe));
  440. return 0;
  441. }
  442. static int hci_start_poll(struct nfc_dev *nfc_dev,
  443. u32 im_protocols, u32 tm_protocols)
  444. {
  445. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  446. if (hdev->ops->start_poll)
  447. return hdev->ops->start_poll(hdev, im_protocols, tm_protocols);
  448. else
  449. return nfc_hci_send_event(hdev, NFC_HCI_RF_READER_A_GATE,
  450. NFC_HCI_EVT_READER_REQUESTED,
  451. NULL, 0);
  452. }
  453. static void hci_stop_poll(struct nfc_dev *nfc_dev)
  454. {
  455. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  456. nfc_hci_send_event(hdev, NFC_HCI_RF_READER_A_GATE,
  457. NFC_HCI_EVT_END_OPERATION, NULL, 0);
  458. }
  459. static int hci_dep_link_up(struct nfc_dev *nfc_dev, struct nfc_target *target,
  460. __u8 comm_mode, __u8 *gb, size_t gb_len)
  461. {
  462. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  463. if (hdev->ops->dep_link_up)
  464. return hdev->ops->dep_link_up(hdev, target, comm_mode,
  465. gb, gb_len);
  466. return 0;
  467. }
  468. static int hci_dep_link_down(struct nfc_dev *nfc_dev)
  469. {
  470. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  471. if (hdev->ops->dep_link_down)
  472. return hdev->ops->dep_link_down(hdev);
  473. return 0;
  474. }
  475. static int hci_activate_target(struct nfc_dev *nfc_dev,
  476. struct nfc_target *target, u32 protocol)
  477. {
  478. return 0;
  479. }
  480. static void hci_deactivate_target(struct nfc_dev *nfc_dev,
  481. struct nfc_target *target)
  482. {
  483. }
  484. #define HCI_CB_TYPE_TRANSCEIVE 1
  485. static void hci_transceive_cb(void *context, struct sk_buff *skb, int err)
  486. {
  487. struct nfc_hci_dev *hdev = context;
  488. switch (hdev->async_cb_type) {
  489. case HCI_CB_TYPE_TRANSCEIVE:
  490. /*
  491. * TODO: Check RF Error indicator to make sure data is valid.
  492. * It seems that HCI cmd can complete without error, but data
  493. * can be invalid if an RF error occured? Ignore for now.
  494. */
  495. if (err == 0)
  496. skb_trim(skb, skb->len - 1); /* RF Err ind */
  497. hdev->async_cb(hdev->async_cb_context, skb, err);
  498. break;
  499. default:
  500. if (err == 0)
  501. kfree_skb(skb);
  502. break;
  503. }
  504. }
  505. static int hci_transceive(struct nfc_dev *nfc_dev, struct nfc_target *target,
  506. struct sk_buff *skb, data_exchange_cb_t cb,
  507. void *cb_context)
  508. {
  509. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  510. int r;
  511. pr_debug("target_idx=%d\n", target->idx);
  512. switch (target->hci_reader_gate) {
  513. case NFC_HCI_RF_READER_A_GATE:
  514. case NFC_HCI_RF_READER_B_GATE:
  515. if (hdev->ops->im_transceive) {
  516. r = hdev->ops->im_transceive(hdev, target, skb, cb,
  517. cb_context);
  518. if (r <= 0) /* handled */
  519. break;
  520. }
  521. *skb_push(skb, 1) = 0; /* CTR, see spec:10.2.2.1 */
  522. hdev->async_cb_type = HCI_CB_TYPE_TRANSCEIVE;
  523. hdev->async_cb = cb;
  524. hdev->async_cb_context = cb_context;
  525. r = nfc_hci_send_cmd_async(hdev, target->hci_reader_gate,
  526. NFC_HCI_WR_XCHG_DATA, skb->data,
  527. skb->len, hci_transceive_cb, hdev);
  528. break;
  529. default:
  530. if (hdev->ops->im_transceive) {
  531. r = hdev->ops->im_transceive(hdev, target, skb, cb,
  532. cb_context);
  533. if (r == 1)
  534. r = -ENOTSUPP;
  535. } else {
  536. r = -ENOTSUPP;
  537. }
  538. break;
  539. }
  540. kfree_skb(skb);
  541. return r;
  542. }
  543. static int hci_tm_send(struct nfc_dev *nfc_dev, struct sk_buff *skb)
  544. {
  545. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  546. if (hdev->ops->tm_send)
  547. return hdev->ops->tm_send(hdev, skb);
  548. else
  549. return -ENOTSUPP;
  550. }
  551. static int hci_check_presence(struct nfc_dev *nfc_dev,
  552. struct nfc_target *target)
  553. {
  554. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  555. if (hdev->ops->check_presence)
  556. return hdev->ops->check_presence(hdev, target);
  557. return 0;
  558. }
  559. static void nfc_hci_failure(struct nfc_hci_dev *hdev, int err)
  560. {
  561. mutex_lock(&hdev->msg_tx_mutex);
  562. if (hdev->cmd_pending_msg == NULL) {
  563. nfc_driver_failure(hdev->ndev, err);
  564. goto exit;
  565. }
  566. __nfc_hci_cmd_completion(hdev, err, NULL);
  567. exit:
  568. mutex_unlock(&hdev->msg_tx_mutex);
  569. }
  570. static void nfc_hci_llc_failure(struct nfc_hci_dev *hdev, int err)
  571. {
  572. nfc_hci_failure(hdev, err);
  573. }
  574. static void nfc_hci_recv_from_llc(struct nfc_hci_dev *hdev, struct sk_buff *skb)
  575. {
  576. struct hcp_packet *packet;
  577. u8 type;
  578. u8 instruction;
  579. struct sk_buff *hcp_skb;
  580. u8 pipe;
  581. struct sk_buff *frag_skb;
  582. int msg_len;
  583. packet = (struct hcp_packet *)skb->data;
  584. if ((packet->header & ~NFC_HCI_FRAGMENT) == 0) {
  585. skb_queue_tail(&hdev->rx_hcp_frags, skb);
  586. return;
  587. }
  588. /* it's the last fragment. Does it need re-aggregation? */
  589. if (skb_queue_len(&hdev->rx_hcp_frags)) {
  590. pipe = packet->header & NFC_HCI_FRAGMENT;
  591. skb_queue_tail(&hdev->rx_hcp_frags, skb);
  592. msg_len = 0;
  593. skb_queue_walk(&hdev->rx_hcp_frags, frag_skb) {
  594. msg_len += (frag_skb->len -
  595. NFC_HCI_HCP_PACKET_HEADER_LEN);
  596. }
  597. hcp_skb = nfc_alloc_recv_skb(NFC_HCI_HCP_PACKET_HEADER_LEN +
  598. msg_len, GFP_KERNEL);
  599. if (hcp_skb == NULL) {
  600. nfc_hci_failure(hdev, -ENOMEM);
  601. return;
  602. }
  603. *skb_put(hcp_skb, NFC_HCI_HCP_PACKET_HEADER_LEN) = pipe;
  604. skb_queue_walk(&hdev->rx_hcp_frags, frag_skb) {
  605. msg_len = frag_skb->len - NFC_HCI_HCP_PACKET_HEADER_LEN;
  606. memcpy(skb_put(hcp_skb, msg_len),
  607. frag_skb->data + NFC_HCI_HCP_PACKET_HEADER_LEN,
  608. msg_len);
  609. }
  610. skb_queue_purge(&hdev->rx_hcp_frags);
  611. } else {
  612. packet->header &= NFC_HCI_FRAGMENT;
  613. hcp_skb = skb;
  614. }
  615. /* if this is a response, dispatch immediately to
  616. * unblock waiting cmd context. Otherwise, enqueue to dispatch
  617. * in separate context where handler can also execute command.
  618. */
  619. packet = (struct hcp_packet *)hcp_skb->data;
  620. type = HCP_MSG_GET_TYPE(packet->message.header);
  621. if (type == NFC_HCI_HCP_RESPONSE) {
  622. pipe = packet->header;
  623. instruction = HCP_MSG_GET_CMD(packet->message.header);
  624. skb_pull(hcp_skb, NFC_HCI_HCP_PACKET_HEADER_LEN +
  625. NFC_HCI_HCP_MESSAGE_HEADER_LEN);
  626. nfc_hci_hcp_message_rx(hdev, pipe, type, instruction, hcp_skb);
  627. } else {
  628. skb_queue_tail(&hdev->msg_rx_queue, hcp_skb);
  629. schedule_work(&hdev->msg_rx_work);
  630. }
  631. }
  632. static struct nfc_ops hci_nfc_ops = {
  633. .dev_up = hci_dev_up,
  634. .dev_down = hci_dev_down,
  635. .start_poll = hci_start_poll,
  636. .stop_poll = hci_stop_poll,
  637. .dep_link_up = hci_dep_link_up,
  638. .dep_link_down = hci_dep_link_down,
  639. .activate_target = hci_activate_target,
  640. .deactivate_target = hci_deactivate_target,
  641. .im_transceive = hci_transceive,
  642. .tm_send = hci_tm_send,
  643. .check_presence = hci_check_presence,
  644. };
  645. struct nfc_hci_dev *nfc_hci_allocate_device(struct nfc_hci_ops *ops,
  646. struct nfc_hci_init_data *init_data,
  647. u32 protocols,
  648. const char *llc_name,
  649. int tx_headroom,
  650. int tx_tailroom,
  651. int max_link_payload)
  652. {
  653. struct nfc_hci_dev *hdev;
  654. if (ops->xmit == NULL)
  655. return NULL;
  656. if (protocols == 0)
  657. return NULL;
  658. hdev = kzalloc(sizeof(struct nfc_hci_dev), GFP_KERNEL);
  659. if (hdev == NULL)
  660. return NULL;
  661. hdev->llc = nfc_llc_allocate(llc_name, hdev, ops->xmit,
  662. nfc_hci_recv_from_llc, tx_headroom,
  663. tx_tailroom, nfc_hci_llc_failure);
  664. if (hdev->llc == NULL) {
  665. kfree(hdev);
  666. return NULL;
  667. }
  668. hdev->ndev = nfc_allocate_device(&hci_nfc_ops, protocols,
  669. tx_headroom + HCI_CMDS_HEADROOM,
  670. tx_tailroom);
  671. if (!hdev->ndev) {
  672. nfc_llc_free(hdev->llc);
  673. kfree(hdev);
  674. return NULL;
  675. }
  676. hdev->ops = ops;
  677. hdev->max_data_link_payload = max_link_payload;
  678. hdev->init_data = *init_data;
  679. nfc_set_drvdata(hdev->ndev, hdev);
  680. memset(hdev->gate2pipe, NFC_HCI_INVALID_PIPE, sizeof(hdev->gate2pipe));
  681. return hdev;
  682. }
  683. EXPORT_SYMBOL(nfc_hci_allocate_device);
  684. void nfc_hci_free_device(struct nfc_hci_dev *hdev)
  685. {
  686. nfc_free_device(hdev->ndev);
  687. nfc_llc_free(hdev->llc);
  688. kfree(hdev);
  689. }
  690. EXPORT_SYMBOL(nfc_hci_free_device);
  691. int nfc_hci_register_device(struct nfc_hci_dev *hdev)
  692. {
  693. mutex_init(&hdev->msg_tx_mutex);
  694. INIT_LIST_HEAD(&hdev->msg_tx_queue);
  695. INIT_WORK(&hdev->msg_tx_work, nfc_hci_msg_tx_work);
  696. init_timer(&hdev->cmd_timer);
  697. hdev->cmd_timer.data = (unsigned long)hdev;
  698. hdev->cmd_timer.function = nfc_hci_cmd_timeout;
  699. skb_queue_head_init(&hdev->rx_hcp_frags);
  700. INIT_WORK(&hdev->msg_rx_work, nfc_hci_msg_rx_work);
  701. skb_queue_head_init(&hdev->msg_rx_queue);
  702. return nfc_register_device(hdev->ndev);
  703. }
  704. EXPORT_SYMBOL(nfc_hci_register_device);
  705. void nfc_hci_unregister_device(struct nfc_hci_dev *hdev)
  706. {
  707. struct hci_msg *msg, *n;
  708. skb_queue_purge(&hdev->rx_hcp_frags);
  709. skb_queue_purge(&hdev->msg_rx_queue);
  710. list_for_each_entry_safe(msg, n, &hdev->msg_tx_queue, msg_l) {
  711. list_del(&msg->msg_l);
  712. skb_queue_purge(&msg->msg_frags);
  713. kfree(msg);
  714. }
  715. del_timer_sync(&hdev->cmd_timer);
  716. nfc_unregister_device(hdev->ndev);
  717. cancel_work_sync(&hdev->msg_tx_work);
  718. cancel_work_sync(&hdev->msg_rx_work);
  719. }
  720. EXPORT_SYMBOL(nfc_hci_unregister_device);
  721. void nfc_hci_set_clientdata(struct nfc_hci_dev *hdev, void *clientdata)
  722. {
  723. hdev->clientdata = clientdata;
  724. }
  725. EXPORT_SYMBOL(nfc_hci_set_clientdata);
  726. void *nfc_hci_get_clientdata(struct nfc_hci_dev *hdev)
  727. {
  728. return hdev->clientdata;
  729. }
  730. EXPORT_SYMBOL(nfc_hci_get_clientdata);
  731. void nfc_hci_driver_failure(struct nfc_hci_dev *hdev, int err)
  732. {
  733. nfc_hci_failure(hdev, err);
  734. }
  735. EXPORT_SYMBOL(nfc_hci_driver_failure);
  736. void nfc_hci_recv_frame(struct nfc_hci_dev *hdev, struct sk_buff *skb)
  737. {
  738. nfc_llc_rcv_from_drv(hdev->llc, skb);
  739. }
  740. EXPORT_SYMBOL(nfc_hci_recv_frame);
  741. static int __init nfc_hci_init(void)
  742. {
  743. return nfc_llc_init();
  744. }
  745. static void __exit nfc_hci_exit(void)
  746. {
  747. nfc_llc_exit();
  748. }
  749. subsys_initcall(nfc_hci_init);
  750. module_exit(nfc_hci_exit);
  751. MODULE_LICENSE("GPL");
  752. MODULE_DESCRIPTION("NFC HCI Core");