debugfs_sta.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435
  1. /*
  2. * Copyright 2003-2005 Devicescape Software, Inc.
  3. * Copyright (c) 2006 Jiri Benc <jbenc@suse.cz>
  4. * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/debugfs.h>
  11. #include <linux/ieee80211.h>
  12. #include "ieee80211_i.h"
  13. #include "debugfs.h"
  14. #include "debugfs_sta.h"
  15. #include "sta_info.h"
  16. #include "driver-ops.h"
  17. /* sta attributtes */
  18. #define STA_READ(name, field, format_string) \
  19. static ssize_t sta_ ##name## _read(struct file *file, \
  20. char __user *userbuf, \
  21. size_t count, loff_t *ppos) \
  22. { \
  23. struct sta_info *sta = file->private_data; \
  24. return mac80211_format_buffer(userbuf, count, ppos, \
  25. format_string, sta->field); \
  26. }
  27. #define STA_READ_D(name, field) STA_READ(name, field, "%d\n")
  28. #define STA_READ_U(name, field) STA_READ(name, field, "%u\n")
  29. #define STA_READ_S(name, field) STA_READ(name, field, "%s\n")
  30. #define STA_OPS(name) \
  31. static const struct file_operations sta_ ##name## _ops = { \
  32. .read = sta_##name##_read, \
  33. .open = simple_open, \
  34. .llseek = generic_file_llseek, \
  35. }
  36. #define STA_OPS_RW(name) \
  37. static const struct file_operations sta_ ##name## _ops = { \
  38. .read = sta_##name##_read, \
  39. .write = sta_##name##_write, \
  40. .open = simple_open, \
  41. .llseek = generic_file_llseek, \
  42. }
  43. #define STA_FILE(name, field, format) \
  44. STA_READ_##format(name, field) \
  45. STA_OPS(name)
  46. STA_FILE(aid, sta.aid, D);
  47. STA_FILE(dev, sdata->name, S);
  48. STA_FILE(last_signal, last_signal, D);
  49. STA_FILE(last_ack_signal, last_ack_signal, D);
  50. static ssize_t sta_flags_read(struct file *file, char __user *userbuf,
  51. size_t count, loff_t *ppos)
  52. {
  53. char buf[121];
  54. struct sta_info *sta = file->private_data;
  55. #define TEST(flg) \
  56. test_sta_flag(sta, WLAN_STA_##flg) ? #flg "\n" : ""
  57. int res = scnprintf(buf, sizeof(buf),
  58. "%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s",
  59. TEST(AUTH), TEST(ASSOC), TEST(PS_STA),
  60. TEST(PS_DRIVER), TEST(AUTHORIZED),
  61. TEST(SHORT_PREAMBLE),
  62. TEST(WME), TEST(WDS), TEST(CLEAR_PS_FILT),
  63. TEST(MFP), TEST(BLOCK_BA), TEST(PSPOLL),
  64. TEST(UAPSD), TEST(SP), TEST(TDLS_PEER),
  65. TEST(TDLS_PEER_AUTH), TEST(4ADDR_EVENT),
  66. TEST(INSERTED), TEST(RATE_CONTROL),
  67. TEST(TOFFSET_KNOWN));
  68. #undef TEST
  69. return simple_read_from_buffer(userbuf, count, ppos, buf, res);
  70. }
  71. STA_OPS(flags);
  72. static ssize_t sta_num_ps_buf_frames_read(struct file *file,
  73. char __user *userbuf,
  74. size_t count, loff_t *ppos)
  75. {
  76. struct sta_info *sta = file->private_data;
  77. char buf[17*IEEE80211_NUM_ACS], *p = buf;
  78. int ac;
  79. for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
  80. p += scnprintf(p, sizeof(buf)+buf-p, "AC%d: %d\n", ac,
  81. skb_queue_len(&sta->ps_tx_buf[ac]) +
  82. skb_queue_len(&sta->tx_filtered[ac]));
  83. return simple_read_from_buffer(userbuf, count, ppos, buf, p - buf);
  84. }
  85. STA_OPS(num_ps_buf_frames);
  86. static ssize_t sta_inactive_ms_read(struct file *file, char __user *userbuf,
  87. size_t count, loff_t *ppos)
  88. {
  89. struct sta_info *sta = file->private_data;
  90. return mac80211_format_buffer(userbuf, count, ppos, "%d\n",
  91. jiffies_to_msecs(jiffies - sta->last_rx));
  92. }
  93. STA_OPS(inactive_ms);
  94. static ssize_t sta_connected_time_read(struct file *file, char __user *userbuf,
  95. size_t count, loff_t *ppos)
  96. {
  97. struct sta_info *sta = file->private_data;
  98. struct timespec uptime;
  99. struct tm result;
  100. long connected_time_secs;
  101. char buf[100];
  102. int res;
  103. do_posix_clock_monotonic_gettime(&uptime);
  104. connected_time_secs = uptime.tv_sec - sta->last_connected;
  105. time_to_tm(connected_time_secs, 0, &result);
  106. result.tm_year -= 70;
  107. result.tm_mday -= 1;
  108. res = scnprintf(buf, sizeof(buf),
  109. "years - %ld\nmonths - %d\ndays - %d\nclock - %d:%d:%d\n\n",
  110. result.tm_year, result.tm_mon, result.tm_mday,
  111. result.tm_hour, result.tm_min, result.tm_sec);
  112. return simple_read_from_buffer(userbuf, count, ppos, buf, res);
  113. }
  114. STA_OPS(connected_time);
  115. static ssize_t sta_last_seq_ctrl_read(struct file *file, char __user *userbuf,
  116. size_t count, loff_t *ppos)
  117. {
  118. char buf[15*IEEE80211_NUM_TIDS], *p = buf;
  119. int i;
  120. struct sta_info *sta = file->private_data;
  121. for (i = 0; i < IEEE80211_NUM_TIDS; i++)
  122. p += scnprintf(p, sizeof(buf)+buf-p, "%x ",
  123. le16_to_cpu(sta->last_seq_ctrl[i]));
  124. p += scnprintf(p, sizeof(buf)+buf-p, "\n");
  125. return simple_read_from_buffer(userbuf, count, ppos, buf, p - buf);
  126. }
  127. STA_OPS(last_seq_ctrl);
  128. static ssize_t sta_agg_status_read(struct file *file, char __user *userbuf,
  129. size_t count, loff_t *ppos)
  130. {
  131. char buf[71 + IEEE80211_NUM_TIDS * 40], *p = buf;
  132. int i;
  133. struct sta_info *sta = file->private_data;
  134. struct tid_ampdu_rx *tid_rx;
  135. struct tid_ampdu_tx *tid_tx;
  136. rcu_read_lock();
  137. p += scnprintf(p, sizeof(buf) + buf - p, "next dialog_token: %#02x\n",
  138. sta->ampdu_mlme.dialog_token_allocator + 1);
  139. p += scnprintf(p, sizeof(buf) + buf - p,
  140. "TID\t\tRX active\tDTKN\tSSN\t\tTX\tDTKN\tpending\n");
  141. for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
  142. tid_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[i]);
  143. tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[i]);
  144. p += scnprintf(p, sizeof(buf) + buf - p, "%02d", i);
  145. p += scnprintf(p, sizeof(buf) + buf - p, "\t\t%x", !!tid_rx);
  146. p += scnprintf(p, sizeof(buf) + buf - p, "\t%#.2x",
  147. tid_rx ? tid_rx->dialog_token : 0);
  148. p += scnprintf(p, sizeof(buf) + buf - p, "\t%#.3x",
  149. tid_rx ? tid_rx->ssn : 0);
  150. p += scnprintf(p, sizeof(buf) + buf - p, "\t\t%x", !!tid_tx);
  151. p += scnprintf(p, sizeof(buf) + buf - p, "\t%#.2x",
  152. tid_tx ? tid_tx->dialog_token : 0);
  153. p += scnprintf(p, sizeof(buf) + buf - p, "\t%03d",
  154. tid_tx ? skb_queue_len(&tid_tx->pending) : 0);
  155. p += scnprintf(p, sizeof(buf) + buf - p, "\n");
  156. }
  157. rcu_read_unlock();
  158. return simple_read_from_buffer(userbuf, count, ppos, buf, p - buf);
  159. }
  160. static ssize_t sta_agg_status_write(struct file *file, const char __user *userbuf,
  161. size_t count, loff_t *ppos)
  162. {
  163. char _buf[12], *buf = _buf;
  164. struct sta_info *sta = file->private_data;
  165. bool start, tx;
  166. unsigned long tid;
  167. int ret;
  168. if (count > sizeof(_buf))
  169. return -EINVAL;
  170. if (copy_from_user(buf, userbuf, count))
  171. return -EFAULT;
  172. buf[sizeof(_buf) - 1] = '\0';
  173. if (strncmp(buf, "tx ", 3) == 0) {
  174. buf += 3;
  175. tx = true;
  176. } else if (strncmp(buf, "rx ", 3) == 0) {
  177. buf += 3;
  178. tx = false;
  179. } else
  180. return -EINVAL;
  181. if (strncmp(buf, "start ", 6) == 0) {
  182. buf += 6;
  183. start = true;
  184. if (!tx)
  185. return -EINVAL;
  186. } else if (strncmp(buf, "stop ", 5) == 0) {
  187. buf += 5;
  188. start = false;
  189. } else
  190. return -EINVAL;
  191. ret = kstrtoul(buf, 0, &tid);
  192. if (ret)
  193. return ret;
  194. if (tid >= IEEE80211_NUM_TIDS)
  195. return -EINVAL;
  196. if (tx) {
  197. if (start)
  198. ret = ieee80211_start_tx_ba_session(&sta->sta, tid, 5000);
  199. else
  200. ret = ieee80211_stop_tx_ba_session(&sta->sta, tid);
  201. } else {
  202. __ieee80211_stop_rx_ba_session(sta, tid, WLAN_BACK_RECIPIENT,
  203. 3, true);
  204. ret = 0;
  205. }
  206. return ret ?: count;
  207. }
  208. STA_OPS_RW(agg_status);
  209. static ssize_t sta_ht_capa_read(struct file *file, char __user *userbuf,
  210. size_t count, loff_t *ppos)
  211. {
  212. #define PRINT_HT_CAP(_cond, _str) \
  213. do { \
  214. if (_cond) \
  215. p += scnprintf(p, sizeof(buf)+buf-p, "\t" _str "\n"); \
  216. } while (0)
  217. char buf[512], *p = buf;
  218. int i;
  219. struct sta_info *sta = file->private_data;
  220. struct ieee80211_sta_ht_cap *htc = &sta->sta.ht_cap;
  221. p += scnprintf(p, sizeof(buf) + buf - p, "ht %ssupported\n",
  222. htc->ht_supported ? "" : "not ");
  223. if (htc->ht_supported) {
  224. p += scnprintf(p, sizeof(buf)+buf-p, "cap: %#.4x\n", htc->cap);
  225. PRINT_HT_CAP((htc->cap & BIT(0)), "RX LDPC");
  226. PRINT_HT_CAP((htc->cap & BIT(1)), "HT20/HT40");
  227. PRINT_HT_CAP(!(htc->cap & BIT(1)), "HT20");
  228. PRINT_HT_CAP(((htc->cap >> 2) & 0x3) == 0, "Static SM Power Save");
  229. PRINT_HT_CAP(((htc->cap >> 2) & 0x3) == 1, "Dynamic SM Power Save");
  230. PRINT_HT_CAP(((htc->cap >> 2) & 0x3) == 3, "SM Power Save disabled");
  231. PRINT_HT_CAP((htc->cap & BIT(4)), "RX Greenfield");
  232. PRINT_HT_CAP((htc->cap & BIT(5)), "RX HT20 SGI");
  233. PRINT_HT_CAP((htc->cap & BIT(6)), "RX HT40 SGI");
  234. PRINT_HT_CAP((htc->cap & BIT(7)), "TX STBC");
  235. PRINT_HT_CAP(((htc->cap >> 8) & 0x3) == 0, "No RX STBC");
  236. PRINT_HT_CAP(((htc->cap >> 8) & 0x3) == 1, "RX STBC 1-stream");
  237. PRINT_HT_CAP(((htc->cap >> 8) & 0x3) == 2, "RX STBC 2-streams");
  238. PRINT_HT_CAP(((htc->cap >> 8) & 0x3) == 3, "RX STBC 3-streams");
  239. PRINT_HT_CAP((htc->cap & BIT(10)), "HT Delayed Block Ack");
  240. PRINT_HT_CAP(!(htc->cap & BIT(11)), "Max AMSDU length: "
  241. "3839 bytes");
  242. PRINT_HT_CAP((htc->cap & BIT(11)), "Max AMSDU length: "
  243. "7935 bytes");
  244. /*
  245. * For beacons and probe response this would mean the BSS
  246. * does or does not allow the usage of DSSS/CCK HT40.
  247. * Otherwise it means the STA does or does not use
  248. * DSSS/CCK HT40.
  249. */
  250. PRINT_HT_CAP((htc->cap & BIT(12)), "DSSS/CCK HT40");
  251. PRINT_HT_CAP(!(htc->cap & BIT(12)), "No DSSS/CCK HT40");
  252. /* BIT(13) is reserved */
  253. PRINT_HT_CAP((htc->cap & BIT(14)), "40 MHz Intolerant");
  254. PRINT_HT_CAP((htc->cap & BIT(15)), "L-SIG TXOP protection");
  255. p += scnprintf(p, sizeof(buf)+buf-p, "ampdu factor/density: %d/%d\n",
  256. htc->ampdu_factor, htc->ampdu_density);
  257. p += scnprintf(p, sizeof(buf)+buf-p, "MCS mask:");
  258. for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++)
  259. p += scnprintf(p, sizeof(buf)+buf-p, " %.2x",
  260. htc->mcs.rx_mask[i]);
  261. p += scnprintf(p, sizeof(buf)+buf-p, "\n");
  262. /* If not set this is meaningless */
  263. if (le16_to_cpu(htc->mcs.rx_highest)) {
  264. p += scnprintf(p, sizeof(buf)+buf-p,
  265. "MCS rx highest: %d Mbps\n",
  266. le16_to_cpu(htc->mcs.rx_highest));
  267. }
  268. p += scnprintf(p, sizeof(buf)+buf-p, "MCS tx params: %x\n",
  269. htc->mcs.tx_params);
  270. }
  271. return simple_read_from_buffer(userbuf, count, ppos, buf, p - buf);
  272. }
  273. STA_OPS(ht_capa);
  274. static ssize_t sta_current_tx_rate_read(struct file *file, char __user *userbuf,
  275. size_t count, loff_t *ppos)
  276. {
  277. struct sta_info *sta = file->private_data;
  278. struct rate_info rinfo;
  279. u16 rate;
  280. sta_set_rate_info_tx(sta, &sta->last_tx_rate, &rinfo);
  281. rate = cfg80211_calculate_bitrate(&rinfo);
  282. return mac80211_format_buffer(userbuf, count, ppos,
  283. "%d.%d MBit/s\n",
  284. rate/10, rate%10);
  285. }
  286. STA_OPS(current_tx_rate);
  287. static ssize_t sta_last_rx_rate_read(struct file *file, char __user *userbuf,
  288. size_t count, loff_t *ppos)
  289. {
  290. struct sta_info *sta = file->private_data;
  291. struct rate_info rinfo;
  292. u16 rate;
  293. sta_set_rate_info_rx(sta, &rinfo);
  294. rate = cfg80211_calculate_bitrate(&rinfo);
  295. return mac80211_format_buffer(userbuf, count, ppos,
  296. "%d.%d MBit/s\n",
  297. rate/10, rate%10);
  298. }
  299. STA_OPS(last_rx_rate);
  300. #define DEBUGFS_ADD(name) \
  301. debugfs_create_file(#name, 0400, \
  302. sta->debugfs.dir, sta, &sta_ ##name## _ops);
  303. #define DEBUGFS_ADD_COUNTER(name, field) \
  304. if (sizeof(sta->field) == sizeof(u32)) \
  305. debugfs_create_u32(#name, 0400, sta->debugfs.dir, \
  306. (u32 *) &sta->field); \
  307. else \
  308. debugfs_create_u64(#name, 0400, sta->debugfs.dir, \
  309. (u64 *) &sta->field);
  310. void ieee80211_sta_debugfs_add(struct sta_info *sta)
  311. {
  312. struct ieee80211_local *local = sta->local;
  313. struct ieee80211_sub_if_data *sdata = sta->sdata;
  314. struct dentry *stations_dir = sta->sdata->debugfs.subdir_stations;
  315. u8 mac[3*ETH_ALEN];
  316. sta->debugfs.add_has_run = true;
  317. if (!stations_dir)
  318. return;
  319. snprintf(mac, sizeof(mac), "%pM", sta->sta.addr);
  320. /*
  321. * This might fail due to a race condition:
  322. * When mac80211 unlinks a station, the debugfs entries
  323. * remain, but it is already possible to link a new
  324. * station with the same address which triggers adding
  325. * it to debugfs; therefore, if the old station isn't
  326. * destroyed quickly enough the old station's debugfs
  327. * dir might still be around.
  328. */
  329. sta->debugfs.dir = debugfs_create_dir(mac, stations_dir);
  330. if (!sta->debugfs.dir)
  331. return;
  332. DEBUGFS_ADD(flags);
  333. DEBUGFS_ADD(num_ps_buf_frames);
  334. DEBUGFS_ADD(inactive_ms);
  335. DEBUGFS_ADD(connected_time);
  336. DEBUGFS_ADD(last_seq_ctrl);
  337. DEBUGFS_ADD(agg_status);
  338. DEBUGFS_ADD(dev);
  339. DEBUGFS_ADD(last_signal);
  340. DEBUGFS_ADD(ht_capa);
  341. DEBUGFS_ADD(last_ack_signal);
  342. DEBUGFS_ADD(current_tx_rate);
  343. DEBUGFS_ADD(last_rx_rate);
  344. DEBUGFS_ADD_COUNTER(rx_packets, rx_packets);
  345. DEBUGFS_ADD_COUNTER(tx_packets, tx_packets);
  346. DEBUGFS_ADD_COUNTER(rx_bytes, rx_bytes);
  347. DEBUGFS_ADD_COUNTER(tx_bytes, tx_bytes);
  348. DEBUGFS_ADD_COUNTER(rx_duplicates, num_duplicates);
  349. DEBUGFS_ADD_COUNTER(rx_fragments, rx_fragments);
  350. DEBUGFS_ADD_COUNTER(rx_dropped, rx_dropped);
  351. DEBUGFS_ADD_COUNTER(tx_fragments, tx_fragments);
  352. DEBUGFS_ADD_COUNTER(tx_filtered, tx_filtered_count);
  353. DEBUGFS_ADD_COUNTER(tx_retry_failed, tx_retry_failed);
  354. DEBUGFS_ADD_COUNTER(tx_retry_count, tx_retry_count);
  355. DEBUGFS_ADD_COUNTER(wep_weak_iv_count, wep_weak_iv_count);
  356. drv_sta_add_debugfs(local, sdata, &sta->sta, sta->debugfs.dir);
  357. }
  358. void ieee80211_sta_debugfs_remove(struct sta_info *sta)
  359. {
  360. struct ieee80211_local *local = sta->local;
  361. struct ieee80211_sub_if_data *sdata = sta->sdata;
  362. drv_sta_remove_debugfs(local, sdata, &sta->sta, sta->debugfs.dir);
  363. debugfs_remove_recursive(sta->debugfs.dir);
  364. sta->debugfs.dir = NULL;
  365. }