udp.c 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * The User Datagram Protocol (UDP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  11. * Alan Cox, <alan@lxorguk.ukuu.org.uk>
  12. * Hirokazu Takahashi, <taka@valinux.co.jp>
  13. *
  14. * Fixes:
  15. * Alan Cox : verify_area() calls
  16. * Alan Cox : stopped close while in use off icmp
  17. * messages. Not a fix but a botch that
  18. * for udp at least is 'valid'.
  19. * Alan Cox : Fixed icmp handling properly
  20. * Alan Cox : Correct error for oversized datagrams
  21. * Alan Cox : Tidied select() semantics.
  22. * Alan Cox : udp_err() fixed properly, also now
  23. * select and read wake correctly on errors
  24. * Alan Cox : udp_send verify_area moved to avoid mem leak
  25. * Alan Cox : UDP can count its memory
  26. * Alan Cox : send to an unknown connection causes
  27. * an ECONNREFUSED off the icmp, but
  28. * does NOT close.
  29. * Alan Cox : Switched to new sk_buff handlers. No more backlog!
  30. * Alan Cox : Using generic datagram code. Even smaller and the PEEK
  31. * bug no longer crashes it.
  32. * Fred Van Kempen : Net2e support for sk->broadcast.
  33. * Alan Cox : Uses skb_free_datagram
  34. * Alan Cox : Added get/set sockopt support.
  35. * Alan Cox : Broadcasting without option set returns EACCES.
  36. * Alan Cox : No wakeup calls. Instead we now use the callbacks.
  37. * Alan Cox : Use ip_tos and ip_ttl
  38. * Alan Cox : SNMP Mibs
  39. * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
  40. * Matt Dillon : UDP length checks.
  41. * Alan Cox : Smarter af_inet used properly.
  42. * Alan Cox : Use new kernel side addressing.
  43. * Alan Cox : Incorrect return on truncated datagram receive.
  44. * Arnt Gulbrandsen : New udp_send and stuff
  45. * Alan Cox : Cache last socket
  46. * Alan Cox : Route cache
  47. * Jon Peatfield : Minor efficiency fix to sendto().
  48. * Mike Shaver : RFC1122 checks.
  49. * Alan Cox : Nonblocking error fix.
  50. * Willy Konynenberg : Transparent proxying support.
  51. * Mike McLagan : Routing by source
  52. * David S. Miller : New socket lookup architecture.
  53. * Last socket cache retained as it
  54. * does have a high hit rate.
  55. * Olaf Kirch : Don't linearise iovec on sendmsg.
  56. * Andi Kleen : Some cleanups, cache destination entry
  57. * for connect.
  58. * Vitaly E. Lavrov : Transparent proxy revived after year coma.
  59. * Melvin Smith : Check msg_name not msg_namelen in sendto(),
  60. * return ENOTCONN for unconnected sockets (POSIX)
  61. * Janos Farkas : don't deliver multi/broadcasts to a different
  62. * bound-to-device socket
  63. * Hirokazu Takahashi : HW checksumming for outgoing UDP
  64. * datagrams.
  65. * Hirokazu Takahashi : sendfile() on UDP works now.
  66. * Arnaldo C. Melo : convert /proc/net/udp to seq_file
  67. * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
  68. * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
  69. * a single port at the same time.
  70. * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
  71. * James Chapman : Add L2TP encapsulation type.
  72. *
  73. *
  74. * This program is free software; you can redistribute it and/or
  75. * modify it under the terms of the GNU General Public License
  76. * as published by the Free Software Foundation; either version
  77. * 2 of the License, or (at your option) any later version.
  78. */
  79. #define pr_fmt(fmt) "UDP: " fmt
  80. #include <asm/uaccess.h>
  81. #include <asm/ioctls.h>
  82. #include <linux/bootmem.h>
  83. #include <linux/highmem.h>
  84. #include <linux/swap.h>
  85. #include <linux/types.h>
  86. #include <linux/fcntl.h>
  87. #include <linux/module.h>
  88. #include <linux/socket.h>
  89. #include <linux/sockios.h>
  90. #include <linux/igmp.h>
  91. #include <linux/in.h>
  92. #include <linux/errno.h>
  93. #include <linux/timer.h>
  94. #include <linux/mm.h>
  95. #include <linux/inet.h>
  96. #include <linux/netdevice.h>
  97. #include <linux/slab.h>
  98. #include <net/tcp_states.h>
  99. #include <linux/skbuff.h>
  100. #include <linux/proc_fs.h>
  101. #include <linux/seq_file.h>
  102. #include <net/net_namespace.h>
  103. #include <net/icmp.h>
  104. #include <net/route.h>
  105. #include <net/checksum.h>
  106. #include <net/xfrm.h>
  107. #include <trace/events/udp.h>
  108. #include <linux/static_key.h>
  109. #include <trace/events/skb.h>
  110. #include "udp_impl.h"
  111. struct udp_table udp_table __read_mostly;
  112. EXPORT_SYMBOL(udp_table);
  113. long sysctl_udp_mem[3] __read_mostly;
  114. EXPORT_SYMBOL(sysctl_udp_mem);
  115. int sysctl_udp_rmem_min __read_mostly;
  116. EXPORT_SYMBOL(sysctl_udp_rmem_min);
  117. int sysctl_udp_wmem_min __read_mostly;
  118. EXPORT_SYMBOL(sysctl_udp_wmem_min);
  119. atomic_long_t udp_memory_allocated;
  120. EXPORT_SYMBOL(udp_memory_allocated);
  121. #define MAX_UDP_PORTS 65536
  122. #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
  123. static int udp_lib_lport_inuse(struct net *net, __u16 num,
  124. const struct udp_hslot *hslot,
  125. unsigned long *bitmap,
  126. struct sock *sk,
  127. int (*saddr_comp)(const struct sock *sk1,
  128. const struct sock *sk2),
  129. unsigned int log)
  130. {
  131. struct sock *sk2;
  132. struct hlist_nulls_node *node;
  133. sk_nulls_for_each(sk2, node, &hslot->head)
  134. if (net_eq(sock_net(sk2), net) &&
  135. sk2 != sk &&
  136. (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
  137. (!sk2->sk_reuse || !sk->sk_reuse) &&
  138. (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
  139. sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
  140. (*saddr_comp)(sk, sk2)) {
  141. if (bitmap)
  142. __set_bit(udp_sk(sk2)->udp_port_hash >> log,
  143. bitmap);
  144. else
  145. return 1;
  146. }
  147. return 0;
  148. }
  149. /*
  150. * Note: we still hold spinlock of primary hash chain, so no other writer
  151. * can insert/delete a socket with local_port == num
  152. */
  153. static int udp_lib_lport_inuse2(struct net *net, __u16 num,
  154. struct udp_hslot *hslot2,
  155. struct sock *sk,
  156. int (*saddr_comp)(const struct sock *sk1,
  157. const struct sock *sk2))
  158. {
  159. struct sock *sk2;
  160. struct hlist_nulls_node *node;
  161. int res = 0;
  162. spin_lock(&hslot2->lock);
  163. udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
  164. if (net_eq(sock_net(sk2), net) &&
  165. sk2 != sk &&
  166. (udp_sk(sk2)->udp_port_hash == num) &&
  167. (!sk2->sk_reuse || !sk->sk_reuse) &&
  168. (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
  169. sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
  170. (*saddr_comp)(sk, sk2)) {
  171. res = 1;
  172. break;
  173. }
  174. spin_unlock(&hslot2->lock);
  175. return res;
  176. }
  177. /**
  178. * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
  179. *
  180. * @sk: socket struct in question
  181. * @snum: port number to look up
  182. * @saddr_comp: AF-dependent comparison of bound local IP addresses
  183. * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
  184. * with NULL address
  185. */
  186. int udp_lib_get_port(struct sock *sk, unsigned short snum,
  187. int (*saddr_comp)(const struct sock *sk1,
  188. const struct sock *sk2),
  189. unsigned int hash2_nulladdr)
  190. {
  191. struct udp_hslot *hslot, *hslot2;
  192. struct udp_table *udptable = sk->sk_prot->h.udp_table;
  193. int error = 1;
  194. struct net *net = sock_net(sk);
  195. if (!snum) {
  196. int low, high, remaining;
  197. unsigned int rand;
  198. unsigned short first, last;
  199. DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
  200. inet_get_local_port_range(&low, &high);
  201. remaining = (high - low) + 1;
  202. rand = net_random();
  203. first = (((u64)rand * remaining) >> 32) + low;
  204. /*
  205. * force rand to be an odd multiple of UDP_HTABLE_SIZE
  206. */
  207. rand = (rand | 1) * (udptable->mask + 1);
  208. last = first + udptable->mask + 1;
  209. do {
  210. hslot = udp_hashslot(udptable, net, first);
  211. bitmap_zero(bitmap, PORTS_PER_CHAIN);
  212. spin_lock_bh(&hslot->lock);
  213. udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
  214. saddr_comp, udptable->log);
  215. snum = first;
  216. /*
  217. * Iterate on all possible values of snum for this hash.
  218. * Using steps of an odd multiple of UDP_HTABLE_SIZE
  219. * give us randomization and full range coverage.
  220. */
  221. do {
  222. if (low <= snum && snum <= high &&
  223. !test_bit(snum >> udptable->log, bitmap) &&
  224. !inet_is_reserved_local_port(snum))
  225. goto found;
  226. snum += rand;
  227. } while (snum != first);
  228. spin_unlock_bh(&hslot->lock);
  229. } while (++first != last);
  230. goto fail;
  231. } else {
  232. hslot = udp_hashslot(udptable, net, snum);
  233. spin_lock_bh(&hslot->lock);
  234. if (hslot->count > 10) {
  235. int exist;
  236. unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
  237. slot2 &= udptable->mask;
  238. hash2_nulladdr &= udptable->mask;
  239. hslot2 = udp_hashslot2(udptable, slot2);
  240. if (hslot->count < hslot2->count)
  241. goto scan_primary_hash;
  242. exist = udp_lib_lport_inuse2(net, snum, hslot2,
  243. sk, saddr_comp);
  244. if (!exist && (hash2_nulladdr != slot2)) {
  245. hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
  246. exist = udp_lib_lport_inuse2(net, snum, hslot2,
  247. sk, saddr_comp);
  248. }
  249. if (exist)
  250. goto fail_unlock;
  251. else
  252. goto found;
  253. }
  254. scan_primary_hash:
  255. if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
  256. saddr_comp, 0))
  257. goto fail_unlock;
  258. }
  259. found:
  260. inet_sk(sk)->inet_num = snum;
  261. udp_sk(sk)->udp_port_hash = snum;
  262. udp_sk(sk)->udp_portaddr_hash ^= snum;
  263. if (sk_unhashed(sk)) {
  264. sk_nulls_add_node_rcu(sk, &hslot->head);
  265. hslot->count++;
  266. sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
  267. hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
  268. spin_lock(&hslot2->lock);
  269. hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
  270. &hslot2->head);
  271. hslot2->count++;
  272. spin_unlock(&hslot2->lock);
  273. }
  274. error = 0;
  275. fail_unlock:
  276. spin_unlock_bh(&hslot->lock);
  277. fail:
  278. return error;
  279. }
  280. EXPORT_SYMBOL(udp_lib_get_port);
  281. static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
  282. {
  283. struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
  284. return (!ipv6_only_sock(sk2) &&
  285. (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
  286. inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
  287. }
  288. static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
  289. unsigned int port)
  290. {
  291. return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
  292. }
  293. int udp_v4_get_port(struct sock *sk, unsigned short snum)
  294. {
  295. unsigned int hash2_nulladdr =
  296. udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
  297. unsigned int hash2_partial =
  298. udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
  299. /* precompute partial secondary hash */
  300. udp_sk(sk)->udp_portaddr_hash = hash2_partial;
  301. return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
  302. }
  303. static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
  304. unsigned short hnum,
  305. __be16 sport, __be32 daddr, __be16 dport, int dif)
  306. {
  307. int score = -1;
  308. if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
  309. !ipv6_only_sock(sk)) {
  310. struct inet_sock *inet = inet_sk(sk);
  311. score = (sk->sk_family == PF_INET ? 1 : 0);
  312. if (inet->inet_rcv_saddr) {
  313. if (inet->inet_rcv_saddr != daddr)
  314. return -1;
  315. score += 2;
  316. }
  317. if (inet->inet_daddr) {
  318. if (inet->inet_daddr != saddr)
  319. return -1;
  320. score += 2;
  321. }
  322. if (inet->inet_dport) {
  323. if (inet->inet_dport != sport)
  324. return -1;
  325. score += 2;
  326. }
  327. if (sk->sk_bound_dev_if) {
  328. if (sk->sk_bound_dev_if != dif)
  329. return -1;
  330. score += 2;
  331. }
  332. }
  333. return score;
  334. }
  335. /*
  336. * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
  337. */
  338. #define SCORE2_MAX (1 + 2 + 2 + 2)
  339. static inline int compute_score2(struct sock *sk, struct net *net,
  340. __be32 saddr, __be16 sport,
  341. __be32 daddr, unsigned int hnum, int dif)
  342. {
  343. int score = -1;
  344. if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
  345. struct inet_sock *inet = inet_sk(sk);
  346. if (inet->inet_rcv_saddr != daddr)
  347. return -1;
  348. if (inet->inet_num != hnum)
  349. return -1;
  350. score = (sk->sk_family == PF_INET ? 1 : 0);
  351. if (inet->inet_daddr) {
  352. if (inet->inet_daddr != saddr)
  353. return -1;
  354. score += 2;
  355. }
  356. if (inet->inet_dport) {
  357. if (inet->inet_dport != sport)
  358. return -1;
  359. score += 2;
  360. }
  361. if (sk->sk_bound_dev_if) {
  362. if (sk->sk_bound_dev_if != dif)
  363. return -1;
  364. score += 2;
  365. }
  366. }
  367. return score;
  368. }
  369. /* called with read_rcu_lock() */
  370. static struct sock *udp4_lib_lookup2(struct net *net,
  371. __be32 saddr, __be16 sport,
  372. __be32 daddr, unsigned int hnum, int dif,
  373. struct udp_hslot *hslot2, unsigned int slot2)
  374. {
  375. struct sock *sk, *result;
  376. struct hlist_nulls_node *node;
  377. int score, badness;
  378. begin:
  379. result = NULL;
  380. badness = -1;
  381. udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
  382. score = compute_score2(sk, net, saddr, sport,
  383. daddr, hnum, dif);
  384. if (score > badness) {
  385. result = sk;
  386. badness = score;
  387. if (score == SCORE2_MAX)
  388. goto exact_match;
  389. }
  390. }
  391. /*
  392. * if the nulls value we got at the end of this lookup is
  393. * not the expected one, we must restart lookup.
  394. * We probably met an item that was moved to another chain.
  395. */
  396. if (get_nulls_value(node) != slot2)
  397. goto begin;
  398. if (result) {
  399. exact_match:
  400. if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
  401. result = NULL;
  402. else if (unlikely(compute_score2(result, net, saddr, sport,
  403. daddr, hnum, dif) < badness)) {
  404. sock_put(result);
  405. goto begin;
  406. }
  407. }
  408. return result;
  409. }
  410. /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
  411. * harder than this. -DaveM
  412. */
  413. struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
  414. __be16 sport, __be32 daddr, __be16 dport,
  415. int dif, struct udp_table *udptable)
  416. {
  417. struct sock *sk, *result;
  418. struct hlist_nulls_node *node;
  419. unsigned short hnum = ntohs(dport);
  420. unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
  421. struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
  422. int score, badness;
  423. rcu_read_lock();
  424. if (hslot->count > 10) {
  425. hash2 = udp4_portaddr_hash(net, daddr, hnum);
  426. slot2 = hash2 & udptable->mask;
  427. hslot2 = &udptable->hash2[slot2];
  428. if (hslot->count < hslot2->count)
  429. goto begin;
  430. result = udp4_lib_lookup2(net, saddr, sport,
  431. daddr, hnum, dif,
  432. hslot2, slot2);
  433. if (!result) {
  434. hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
  435. slot2 = hash2 & udptable->mask;
  436. hslot2 = &udptable->hash2[slot2];
  437. if (hslot->count < hslot2->count)
  438. goto begin;
  439. result = udp4_lib_lookup2(net, saddr, sport,
  440. htonl(INADDR_ANY), hnum, dif,
  441. hslot2, slot2);
  442. }
  443. rcu_read_unlock();
  444. return result;
  445. }
  446. begin:
  447. result = NULL;
  448. badness = -1;
  449. sk_nulls_for_each_rcu(sk, node, &hslot->head) {
  450. score = compute_score(sk, net, saddr, hnum, sport,
  451. daddr, dport, dif);
  452. if (score > badness) {
  453. result = sk;
  454. badness = score;
  455. }
  456. }
  457. /*
  458. * if the nulls value we got at the end of this lookup is
  459. * not the expected one, we must restart lookup.
  460. * We probably met an item that was moved to another chain.
  461. */
  462. if (get_nulls_value(node) != slot)
  463. goto begin;
  464. if (result) {
  465. if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
  466. result = NULL;
  467. else if (unlikely(compute_score(result, net, saddr, hnum, sport,
  468. daddr, dport, dif) < badness)) {
  469. sock_put(result);
  470. goto begin;
  471. }
  472. }
  473. rcu_read_unlock();
  474. return result;
  475. }
  476. EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
  477. static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
  478. __be16 sport, __be16 dport,
  479. struct udp_table *udptable)
  480. {
  481. struct sock *sk;
  482. const struct iphdr *iph = ip_hdr(skb);
  483. if (unlikely(sk = skb_steal_sock(skb)))
  484. return sk;
  485. else
  486. return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
  487. iph->daddr, dport, inet_iif(skb),
  488. udptable);
  489. }
  490. struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
  491. __be32 daddr, __be16 dport, int dif)
  492. {
  493. return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
  494. }
  495. EXPORT_SYMBOL_GPL(udp4_lib_lookup);
  496. static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
  497. __be16 loc_port, __be32 loc_addr,
  498. __be16 rmt_port, __be32 rmt_addr,
  499. int dif)
  500. {
  501. struct hlist_nulls_node *node;
  502. struct sock *s = sk;
  503. unsigned short hnum = ntohs(loc_port);
  504. sk_nulls_for_each_from(s, node) {
  505. struct inet_sock *inet = inet_sk(s);
  506. if (!net_eq(sock_net(s), net) ||
  507. udp_sk(s)->udp_port_hash != hnum ||
  508. (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
  509. (inet->inet_dport != rmt_port && inet->inet_dport) ||
  510. (inet->inet_rcv_saddr &&
  511. inet->inet_rcv_saddr != loc_addr) ||
  512. ipv6_only_sock(s) ||
  513. (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
  514. continue;
  515. if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
  516. continue;
  517. goto found;
  518. }
  519. s = NULL;
  520. found:
  521. return s;
  522. }
  523. /*
  524. * This routine is called by the ICMP module when it gets some
  525. * sort of error condition. If err < 0 then the socket should
  526. * be closed and the error returned to the user. If err > 0
  527. * it's just the icmp type << 8 | icmp code.
  528. * Header points to the ip header of the error packet. We move
  529. * on past this. Then (as it used to claim before adjustment)
  530. * header points to the first 8 bytes of the udp header. We need
  531. * to find the appropriate port.
  532. */
  533. void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
  534. {
  535. struct inet_sock *inet;
  536. const struct iphdr *iph = (const struct iphdr *)skb->data;
  537. struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
  538. const int type = icmp_hdr(skb)->type;
  539. const int code = icmp_hdr(skb)->code;
  540. struct sock *sk;
  541. int harderr;
  542. int err;
  543. struct net *net = dev_net(skb->dev);
  544. sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
  545. iph->saddr, uh->source, skb->dev->ifindex, udptable);
  546. if (sk == NULL) {
  547. ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
  548. return; /* No socket for error */
  549. }
  550. err = 0;
  551. harderr = 0;
  552. inet = inet_sk(sk);
  553. switch (type) {
  554. default:
  555. case ICMP_TIME_EXCEEDED:
  556. err = EHOSTUNREACH;
  557. break;
  558. case ICMP_SOURCE_QUENCH:
  559. goto out;
  560. case ICMP_PARAMETERPROB:
  561. err = EPROTO;
  562. harderr = 1;
  563. break;
  564. case ICMP_DEST_UNREACH:
  565. if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
  566. ipv4_sk_update_pmtu(skb, sk, info);
  567. if (inet->pmtudisc != IP_PMTUDISC_DONT) {
  568. err = EMSGSIZE;
  569. harderr = 1;
  570. break;
  571. }
  572. goto out;
  573. }
  574. err = EHOSTUNREACH;
  575. if (code <= NR_ICMP_UNREACH) {
  576. harderr = icmp_err_convert[code].fatal;
  577. err = icmp_err_convert[code].errno;
  578. }
  579. break;
  580. case ICMP_REDIRECT:
  581. ipv4_sk_redirect(skb, sk);
  582. break;
  583. }
  584. /*
  585. * RFC1122: OK. Passes ICMP errors back to application, as per
  586. * 4.1.3.3.
  587. */
  588. if (!inet->recverr) {
  589. if (!harderr || sk->sk_state != TCP_ESTABLISHED)
  590. goto out;
  591. } else
  592. ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
  593. sk->sk_err = err;
  594. sk->sk_error_report(sk);
  595. out:
  596. sock_put(sk);
  597. }
  598. void udp_err(struct sk_buff *skb, u32 info)
  599. {
  600. __udp4_lib_err(skb, info, &udp_table);
  601. }
  602. /*
  603. * Throw away all pending data and cancel the corking. Socket is locked.
  604. */
  605. void udp_flush_pending_frames(struct sock *sk)
  606. {
  607. struct udp_sock *up = udp_sk(sk);
  608. if (up->pending) {
  609. up->len = 0;
  610. up->pending = 0;
  611. ip_flush_pending_frames(sk);
  612. }
  613. }
  614. EXPORT_SYMBOL(udp_flush_pending_frames);
  615. /**
  616. * udp4_hwcsum - handle outgoing HW checksumming
  617. * @skb: sk_buff containing the filled-in UDP header
  618. * (checksum field must be zeroed out)
  619. * @src: source IP address
  620. * @dst: destination IP address
  621. */
  622. static void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
  623. {
  624. struct udphdr *uh = udp_hdr(skb);
  625. struct sk_buff *frags = skb_shinfo(skb)->frag_list;
  626. int offset = skb_transport_offset(skb);
  627. int len = skb->len - offset;
  628. int hlen = len;
  629. __wsum csum = 0;
  630. if (!frags) {
  631. /*
  632. * Only one fragment on the socket.
  633. */
  634. skb->csum_start = skb_transport_header(skb) - skb->head;
  635. skb->csum_offset = offsetof(struct udphdr, check);
  636. uh->check = ~csum_tcpudp_magic(src, dst, len,
  637. IPPROTO_UDP, 0);
  638. } else {
  639. /*
  640. * HW-checksum won't work as there are two or more
  641. * fragments on the socket so that all csums of sk_buffs
  642. * should be together
  643. */
  644. do {
  645. csum = csum_add(csum, frags->csum);
  646. hlen -= frags->len;
  647. } while ((frags = frags->next));
  648. csum = skb_checksum(skb, offset, hlen, csum);
  649. skb->ip_summed = CHECKSUM_NONE;
  650. uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
  651. if (uh->check == 0)
  652. uh->check = CSUM_MANGLED_0;
  653. }
  654. }
  655. static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
  656. {
  657. struct sock *sk = skb->sk;
  658. struct inet_sock *inet = inet_sk(sk);
  659. struct udphdr *uh;
  660. int err = 0;
  661. int is_udplite = IS_UDPLITE(sk);
  662. int offset = skb_transport_offset(skb);
  663. int len = skb->len - offset;
  664. __wsum csum = 0;
  665. /*
  666. * Create a UDP header
  667. */
  668. uh = udp_hdr(skb);
  669. uh->source = inet->inet_sport;
  670. uh->dest = fl4->fl4_dport;
  671. uh->len = htons(len);
  672. uh->check = 0;
  673. if (is_udplite) /* UDP-Lite */
  674. csum = udplite_csum(skb);
  675. else if (sk->sk_no_check == UDP_CSUM_NOXMIT) { /* UDP csum disabled */
  676. skb->ip_summed = CHECKSUM_NONE;
  677. goto send;
  678. } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
  679. udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
  680. goto send;
  681. } else
  682. csum = udp_csum(skb);
  683. /* add protocol-dependent pseudo-header */
  684. uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
  685. sk->sk_protocol, csum);
  686. if (uh->check == 0)
  687. uh->check = CSUM_MANGLED_0;
  688. send:
  689. err = ip_send_skb(sock_net(sk), skb);
  690. if (err) {
  691. if (err == -ENOBUFS && !inet->recverr) {
  692. UDP_INC_STATS_USER(sock_net(sk),
  693. UDP_MIB_SNDBUFERRORS, is_udplite);
  694. err = 0;
  695. }
  696. } else
  697. UDP_INC_STATS_USER(sock_net(sk),
  698. UDP_MIB_OUTDATAGRAMS, is_udplite);
  699. return err;
  700. }
  701. /*
  702. * Push out all pending data as one UDP datagram. Socket is locked.
  703. */
  704. static int udp_push_pending_frames(struct sock *sk)
  705. {
  706. struct udp_sock *up = udp_sk(sk);
  707. struct inet_sock *inet = inet_sk(sk);
  708. struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
  709. struct sk_buff *skb;
  710. int err = 0;
  711. skb = ip_finish_skb(sk, fl4);
  712. if (!skb)
  713. goto out;
  714. err = udp_send_skb(skb, fl4);
  715. out:
  716. up->len = 0;
  717. up->pending = 0;
  718. return err;
  719. }
  720. int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
  721. size_t len)
  722. {
  723. struct inet_sock *inet = inet_sk(sk);
  724. struct udp_sock *up = udp_sk(sk);
  725. struct flowi4 fl4_stack;
  726. struct flowi4 *fl4;
  727. int ulen = len;
  728. struct ipcm_cookie ipc;
  729. struct rtable *rt = NULL;
  730. int free = 0;
  731. int connected = 0;
  732. __be32 daddr, faddr, saddr;
  733. __be16 dport;
  734. u8 tos;
  735. int err, is_udplite = IS_UDPLITE(sk);
  736. int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
  737. int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
  738. struct sk_buff *skb;
  739. struct ip_options_data opt_copy;
  740. if (len > 0xFFFF)
  741. return -EMSGSIZE;
  742. /*
  743. * Check the flags.
  744. */
  745. if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
  746. return -EOPNOTSUPP;
  747. ipc.opt = NULL;
  748. ipc.tx_flags = 0;
  749. getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
  750. fl4 = &inet->cork.fl.u.ip4;
  751. if (up->pending) {
  752. /*
  753. * There are pending frames.
  754. * The socket lock must be held while it's corked.
  755. */
  756. lock_sock(sk);
  757. if (likely(up->pending)) {
  758. if (unlikely(up->pending != AF_INET)) {
  759. release_sock(sk);
  760. return -EINVAL;
  761. }
  762. goto do_append_data;
  763. }
  764. release_sock(sk);
  765. }
  766. ulen += sizeof(struct udphdr);
  767. /*
  768. * Get and verify the address.
  769. */
  770. if (msg->msg_name) {
  771. struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
  772. if (msg->msg_namelen < sizeof(*usin))
  773. return -EINVAL;
  774. if (usin->sin_family != AF_INET) {
  775. if (usin->sin_family != AF_UNSPEC)
  776. return -EAFNOSUPPORT;
  777. }
  778. daddr = usin->sin_addr.s_addr;
  779. dport = usin->sin_port;
  780. if (dport == 0)
  781. return -EINVAL;
  782. } else {
  783. if (sk->sk_state != TCP_ESTABLISHED)
  784. return -EDESTADDRREQ;
  785. daddr = inet->inet_daddr;
  786. dport = inet->inet_dport;
  787. /* Open fast path for connected socket.
  788. Route will not be used, if at least one option is set.
  789. */
  790. connected = 1;
  791. }
  792. ipc.addr = inet->inet_saddr;
  793. ipc.oif = sk->sk_bound_dev_if;
  794. err = sock_tx_timestamp(sk, &ipc.tx_flags);
  795. if (err)
  796. return err;
  797. if (msg->msg_controllen) {
  798. err = ip_cmsg_send(sock_net(sk), msg, &ipc);
  799. if (err)
  800. return err;
  801. if (ipc.opt)
  802. free = 1;
  803. connected = 0;
  804. }
  805. if (!ipc.opt) {
  806. struct ip_options_rcu *inet_opt;
  807. rcu_read_lock();
  808. inet_opt = rcu_dereference(inet->inet_opt);
  809. if (inet_opt) {
  810. memcpy(&opt_copy, inet_opt,
  811. sizeof(*inet_opt) + inet_opt->opt.optlen);
  812. ipc.opt = &opt_copy.opt;
  813. }
  814. rcu_read_unlock();
  815. }
  816. saddr = ipc.addr;
  817. ipc.addr = faddr = daddr;
  818. if (ipc.opt && ipc.opt->opt.srr) {
  819. if (!daddr)
  820. return -EINVAL;
  821. faddr = ipc.opt->opt.faddr;
  822. connected = 0;
  823. }
  824. tos = RT_TOS(inet->tos);
  825. if (sock_flag(sk, SOCK_LOCALROUTE) ||
  826. (msg->msg_flags & MSG_DONTROUTE) ||
  827. (ipc.opt && ipc.opt->opt.is_strictroute)) {
  828. tos |= RTO_ONLINK;
  829. connected = 0;
  830. }
  831. if (ipv4_is_multicast(daddr)) {
  832. if (!ipc.oif)
  833. ipc.oif = inet->mc_index;
  834. if (!saddr)
  835. saddr = inet->mc_addr;
  836. connected = 0;
  837. } else if (!ipc.oif)
  838. ipc.oif = inet->uc_index;
  839. if (connected)
  840. rt = (struct rtable *)sk_dst_check(sk, 0);
  841. if (rt == NULL) {
  842. struct net *net = sock_net(sk);
  843. fl4 = &fl4_stack;
  844. flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
  845. RT_SCOPE_UNIVERSE, sk->sk_protocol,
  846. inet_sk_flowi_flags(sk)|FLOWI_FLAG_CAN_SLEEP,
  847. faddr, saddr, dport, inet->inet_sport);
  848. security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
  849. rt = ip_route_output_flow(net, fl4, sk);
  850. if (IS_ERR(rt)) {
  851. err = PTR_ERR(rt);
  852. rt = NULL;
  853. if (err == -ENETUNREACH)
  854. IP_INC_STATS_BH(net, IPSTATS_MIB_OUTNOROUTES);
  855. goto out;
  856. }
  857. err = -EACCES;
  858. if ((rt->rt_flags & RTCF_BROADCAST) &&
  859. !sock_flag(sk, SOCK_BROADCAST))
  860. goto out;
  861. if (connected)
  862. sk_dst_set(sk, dst_clone(&rt->dst));
  863. }
  864. if (msg->msg_flags&MSG_CONFIRM)
  865. goto do_confirm;
  866. back_from_confirm:
  867. saddr = fl4->saddr;
  868. if (!ipc.addr)
  869. daddr = ipc.addr = fl4->daddr;
  870. /* Lockless fast path for the non-corking case. */
  871. if (!corkreq) {
  872. skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
  873. sizeof(struct udphdr), &ipc, &rt,
  874. msg->msg_flags);
  875. err = PTR_ERR(skb);
  876. if (skb && !IS_ERR(skb))
  877. err = udp_send_skb(skb, fl4);
  878. goto out;
  879. }
  880. lock_sock(sk);
  881. if (unlikely(up->pending)) {
  882. /* The socket is already corked while preparing it. */
  883. /* ... which is an evident application bug. --ANK */
  884. release_sock(sk);
  885. LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
  886. err = -EINVAL;
  887. goto out;
  888. }
  889. /*
  890. * Now cork the socket to pend data.
  891. */
  892. fl4 = &inet->cork.fl.u.ip4;
  893. fl4->daddr = daddr;
  894. fl4->saddr = saddr;
  895. fl4->fl4_dport = dport;
  896. fl4->fl4_sport = inet->inet_sport;
  897. up->pending = AF_INET;
  898. do_append_data:
  899. up->len += ulen;
  900. err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
  901. sizeof(struct udphdr), &ipc, &rt,
  902. corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
  903. if (err)
  904. udp_flush_pending_frames(sk);
  905. else if (!corkreq)
  906. err = udp_push_pending_frames(sk);
  907. else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
  908. up->pending = 0;
  909. release_sock(sk);
  910. out:
  911. ip_rt_put(rt);
  912. if (free)
  913. kfree(ipc.opt);
  914. if (!err)
  915. return len;
  916. /*
  917. * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
  918. * ENOBUFS might not be good (it's not tunable per se), but otherwise
  919. * we don't have a good statistic (IpOutDiscards but it can be too many
  920. * things). We could add another new stat but at least for now that
  921. * seems like overkill.
  922. */
  923. if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  924. UDP_INC_STATS_USER(sock_net(sk),
  925. UDP_MIB_SNDBUFERRORS, is_udplite);
  926. }
  927. return err;
  928. do_confirm:
  929. dst_confirm(&rt->dst);
  930. if (!(msg->msg_flags&MSG_PROBE) || len)
  931. goto back_from_confirm;
  932. err = 0;
  933. goto out;
  934. }
  935. EXPORT_SYMBOL(udp_sendmsg);
  936. int udp_sendpage(struct sock *sk, struct page *page, int offset,
  937. size_t size, int flags)
  938. {
  939. struct inet_sock *inet = inet_sk(sk);
  940. struct udp_sock *up = udp_sk(sk);
  941. int ret;
  942. if (!up->pending) {
  943. struct msghdr msg = { .msg_flags = flags|MSG_MORE };
  944. /* Call udp_sendmsg to specify destination address which
  945. * sendpage interface can't pass.
  946. * This will succeed only when the socket is connected.
  947. */
  948. ret = udp_sendmsg(NULL, sk, &msg, 0);
  949. if (ret < 0)
  950. return ret;
  951. }
  952. lock_sock(sk);
  953. if (unlikely(!up->pending)) {
  954. release_sock(sk);
  955. LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
  956. return -EINVAL;
  957. }
  958. ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
  959. page, offset, size, flags);
  960. if (ret == -EOPNOTSUPP) {
  961. release_sock(sk);
  962. return sock_no_sendpage(sk->sk_socket, page, offset,
  963. size, flags);
  964. }
  965. if (ret < 0) {
  966. udp_flush_pending_frames(sk);
  967. goto out;
  968. }
  969. up->len += size;
  970. if (!(up->corkflag || (flags&MSG_MORE)))
  971. ret = udp_push_pending_frames(sk);
  972. if (!ret)
  973. ret = size;
  974. out:
  975. release_sock(sk);
  976. return ret;
  977. }
  978. /**
  979. * first_packet_length - return length of first packet in receive queue
  980. * @sk: socket
  981. *
  982. * Drops all bad checksum frames, until a valid one is found.
  983. * Returns the length of found skb, or 0 if none is found.
  984. */
  985. static unsigned int first_packet_length(struct sock *sk)
  986. {
  987. struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
  988. struct sk_buff *skb;
  989. unsigned int res;
  990. __skb_queue_head_init(&list_kill);
  991. spin_lock_bh(&rcvq->lock);
  992. while ((skb = skb_peek(rcvq)) != NULL &&
  993. udp_lib_checksum_complete(skb)) {
  994. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
  995. IS_UDPLITE(sk));
  996. atomic_inc(&sk->sk_drops);
  997. __skb_unlink(skb, rcvq);
  998. __skb_queue_tail(&list_kill, skb);
  999. }
  1000. res = skb ? skb->len : 0;
  1001. spin_unlock_bh(&rcvq->lock);
  1002. if (!skb_queue_empty(&list_kill)) {
  1003. bool slow = lock_sock_fast(sk);
  1004. __skb_queue_purge(&list_kill);
  1005. sk_mem_reclaim_partial(sk);
  1006. unlock_sock_fast(sk, slow);
  1007. }
  1008. return res;
  1009. }
  1010. /*
  1011. * IOCTL requests applicable to the UDP protocol
  1012. */
  1013. int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
  1014. {
  1015. switch (cmd) {
  1016. case SIOCOUTQ:
  1017. {
  1018. int amount = sk_wmem_alloc_get(sk);
  1019. return put_user(amount, (int __user *)arg);
  1020. }
  1021. case SIOCINQ:
  1022. {
  1023. unsigned int amount = first_packet_length(sk);
  1024. if (amount)
  1025. /*
  1026. * We will only return the amount
  1027. * of this packet since that is all
  1028. * that will be read.
  1029. */
  1030. amount -= sizeof(struct udphdr);
  1031. return put_user(amount, (int __user *)arg);
  1032. }
  1033. default:
  1034. return -ENOIOCTLCMD;
  1035. }
  1036. return 0;
  1037. }
  1038. EXPORT_SYMBOL(udp_ioctl);
  1039. /*
  1040. * This should be easy, if there is something there we
  1041. * return it, otherwise we block.
  1042. */
  1043. int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
  1044. size_t len, int noblock, int flags, int *addr_len)
  1045. {
  1046. struct inet_sock *inet = inet_sk(sk);
  1047. struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
  1048. struct sk_buff *skb;
  1049. unsigned int ulen, copied;
  1050. int peeked, off = 0;
  1051. int err;
  1052. int is_udplite = IS_UDPLITE(sk);
  1053. bool slow;
  1054. /*
  1055. * Check any passed addresses
  1056. */
  1057. if (addr_len)
  1058. *addr_len = sizeof(*sin);
  1059. if (flags & MSG_ERRQUEUE)
  1060. return ip_recv_error(sk, msg, len);
  1061. try_again:
  1062. skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
  1063. &peeked, &off, &err);
  1064. if (!skb)
  1065. goto out;
  1066. ulen = skb->len - sizeof(struct udphdr);
  1067. copied = len;
  1068. if (copied > ulen)
  1069. copied = ulen;
  1070. else if (copied < ulen)
  1071. msg->msg_flags |= MSG_TRUNC;
  1072. /*
  1073. * If checksum is needed at all, try to do it while copying the
  1074. * data. If the data is truncated, or if we only want a partial
  1075. * coverage checksum (UDP-Lite), do it before the copy.
  1076. */
  1077. if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
  1078. if (udp_lib_checksum_complete(skb))
  1079. goto csum_copy_err;
  1080. }
  1081. if (skb_csum_unnecessary(skb))
  1082. err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
  1083. msg->msg_iov, copied);
  1084. else {
  1085. err = skb_copy_and_csum_datagram_iovec(skb,
  1086. sizeof(struct udphdr),
  1087. msg->msg_iov);
  1088. if (err == -EINVAL)
  1089. goto csum_copy_err;
  1090. }
  1091. if (unlikely(err)) {
  1092. trace_kfree_skb(skb, udp_recvmsg);
  1093. if (!peeked) {
  1094. atomic_inc(&sk->sk_drops);
  1095. UDP_INC_STATS_USER(sock_net(sk),
  1096. UDP_MIB_INERRORS, is_udplite);
  1097. }
  1098. goto out_free;
  1099. }
  1100. if (!peeked)
  1101. UDP_INC_STATS_USER(sock_net(sk),
  1102. UDP_MIB_INDATAGRAMS, is_udplite);
  1103. sock_recv_ts_and_drops(msg, sk, skb);
  1104. /* Copy the address. */
  1105. if (sin) {
  1106. sin->sin_family = AF_INET;
  1107. sin->sin_port = udp_hdr(skb)->source;
  1108. sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
  1109. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1110. }
  1111. if (inet->cmsg_flags)
  1112. ip_cmsg_recv(msg, skb);
  1113. err = copied;
  1114. if (flags & MSG_TRUNC)
  1115. err = ulen;
  1116. out_free:
  1117. skb_free_datagram_locked(sk, skb);
  1118. out:
  1119. return err;
  1120. csum_copy_err:
  1121. slow = lock_sock_fast(sk);
  1122. if (!skb_kill_datagram(sk, skb, flags))
  1123. UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
  1124. unlock_sock_fast(sk, slow);
  1125. if (noblock)
  1126. return -EAGAIN;
  1127. /* starting over for a new packet */
  1128. msg->msg_flags &= ~MSG_TRUNC;
  1129. goto try_again;
  1130. }
  1131. int udp_disconnect(struct sock *sk, int flags)
  1132. {
  1133. struct inet_sock *inet = inet_sk(sk);
  1134. /*
  1135. * 1003.1g - break association.
  1136. */
  1137. sk->sk_state = TCP_CLOSE;
  1138. inet->inet_daddr = 0;
  1139. inet->inet_dport = 0;
  1140. sock_rps_reset_rxhash(sk);
  1141. sk->sk_bound_dev_if = 0;
  1142. if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
  1143. inet_reset_saddr(sk);
  1144. if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
  1145. sk->sk_prot->unhash(sk);
  1146. inet->inet_sport = 0;
  1147. }
  1148. sk_dst_reset(sk);
  1149. return 0;
  1150. }
  1151. EXPORT_SYMBOL(udp_disconnect);
  1152. void udp_lib_unhash(struct sock *sk)
  1153. {
  1154. if (sk_hashed(sk)) {
  1155. struct udp_table *udptable = sk->sk_prot->h.udp_table;
  1156. struct udp_hslot *hslot, *hslot2;
  1157. hslot = udp_hashslot(udptable, sock_net(sk),
  1158. udp_sk(sk)->udp_port_hash);
  1159. hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
  1160. spin_lock_bh(&hslot->lock);
  1161. if (sk_nulls_del_node_init_rcu(sk)) {
  1162. hslot->count--;
  1163. inet_sk(sk)->inet_num = 0;
  1164. sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
  1165. spin_lock(&hslot2->lock);
  1166. hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
  1167. hslot2->count--;
  1168. spin_unlock(&hslot2->lock);
  1169. }
  1170. spin_unlock_bh(&hslot->lock);
  1171. }
  1172. }
  1173. EXPORT_SYMBOL(udp_lib_unhash);
  1174. /*
  1175. * inet_rcv_saddr was changed, we must rehash secondary hash
  1176. */
  1177. void udp_lib_rehash(struct sock *sk, u16 newhash)
  1178. {
  1179. if (sk_hashed(sk)) {
  1180. struct udp_table *udptable = sk->sk_prot->h.udp_table;
  1181. struct udp_hslot *hslot, *hslot2, *nhslot2;
  1182. hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
  1183. nhslot2 = udp_hashslot2(udptable, newhash);
  1184. udp_sk(sk)->udp_portaddr_hash = newhash;
  1185. if (hslot2 != nhslot2) {
  1186. hslot = udp_hashslot(udptable, sock_net(sk),
  1187. udp_sk(sk)->udp_port_hash);
  1188. /* we must lock primary chain too */
  1189. spin_lock_bh(&hslot->lock);
  1190. spin_lock(&hslot2->lock);
  1191. hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
  1192. hslot2->count--;
  1193. spin_unlock(&hslot2->lock);
  1194. spin_lock(&nhslot2->lock);
  1195. hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
  1196. &nhslot2->head);
  1197. nhslot2->count++;
  1198. spin_unlock(&nhslot2->lock);
  1199. spin_unlock_bh(&hslot->lock);
  1200. }
  1201. }
  1202. }
  1203. EXPORT_SYMBOL(udp_lib_rehash);
  1204. static void udp_v4_rehash(struct sock *sk)
  1205. {
  1206. u16 new_hash = udp4_portaddr_hash(sock_net(sk),
  1207. inet_sk(sk)->inet_rcv_saddr,
  1208. inet_sk(sk)->inet_num);
  1209. udp_lib_rehash(sk, new_hash);
  1210. }
  1211. static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  1212. {
  1213. int rc;
  1214. if (inet_sk(sk)->inet_daddr)
  1215. sock_rps_save_rxhash(sk, skb);
  1216. rc = sock_queue_rcv_skb(sk, skb);
  1217. if (rc < 0) {
  1218. int is_udplite = IS_UDPLITE(sk);
  1219. /* Note that an ENOMEM error is charged twice */
  1220. if (rc == -ENOMEM)
  1221. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
  1222. is_udplite);
  1223. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
  1224. kfree_skb(skb);
  1225. trace_udp_fail_queue_rcv_skb(rc, sk);
  1226. return -1;
  1227. }
  1228. return 0;
  1229. }
  1230. static struct static_key udp_encap_needed __read_mostly;
  1231. void udp_encap_enable(void)
  1232. {
  1233. if (!static_key_enabled(&udp_encap_needed))
  1234. static_key_slow_inc(&udp_encap_needed);
  1235. }
  1236. EXPORT_SYMBOL(udp_encap_enable);
  1237. /* returns:
  1238. * -1: error
  1239. * 0: success
  1240. * >0: "udp encap" protocol resubmission
  1241. *
  1242. * Note that in the success and error cases, the skb is assumed to
  1243. * have either been requeued or freed.
  1244. */
  1245. int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  1246. {
  1247. struct udp_sock *up = udp_sk(sk);
  1248. int rc;
  1249. int is_udplite = IS_UDPLITE(sk);
  1250. /*
  1251. * Charge it to the socket, dropping if the queue is full.
  1252. */
  1253. if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
  1254. goto drop;
  1255. nf_reset(skb);
  1256. if (static_key_false(&udp_encap_needed) && up->encap_type) {
  1257. int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
  1258. /*
  1259. * This is an encapsulation socket so pass the skb to
  1260. * the socket's udp_encap_rcv() hook. Otherwise, just
  1261. * fall through and pass this up the UDP socket.
  1262. * up->encap_rcv() returns the following value:
  1263. * =0 if skb was successfully passed to the encap
  1264. * handler or was discarded by it.
  1265. * >0 if skb should be passed on to UDP.
  1266. * <0 if skb should be resubmitted as proto -N
  1267. */
  1268. /* if we're overly short, let UDP handle it */
  1269. encap_rcv = ACCESS_ONCE(up->encap_rcv);
  1270. if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
  1271. int ret;
  1272. ret = encap_rcv(sk, skb);
  1273. if (ret <= 0) {
  1274. UDP_INC_STATS_BH(sock_net(sk),
  1275. UDP_MIB_INDATAGRAMS,
  1276. is_udplite);
  1277. return -ret;
  1278. }
  1279. }
  1280. /* FALLTHROUGH -- it's a UDP Packet */
  1281. }
  1282. /*
  1283. * UDP-Lite specific tests, ignored on UDP sockets
  1284. */
  1285. if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
  1286. /*
  1287. * MIB statistics other than incrementing the error count are
  1288. * disabled for the following two types of errors: these depend
  1289. * on the application settings, not on the functioning of the
  1290. * protocol stack as such.
  1291. *
  1292. * RFC 3828 here recommends (sec 3.3): "There should also be a
  1293. * way ... to ... at least let the receiving application block
  1294. * delivery of packets with coverage values less than a value
  1295. * provided by the application."
  1296. */
  1297. if (up->pcrlen == 0) { /* full coverage was set */
  1298. LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
  1299. UDP_SKB_CB(skb)->cscov, skb->len);
  1300. goto drop;
  1301. }
  1302. /* The next case involves violating the min. coverage requested
  1303. * by the receiver. This is subtle: if receiver wants x and x is
  1304. * greater than the buffersize/MTU then receiver will complain
  1305. * that it wants x while sender emits packets of smaller size y.
  1306. * Therefore the above ...()->partial_cov statement is essential.
  1307. */
  1308. if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
  1309. LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
  1310. UDP_SKB_CB(skb)->cscov, up->pcrlen);
  1311. goto drop;
  1312. }
  1313. }
  1314. if (rcu_access_pointer(sk->sk_filter) &&
  1315. udp_lib_checksum_complete(skb))
  1316. goto drop;
  1317. if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf))
  1318. goto drop;
  1319. rc = 0;
  1320. ipv4_pktinfo_prepare(skb);
  1321. bh_lock_sock(sk);
  1322. if (!sock_owned_by_user(sk))
  1323. rc = __udp_queue_rcv_skb(sk, skb);
  1324. else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
  1325. bh_unlock_sock(sk);
  1326. goto drop;
  1327. }
  1328. bh_unlock_sock(sk);
  1329. return rc;
  1330. drop:
  1331. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
  1332. atomic_inc(&sk->sk_drops);
  1333. kfree_skb(skb);
  1334. return -1;
  1335. }
  1336. static void flush_stack(struct sock **stack, unsigned int count,
  1337. struct sk_buff *skb, unsigned int final)
  1338. {
  1339. unsigned int i;
  1340. struct sk_buff *skb1 = NULL;
  1341. struct sock *sk;
  1342. for (i = 0; i < count; i++) {
  1343. sk = stack[i];
  1344. if (likely(skb1 == NULL))
  1345. skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
  1346. if (!skb1) {
  1347. atomic_inc(&sk->sk_drops);
  1348. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
  1349. IS_UDPLITE(sk));
  1350. UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
  1351. IS_UDPLITE(sk));
  1352. }
  1353. if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
  1354. skb1 = NULL;
  1355. }
  1356. if (unlikely(skb1))
  1357. kfree_skb(skb1);
  1358. }
  1359. /*
  1360. * Multicasts and broadcasts go to each listener.
  1361. *
  1362. * Note: called only from the BH handler context.
  1363. */
  1364. static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
  1365. struct udphdr *uh,
  1366. __be32 saddr, __be32 daddr,
  1367. struct udp_table *udptable)
  1368. {
  1369. struct sock *sk, *stack[256 / sizeof(struct sock *)];
  1370. struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
  1371. int dif;
  1372. unsigned int i, count = 0;
  1373. spin_lock(&hslot->lock);
  1374. sk = sk_nulls_head(&hslot->head);
  1375. dif = skb->dev->ifindex;
  1376. sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
  1377. while (sk) {
  1378. stack[count++] = sk;
  1379. sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
  1380. daddr, uh->source, saddr, dif);
  1381. if (unlikely(count == ARRAY_SIZE(stack))) {
  1382. if (!sk)
  1383. break;
  1384. flush_stack(stack, count, skb, ~0);
  1385. count = 0;
  1386. }
  1387. }
  1388. /*
  1389. * before releasing chain lock, we must take a reference on sockets
  1390. */
  1391. for (i = 0; i < count; i++)
  1392. sock_hold(stack[i]);
  1393. spin_unlock(&hslot->lock);
  1394. /*
  1395. * do the slow work with no lock held
  1396. */
  1397. if (count) {
  1398. flush_stack(stack, count, skb, count - 1);
  1399. for (i = 0; i < count; i++)
  1400. sock_put(stack[i]);
  1401. } else {
  1402. kfree_skb(skb);
  1403. }
  1404. return 0;
  1405. }
  1406. /* Initialize UDP checksum. If exited with zero value (success),
  1407. * CHECKSUM_UNNECESSARY means, that no more checks are required.
  1408. * Otherwise, csum completion requires chacksumming packet body,
  1409. * including udp header and folding it to skb->csum.
  1410. */
  1411. static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
  1412. int proto)
  1413. {
  1414. const struct iphdr *iph;
  1415. int err;
  1416. UDP_SKB_CB(skb)->partial_cov = 0;
  1417. UDP_SKB_CB(skb)->cscov = skb->len;
  1418. if (proto == IPPROTO_UDPLITE) {
  1419. err = udplite_checksum_init(skb, uh);
  1420. if (err)
  1421. return err;
  1422. }
  1423. iph = ip_hdr(skb);
  1424. if (uh->check == 0) {
  1425. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1426. } else if (skb->ip_summed == CHECKSUM_COMPLETE) {
  1427. if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
  1428. proto, skb->csum))
  1429. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1430. }
  1431. if (!skb_csum_unnecessary(skb))
  1432. skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
  1433. skb->len, proto, 0);
  1434. /* Probably, we should checksum udp header (it should be in cache
  1435. * in any case) and data in tiny packets (< rx copybreak).
  1436. */
  1437. return 0;
  1438. }
  1439. /*
  1440. * All we need to do is get the socket, and then do a checksum.
  1441. */
  1442. int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
  1443. int proto)
  1444. {
  1445. struct sock *sk;
  1446. struct udphdr *uh;
  1447. unsigned short ulen;
  1448. struct rtable *rt = skb_rtable(skb);
  1449. __be32 saddr, daddr;
  1450. struct net *net = dev_net(skb->dev);
  1451. /*
  1452. * Validate the packet.
  1453. */
  1454. if (!pskb_may_pull(skb, sizeof(struct udphdr)))
  1455. goto drop; /* No space for header. */
  1456. uh = udp_hdr(skb);
  1457. ulen = ntohs(uh->len);
  1458. saddr = ip_hdr(skb)->saddr;
  1459. daddr = ip_hdr(skb)->daddr;
  1460. if (ulen > skb->len)
  1461. goto short_packet;
  1462. if (proto == IPPROTO_UDP) {
  1463. /* UDP validates ulen. */
  1464. if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
  1465. goto short_packet;
  1466. uh = udp_hdr(skb);
  1467. }
  1468. if (udp4_csum_init(skb, uh, proto))
  1469. goto csum_error;
  1470. if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
  1471. return __udp4_lib_mcast_deliver(net, skb, uh,
  1472. saddr, daddr, udptable);
  1473. sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
  1474. if (sk != NULL) {
  1475. int ret = udp_queue_rcv_skb(sk, skb);
  1476. sock_put(sk);
  1477. /* a return value > 0 means to resubmit the input, but
  1478. * it wants the return to be -protocol, or 0
  1479. */
  1480. if (ret > 0)
  1481. return -ret;
  1482. return 0;
  1483. }
  1484. if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
  1485. goto drop;
  1486. nf_reset(skb);
  1487. /* No socket. Drop packet silently, if checksum is wrong */
  1488. if (udp_lib_checksum_complete(skb))
  1489. goto csum_error;
  1490. UDP_INC_STATS_BH(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
  1491. icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
  1492. /*
  1493. * Hmm. We got an UDP packet to a port to which we
  1494. * don't wanna listen. Ignore it.
  1495. */
  1496. kfree_skb(skb);
  1497. return 0;
  1498. short_packet:
  1499. LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
  1500. proto == IPPROTO_UDPLITE ? "Lite" : "",
  1501. &saddr, ntohs(uh->source),
  1502. ulen, skb->len,
  1503. &daddr, ntohs(uh->dest));
  1504. goto drop;
  1505. csum_error:
  1506. /*
  1507. * RFC1122: OK. Discards the bad packet silently (as far as
  1508. * the network is concerned, anyway) as per 4.1.3.4 (MUST).
  1509. */
  1510. LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
  1511. proto == IPPROTO_UDPLITE ? "Lite" : "",
  1512. &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
  1513. ulen);
  1514. drop:
  1515. UDP_INC_STATS_BH(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
  1516. kfree_skb(skb);
  1517. return 0;
  1518. }
  1519. int udp_rcv(struct sk_buff *skb)
  1520. {
  1521. return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
  1522. }
  1523. void udp_destroy_sock(struct sock *sk)
  1524. {
  1525. bool slow = lock_sock_fast(sk);
  1526. udp_flush_pending_frames(sk);
  1527. unlock_sock_fast(sk, slow);
  1528. }
  1529. /*
  1530. * Socket option code for UDP
  1531. */
  1532. int udp_lib_setsockopt(struct sock *sk, int level, int optname,
  1533. char __user *optval, unsigned int optlen,
  1534. int (*push_pending_frames)(struct sock *))
  1535. {
  1536. struct udp_sock *up = udp_sk(sk);
  1537. int val;
  1538. int err = 0;
  1539. int is_udplite = IS_UDPLITE(sk);
  1540. if (optlen < sizeof(int))
  1541. return -EINVAL;
  1542. if (get_user(val, (int __user *)optval))
  1543. return -EFAULT;
  1544. switch (optname) {
  1545. case UDP_CORK:
  1546. if (val != 0) {
  1547. up->corkflag = 1;
  1548. } else {
  1549. up->corkflag = 0;
  1550. lock_sock(sk);
  1551. (*push_pending_frames)(sk);
  1552. release_sock(sk);
  1553. }
  1554. break;
  1555. case UDP_ENCAP:
  1556. switch (val) {
  1557. case 0:
  1558. case UDP_ENCAP_ESPINUDP:
  1559. case UDP_ENCAP_ESPINUDP_NON_IKE:
  1560. up->encap_rcv = xfrm4_udp_encap_rcv;
  1561. /* FALLTHROUGH */
  1562. case UDP_ENCAP_L2TPINUDP:
  1563. up->encap_type = val;
  1564. udp_encap_enable();
  1565. break;
  1566. default:
  1567. err = -ENOPROTOOPT;
  1568. break;
  1569. }
  1570. break;
  1571. /*
  1572. * UDP-Lite's partial checksum coverage (RFC 3828).
  1573. */
  1574. /* The sender sets actual checksum coverage length via this option.
  1575. * The case coverage > packet length is handled by send module. */
  1576. case UDPLITE_SEND_CSCOV:
  1577. if (!is_udplite) /* Disable the option on UDP sockets */
  1578. return -ENOPROTOOPT;
  1579. if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
  1580. val = 8;
  1581. else if (val > USHRT_MAX)
  1582. val = USHRT_MAX;
  1583. up->pcslen = val;
  1584. up->pcflag |= UDPLITE_SEND_CC;
  1585. break;
  1586. /* The receiver specifies a minimum checksum coverage value. To make
  1587. * sense, this should be set to at least 8 (as done below). If zero is
  1588. * used, this again means full checksum coverage. */
  1589. case UDPLITE_RECV_CSCOV:
  1590. if (!is_udplite) /* Disable the option on UDP sockets */
  1591. return -ENOPROTOOPT;
  1592. if (val != 0 && val < 8) /* Avoid silly minimal values. */
  1593. val = 8;
  1594. else if (val > USHRT_MAX)
  1595. val = USHRT_MAX;
  1596. up->pcrlen = val;
  1597. up->pcflag |= UDPLITE_RECV_CC;
  1598. break;
  1599. default:
  1600. err = -ENOPROTOOPT;
  1601. break;
  1602. }
  1603. return err;
  1604. }
  1605. EXPORT_SYMBOL(udp_lib_setsockopt);
  1606. int udp_setsockopt(struct sock *sk, int level, int optname,
  1607. char __user *optval, unsigned int optlen)
  1608. {
  1609. if (level == SOL_UDP || level == SOL_UDPLITE)
  1610. return udp_lib_setsockopt(sk, level, optname, optval, optlen,
  1611. udp_push_pending_frames);
  1612. return ip_setsockopt(sk, level, optname, optval, optlen);
  1613. }
  1614. #ifdef CONFIG_COMPAT
  1615. int compat_udp_setsockopt(struct sock *sk, int level, int optname,
  1616. char __user *optval, unsigned int optlen)
  1617. {
  1618. if (level == SOL_UDP || level == SOL_UDPLITE)
  1619. return udp_lib_setsockopt(sk, level, optname, optval, optlen,
  1620. udp_push_pending_frames);
  1621. return compat_ip_setsockopt(sk, level, optname, optval, optlen);
  1622. }
  1623. #endif
  1624. int udp_lib_getsockopt(struct sock *sk, int level, int optname,
  1625. char __user *optval, int __user *optlen)
  1626. {
  1627. struct udp_sock *up = udp_sk(sk);
  1628. int val, len;
  1629. if (get_user(len, optlen))
  1630. return -EFAULT;
  1631. len = min_t(unsigned int, len, sizeof(int));
  1632. if (len < 0)
  1633. return -EINVAL;
  1634. switch (optname) {
  1635. case UDP_CORK:
  1636. val = up->corkflag;
  1637. break;
  1638. case UDP_ENCAP:
  1639. val = up->encap_type;
  1640. break;
  1641. /* The following two cannot be changed on UDP sockets, the return is
  1642. * always 0 (which corresponds to the full checksum coverage of UDP). */
  1643. case UDPLITE_SEND_CSCOV:
  1644. val = up->pcslen;
  1645. break;
  1646. case UDPLITE_RECV_CSCOV:
  1647. val = up->pcrlen;
  1648. break;
  1649. default:
  1650. return -ENOPROTOOPT;
  1651. }
  1652. if (put_user(len, optlen))
  1653. return -EFAULT;
  1654. if (copy_to_user(optval, &val, len))
  1655. return -EFAULT;
  1656. return 0;
  1657. }
  1658. EXPORT_SYMBOL(udp_lib_getsockopt);
  1659. int udp_getsockopt(struct sock *sk, int level, int optname,
  1660. char __user *optval, int __user *optlen)
  1661. {
  1662. if (level == SOL_UDP || level == SOL_UDPLITE)
  1663. return udp_lib_getsockopt(sk, level, optname, optval, optlen);
  1664. return ip_getsockopt(sk, level, optname, optval, optlen);
  1665. }
  1666. #ifdef CONFIG_COMPAT
  1667. int compat_udp_getsockopt(struct sock *sk, int level, int optname,
  1668. char __user *optval, int __user *optlen)
  1669. {
  1670. if (level == SOL_UDP || level == SOL_UDPLITE)
  1671. return udp_lib_getsockopt(sk, level, optname, optval, optlen);
  1672. return compat_ip_getsockopt(sk, level, optname, optval, optlen);
  1673. }
  1674. #endif
  1675. /**
  1676. * udp_poll - wait for a UDP event.
  1677. * @file - file struct
  1678. * @sock - socket
  1679. * @wait - poll table
  1680. *
  1681. * This is same as datagram poll, except for the special case of
  1682. * blocking sockets. If application is using a blocking fd
  1683. * and a packet with checksum error is in the queue;
  1684. * then it could get return from select indicating data available
  1685. * but then block when reading it. Add special case code
  1686. * to work around these arguably broken applications.
  1687. */
  1688. unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
  1689. {
  1690. unsigned int mask = datagram_poll(file, sock, wait);
  1691. struct sock *sk = sock->sk;
  1692. /* Check for false positives due to checksum errors */
  1693. if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
  1694. !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
  1695. mask &= ~(POLLIN | POLLRDNORM);
  1696. return mask;
  1697. }
  1698. EXPORT_SYMBOL(udp_poll);
  1699. struct proto udp_prot = {
  1700. .name = "UDP",
  1701. .owner = THIS_MODULE,
  1702. .close = udp_lib_close,
  1703. .connect = ip4_datagram_connect,
  1704. .disconnect = udp_disconnect,
  1705. .ioctl = udp_ioctl,
  1706. .destroy = udp_destroy_sock,
  1707. .setsockopt = udp_setsockopt,
  1708. .getsockopt = udp_getsockopt,
  1709. .sendmsg = udp_sendmsg,
  1710. .recvmsg = udp_recvmsg,
  1711. .sendpage = udp_sendpage,
  1712. .backlog_rcv = __udp_queue_rcv_skb,
  1713. .hash = udp_lib_hash,
  1714. .unhash = udp_lib_unhash,
  1715. .rehash = udp_v4_rehash,
  1716. .get_port = udp_v4_get_port,
  1717. .memory_allocated = &udp_memory_allocated,
  1718. .sysctl_mem = sysctl_udp_mem,
  1719. .sysctl_wmem = &sysctl_udp_wmem_min,
  1720. .sysctl_rmem = &sysctl_udp_rmem_min,
  1721. .obj_size = sizeof(struct udp_sock),
  1722. .slab_flags = SLAB_DESTROY_BY_RCU,
  1723. .h.udp_table = &udp_table,
  1724. #ifdef CONFIG_COMPAT
  1725. .compat_setsockopt = compat_udp_setsockopt,
  1726. .compat_getsockopt = compat_udp_getsockopt,
  1727. #endif
  1728. .clear_sk = sk_prot_clear_portaddr_nulls,
  1729. };
  1730. EXPORT_SYMBOL(udp_prot);
  1731. /* ------------------------------------------------------------------------ */
  1732. #ifdef CONFIG_PROC_FS
  1733. static struct sock *udp_get_first(struct seq_file *seq, int start)
  1734. {
  1735. struct sock *sk;
  1736. struct udp_iter_state *state = seq->private;
  1737. struct net *net = seq_file_net(seq);
  1738. for (state->bucket = start; state->bucket <= state->udp_table->mask;
  1739. ++state->bucket) {
  1740. struct hlist_nulls_node *node;
  1741. struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
  1742. if (hlist_nulls_empty(&hslot->head))
  1743. continue;
  1744. spin_lock_bh(&hslot->lock);
  1745. sk_nulls_for_each(sk, node, &hslot->head) {
  1746. if (!net_eq(sock_net(sk), net))
  1747. continue;
  1748. if (sk->sk_family == state->family)
  1749. goto found;
  1750. }
  1751. spin_unlock_bh(&hslot->lock);
  1752. }
  1753. sk = NULL;
  1754. found:
  1755. return sk;
  1756. }
  1757. static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
  1758. {
  1759. struct udp_iter_state *state = seq->private;
  1760. struct net *net = seq_file_net(seq);
  1761. do {
  1762. sk = sk_nulls_next(sk);
  1763. } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
  1764. if (!sk) {
  1765. if (state->bucket <= state->udp_table->mask)
  1766. spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
  1767. return udp_get_first(seq, state->bucket + 1);
  1768. }
  1769. return sk;
  1770. }
  1771. static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
  1772. {
  1773. struct sock *sk = udp_get_first(seq, 0);
  1774. if (sk)
  1775. while (pos && (sk = udp_get_next(seq, sk)) != NULL)
  1776. --pos;
  1777. return pos ? NULL : sk;
  1778. }
  1779. static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
  1780. {
  1781. struct udp_iter_state *state = seq->private;
  1782. state->bucket = MAX_UDP_PORTS;
  1783. return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
  1784. }
  1785. static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1786. {
  1787. struct sock *sk;
  1788. if (v == SEQ_START_TOKEN)
  1789. sk = udp_get_idx(seq, 0);
  1790. else
  1791. sk = udp_get_next(seq, v);
  1792. ++*pos;
  1793. return sk;
  1794. }
  1795. static void udp_seq_stop(struct seq_file *seq, void *v)
  1796. {
  1797. struct udp_iter_state *state = seq->private;
  1798. if (state->bucket <= state->udp_table->mask)
  1799. spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
  1800. }
  1801. int udp_seq_open(struct inode *inode, struct file *file)
  1802. {
  1803. struct udp_seq_afinfo *afinfo = PDE(inode)->data;
  1804. struct udp_iter_state *s;
  1805. int err;
  1806. err = seq_open_net(inode, file, &afinfo->seq_ops,
  1807. sizeof(struct udp_iter_state));
  1808. if (err < 0)
  1809. return err;
  1810. s = ((struct seq_file *)file->private_data)->private;
  1811. s->family = afinfo->family;
  1812. s->udp_table = afinfo->udp_table;
  1813. return err;
  1814. }
  1815. EXPORT_SYMBOL(udp_seq_open);
  1816. /* ------------------------------------------------------------------------ */
  1817. int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
  1818. {
  1819. struct proc_dir_entry *p;
  1820. int rc = 0;
  1821. afinfo->seq_ops.start = udp_seq_start;
  1822. afinfo->seq_ops.next = udp_seq_next;
  1823. afinfo->seq_ops.stop = udp_seq_stop;
  1824. p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
  1825. afinfo->seq_fops, afinfo);
  1826. if (!p)
  1827. rc = -ENOMEM;
  1828. return rc;
  1829. }
  1830. EXPORT_SYMBOL(udp_proc_register);
  1831. void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
  1832. {
  1833. proc_net_remove(net, afinfo->name);
  1834. }
  1835. EXPORT_SYMBOL(udp_proc_unregister);
  1836. /* ------------------------------------------------------------------------ */
  1837. static void udp4_format_sock(struct sock *sp, struct seq_file *f,
  1838. int bucket, int *len)
  1839. {
  1840. struct inet_sock *inet = inet_sk(sp);
  1841. __be32 dest = inet->inet_daddr;
  1842. __be32 src = inet->inet_rcv_saddr;
  1843. __u16 destp = ntohs(inet->inet_dport);
  1844. __u16 srcp = ntohs(inet->inet_sport);
  1845. seq_printf(f, "%5d: %08X:%04X %08X:%04X"
  1846. " %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %pK %d%n",
  1847. bucket, src, srcp, dest, destp, sp->sk_state,
  1848. sk_wmem_alloc_get(sp),
  1849. sk_rmem_alloc_get(sp),
  1850. 0, 0L, 0,
  1851. from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
  1852. 0, sock_i_ino(sp),
  1853. atomic_read(&sp->sk_refcnt), sp,
  1854. atomic_read(&sp->sk_drops), len);
  1855. }
  1856. int udp4_seq_show(struct seq_file *seq, void *v)
  1857. {
  1858. if (v == SEQ_START_TOKEN)
  1859. seq_printf(seq, "%-127s\n",
  1860. " sl local_address rem_address st tx_queue "
  1861. "rx_queue tr tm->when retrnsmt uid timeout "
  1862. "inode ref pointer drops");
  1863. else {
  1864. struct udp_iter_state *state = seq->private;
  1865. int len;
  1866. udp4_format_sock(v, seq, state->bucket, &len);
  1867. seq_printf(seq, "%*s\n", 127 - len, "");
  1868. }
  1869. return 0;
  1870. }
  1871. static const struct file_operations udp_afinfo_seq_fops = {
  1872. .owner = THIS_MODULE,
  1873. .open = udp_seq_open,
  1874. .read = seq_read,
  1875. .llseek = seq_lseek,
  1876. .release = seq_release_net
  1877. };
  1878. /* ------------------------------------------------------------------------ */
  1879. static struct udp_seq_afinfo udp4_seq_afinfo = {
  1880. .name = "udp",
  1881. .family = AF_INET,
  1882. .udp_table = &udp_table,
  1883. .seq_fops = &udp_afinfo_seq_fops,
  1884. .seq_ops = {
  1885. .show = udp4_seq_show,
  1886. },
  1887. };
  1888. static int __net_init udp4_proc_init_net(struct net *net)
  1889. {
  1890. return udp_proc_register(net, &udp4_seq_afinfo);
  1891. }
  1892. static void __net_exit udp4_proc_exit_net(struct net *net)
  1893. {
  1894. udp_proc_unregister(net, &udp4_seq_afinfo);
  1895. }
  1896. static struct pernet_operations udp4_net_ops = {
  1897. .init = udp4_proc_init_net,
  1898. .exit = udp4_proc_exit_net,
  1899. };
  1900. int __init udp4_proc_init(void)
  1901. {
  1902. return register_pernet_subsys(&udp4_net_ops);
  1903. }
  1904. void udp4_proc_exit(void)
  1905. {
  1906. unregister_pernet_subsys(&udp4_net_ops);
  1907. }
  1908. #endif /* CONFIG_PROC_FS */
  1909. static __initdata unsigned long uhash_entries;
  1910. static int __init set_uhash_entries(char *str)
  1911. {
  1912. ssize_t ret;
  1913. if (!str)
  1914. return 0;
  1915. ret = kstrtoul(str, 0, &uhash_entries);
  1916. if (ret)
  1917. return 0;
  1918. if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
  1919. uhash_entries = UDP_HTABLE_SIZE_MIN;
  1920. return 1;
  1921. }
  1922. __setup("uhash_entries=", set_uhash_entries);
  1923. void __init udp_table_init(struct udp_table *table, const char *name)
  1924. {
  1925. unsigned int i;
  1926. table->hash = alloc_large_system_hash(name,
  1927. 2 * sizeof(struct udp_hslot),
  1928. uhash_entries,
  1929. 21, /* one slot per 2 MB */
  1930. 0,
  1931. &table->log,
  1932. &table->mask,
  1933. UDP_HTABLE_SIZE_MIN,
  1934. 64 * 1024);
  1935. table->hash2 = table->hash + (table->mask + 1);
  1936. for (i = 0; i <= table->mask; i++) {
  1937. INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
  1938. table->hash[i].count = 0;
  1939. spin_lock_init(&table->hash[i].lock);
  1940. }
  1941. for (i = 0; i <= table->mask; i++) {
  1942. INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
  1943. table->hash2[i].count = 0;
  1944. spin_lock_init(&table->hash2[i].lock);
  1945. }
  1946. }
  1947. void __init udp_init(void)
  1948. {
  1949. unsigned long limit;
  1950. udp_table_init(&udp_table, "UDP");
  1951. limit = nr_free_buffer_pages() / 8;
  1952. limit = max(limit, 128UL);
  1953. sysctl_udp_mem[0] = limit / 4 * 3;
  1954. sysctl_udp_mem[1] = limit;
  1955. sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
  1956. sysctl_udp_rmem_min = SK_MEM_QUANTUM;
  1957. sysctl_udp_wmem_min = SK_MEM_QUANTUM;
  1958. }
  1959. int udp4_ufo_send_check(struct sk_buff *skb)
  1960. {
  1961. const struct iphdr *iph;
  1962. struct udphdr *uh;
  1963. if (!pskb_may_pull(skb, sizeof(*uh)))
  1964. return -EINVAL;
  1965. iph = ip_hdr(skb);
  1966. uh = udp_hdr(skb);
  1967. uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
  1968. IPPROTO_UDP, 0);
  1969. skb->csum_start = skb_transport_header(skb) - skb->head;
  1970. skb->csum_offset = offsetof(struct udphdr, check);
  1971. skb->ip_summed = CHECKSUM_PARTIAL;
  1972. return 0;
  1973. }
  1974. struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb,
  1975. netdev_features_t features)
  1976. {
  1977. struct sk_buff *segs = ERR_PTR(-EINVAL);
  1978. unsigned int mss;
  1979. int offset;
  1980. __wsum csum;
  1981. mss = skb_shinfo(skb)->gso_size;
  1982. if (unlikely(skb->len <= mss))
  1983. goto out;
  1984. if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
  1985. /* Packet is from an untrusted source, reset gso_segs. */
  1986. int type = skb_shinfo(skb)->gso_type;
  1987. if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
  1988. !(type & (SKB_GSO_UDP))))
  1989. goto out;
  1990. skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
  1991. segs = NULL;
  1992. goto out;
  1993. }
  1994. /* Do software UFO. Complete and fill in the UDP checksum as HW cannot
  1995. * do checksum of UDP packets sent as multiple IP fragments.
  1996. */
  1997. offset = skb_checksum_start_offset(skb);
  1998. csum = skb_checksum(skb, offset, skb->len - offset, 0);
  1999. offset += skb->csum_offset;
  2000. *(__sum16 *)(skb->data + offset) = csum_fold(csum);
  2001. skb->ip_summed = CHECKSUM_NONE;
  2002. /* Fragment the skb. IP headers of the fragments are updated in
  2003. * inet_gso_segment()
  2004. */
  2005. segs = skb_segment(skb, features);
  2006. out:
  2007. return segs;
  2008. }