vmscan.c 100 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542
  1. /*
  2. * linux/mm/vmscan.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. *
  6. * Swap reorganised 29.12.95, Stephen Tweedie.
  7. * kswapd added: 7.1.96 sct
  8. * Removed kswapd_ctl limits, and swap out as many pages as needed
  9. * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10. * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11. * Multiqueue VM started 5.8.00, Rik van Riel.
  12. */
  13. #include <linux/mm.h>
  14. #include <linux/module.h>
  15. #include <linux/gfp.h>
  16. #include <linux/kernel_stat.h>
  17. #include <linux/swap.h>
  18. #include <linux/pagemap.h>
  19. #include <linux/init.h>
  20. #include <linux/highmem.h>
  21. #include <linux/vmstat.h>
  22. #include <linux/file.h>
  23. #include <linux/writeback.h>
  24. #include <linux/blkdev.h>
  25. #include <linux/buffer_head.h> /* for try_to_release_page(),
  26. buffer_heads_over_limit */
  27. #include <linux/mm_inline.h>
  28. #include <linux/backing-dev.h>
  29. #include <linux/rmap.h>
  30. #include <linux/topology.h>
  31. #include <linux/cpu.h>
  32. #include <linux/cpuset.h>
  33. #include <linux/compaction.h>
  34. #include <linux/notifier.h>
  35. #include <linux/rwsem.h>
  36. #include <linux/delay.h>
  37. #include <linux/kthread.h>
  38. #include <linux/freezer.h>
  39. #include <linux/memcontrol.h>
  40. #include <linux/delayacct.h>
  41. #include <linux/sysctl.h>
  42. #include <linux/oom.h>
  43. #include <linux/prefetch.h>
  44. #include <asm/tlbflush.h>
  45. #include <asm/div64.h>
  46. #include <linux/swapops.h>
  47. #include "internal.h"
  48. #define CREATE_TRACE_POINTS
  49. #include <trace/events/vmscan.h>
  50. struct scan_control {
  51. /* Incremented by the number of inactive pages that were scanned */
  52. unsigned long nr_scanned;
  53. /* Number of pages freed so far during a call to shrink_zones() */
  54. unsigned long nr_reclaimed;
  55. /* How many pages shrink_list() should reclaim */
  56. unsigned long nr_to_reclaim;
  57. unsigned long hibernation_mode;
  58. /* This context's GFP mask */
  59. gfp_t gfp_mask;
  60. int may_writepage;
  61. /* Can mapped pages be reclaimed? */
  62. int may_unmap;
  63. /* Can pages be swapped as part of reclaim? */
  64. int may_swap;
  65. int order;
  66. /* Scan (total_size >> priority) pages at once */
  67. int priority;
  68. /*
  69. * The memory cgroup that hit its limit and as a result is the
  70. * primary target of this reclaim invocation.
  71. */
  72. struct mem_cgroup *target_mem_cgroup;
  73. /*
  74. * Nodemask of nodes allowed by the caller. If NULL, all nodes
  75. * are scanned.
  76. */
  77. nodemask_t *nodemask;
  78. };
  79. #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
  80. #ifdef ARCH_HAS_PREFETCH
  81. #define prefetch_prev_lru_page(_page, _base, _field) \
  82. do { \
  83. if ((_page)->lru.prev != _base) { \
  84. struct page *prev; \
  85. \
  86. prev = lru_to_page(&(_page->lru)); \
  87. prefetch(&prev->_field); \
  88. } \
  89. } while (0)
  90. #else
  91. #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
  92. #endif
  93. #ifdef ARCH_HAS_PREFETCHW
  94. #define prefetchw_prev_lru_page(_page, _base, _field) \
  95. do { \
  96. if ((_page)->lru.prev != _base) { \
  97. struct page *prev; \
  98. \
  99. prev = lru_to_page(&(_page->lru)); \
  100. prefetchw(&prev->_field); \
  101. } \
  102. } while (0)
  103. #else
  104. #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
  105. #endif
  106. /*
  107. * From 0 .. 100. Higher means more swappy.
  108. */
  109. int vm_swappiness = 60;
  110. long vm_total_pages; /* The total number of pages which the VM controls */
  111. static LIST_HEAD(shrinker_list);
  112. static DECLARE_RWSEM(shrinker_rwsem);
  113. #ifdef CONFIG_MEMCG
  114. static bool global_reclaim(struct scan_control *sc)
  115. {
  116. return !sc->target_mem_cgroup;
  117. }
  118. #else
  119. static bool global_reclaim(struct scan_control *sc)
  120. {
  121. return true;
  122. }
  123. #endif
  124. static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
  125. {
  126. if (!mem_cgroup_disabled())
  127. return mem_cgroup_get_lru_size(lruvec, lru);
  128. return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
  129. }
  130. /*
  131. * Add a shrinker callback to be called from the vm
  132. */
  133. void register_shrinker(struct shrinker *shrinker)
  134. {
  135. atomic_long_set(&shrinker->nr_in_batch, 0);
  136. down_write(&shrinker_rwsem);
  137. list_add_tail(&shrinker->list, &shrinker_list);
  138. up_write(&shrinker_rwsem);
  139. }
  140. EXPORT_SYMBOL(register_shrinker);
  141. /*
  142. * Remove one
  143. */
  144. void unregister_shrinker(struct shrinker *shrinker)
  145. {
  146. down_write(&shrinker_rwsem);
  147. list_del(&shrinker->list);
  148. up_write(&shrinker_rwsem);
  149. }
  150. EXPORT_SYMBOL(unregister_shrinker);
  151. static inline int do_shrinker_shrink(struct shrinker *shrinker,
  152. struct shrink_control *sc,
  153. unsigned long nr_to_scan)
  154. {
  155. sc->nr_to_scan = nr_to_scan;
  156. return (*shrinker->shrink)(shrinker, sc);
  157. }
  158. #define SHRINK_BATCH 128
  159. /*
  160. * Call the shrink functions to age shrinkable caches
  161. *
  162. * Here we assume it costs one seek to replace a lru page and that it also
  163. * takes a seek to recreate a cache object. With this in mind we age equal
  164. * percentages of the lru and ageable caches. This should balance the seeks
  165. * generated by these structures.
  166. *
  167. * If the vm encountered mapped pages on the LRU it increase the pressure on
  168. * slab to avoid swapping.
  169. *
  170. * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
  171. *
  172. * `lru_pages' represents the number of on-LRU pages in all the zones which
  173. * are eligible for the caller's allocation attempt. It is used for balancing
  174. * slab reclaim versus page reclaim.
  175. *
  176. * Returns the number of slab objects which we shrunk.
  177. */
  178. unsigned long shrink_slab(struct shrink_control *shrink,
  179. unsigned long nr_pages_scanned,
  180. unsigned long lru_pages)
  181. {
  182. struct shrinker *shrinker;
  183. unsigned long ret = 0;
  184. if (nr_pages_scanned == 0)
  185. nr_pages_scanned = SWAP_CLUSTER_MAX;
  186. if (!down_read_trylock(&shrinker_rwsem)) {
  187. /* Assume we'll be able to shrink next time */
  188. ret = 1;
  189. goto out;
  190. }
  191. list_for_each_entry(shrinker, &shrinker_list, list) {
  192. unsigned long long delta;
  193. long total_scan;
  194. long max_pass;
  195. int shrink_ret = 0;
  196. long nr;
  197. long new_nr;
  198. long batch_size = shrinker->batch ? shrinker->batch
  199. : SHRINK_BATCH;
  200. max_pass = do_shrinker_shrink(shrinker, shrink, 0);
  201. if (max_pass <= 0)
  202. continue;
  203. /*
  204. * copy the current shrinker scan count into a local variable
  205. * and zero it so that other concurrent shrinker invocations
  206. * don't also do this scanning work.
  207. */
  208. nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
  209. total_scan = nr;
  210. delta = (4 * nr_pages_scanned) / shrinker->seeks;
  211. delta *= max_pass;
  212. do_div(delta, lru_pages + 1);
  213. total_scan += delta;
  214. if (total_scan < 0) {
  215. printk(KERN_ERR "shrink_slab: %pF negative objects to "
  216. "delete nr=%ld\n",
  217. shrinker->shrink, total_scan);
  218. total_scan = max_pass;
  219. }
  220. /*
  221. * We need to avoid excessive windup on filesystem shrinkers
  222. * due to large numbers of GFP_NOFS allocations causing the
  223. * shrinkers to return -1 all the time. This results in a large
  224. * nr being built up so when a shrink that can do some work
  225. * comes along it empties the entire cache due to nr >>>
  226. * max_pass. This is bad for sustaining a working set in
  227. * memory.
  228. *
  229. * Hence only allow the shrinker to scan the entire cache when
  230. * a large delta change is calculated directly.
  231. */
  232. if (delta < max_pass / 4)
  233. total_scan = min(total_scan, max_pass / 2);
  234. /*
  235. * Avoid risking looping forever due to too large nr value:
  236. * never try to free more than twice the estimate number of
  237. * freeable entries.
  238. */
  239. if (total_scan > max_pass * 2)
  240. total_scan = max_pass * 2;
  241. trace_mm_shrink_slab_start(shrinker, shrink, nr,
  242. nr_pages_scanned, lru_pages,
  243. max_pass, delta, total_scan);
  244. while (total_scan >= batch_size) {
  245. int nr_before;
  246. nr_before = do_shrinker_shrink(shrinker, shrink, 0);
  247. shrink_ret = do_shrinker_shrink(shrinker, shrink,
  248. batch_size);
  249. if (shrink_ret == -1)
  250. break;
  251. if (shrink_ret < nr_before)
  252. ret += nr_before - shrink_ret;
  253. count_vm_events(SLABS_SCANNED, batch_size);
  254. total_scan -= batch_size;
  255. cond_resched();
  256. }
  257. /*
  258. * move the unused scan count back into the shrinker in a
  259. * manner that handles concurrent updates. If we exhausted the
  260. * scan, there is no need to do an update.
  261. */
  262. if (total_scan > 0)
  263. new_nr = atomic_long_add_return(total_scan,
  264. &shrinker->nr_in_batch);
  265. else
  266. new_nr = atomic_long_read(&shrinker->nr_in_batch);
  267. trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
  268. }
  269. up_read(&shrinker_rwsem);
  270. out:
  271. cond_resched();
  272. return ret;
  273. }
  274. static inline int is_page_cache_freeable(struct page *page)
  275. {
  276. /*
  277. * A freeable page cache page is referenced only by the caller
  278. * that isolated the page, the page cache radix tree and
  279. * optional buffer heads at page->private.
  280. */
  281. return page_count(page) - page_has_private(page) == 2;
  282. }
  283. static int may_write_to_queue(struct backing_dev_info *bdi,
  284. struct scan_control *sc)
  285. {
  286. if (current->flags & PF_SWAPWRITE)
  287. return 1;
  288. if (!bdi_write_congested(bdi))
  289. return 1;
  290. if (bdi == current->backing_dev_info)
  291. return 1;
  292. return 0;
  293. }
  294. /*
  295. * We detected a synchronous write error writing a page out. Probably
  296. * -ENOSPC. We need to propagate that into the address_space for a subsequent
  297. * fsync(), msync() or close().
  298. *
  299. * The tricky part is that after writepage we cannot touch the mapping: nothing
  300. * prevents it from being freed up. But we have a ref on the page and once
  301. * that page is locked, the mapping is pinned.
  302. *
  303. * We're allowed to run sleeping lock_page() here because we know the caller has
  304. * __GFP_FS.
  305. */
  306. static void handle_write_error(struct address_space *mapping,
  307. struct page *page, int error)
  308. {
  309. lock_page(page);
  310. if (page_mapping(page) == mapping)
  311. mapping_set_error(mapping, error);
  312. unlock_page(page);
  313. }
  314. /* possible outcome of pageout() */
  315. typedef enum {
  316. /* failed to write page out, page is locked */
  317. PAGE_KEEP,
  318. /* move page to the active list, page is locked */
  319. PAGE_ACTIVATE,
  320. /* page has been sent to the disk successfully, page is unlocked */
  321. PAGE_SUCCESS,
  322. /* page is clean and locked */
  323. PAGE_CLEAN,
  324. } pageout_t;
  325. /*
  326. * pageout is called by shrink_page_list() for each dirty page.
  327. * Calls ->writepage().
  328. */
  329. static pageout_t pageout(struct page *page, struct address_space *mapping,
  330. struct scan_control *sc)
  331. {
  332. /*
  333. * If the page is dirty, only perform writeback if that write
  334. * will be non-blocking. To prevent this allocation from being
  335. * stalled by pagecache activity. But note that there may be
  336. * stalls if we need to run get_block(). We could test
  337. * PagePrivate for that.
  338. *
  339. * If this process is currently in __generic_file_aio_write() against
  340. * this page's queue, we can perform writeback even if that
  341. * will block.
  342. *
  343. * If the page is swapcache, write it back even if that would
  344. * block, for some throttling. This happens by accident, because
  345. * swap_backing_dev_info is bust: it doesn't reflect the
  346. * congestion state of the swapdevs. Easy to fix, if needed.
  347. */
  348. if (!is_page_cache_freeable(page))
  349. return PAGE_KEEP;
  350. if (!mapping) {
  351. /*
  352. * Some data journaling orphaned pages can have
  353. * page->mapping == NULL while being dirty with clean buffers.
  354. */
  355. if (page_has_private(page)) {
  356. if (try_to_free_buffers(page)) {
  357. ClearPageDirty(page);
  358. printk("%s: orphaned page\n", __func__);
  359. return PAGE_CLEAN;
  360. }
  361. }
  362. return PAGE_KEEP;
  363. }
  364. if (mapping->a_ops->writepage == NULL)
  365. return PAGE_ACTIVATE;
  366. if (!may_write_to_queue(mapping->backing_dev_info, sc))
  367. return PAGE_KEEP;
  368. if (clear_page_dirty_for_io(page)) {
  369. int res;
  370. struct writeback_control wbc = {
  371. .sync_mode = WB_SYNC_NONE,
  372. .nr_to_write = SWAP_CLUSTER_MAX,
  373. .range_start = 0,
  374. .range_end = LLONG_MAX,
  375. .for_reclaim = 1,
  376. };
  377. SetPageReclaim(page);
  378. res = mapping->a_ops->writepage(page, &wbc);
  379. if (res < 0)
  380. handle_write_error(mapping, page, res);
  381. if (res == AOP_WRITEPAGE_ACTIVATE) {
  382. ClearPageReclaim(page);
  383. return PAGE_ACTIVATE;
  384. }
  385. if (!PageWriteback(page)) {
  386. /* synchronous write or broken a_ops? */
  387. ClearPageReclaim(page);
  388. }
  389. trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
  390. inc_zone_page_state(page, NR_VMSCAN_WRITE);
  391. return PAGE_SUCCESS;
  392. }
  393. return PAGE_CLEAN;
  394. }
  395. /*
  396. * Same as remove_mapping, but if the page is removed from the mapping, it
  397. * gets returned with a refcount of 0.
  398. */
  399. static int __remove_mapping(struct address_space *mapping, struct page *page)
  400. {
  401. BUG_ON(!PageLocked(page));
  402. BUG_ON(mapping != page_mapping(page));
  403. spin_lock_irq(&mapping->tree_lock);
  404. /*
  405. * The non racy check for a busy page.
  406. *
  407. * Must be careful with the order of the tests. When someone has
  408. * a ref to the page, it may be possible that they dirty it then
  409. * drop the reference. So if PageDirty is tested before page_count
  410. * here, then the following race may occur:
  411. *
  412. * get_user_pages(&page);
  413. * [user mapping goes away]
  414. * write_to(page);
  415. * !PageDirty(page) [good]
  416. * SetPageDirty(page);
  417. * put_page(page);
  418. * !page_count(page) [good, discard it]
  419. *
  420. * [oops, our write_to data is lost]
  421. *
  422. * Reversing the order of the tests ensures such a situation cannot
  423. * escape unnoticed. The smp_rmb is needed to ensure the page->flags
  424. * load is not satisfied before that of page->_count.
  425. *
  426. * Note that if SetPageDirty is always performed via set_page_dirty,
  427. * and thus under tree_lock, then this ordering is not required.
  428. */
  429. if (!page_freeze_refs(page, 2))
  430. goto cannot_free;
  431. /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
  432. if (unlikely(PageDirty(page))) {
  433. page_unfreeze_refs(page, 2);
  434. goto cannot_free;
  435. }
  436. if (PageSwapCache(page)) {
  437. swp_entry_t swap = { .val = page_private(page) };
  438. __delete_from_swap_cache(page);
  439. spin_unlock_irq(&mapping->tree_lock);
  440. swapcache_free(swap, page);
  441. } else {
  442. void (*freepage)(struct page *);
  443. freepage = mapping->a_ops->freepage;
  444. __delete_from_page_cache(page);
  445. spin_unlock_irq(&mapping->tree_lock);
  446. mem_cgroup_uncharge_cache_page(page);
  447. if (freepage != NULL)
  448. freepage(page);
  449. }
  450. return 1;
  451. cannot_free:
  452. spin_unlock_irq(&mapping->tree_lock);
  453. return 0;
  454. }
  455. /*
  456. * Attempt to detach a locked page from its ->mapping. If it is dirty or if
  457. * someone else has a ref on the page, abort and return 0. If it was
  458. * successfully detached, return 1. Assumes the caller has a single ref on
  459. * this page.
  460. */
  461. int remove_mapping(struct address_space *mapping, struct page *page)
  462. {
  463. if (__remove_mapping(mapping, page)) {
  464. /*
  465. * Unfreezing the refcount with 1 rather than 2 effectively
  466. * drops the pagecache ref for us without requiring another
  467. * atomic operation.
  468. */
  469. page_unfreeze_refs(page, 1);
  470. return 1;
  471. }
  472. return 0;
  473. }
  474. /**
  475. * putback_lru_page - put previously isolated page onto appropriate LRU list
  476. * @page: page to be put back to appropriate lru list
  477. *
  478. * Add previously isolated @page to appropriate LRU list.
  479. * Page may still be unevictable for other reasons.
  480. *
  481. * lru_lock must not be held, interrupts must be enabled.
  482. */
  483. void putback_lru_page(struct page *page)
  484. {
  485. int lru;
  486. int active = !!TestClearPageActive(page);
  487. int was_unevictable = PageUnevictable(page);
  488. VM_BUG_ON(PageLRU(page));
  489. redo:
  490. ClearPageUnevictable(page);
  491. if (page_evictable(page)) {
  492. /*
  493. * For evictable pages, we can use the cache.
  494. * In event of a race, worst case is we end up with an
  495. * unevictable page on [in]active list.
  496. * We know how to handle that.
  497. */
  498. lru = active + page_lru_base_type(page);
  499. lru_cache_add_lru(page, lru);
  500. } else {
  501. /*
  502. * Put unevictable pages directly on zone's unevictable
  503. * list.
  504. */
  505. lru = LRU_UNEVICTABLE;
  506. add_page_to_unevictable_list(page);
  507. /*
  508. * When racing with an mlock or AS_UNEVICTABLE clearing
  509. * (page is unlocked) make sure that if the other thread
  510. * does not observe our setting of PG_lru and fails
  511. * isolation/check_move_unevictable_pages,
  512. * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
  513. * the page back to the evictable list.
  514. *
  515. * The other side is TestClearPageMlocked() or shmem_lock().
  516. */
  517. smp_mb();
  518. }
  519. /*
  520. * page's status can change while we move it among lru. If an evictable
  521. * page is on unevictable list, it never be freed. To avoid that,
  522. * check after we added it to the list, again.
  523. */
  524. if (lru == LRU_UNEVICTABLE && page_evictable(page)) {
  525. if (!isolate_lru_page(page)) {
  526. put_page(page);
  527. goto redo;
  528. }
  529. /* This means someone else dropped this page from LRU
  530. * So, it will be freed or putback to LRU again. There is
  531. * nothing to do here.
  532. */
  533. }
  534. if (was_unevictable && lru != LRU_UNEVICTABLE)
  535. count_vm_event(UNEVICTABLE_PGRESCUED);
  536. else if (!was_unevictable && lru == LRU_UNEVICTABLE)
  537. count_vm_event(UNEVICTABLE_PGCULLED);
  538. put_page(page); /* drop ref from isolate */
  539. }
  540. enum page_references {
  541. PAGEREF_RECLAIM,
  542. PAGEREF_RECLAIM_CLEAN,
  543. PAGEREF_KEEP,
  544. PAGEREF_ACTIVATE,
  545. };
  546. static enum page_references page_check_references(struct page *page,
  547. struct scan_control *sc)
  548. {
  549. int referenced_ptes, referenced_page;
  550. unsigned long vm_flags;
  551. referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
  552. &vm_flags);
  553. referenced_page = TestClearPageReferenced(page);
  554. /*
  555. * Mlock lost the isolation race with us. Let try_to_unmap()
  556. * move the page to the unevictable list.
  557. */
  558. if (vm_flags & VM_LOCKED)
  559. return PAGEREF_RECLAIM;
  560. if (referenced_ptes) {
  561. if (PageSwapBacked(page))
  562. return PAGEREF_ACTIVATE;
  563. /*
  564. * All mapped pages start out with page table
  565. * references from the instantiating fault, so we need
  566. * to look twice if a mapped file page is used more
  567. * than once.
  568. *
  569. * Mark it and spare it for another trip around the
  570. * inactive list. Another page table reference will
  571. * lead to its activation.
  572. *
  573. * Note: the mark is set for activated pages as well
  574. * so that recently deactivated but used pages are
  575. * quickly recovered.
  576. */
  577. SetPageReferenced(page);
  578. if (referenced_page || referenced_ptes > 1)
  579. return PAGEREF_ACTIVATE;
  580. /*
  581. * Activate file-backed executable pages after first usage.
  582. */
  583. if (vm_flags & VM_EXEC)
  584. return PAGEREF_ACTIVATE;
  585. return PAGEREF_KEEP;
  586. }
  587. /* Reclaim if clean, defer dirty pages to writeback */
  588. if (referenced_page && !PageSwapBacked(page))
  589. return PAGEREF_RECLAIM_CLEAN;
  590. return PAGEREF_RECLAIM;
  591. }
  592. /*
  593. * shrink_page_list() returns the number of reclaimed pages
  594. */
  595. static unsigned long shrink_page_list(struct list_head *page_list,
  596. struct zone *zone,
  597. struct scan_control *sc,
  598. enum ttu_flags ttu_flags,
  599. unsigned long *ret_nr_dirty,
  600. unsigned long *ret_nr_writeback,
  601. bool force_reclaim)
  602. {
  603. LIST_HEAD(ret_pages);
  604. LIST_HEAD(free_pages);
  605. int pgactivate = 0;
  606. unsigned long nr_dirty = 0;
  607. unsigned long nr_congested = 0;
  608. unsigned long nr_reclaimed = 0;
  609. unsigned long nr_writeback = 0;
  610. cond_resched();
  611. mem_cgroup_uncharge_start();
  612. while (!list_empty(page_list)) {
  613. struct address_space *mapping;
  614. struct page *page;
  615. int may_enter_fs;
  616. enum page_references references = PAGEREF_RECLAIM_CLEAN;
  617. cond_resched();
  618. page = lru_to_page(page_list);
  619. list_del(&page->lru);
  620. if (!trylock_page(page))
  621. goto keep;
  622. VM_BUG_ON(PageActive(page));
  623. VM_BUG_ON(page_zone(page) != zone);
  624. sc->nr_scanned++;
  625. if (unlikely(!page_evictable(page)))
  626. goto cull_mlocked;
  627. if (!sc->may_unmap && page_mapped(page))
  628. goto keep_locked;
  629. /* Double the slab pressure for mapped and swapcache pages */
  630. if (page_mapped(page) || PageSwapCache(page))
  631. sc->nr_scanned++;
  632. may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
  633. (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
  634. if (PageWriteback(page)) {
  635. /*
  636. * memcg doesn't have any dirty pages throttling so we
  637. * could easily OOM just because too many pages are in
  638. * writeback and there is nothing else to reclaim.
  639. *
  640. * Check __GFP_IO, certainly because a loop driver
  641. * thread might enter reclaim, and deadlock if it waits
  642. * on a page for which it is needed to do the write
  643. * (loop masks off __GFP_IO|__GFP_FS for this reason);
  644. * but more thought would probably show more reasons.
  645. *
  646. * Don't require __GFP_FS, since we're not going into
  647. * the FS, just waiting on its writeback completion.
  648. * Worryingly, ext4 gfs2 and xfs allocate pages with
  649. * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
  650. * testing may_enter_fs here is liable to OOM on them.
  651. */
  652. if (global_reclaim(sc) ||
  653. !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
  654. /*
  655. * This is slightly racy - end_page_writeback()
  656. * might have just cleared PageReclaim, then
  657. * setting PageReclaim here end up interpreted
  658. * as PageReadahead - but that does not matter
  659. * enough to care. What we do want is for this
  660. * page to have PageReclaim set next time memcg
  661. * reclaim reaches the tests above, so it will
  662. * then wait_on_page_writeback() to avoid OOM;
  663. * and it's also appropriate in global reclaim.
  664. */
  665. SetPageReclaim(page);
  666. nr_writeback++;
  667. goto keep_locked;
  668. }
  669. wait_on_page_writeback(page);
  670. }
  671. if (!force_reclaim)
  672. references = page_check_references(page, sc);
  673. switch (references) {
  674. case PAGEREF_ACTIVATE:
  675. goto activate_locked;
  676. case PAGEREF_KEEP:
  677. goto keep_locked;
  678. case PAGEREF_RECLAIM:
  679. case PAGEREF_RECLAIM_CLEAN:
  680. ; /* try to reclaim the page below */
  681. }
  682. /*
  683. * Anonymous process memory has backing store?
  684. * Try to allocate it some swap space here.
  685. */
  686. if (PageAnon(page) && !PageSwapCache(page)) {
  687. if (!(sc->gfp_mask & __GFP_IO))
  688. goto keep_locked;
  689. if (!add_to_swap(page))
  690. goto activate_locked;
  691. may_enter_fs = 1;
  692. }
  693. mapping = page_mapping(page);
  694. /*
  695. * The page is mapped into the page tables of one or more
  696. * processes. Try to unmap it here.
  697. */
  698. if (page_mapped(page) && mapping) {
  699. switch (try_to_unmap(page, ttu_flags)) {
  700. case SWAP_FAIL:
  701. goto activate_locked;
  702. case SWAP_AGAIN:
  703. goto keep_locked;
  704. case SWAP_MLOCK:
  705. goto cull_mlocked;
  706. case SWAP_SUCCESS:
  707. ; /* try to free the page below */
  708. }
  709. }
  710. if (PageDirty(page)) {
  711. nr_dirty++;
  712. /*
  713. * Only kswapd can writeback filesystem pages to
  714. * avoid risk of stack overflow but do not writeback
  715. * unless under significant pressure.
  716. */
  717. if (page_is_file_cache(page) &&
  718. (!current_is_kswapd() ||
  719. sc->priority >= DEF_PRIORITY - 2)) {
  720. /*
  721. * Immediately reclaim when written back.
  722. * Similar in principal to deactivate_page()
  723. * except we already have the page isolated
  724. * and know it's dirty
  725. */
  726. inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
  727. SetPageReclaim(page);
  728. goto keep_locked;
  729. }
  730. if (references == PAGEREF_RECLAIM_CLEAN)
  731. goto keep_locked;
  732. if (!may_enter_fs)
  733. goto keep_locked;
  734. if (!sc->may_writepage)
  735. goto keep_locked;
  736. /* Page is dirty, try to write it out here */
  737. switch (pageout(page, mapping, sc)) {
  738. case PAGE_KEEP:
  739. nr_congested++;
  740. goto keep_locked;
  741. case PAGE_ACTIVATE:
  742. goto activate_locked;
  743. case PAGE_SUCCESS:
  744. if (PageWriteback(page))
  745. goto keep;
  746. if (PageDirty(page))
  747. goto keep;
  748. /*
  749. * A synchronous write - probably a ramdisk. Go
  750. * ahead and try to reclaim the page.
  751. */
  752. if (!trylock_page(page))
  753. goto keep;
  754. if (PageDirty(page) || PageWriteback(page))
  755. goto keep_locked;
  756. mapping = page_mapping(page);
  757. case PAGE_CLEAN:
  758. ; /* try to free the page below */
  759. }
  760. }
  761. /*
  762. * If the page has buffers, try to free the buffer mappings
  763. * associated with this page. If we succeed we try to free
  764. * the page as well.
  765. *
  766. * We do this even if the page is PageDirty().
  767. * try_to_release_page() does not perform I/O, but it is
  768. * possible for a page to have PageDirty set, but it is actually
  769. * clean (all its buffers are clean). This happens if the
  770. * buffers were written out directly, with submit_bh(). ext3
  771. * will do this, as well as the blockdev mapping.
  772. * try_to_release_page() will discover that cleanness and will
  773. * drop the buffers and mark the page clean - it can be freed.
  774. *
  775. * Rarely, pages can have buffers and no ->mapping. These are
  776. * the pages which were not successfully invalidated in
  777. * truncate_complete_page(). We try to drop those buffers here
  778. * and if that worked, and the page is no longer mapped into
  779. * process address space (page_count == 1) it can be freed.
  780. * Otherwise, leave the page on the LRU so it is swappable.
  781. */
  782. if (page_has_private(page)) {
  783. if (!try_to_release_page(page, sc->gfp_mask))
  784. goto activate_locked;
  785. if (!mapping && page_count(page) == 1) {
  786. unlock_page(page);
  787. if (put_page_testzero(page))
  788. goto free_it;
  789. else {
  790. /*
  791. * rare race with speculative reference.
  792. * the speculative reference will free
  793. * this page shortly, so we may
  794. * increment nr_reclaimed here (and
  795. * leave it off the LRU).
  796. */
  797. nr_reclaimed++;
  798. continue;
  799. }
  800. }
  801. }
  802. if (!mapping || !__remove_mapping(mapping, page))
  803. goto keep_locked;
  804. /*
  805. * At this point, we have no other references and there is
  806. * no way to pick any more up (removed from LRU, removed
  807. * from pagecache). Can use non-atomic bitops now (and
  808. * we obviously don't have to worry about waking up a process
  809. * waiting on the page lock, because there are no references.
  810. */
  811. __clear_page_locked(page);
  812. free_it:
  813. nr_reclaimed++;
  814. /*
  815. * Is there need to periodically free_page_list? It would
  816. * appear not as the counts should be low
  817. */
  818. list_add(&page->lru, &free_pages);
  819. continue;
  820. cull_mlocked:
  821. if (PageSwapCache(page))
  822. try_to_free_swap(page);
  823. unlock_page(page);
  824. putback_lru_page(page);
  825. continue;
  826. activate_locked:
  827. /* Not a candidate for swapping, so reclaim swap space. */
  828. if (PageSwapCache(page) && vm_swap_full())
  829. try_to_free_swap(page);
  830. VM_BUG_ON(PageActive(page));
  831. SetPageActive(page);
  832. pgactivate++;
  833. keep_locked:
  834. unlock_page(page);
  835. keep:
  836. list_add(&page->lru, &ret_pages);
  837. VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
  838. }
  839. /*
  840. * Tag a zone as congested if all the dirty pages encountered were
  841. * backed by a congested BDI. In this case, reclaimers should just
  842. * back off and wait for congestion to clear because further reclaim
  843. * will encounter the same problem
  844. */
  845. if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
  846. zone_set_flag(zone, ZONE_CONGESTED);
  847. free_hot_cold_page_list(&free_pages, 1);
  848. list_splice(&ret_pages, page_list);
  849. count_vm_events(PGACTIVATE, pgactivate);
  850. mem_cgroup_uncharge_end();
  851. *ret_nr_dirty += nr_dirty;
  852. *ret_nr_writeback += nr_writeback;
  853. return nr_reclaimed;
  854. }
  855. unsigned long reclaim_clean_pages_from_list(struct zone *zone,
  856. struct list_head *page_list)
  857. {
  858. struct scan_control sc = {
  859. .gfp_mask = GFP_KERNEL,
  860. .priority = DEF_PRIORITY,
  861. .may_unmap = 1,
  862. };
  863. unsigned long ret, dummy1, dummy2;
  864. struct page *page, *next;
  865. LIST_HEAD(clean_pages);
  866. list_for_each_entry_safe(page, next, page_list, lru) {
  867. if (page_is_file_cache(page) && !PageDirty(page)) {
  868. ClearPageActive(page);
  869. list_move(&page->lru, &clean_pages);
  870. }
  871. }
  872. ret = shrink_page_list(&clean_pages, zone, &sc,
  873. TTU_UNMAP|TTU_IGNORE_ACCESS,
  874. &dummy1, &dummy2, true);
  875. list_splice(&clean_pages, page_list);
  876. __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
  877. return ret;
  878. }
  879. /*
  880. * Attempt to remove the specified page from its LRU. Only take this page
  881. * if it is of the appropriate PageActive status. Pages which are being
  882. * freed elsewhere are also ignored.
  883. *
  884. * page: page to consider
  885. * mode: one of the LRU isolation modes defined above
  886. *
  887. * returns 0 on success, -ve errno on failure.
  888. */
  889. int __isolate_lru_page(struct page *page, isolate_mode_t mode)
  890. {
  891. int ret = -EINVAL;
  892. /* Only take pages on the LRU. */
  893. if (!PageLRU(page))
  894. return ret;
  895. /* Compaction should not handle unevictable pages but CMA can do so */
  896. if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
  897. return ret;
  898. ret = -EBUSY;
  899. /*
  900. * To minimise LRU disruption, the caller can indicate that it only
  901. * wants to isolate pages it will be able to operate on without
  902. * blocking - clean pages for the most part.
  903. *
  904. * ISOLATE_CLEAN means that only clean pages should be isolated. This
  905. * is used by reclaim when it is cannot write to backing storage
  906. *
  907. * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
  908. * that it is possible to migrate without blocking
  909. */
  910. if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
  911. /* All the caller can do on PageWriteback is block */
  912. if (PageWriteback(page))
  913. return ret;
  914. if (PageDirty(page)) {
  915. struct address_space *mapping;
  916. /* ISOLATE_CLEAN means only clean pages */
  917. if (mode & ISOLATE_CLEAN)
  918. return ret;
  919. /*
  920. * Only pages without mappings or that have a
  921. * ->migratepage callback are possible to migrate
  922. * without blocking
  923. */
  924. mapping = page_mapping(page);
  925. if (mapping && !mapping->a_ops->migratepage)
  926. return ret;
  927. }
  928. }
  929. if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
  930. return ret;
  931. if (likely(get_page_unless_zero(page))) {
  932. /*
  933. * Be careful not to clear PageLRU until after we're
  934. * sure the page is not being freed elsewhere -- the
  935. * page release code relies on it.
  936. */
  937. ClearPageLRU(page);
  938. ret = 0;
  939. }
  940. return ret;
  941. }
  942. /*
  943. * zone->lru_lock is heavily contended. Some of the functions that
  944. * shrink the lists perform better by taking out a batch of pages
  945. * and working on them outside the LRU lock.
  946. *
  947. * For pagecache intensive workloads, this function is the hottest
  948. * spot in the kernel (apart from copy_*_user functions).
  949. *
  950. * Appropriate locks must be held before calling this function.
  951. *
  952. * @nr_to_scan: The number of pages to look through on the list.
  953. * @lruvec: The LRU vector to pull pages from.
  954. * @dst: The temp list to put pages on to.
  955. * @nr_scanned: The number of pages that were scanned.
  956. * @sc: The scan_control struct for this reclaim session
  957. * @mode: One of the LRU isolation modes
  958. * @lru: LRU list id for isolating
  959. *
  960. * returns how many pages were moved onto *@dst.
  961. */
  962. static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
  963. struct lruvec *lruvec, struct list_head *dst,
  964. unsigned long *nr_scanned, struct scan_control *sc,
  965. isolate_mode_t mode, enum lru_list lru)
  966. {
  967. struct list_head *src = &lruvec->lists[lru];
  968. unsigned long nr_taken = 0;
  969. unsigned long scan;
  970. for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
  971. struct page *page;
  972. int nr_pages;
  973. page = lru_to_page(src);
  974. prefetchw_prev_lru_page(page, src, flags);
  975. VM_BUG_ON(!PageLRU(page));
  976. switch (__isolate_lru_page(page, mode)) {
  977. case 0:
  978. nr_pages = hpage_nr_pages(page);
  979. mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
  980. list_move(&page->lru, dst);
  981. nr_taken += nr_pages;
  982. break;
  983. case -EBUSY:
  984. /* else it is being freed elsewhere */
  985. list_move(&page->lru, src);
  986. continue;
  987. default:
  988. BUG();
  989. }
  990. }
  991. *nr_scanned = scan;
  992. trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
  993. nr_taken, mode, is_file_lru(lru));
  994. return nr_taken;
  995. }
  996. /**
  997. * isolate_lru_page - tries to isolate a page from its LRU list
  998. * @page: page to isolate from its LRU list
  999. *
  1000. * Isolates a @page from an LRU list, clears PageLRU and adjusts the
  1001. * vmstat statistic corresponding to whatever LRU list the page was on.
  1002. *
  1003. * Returns 0 if the page was removed from an LRU list.
  1004. * Returns -EBUSY if the page was not on an LRU list.
  1005. *
  1006. * The returned page will have PageLRU() cleared. If it was found on
  1007. * the active list, it will have PageActive set. If it was found on
  1008. * the unevictable list, it will have the PageUnevictable bit set. That flag
  1009. * may need to be cleared by the caller before letting the page go.
  1010. *
  1011. * The vmstat statistic corresponding to the list on which the page was
  1012. * found will be decremented.
  1013. *
  1014. * Restrictions:
  1015. * (1) Must be called with an elevated refcount on the page. This is a
  1016. * fundamentnal difference from isolate_lru_pages (which is called
  1017. * without a stable reference).
  1018. * (2) the lru_lock must not be held.
  1019. * (3) interrupts must be enabled.
  1020. */
  1021. int isolate_lru_page(struct page *page)
  1022. {
  1023. int ret = -EBUSY;
  1024. VM_BUG_ON(!page_count(page));
  1025. if (PageLRU(page)) {
  1026. struct zone *zone = page_zone(page);
  1027. struct lruvec *lruvec;
  1028. spin_lock_irq(&zone->lru_lock);
  1029. lruvec = mem_cgroup_page_lruvec(page, zone);
  1030. if (PageLRU(page)) {
  1031. int lru = page_lru(page);
  1032. get_page(page);
  1033. ClearPageLRU(page);
  1034. del_page_from_lru_list(page, lruvec, lru);
  1035. ret = 0;
  1036. }
  1037. spin_unlock_irq(&zone->lru_lock);
  1038. }
  1039. return ret;
  1040. }
  1041. /*
  1042. * Are there way too many processes in the direct reclaim path already?
  1043. */
  1044. static int too_many_isolated(struct zone *zone, int file,
  1045. struct scan_control *sc)
  1046. {
  1047. unsigned long inactive, isolated;
  1048. if (current_is_kswapd())
  1049. return 0;
  1050. if (!global_reclaim(sc))
  1051. return 0;
  1052. if (file) {
  1053. inactive = zone_page_state(zone, NR_INACTIVE_FILE);
  1054. isolated = zone_page_state(zone, NR_ISOLATED_FILE);
  1055. } else {
  1056. inactive = zone_page_state(zone, NR_INACTIVE_ANON);
  1057. isolated = zone_page_state(zone, NR_ISOLATED_ANON);
  1058. }
  1059. return isolated > inactive;
  1060. }
  1061. static noinline_for_stack void
  1062. putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
  1063. {
  1064. struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
  1065. struct zone *zone = lruvec_zone(lruvec);
  1066. LIST_HEAD(pages_to_free);
  1067. /*
  1068. * Put back any unfreeable pages.
  1069. */
  1070. while (!list_empty(page_list)) {
  1071. struct page *page = lru_to_page(page_list);
  1072. int lru;
  1073. VM_BUG_ON(PageLRU(page));
  1074. list_del(&page->lru);
  1075. if (unlikely(!page_evictable(page))) {
  1076. spin_unlock_irq(&zone->lru_lock);
  1077. putback_lru_page(page);
  1078. spin_lock_irq(&zone->lru_lock);
  1079. continue;
  1080. }
  1081. lruvec = mem_cgroup_page_lruvec(page, zone);
  1082. SetPageLRU(page);
  1083. lru = page_lru(page);
  1084. add_page_to_lru_list(page, lruvec, lru);
  1085. if (is_active_lru(lru)) {
  1086. int file = is_file_lru(lru);
  1087. int numpages = hpage_nr_pages(page);
  1088. reclaim_stat->recent_rotated[file] += numpages;
  1089. }
  1090. if (put_page_testzero(page)) {
  1091. __ClearPageLRU(page);
  1092. __ClearPageActive(page);
  1093. del_page_from_lru_list(page, lruvec, lru);
  1094. if (unlikely(PageCompound(page))) {
  1095. spin_unlock_irq(&zone->lru_lock);
  1096. (*get_compound_page_dtor(page))(page);
  1097. spin_lock_irq(&zone->lru_lock);
  1098. } else
  1099. list_add(&page->lru, &pages_to_free);
  1100. }
  1101. }
  1102. /*
  1103. * To save our caller's stack, now use input list for pages to free.
  1104. */
  1105. list_splice(&pages_to_free, page_list);
  1106. }
  1107. /*
  1108. * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
  1109. * of reclaimed pages
  1110. */
  1111. static noinline_for_stack unsigned long
  1112. shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
  1113. struct scan_control *sc, enum lru_list lru)
  1114. {
  1115. LIST_HEAD(page_list);
  1116. unsigned long nr_scanned;
  1117. unsigned long nr_reclaimed = 0;
  1118. unsigned long nr_taken;
  1119. unsigned long nr_dirty = 0;
  1120. unsigned long nr_writeback = 0;
  1121. isolate_mode_t isolate_mode = 0;
  1122. int file = is_file_lru(lru);
  1123. struct zone *zone = lruvec_zone(lruvec);
  1124. struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
  1125. while (unlikely(too_many_isolated(zone, file, sc))) {
  1126. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1127. /* We are about to die and free our memory. Return now. */
  1128. if (fatal_signal_pending(current))
  1129. return SWAP_CLUSTER_MAX;
  1130. }
  1131. lru_add_drain();
  1132. if (!sc->may_unmap)
  1133. isolate_mode |= ISOLATE_UNMAPPED;
  1134. if (!sc->may_writepage)
  1135. isolate_mode |= ISOLATE_CLEAN;
  1136. spin_lock_irq(&zone->lru_lock);
  1137. nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
  1138. &nr_scanned, sc, isolate_mode, lru);
  1139. __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
  1140. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
  1141. if (global_reclaim(sc)) {
  1142. zone->pages_scanned += nr_scanned;
  1143. if (current_is_kswapd())
  1144. __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
  1145. else
  1146. __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
  1147. }
  1148. spin_unlock_irq(&zone->lru_lock);
  1149. if (nr_taken == 0)
  1150. return 0;
  1151. nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
  1152. &nr_dirty, &nr_writeback, false);
  1153. spin_lock_irq(&zone->lru_lock);
  1154. reclaim_stat->recent_scanned[file] += nr_taken;
  1155. if (global_reclaim(sc)) {
  1156. if (current_is_kswapd())
  1157. __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
  1158. nr_reclaimed);
  1159. else
  1160. __count_zone_vm_events(PGSTEAL_DIRECT, zone,
  1161. nr_reclaimed);
  1162. }
  1163. putback_inactive_pages(lruvec, &page_list);
  1164. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
  1165. spin_unlock_irq(&zone->lru_lock);
  1166. free_hot_cold_page_list(&page_list, 1);
  1167. /*
  1168. * If reclaim is isolating dirty pages under writeback, it implies
  1169. * that the long-lived page allocation rate is exceeding the page
  1170. * laundering rate. Either the global limits are not being effective
  1171. * at throttling processes due to the page distribution throughout
  1172. * zones or there is heavy usage of a slow backing device. The
  1173. * only option is to throttle from reclaim context which is not ideal
  1174. * as there is no guarantee the dirtying process is throttled in the
  1175. * same way balance_dirty_pages() manages.
  1176. *
  1177. * This scales the number of dirty pages that must be under writeback
  1178. * before throttling depending on priority. It is a simple backoff
  1179. * function that has the most effect in the range DEF_PRIORITY to
  1180. * DEF_PRIORITY-2 which is the priority reclaim is considered to be
  1181. * in trouble and reclaim is considered to be in trouble.
  1182. *
  1183. * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
  1184. * DEF_PRIORITY-1 50% must be PageWriteback
  1185. * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
  1186. * ...
  1187. * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
  1188. * isolated page is PageWriteback
  1189. */
  1190. if (nr_writeback && nr_writeback >=
  1191. (nr_taken >> (DEF_PRIORITY - sc->priority)))
  1192. wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
  1193. trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
  1194. zone_idx(zone),
  1195. nr_scanned, nr_reclaimed,
  1196. sc->priority,
  1197. trace_shrink_flags(file));
  1198. return nr_reclaimed;
  1199. }
  1200. /*
  1201. * This moves pages from the active list to the inactive list.
  1202. *
  1203. * We move them the other way if the page is referenced by one or more
  1204. * processes, from rmap.
  1205. *
  1206. * If the pages are mostly unmapped, the processing is fast and it is
  1207. * appropriate to hold zone->lru_lock across the whole operation. But if
  1208. * the pages are mapped, the processing is slow (page_referenced()) so we
  1209. * should drop zone->lru_lock around each page. It's impossible to balance
  1210. * this, so instead we remove the pages from the LRU while processing them.
  1211. * It is safe to rely on PG_active against the non-LRU pages in here because
  1212. * nobody will play with that bit on a non-LRU page.
  1213. *
  1214. * The downside is that we have to touch page->_count against each page.
  1215. * But we had to alter page->flags anyway.
  1216. */
  1217. static void move_active_pages_to_lru(struct lruvec *lruvec,
  1218. struct list_head *list,
  1219. struct list_head *pages_to_free,
  1220. enum lru_list lru)
  1221. {
  1222. struct zone *zone = lruvec_zone(lruvec);
  1223. unsigned long pgmoved = 0;
  1224. struct page *page;
  1225. int nr_pages;
  1226. while (!list_empty(list)) {
  1227. page = lru_to_page(list);
  1228. lruvec = mem_cgroup_page_lruvec(page, zone);
  1229. VM_BUG_ON(PageLRU(page));
  1230. SetPageLRU(page);
  1231. nr_pages = hpage_nr_pages(page);
  1232. mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
  1233. list_move(&page->lru, &lruvec->lists[lru]);
  1234. pgmoved += nr_pages;
  1235. if (put_page_testzero(page)) {
  1236. __ClearPageLRU(page);
  1237. __ClearPageActive(page);
  1238. del_page_from_lru_list(page, lruvec, lru);
  1239. if (unlikely(PageCompound(page))) {
  1240. spin_unlock_irq(&zone->lru_lock);
  1241. (*get_compound_page_dtor(page))(page);
  1242. spin_lock_irq(&zone->lru_lock);
  1243. } else
  1244. list_add(&page->lru, pages_to_free);
  1245. }
  1246. }
  1247. __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
  1248. if (!is_active_lru(lru))
  1249. __count_vm_events(PGDEACTIVATE, pgmoved);
  1250. }
  1251. static void shrink_active_list(unsigned long nr_to_scan,
  1252. struct lruvec *lruvec,
  1253. struct scan_control *sc,
  1254. enum lru_list lru)
  1255. {
  1256. unsigned long nr_taken;
  1257. unsigned long nr_scanned;
  1258. unsigned long vm_flags;
  1259. LIST_HEAD(l_hold); /* The pages which were snipped off */
  1260. LIST_HEAD(l_active);
  1261. LIST_HEAD(l_inactive);
  1262. struct page *page;
  1263. struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
  1264. unsigned long nr_rotated = 0;
  1265. isolate_mode_t isolate_mode = 0;
  1266. int file = is_file_lru(lru);
  1267. struct zone *zone = lruvec_zone(lruvec);
  1268. lru_add_drain();
  1269. if (!sc->may_unmap)
  1270. isolate_mode |= ISOLATE_UNMAPPED;
  1271. if (!sc->may_writepage)
  1272. isolate_mode |= ISOLATE_CLEAN;
  1273. spin_lock_irq(&zone->lru_lock);
  1274. nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
  1275. &nr_scanned, sc, isolate_mode, lru);
  1276. if (global_reclaim(sc))
  1277. zone->pages_scanned += nr_scanned;
  1278. reclaim_stat->recent_scanned[file] += nr_taken;
  1279. __count_zone_vm_events(PGREFILL, zone, nr_scanned);
  1280. __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
  1281. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
  1282. spin_unlock_irq(&zone->lru_lock);
  1283. while (!list_empty(&l_hold)) {
  1284. cond_resched();
  1285. page = lru_to_page(&l_hold);
  1286. list_del(&page->lru);
  1287. if (unlikely(!page_evictable(page))) {
  1288. putback_lru_page(page);
  1289. continue;
  1290. }
  1291. if (unlikely(buffer_heads_over_limit)) {
  1292. if (page_has_private(page) && trylock_page(page)) {
  1293. if (page_has_private(page))
  1294. try_to_release_page(page, 0);
  1295. unlock_page(page);
  1296. }
  1297. }
  1298. if (page_referenced(page, 0, sc->target_mem_cgroup,
  1299. &vm_flags)) {
  1300. nr_rotated += hpage_nr_pages(page);
  1301. /*
  1302. * Identify referenced, file-backed active pages and
  1303. * give them one more trip around the active list. So
  1304. * that executable code get better chances to stay in
  1305. * memory under moderate memory pressure. Anon pages
  1306. * are not likely to be evicted by use-once streaming
  1307. * IO, plus JVM can create lots of anon VM_EXEC pages,
  1308. * so we ignore them here.
  1309. */
  1310. if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
  1311. list_add(&page->lru, &l_active);
  1312. continue;
  1313. }
  1314. }
  1315. ClearPageActive(page); /* we are de-activating */
  1316. list_add(&page->lru, &l_inactive);
  1317. }
  1318. /*
  1319. * Move pages back to the lru list.
  1320. */
  1321. spin_lock_irq(&zone->lru_lock);
  1322. /*
  1323. * Count referenced pages from currently used mappings as rotated,
  1324. * even though only some of them are actually re-activated. This
  1325. * helps balance scan pressure between file and anonymous pages in
  1326. * get_scan_ratio.
  1327. */
  1328. reclaim_stat->recent_rotated[file] += nr_rotated;
  1329. move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
  1330. move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
  1331. __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
  1332. spin_unlock_irq(&zone->lru_lock);
  1333. free_hot_cold_page_list(&l_hold, 1);
  1334. }
  1335. #ifdef CONFIG_SWAP
  1336. static int inactive_anon_is_low_global(struct zone *zone)
  1337. {
  1338. unsigned long active, inactive;
  1339. active = zone_page_state(zone, NR_ACTIVE_ANON);
  1340. inactive = zone_page_state(zone, NR_INACTIVE_ANON);
  1341. if (inactive * zone->inactive_ratio < active)
  1342. return 1;
  1343. return 0;
  1344. }
  1345. /**
  1346. * inactive_anon_is_low - check if anonymous pages need to be deactivated
  1347. * @lruvec: LRU vector to check
  1348. *
  1349. * Returns true if the zone does not have enough inactive anon pages,
  1350. * meaning some active anon pages need to be deactivated.
  1351. */
  1352. static int inactive_anon_is_low(struct lruvec *lruvec)
  1353. {
  1354. /*
  1355. * If we don't have swap space, anonymous page deactivation
  1356. * is pointless.
  1357. */
  1358. if (!total_swap_pages)
  1359. return 0;
  1360. if (!mem_cgroup_disabled())
  1361. return mem_cgroup_inactive_anon_is_low(lruvec);
  1362. return inactive_anon_is_low_global(lruvec_zone(lruvec));
  1363. }
  1364. #else
  1365. static inline int inactive_anon_is_low(struct lruvec *lruvec)
  1366. {
  1367. return 0;
  1368. }
  1369. #endif
  1370. static int inactive_file_is_low_global(struct zone *zone)
  1371. {
  1372. unsigned long active, inactive;
  1373. active = zone_page_state(zone, NR_ACTIVE_FILE);
  1374. inactive = zone_page_state(zone, NR_INACTIVE_FILE);
  1375. return (active > inactive);
  1376. }
  1377. /**
  1378. * inactive_file_is_low - check if file pages need to be deactivated
  1379. * @lruvec: LRU vector to check
  1380. *
  1381. * When the system is doing streaming IO, memory pressure here
  1382. * ensures that active file pages get deactivated, until more
  1383. * than half of the file pages are on the inactive list.
  1384. *
  1385. * Once we get to that situation, protect the system's working
  1386. * set from being evicted by disabling active file page aging.
  1387. *
  1388. * This uses a different ratio than the anonymous pages, because
  1389. * the page cache uses a use-once replacement algorithm.
  1390. */
  1391. static int inactive_file_is_low(struct lruvec *lruvec)
  1392. {
  1393. if (!mem_cgroup_disabled())
  1394. return mem_cgroup_inactive_file_is_low(lruvec);
  1395. return inactive_file_is_low_global(lruvec_zone(lruvec));
  1396. }
  1397. static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
  1398. {
  1399. if (is_file_lru(lru))
  1400. return inactive_file_is_low(lruvec);
  1401. else
  1402. return inactive_anon_is_low(lruvec);
  1403. }
  1404. static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
  1405. struct lruvec *lruvec, struct scan_control *sc)
  1406. {
  1407. if (is_active_lru(lru)) {
  1408. if (inactive_list_is_low(lruvec, lru))
  1409. shrink_active_list(nr_to_scan, lruvec, sc, lru);
  1410. return 0;
  1411. }
  1412. return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
  1413. }
  1414. static int vmscan_swappiness(struct scan_control *sc)
  1415. {
  1416. if (global_reclaim(sc))
  1417. return vm_swappiness;
  1418. return mem_cgroup_swappiness(sc->target_mem_cgroup);
  1419. }
  1420. /*
  1421. * Determine how aggressively the anon and file LRU lists should be
  1422. * scanned. The relative value of each set of LRU lists is determined
  1423. * by looking at the fraction of the pages scanned we did rotate back
  1424. * onto the active list instead of evict.
  1425. *
  1426. * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
  1427. * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
  1428. */
  1429. static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
  1430. unsigned long *nr)
  1431. {
  1432. unsigned long anon, file, free;
  1433. unsigned long anon_prio, file_prio;
  1434. unsigned long ap, fp;
  1435. struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
  1436. u64 fraction[2], denominator;
  1437. enum lru_list lru;
  1438. int noswap = 0;
  1439. bool force_scan = false;
  1440. struct zone *zone = lruvec_zone(lruvec);
  1441. /*
  1442. * If the zone or memcg is small, nr[l] can be 0. This
  1443. * results in no scanning on this priority and a potential
  1444. * priority drop. Global direct reclaim can go to the next
  1445. * zone and tends to have no problems. Global kswapd is for
  1446. * zone balancing and it needs to scan a minimum amount. When
  1447. * reclaiming for a memcg, a priority drop can cause high
  1448. * latencies, so it's better to scan a minimum amount there as
  1449. * well.
  1450. */
  1451. if (current_is_kswapd() && zone->all_unreclaimable)
  1452. force_scan = true;
  1453. if (!global_reclaim(sc))
  1454. force_scan = true;
  1455. /* If we have no swap space, do not bother scanning anon pages. */
  1456. if (!sc->may_swap || (nr_swap_pages <= 0)) {
  1457. noswap = 1;
  1458. fraction[0] = 0;
  1459. fraction[1] = 1;
  1460. denominator = 1;
  1461. goto out;
  1462. }
  1463. anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
  1464. get_lru_size(lruvec, LRU_INACTIVE_ANON);
  1465. file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
  1466. get_lru_size(lruvec, LRU_INACTIVE_FILE);
  1467. if (global_reclaim(sc)) {
  1468. free = zone_page_state(zone, NR_FREE_PAGES);
  1469. if (unlikely(file + free <= high_wmark_pages(zone))) {
  1470. /*
  1471. * If we have very few page cache pages, force-scan
  1472. * anon pages.
  1473. */
  1474. fraction[0] = 1;
  1475. fraction[1] = 0;
  1476. denominator = 1;
  1477. goto out;
  1478. } else if (!inactive_file_is_low_global(zone)) {
  1479. /*
  1480. * There is enough inactive page cache, do not
  1481. * reclaim anything from the working set right now.
  1482. */
  1483. fraction[0] = 0;
  1484. fraction[1] = 1;
  1485. denominator = 1;
  1486. goto out;
  1487. }
  1488. }
  1489. /*
  1490. * With swappiness at 100, anonymous and file have the same priority.
  1491. * This scanning priority is essentially the inverse of IO cost.
  1492. */
  1493. anon_prio = vmscan_swappiness(sc);
  1494. file_prio = 200 - anon_prio;
  1495. /*
  1496. * OK, so we have swap space and a fair amount of page cache
  1497. * pages. We use the recently rotated / recently scanned
  1498. * ratios to determine how valuable each cache is.
  1499. *
  1500. * Because workloads change over time (and to avoid overflow)
  1501. * we keep these statistics as a floating average, which ends
  1502. * up weighing recent references more than old ones.
  1503. *
  1504. * anon in [0], file in [1]
  1505. */
  1506. spin_lock_irq(&zone->lru_lock);
  1507. if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
  1508. reclaim_stat->recent_scanned[0] /= 2;
  1509. reclaim_stat->recent_rotated[0] /= 2;
  1510. }
  1511. if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
  1512. reclaim_stat->recent_scanned[1] /= 2;
  1513. reclaim_stat->recent_rotated[1] /= 2;
  1514. }
  1515. /*
  1516. * The amount of pressure on anon vs file pages is inversely
  1517. * proportional to the fraction of recently scanned pages on
  1518. * each list that were recently referenced and in active use.
  1519. */
  1520. ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
  1521. ap /= reclaim_stat->recent_rotated[0] + 1;
  1522. fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
  1523. fp /= reclaim_stat->recent_rotated[1] + 1;
  1524. spin_unlock_irq(&zone->lru_lock);
  1525. fraction[0] = ap;
  1526. fraction[1] = fp;
  1527. denominator = ap + fp + 1;
  1528. out:
  1529. for_each_evictable_lru(lru) {
  1530. int file = is_file_lru(lru);
  1531. unsigned long scan;
  1532. scan = get_lru_size(lruvec, lru);
  1533. if (sc->priority || noswap || !vmscan_swappiness(sc)) {
  1534. scan >>= sc->priority;
  1535. if (!scan && force_scan)
  1536. scan = SWAP_CLUSTER_MAX;
  1537. scan = div64_u64(scan * fraction[file], denominator);
  1538. }
  1539. nr[lru] = scan;
  1540. }
  1541. }
  1542. /* Use reclaim/compaction for costly allocs or under memory pressure */
  1543. static bool in_reclaim_compaction(struct scan_control *sc)
  1544. {
  1545. if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
  1546. (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
  1547. sc->priority < DEF_PRIORITY - 2))
  1548. return true;
  1549. return false;
  1550. }
  1551. /*
  1552. * Reclaim/compaction is used for high-order allocation requests. It reclaims
  1553. * order-0 pages before compacting the zone. should_continue_reclaim() returns
  1554. * true if more pages should be reclaimed such that when the page allocator
  1555. * calls try_to_compact_zone() that it will have enough free pages to succeed.
  1556. * It will give up earlier than that if there is difficulty reclaiming pages.
  1557. */
  1558. static inline bool should_continue_reclaim(struct lruvec *lruvec,
  1559. unsigned long nr_reclaimed,
  1560. unsigned long nr_scanned,
  1561. struct scan_control *sc)
  1562. {
  1563. unsigned long pages_for_compaction;
  1564. unsigned long inactive_lru_pages;
  1565. /* If not in reclaim/compaction mode, stop */
  1566. if (!in_reclaim_compaction(sc))
  1567. return false;
  1568. /* Consider stopping depending on scan and reclaim activity */
  1569. if (sc->gfp_mask & __GFP_REPEAT) {
  1570. /*
  1571. * For __GFP_REPEAT allocations, stop reclaiming if the
  1572. * full LRU list has been scanned and we are still failing
  1573. * to reclaim pages. This full LRU scan is potentially
  1574. * expensive but a __GFP_REPEAT caller really wants to succeed
  1575. */
  1576. if (!nr_reclaimed && !nr_scanned)
  1577. return false;
  1578. } else {
  1579. /*
  1580. * For non-__GFP_REPEAT allocations which can presumably
  1581. * fail without consequence, stop if we failed to reclaim
  1582. * any pages from the last SWAP_CLUSTER_MAX number of
  1583. * pages that were scanned. This will return to the
  1584. * caller faster at the risk reclaim/compaction and
  1585. * the resulting allocation attempt fails
  1586. */
  1587. if (!nr_reclaimed)
  1588. return false;
  1589. }
  1590. /*
  1591. * If we have not reclaimed enough pages for compaction and the
  1592. * inactive lists are large enough, continue reclaiming
  1593. */
  1594. pages_for_compaction = (2UL << sc->order);
  1595. inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
  1596. if (nr_swap_pages > 0)
  1597. inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
  1598. if (sc->nr_reclaimed < pages_for_compaction &&
  1599. inactive_lru_pages > pages_for_compaction)
  1600. return true;
  1601. /* If compaction would go ahead or the allocation would succeed, stop */
  1602. switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
  1603. case COMPACT_PARTIAL:
  1604. case COMPACT_CONTINUE:
  1605. return false;
  1606. default:
  1607. return true;
  1608. }
  1609. }
  1610. /*
  1611. * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
  1612. */
  1613. static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
  1614. {
  1615. unsigned long nr[NR_LRU_LISTS];
  1616. unsigned long nr_to_scan;
  1617. enum lru_list lru;
  1618. unsigned long nr_reclaimed, nr_scanned;
  1619. unsigned long nr_to_reclaim = sc->nr_to_reclaim;
  1620. struct blk_plug plug;
  1621. restart:
  1622. nr_reclaimed = 0;
  1623. nr_scanned = sc->nr_scanned;
  1624. get_scan_count(lruvec, sc, nr);
  1625. blk_start_plug(&plug);
  1626. while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
  1627. nr[LRU_INACTIVE_FILE]) {
  1628. for_each_evictable_lru(lru) {
  1629. if (nr[lru]) {
  1630. nr_to_scan = min_t(unsigned long,
  1631. nr[lru], SWAP_CLUSTER_MAX);
  1632. nr[lru] -= nr_to_scan;
  1633. nr_reclaimed += shrink_list(lru, nr_to_scan,
  1634. lruvec, sc);
  1635. }
  1636. }
  1637. /*
  1638. * On large memory systems, scan >> priority can become
  1639. * really large. This is fine for the starting priority;
  1640. * we want to put equal scanning pressure on each zone.
  1641. * However, if the VM has a harder time of freeing pages,
  1642. * with multiple processes reclaiming pages, the total
  1643. * freeing target can get unreasonably large.
  1644. */
  1645. if (nr_reclaimed >= nr_to_reclaim &&
  1646. sc->priority < DEF_PRIORITY)
  1647. break;
  1648. }
  1649. blk_finish_plug(&plug);
  1650. sc->nr_reclaimed += nr_reclaimed;
  1651. /*
  1652. * Even if we did not try to evict anon pages at all, we want to
  1653. * rebalance the anon lru active/inactive ratio.
  1654. */
  1655. if (inactive_anon_is_low(lruvec))
  1656. shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
  1657. sc, LRU_ACTIVE_ANON);
  1658. /* reclaim/compaction might need reclaim to continue */
  1659. if (should_continue_reclaim(lruvec, nr_reclaimed,
  1660. sc->nr_scanned - nr_scanned, sc))
  1661. goto restart;
  1662. throttle_vm_writeout(sc->gfp_mask);
  1663. }
  1664. static void shrink_zone(struct zone *zone, struct scan_control *sc)
  1665. {
  1666. struct mem_cgroup *root = sc->target_mem_cgroup;
  1667. struct mem_cgroup_reclaim_cookie reclaim = {
  1668. .zone = zone,
  1669. .priority = sc->priority,
  1670. };
  1671. struct mem_cgroup *memcg;
  1672. memcg = mem_cgroup_iter(root, NULL, &reclaim);
  1673. do {
  1674. struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
  1675. shrink_lruvec(lruvec, sc);
  1676. /*
  1677. * Limit reclaim has historically picked one memcg and
  1678. * scanned it with decreasing priority levels until
  1679. * nr_to_reclaim had been reclaimed. This priority
  1680. * cycle is thus over after a single memcg.
  1681. *
  1682. * Direct reclaim and kswapd, on the other hand, have
  1683. * to scan all memory cgroups to fulfill the overall
  1684. * scan target for the zone.
  1685. */
  1686. if (!global_reclaim(sc)) {
  1687. mem_cgroup_iter_break(root, memcg);
  1688. break;
  1689. }
  1690. memcg = mem_cgroup_iter(root, memcg, &reclaim);
  1691. } while (memcg);
  1692. }
  1693. /* Returns true if compaction should go ahead for a high-order request */
  1694. static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
  1695. {
  1696. unsigned long balance_gap, watermark;
  1697. bool watermark_ok;
  1698. /* Do not consider compaction for orders reclaim is meant to satisfy */
  1699. if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
  1700. return false;
  1701. /*
  1702. * Compaction takes time to run and there are potentially other
  1703. * callers using the pages just freed. Continue reclaiming until
  1704. * there is a buffer of free pages available to give compaction
  1705. * a reasonable chance of completing and allocating the page
  1706. */
  1707. balance_gap = min(low_wmark_pages(zone),
  1708. (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
  1709. KSWAPD_ZONE_BALANCE_GAP_RATIO);
  1710. watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
  1711. watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
  1712. /*
  1713. * If compaction is deferred, reclaim up to a point where
  1714. * compaction will have a chance of success when re-enabled
  1715. */
  1716. if (compaction_deferred(zone, sc->order))
  1717. return watermark_ok;
  1718. /* If compaction is not ready to start, keep reclaiming */
  1719. if (!compaction_suitable(zone, sc->order))
  1720. return false;
  1721. return watermark_ok;
  1722. }
  1723. /*
  1724. * This is the direct reclaim path, for page-allocating processes. We only
  1725. * try to reclaim pages from zones which will satisfy the caller's allocation
  1726. * request.
  1727. *
  1728. * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
  1729. * Because:
  1730. * a) The caller may be trying to free *extra* pages to satisfy a higher-order
  1731. * allocation or
  1732. * b) The target zone may be at high_wmark_pages(zone) but the lower zones
  1733. * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
  1734. * zone defense algorithm.
  1735. *
  1736. * If a zone is deemed to be full of pinned pages then just give it a light
  1737. * scan then give up on it.
  1738. *
  1739. * This function returns true if a zone is being reclaimed for a costly
  1740. * high-order allocation and compaction is ready to begin. This indicates to
  1741. * the caller that it should consider retrying the allocation instead of
  1742. * further reclaim.
  1743. */
  1744. static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
  1745. {
  1746. struct zoneref *z;
  1747. struct zone *zone;
  1748. unsigned long nr_soft_reclaimed;
  1749. unsigned long nr_soft_scanned;
  1750. bool aborted_reclaim = false;
  1751. /*
  1752. * If the number of buffer_heads in the machine exceeds the maximum
  1753. * allowed level, force direct reclaim to scan the highmem zone as
  1754. * highmem pages could be pinning lowmem pages storing buffer_heads
  1755. */
  1756. if (buffer_heads_over_limit)
  1757. sc->gfp_mask |= __GFP_HIGHMEM;
  1758. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1759. gfp_zone(sc->gfp_mask), sc->nodemask) {
  1760. if (!populated_zone(zone))
  1761. continue;
  1762. /*
  1763. * Take care memory controller reclaiming has small influence
  1764. * to global LRU.
  1765. */
  1766. if (global_reclaim(sc)) {
  1767. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  1768. continue;
  1769. if (zone->all_unreclaimable &&
  1770. sc->priority != DEF_PRIORITY)
  1771. continue; /* Let kswapd poll it */
  1772. if (IS_ENABLED(CONFIG_COMPACTION)) {
  1773. /*
  1774. * If we already have plenty of memory free for
  1775. * compaction in this zone, don't free any more.
  1776. * Even though compaction is invoked for any
  1777. * non-zero order, only frequent costly order
  1778. * reclamation is disruptive enough to become a
  1779. * noticeable problem, like transparent huge
  1780. * page allocations.
  1781. */
  1782. if (compaction_ready(zone, sc)) {
  1783. aborted_reclaim = true;
  1784. continue;
  1785. }
  1786. }
  1787. /*
  1788. * This steals pages from memory cgroups over softlimit
  1789. * and returns the number of reclaimed pages and
  1790. * scanned pages. This works for global memory pressure
  1791. * and balancing, not for a memcg's limit.
  1792. */
  1793. nr_soft_scanned = 0;
  1794. nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
  1795. sc->order, sc->gfp_mask,
  1796. &nr_soft_scanned);
  1797. sc->nr_reclaimed += nr_soft_reclaimed;
  1798. sc->nr_scanned += nr_soft_scanned;
  1799. /* need some check for avoid more shrink_zone() */
  1800. }
  1801. shrink_zone(zone, sc);
  1802. }
  1803. return aborted_reclaim;
  1804. }
  1805. static bool zone_reclaimable(struct zone *zone)
  1806. {
  1807. return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
  1808. }
  1809. /* All zones in zonelist are unreclaimable? */
  1810. static bool all_unreclaimable(struct zonelist *zonelist,
  1811. struct scan_control *sc)
  1812. {
  1813. struct zoneref *z;
  1814. struct zone *zone;
  1815. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1816. gfp_zone(sc->gfp_mask), sc->nodemask) {
  1817. if (!populated_zone(zone))
  1818. continue;
  1819. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  1820. continue;
  1821. if (!zone->all_unreclaimable)
  1822. return false;
  1823. }
  1824. return true;
  1825. }
  1826. /*
  1827. * This is the main entry point to direct page reclaim.
  1828. *
  1829. * If a full scan of the inactive list fails to free enough memory then we
  1830. * are "out of memory" and something needs to be killed.
  1831. *
  1832. * If the caller is !__GFP_FS then the probability of a failure is reasonably
  1833. * high - the zone may be full of dirty or under-writeback pages, which this
  1834. * caller can't do much about. We kick the writeback threads and take explicit
  1835. * naps in the hope that some of these pages can be written. But if the
  1836. * allocating task holds filesystem locks which prevent writeout this might not
  1837. * work, and the allocation attempt will fail.
  1838. *
  1839. * returns: 0, if no pages reclaimed
  1840. * else, the number of pages reclaimed
  1841. */
  1842. static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
  1843. struct scan_control *sc,
  1844. struct shrink_control *shrink)
  1845. {
  1846. unsigned long total_scanned = 0;
  1847. struct reclaim_state *reclaim_state = current->reclaim_state;
  1848. struct zoneref *z;
  1849. struct zone *zone;
  1850. unsigned long writeback_threshold;
  1851. bool aborted_reclaim;
  1852. delayacct_freepages_start();
  1853. if (global_reclaim(sc))
  1854. count_vm_event(ALLOCSTALL);
  1855. do {
  1856. sc->nr_scanned = 0;
  1857. aborted_reclaim = shrink_zones(zonelist, sc);
  1858. /*
  1859. * Don't shrink slabs when reclaiming memory from
  1860. * over limit cgroups
  1861. */
  1862. if (global_reclaim(sc)) {
  1863. unsigned long lru_pages = 0;
  1864. for_each_zone_zonelist(zone, z, zonelist,
  1865. gfp_zone(sc->gfp_mask)) {
  1866. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  1867. continue;
  1868. lru_pages += zone_reclaimable_pages(zone);
  1869. }
  1870. shrink_slab(shrink, sc->nr_scanned, lru_pages);
  1871. if (reclaim_state) {
  1872. sc->nr_reclaimed += reclaim_state->reclaimed_slab;
  1873. reclaim_state->reclaimed_slab = 0;
  1874. }
  1875. }
  1876. total_scanned += sc->nr_scanned;
  1877. if (sc->nr_reclaimed >= sc->nr_to_reclaim)
  1878. goto out;
  1879. /*
  1880. * Try to write back as many pages as we just scanned. This
  1881. * tends to cause slow streaming writers to write data to the
  1882. * disk smoothly, at the dirtying rate, which is nice. But
  1883. * that's undesirable in laptop mode, where we *want* lumpy
  1884. * writeout. So in laptop mode, write out the whole world.
  1885. */
  1886. writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
  1887. if (total_scanned > writeback_threshold) {
  1888. wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
  1889. WB_REASON_TRY_TO_FREE_PAGES);
  1890. sc->may_writepage = 1;
  1891. }
  1892. /* Take a nap, wait for some writeback to complete */
  1893. if (!sc->hibernation_mode && sc->nr_scanned &&
  1894. sc->priority < DEF_PRIORITY - 2) {
  1895. struct zone *preferred_zone;
  1896. first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
  1897. &cpuset_current_mems_allowed,
  1898. &preferred_zone);
  1899. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
  1900. }
  1901. } while (--sc->priority >= 0);
  1902. out:
  1903. delayacct_freepages_end();
  1904. if (sc->nr_reclaimed)
  1905. return sc->nr_reclaimed;
  1906. /*
  1907. * As hibernation is going on, kswapd is freezed so that it can't mark
  1908. * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
  1909. * check.
  1910. */
  1911. if (oom_killer_disabled)
  1912. return 0;
  1913. /* Aborted reclaim to try compaction? don't OOM, then */
  1914. if (aborted_reclaim)
  1915. return 1;
  1916. /* top priority shrink_zones still had more to do? don't OOM, then */
  1917. if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
  1918. return 1;
  1919. return 0;
  1920. }
  1921. static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
  1922. {
  1923. struct zone *zone;
  1924. unsigned long pfmemalloc_reserve = 0;
  1925. unsigned long free_pages = 0;
  1926. int i;
  1927. bool wmark_ok;
  1928. for (i = 0; i <= ZONE_NORMAL; i++) {
  1929. zone = &pgdat->node_zones[i];
  1930. pfmemalloc_reserve += min_wmark_pages(zone);
  1931. free_pages += zone_page_state(zone, NR_FREE_PAGES);
  1932. }
  1933. wmark_ok = free_pages > pfmemalloc_reserve / 2;
  1934. /* kswapd must be awake if processes are being throttled */
  1935. if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
  1936. pgdat->classzone_idx = min(pgdat->classzone_idx,
  1937. (enum zone_type)ZONE_NORMAL);
  1938. wake_up_interruptible(&pgdat->kswapd_wait);
  1939. }
  1940. return wmark_ok;
  1941. }
  1942. /*
  1943. * Throttle direct reclaimers if backing storage is backed by the network
  1944. * and the PFMEMALLOC reserve for the preferred node is getting dangerously
  1945. * depleted. kswapd will continue to make progress and wake the processes
  1946. * when the low watermark is reached.
  1947. *
  1948. * Returns true if a fatal signal was delivered during throttling. If this
  1949. * happens, the page allocator should not consider triggering the OOM killer.
  1950. */
  1951. static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
  1952. nodemask_t *nodemask)
  1953. {
  1954. struct zone *zone;
  1955. int high_zoneidx = gfp_zone(gfp_mask);
  1956. pg_data_t *pgdat;
  1957. /*
  1958. * Kernel threads should not be throttled as they may be indirectly
  1959. * responsible for cleaning pages necessary for reclaim to make forward
  1960. * progress. kjournald for example may enter direct reclaim while
  1961. * committing a transaction where throttling it could forcing other
  1962. * processes to block on log_wait_commit().
  1963. */
  1964. if (current->flags & PF_KTHREAD)
  1965. goto out;
  1966. /*
  1967. * If a fatal signal is pending, this process should not throttle.
  1968. * It should return quickly so it can exit and free its memory
  1969. */
  1970. if (fatal_signal_pending(current))
  1971. goto out;
  1972. /* Check if the pfmemalloc reserves are ok */
  1973. first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
  1974. pgdat = zone->zone_pgdat;
  1975. if (pfmemalloc_watermark_ok(pgdat))
  1976. goto out;
  1977. /* Account for the throttling */
  1978. count_vm_event(PGSCAN_DIRECT_THROTTLE);
  1979. /*
  1980. * If the caller cannot enter the filesystem, it's possible that it
  1981. * is due to the caller holding an FS lock or performing a journal
  1982. * transaction in the case of a filesystem like ext[3|4]. In this case,
  1983. * it is not safe to block on pfmemalloc_wait as kswapd could be
  1984. * blocked waiting on the same lock. Instead, throttle for up to a
  1985. * second before continuing.
  1986. */
  1987. if (!(gfp_mask & __GFP_FS)) {
  1988. wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
  1989. pfmemalloc_watermark_ok(pgdat), HZ);
  1990. goto check_pending;
  1991. }
  1992. /* Throttle until kswapd wakes the process */
  1993. wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
  1994. pfmemalloc_watermark_ok(pgdat));
  1995. check_pending:
  1996. if (fatal_signal_pending(current))
  1997. return true;
  1998. out:
  1999. return false;
  2000. }
  2001. unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
  2002. gfp_t gfp_mask, nodemask_t *nodemask)
  2003. {
  2004. unsigned long nr_reclaimed;
  2005. struct scan_control sc = {
  2006. .gfp_mask = gfp_mask,
  2007. .may_writepage = !laptop_mode,
  2008. .nr_to_reclaim = SWAP_CLUSTER_MAX,
  2009. .may_unmap = 1,
  2010. .may_swap = 1,
  2011. .order = order,
  2012. .priority = DEF_PRIORITY,
  2013. .target_mem_cgroup = NULL,
  2014. .nodemask = nodemask,
  2015. };
  2016. struct shrink_control shrink = {
  2017. .gfp_mask = sc.gfp_mask,
  2018. };
  2019. /*
  2020. * Do not enter reclaim if fatal signal was delivered while throttled.
  2021. * 1 is returned so that the page allocator does not OOM kill at this
  2022. * point.
  2023. */
  2024. if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
  2025. return 1;
  2026. trace_mm_vmscan_direct_reclaim_begin(order,
  2027. sc.may_writepage,
  2028. gfp_mask);
  2029. nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
  2030. trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
  2031. return nr_reclaimed;
  2032. }
  2033. #ifdef CONFIG_MEMCG
  2034. unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
  2035. gfp_t gfp_mask, bool noswap,
  2036. struct zone *zone,
  2037. unsigned long *nr_scanned)
  2038. {
  2039. struct scan_control sc = {
  2040. .nr_scanned = 0,
  2041. .nr_to_reclaim = SWAP_CLUSTER_MAX,
  2042. .may_writepage = !laptop_mode,
  2043. .may_unmap = 1,
  2044. .may_swap = !noswap,
  2045. .order = 0,
  2046. .priority = 0,
  2047. .target_mem_cgroup = memcg,
  2048. };
  2049. struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
  2050. sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
  2051. (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
  2052. trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
  2053. sc.may_writepage,
  2054. sc.gfp_mask);
  2055. /*
  2056. * NOTE: Although we can get the priority field, using it
  2057. * here is not a good idea, since it limits the pages we can scan.
  2058. * if we don't reclaim here, the shrink_zone from balance_pgdat
  2059. * will pick up pages from other mem cgroup's as well. We hack
  2060. * the priority and make it zero.
  2061. */
  2062. shrink_lruvec(lruvec, &sc);
  2063. trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
  2064. *nr_scanned = sc.nr_scanned;
  2065. return sc.nr_reclaimed;
  2066. }
  2067. unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
  2068. gfp_t gfp_mask,
  2069. bool noswap)
  2070. {
  2071. struct zonelist *zonelist;
  2072. unsigned long nr_reclaimed;
  2073. int nid;
  2074. struct scan_control sc = {
  2075. .may_writepage = !laptop_mode,
  2076. .may_unmap = 1,
  2077. .may_swap = !noswap,
  2078. .nr_to_reclaim = SWAP_CLUSTER_MAX,
  2079. .order = 0,
  2080. .priority = DEF_PRIORITY,
  2081. .target_mem_cgroup = memcg,
  2082. .nodemask = NULL, /* we don't care the placement */
  2083. .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
  2084. (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
  2085. };
  2086. struct shrink_control shrink = {
  2087. .gfp_mask = sc.gfp_mask,
  2088. };
  2089. /*
  2090. * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
  2091. * take care of from where we get pages. So the node where we start the
  2092. * scan does not need to be the current node.
  2093. */
  2094. nid = mem_cgroup_select_victim_node(memcg);
  2095. zonelist = NODE_DATA(nid)->node_zonelists;
  2096. trace_mm_vmscan_memcg_reclaim_begin(0,
  2097. sc.may_writepage,
  2098. sc.gfp_mask);
  2099. nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
  2100. trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
  2101. return nr_reclaimed;
  2102. }
  2103. #endif
  2104. static void age_active_anon(struct zone *zone, struct scan_control *sc)
  2105. {
  2106. struct mem_cgroup *memcg;
  2107. if (!total_swap_pages)
  2108. return;
  2109. memcg = mem_cgroup_iter(NULL, NULL, NULL);
  2110. do {
  2111. struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
  2112. if (inactive_anon_is_low(lruvec))
  2113. shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
  2114. sc, LRU_ACTIVE_ANON);
  2115. memcg = mem_cgroup_iter(NULL, memcg, NULL);
  2116. } while (memcg);
  2117. }
  2118. static bool zone_balanced(struct zone *zone, int order,
  2119. unsigned long balance_gap, int classzone_idx)
  2120. {
  2121. if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
  2122. balance_gap, classzone_idx, 0))
  2123. return false;
  2124. if (IS_ENABLED(CONFIG_COMPACTION) && order &&
  2125. !compaction_suitable(zone, order))
  2126. return false;
  2127. return true;
  2128. }
  2129. /*
  2130. * pgdat_balanced is used when checking if a node is balanced for high-order
  2131. * allocations. Only zones that meet watermarks and are in a zone allowed
  2132. * by the callers classzone_idx are added to balanced_pages. The total of
  2133. * balanced pages must be at least 25% of the zones allowed by classzone_idx
  2134. * for the node to be considered balanced. Forcing all zones to be balanced
  2135. * for high orders can cause excessive reclaim when there are imbalanced zones.
  2136. * The choice of 25% is due to
  2137. * o a 16M DMA zone that is balanced will not balance a zone on any
  2138. * reasonable sized machine
  2139. * o On all other machines, the top zone must be at least a reasonable
  2140. * percentage of the middle zones. For example, on 32-bit x86, highmem
  2141. * would need to be at least 256M for it to be balance a whole node.
  2142. * Similarly, on x86-64 the Normal zone would need to be at least 1G
  2143. * to balance a node on its own. These seemed like reasonable ratios.
  2144. */
  2145. static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
  2146. int classzone_idx)
  2147. {
  2148. unsigned long present_pages = 0;
  2149. int i;
  2150. for (i = 0; i <= classzone_idx; i++)
  2151. present_pages += pgdat->node_zones[i].present_pages;
  2152. /* A special case here: if zone has no page, we think it's balanced */
  2153. return balanced_pages >= (present_pages >> 2);
  2154. }
  2155. /*
  2156. * Prepare kswapd for sleeping. This verifies that there are no processes
  2157. * waiting in throttle_direct_reclaim() and that watermarks have been met.
  2158. *
  2159. * Returns true if kswapd is ready to sleep
  2160. */
  2161. static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
  2162. int classzone_idx)
  2163. {
  2164. int i;
  2165. unsigned long balanced = 0;
  2166. bool all_zones_ok = true;
  2167. /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
  2168. if (remaining)
  2169. return false;
  2170. /*
  2171. * There is a potential race between when kswapd checks its watermarks
  2172. * and a process gets throttled. There is also a potential race if
  2173. * processes get throttled, kswapd wakes, a large process exits therby
  2174. * balancing the zones that causes kswapd to miss a wakeup. If kswapd
  2175. * is going to sleep, no process should be sleeping on pfmemalloc_wait
  2176. * so wake them now if necessary. If necessary, processes will wake
  2177. * kswapd and get throttled again
  2178. */
  2179. if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
  2180. wake_up(&pgdat->pfmemalloc_wait);
  2181. return false;
  2182. }
  2183. /* Check the watermark levels */
  2184. for (i = 0; i <= classzone_idx; i++) {
  2185. struct zone *zone = pgdat->node_zones + i;
  2186. if (!populated_zone(zone))
  2187. continue;
  2188. /*
  2189. * balance_pgdat() skips over all_unreclaimable after
  2190. * DEF_PRIORITY. Effectively, it considers them balanced so
  2191. * they must be considered balanced here as well if kswapd
  2192. * is to sleep
  2193. */
  2194. if (zone->all_unreclaimable) {
  2195. balanced += zone->present_pages;
  2196. continue;
  2197. }
  2198. if (!zone_balanced(zone, order, 0, i))
  2199. all_zones_ok = false;
  2200. else
  2201. balanced += zone->present_pages;
  2202. }
  2203. /*
  2204. * For high-order requests, the balanced zones must contain at least
  2205. * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
  2206. * must be balanced
  2207. */
  2208. if (order)
  2209. return pgdat_balanced(pgdat, balanced, classzone_idx);
  2210. else
  2211. return all_zones_ok;
  2212. }
  2213. /*
  2214. * For kswapd, balance_pgdat() will work across all this node's zones until
  2215. * they are all at high_wmark_pages(zone).
  2216. *
  2217. * Returns the final order kswapd was reclaiming at
  2218. *
  2219. * There is special handling here for zones which are full of pinned pages.
  2220. * This can happen if the pages are all mlocked, or if they are all used by
  2221. * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
  2222. * What we do is to detect the case where all pages in the zone have been
  2223. * scanned twice and there has been zero successful reclaim. Mark the zone as
  2224. * dead and from now on, only perform a short scan. Basically we're polling
  2225. * the zone for when the problem goes away.
  2226. *
  2227. * kswapd scans the zones in the highmem->normal->dma direction. It skips
  2228. * zones which have free_pages > high_wmark_pages(zone), but once a zone is
  2229. * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
  2230. * lower zones regardless of the number of free pages in the lower zones. This
  2231. * interoperates with the page allocator fallback scheme to ensure that aging
  2232. * of pages is balanced across the zones.
  2233. */
  2234. static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
  2235. int *classzone_idx)
  2236. {
  2237. int all_zones_ok;
  2238. unsigned long balanced;
  2239. int i;
  2240. int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
  2241. unsigned long total_scanned;
  2242. struct reclaim_state *reclaim_state = current->reclaim_state;
  2243. unsigned long nr_soft_reclaimed;
  2244. unsigned long nr_soft_scanned;
  2245. struct scan_control sc = {
  2246. .gfp_mask = GFP_KERNEL,
  2247. .may_unmap = 1,
  2248. .may_swap = 1,
  2249. /*
  2250. * kswapd doesn't want to be bailed out while reclaim. because
  2251. * we want to put equal scanning pressure on each zone.
  2252. */
  2253. .nr_to_reclaim = ULONG_MAX,
  2254. .order = order,
  2255. .target_mem_cgroup = NULL,
  2256. };
  2257. struct shrink_control shrink = {
  2258. .gfp_mask = sc.gfp_mask,
  2259. };
  2260. loop_again:
  2261. total_scanned = 0;
  2262. sc.priority = DEF_PRIORITY;
  2263. sc.nr_reclaimed = 0;
  2264. sc.may_writepage = !laptop_mode;
  2265. count_vm_event(PAGEOUTRUN);
  2266. do {
  2267. unsigned long lru_pages = 0;
  2268. int has_under_min_watermark_zone = 0;
  2269. all_zones_ok = 1;
  2270. balanced = 0;
  2271. /*
  2272. * Scan in the highmem->dma direction for the highest
  2273. * zone which needs scanning
  2274. */
  2275. for (i = pgdat->nr_zones - 1; i >= 0; i--) {
  2276. struct zone *zone = pgdat->node_zones + i;
  2277. if (!populated_zone(zone))
  2278. continue;
  2279. if (zone->all_unreclaimable &&
  2280. sc.priority != DEF_PRIORITY)
  2281. continue;
  2282. /*
  2283. * Do some background aging of the anon list, to give
  2284. * pages a chance to be referenced before reclaiming.
  2285. */
  2286. age_active_anon(zone, &sc);
  2287. /*
  2288. * If the number of buffer_heads in the machine
  2289. * exceeds the maximum allowed level and this node
  2290. * has a highmem zone, force kswapd to reclaim from
  2291. * it to relieve lowmem pressure.
  2292. */
  2293. if (buffer_heads_over_limit && is_highmem_idx(i)) {
  2294. end_zone = i;
  2295. break;
  2296. }
  2297. if (!zone_balanced(zone, order, 0, 0)) {
  2298. end_zone = i;
  2299. break;
  2300. } else {
  2301. /* If balanced, clear the congested flag */
  2302. zone_clear_flag(zone, ZONE_CONGESTED);
  2303. }
  2304. }
  2305. if (i < 0)
  2306. goto out;
  2307. for (i = 0; i <= end_zone; i++) {
  2308. struct zone *zone = pgdat->node_zones + i;
  2309. lru_pages += zone_reclaimable_pages(zone);
  2310. }
  2311. /*
  2312. * Now scan the zone in the dma->highmem direction, stopping
  2313. * at the last zone which needs scanning.
  2314. *
  2315. * We do this because the page allocator works in the opposite
  2316. * direction. This prevents the page allocator from allocating
  2317. * pages behind kswapd's direction of progress, which would
  2318. * cause too much scanning of the lower zones.
  2319. */
  2320. for (i = 0; i <= end_zone; i++) {
  2321. struct zone *zone = pgdat->node_zones + i;
  2322. int nr_slab, testorder;
  2323. unsigned long balance_gap;
  2324. if (!populated_zone(zone))
  2325. continue;
  2326. if (zone->all_unreclaimable &&
  2327. sc.priority != DEF_PRIORITY)
  2328. continue;
  2329. sc.nr_scanned = 0;
  2330. nr_soft_scanned = 0;
  2331. /*
  2332. * Call soft limit reclaim before calling shrink_zone.
  2333. */
  2334. nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
  2335. order, sc.gfp_mask,
  2336. &nr_soft_scanned);
  2337. sc.nr_reclaimed += nr_soft_reclaimed;
  2338. total_scanned += nr_soft_scanned;
  2339. /*
  2340. * We put equal pressure on every zone, unless
  2341. * one zone has way too many pages free
  2342. * already. The "too many pages" is defined
  2343. * as the high wmark plus a "gap" where the
  2344. * gap is either the low watermark or 1%
  2345. * of the zone, whichever is smaller.
  2346. */
  2347. balance_gap = min(low_wmark_pages(zone),
  2348. (zone->present_pages +
  2349. KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
  2350. KSWAPD_ZONE_BALANCE_GAP_RATIO);
  2351. /*
  2352. * Kswapd reclaims only single pages with compaction
  2353. * enabled. Trying too hard to reclaim until contiguous
  2354. * free pages have become available can hurt performance
  2355. * by evicting too much useful data from memory.
  2356. * Do not reclaim more than needed for compaction.
  2357. */
  2358. testorder = order;
  2359. if (IS_ENABLED(CONFIG_COMPACTION) && order &&
  2360. compaction_suitable(zone, order) !=
  2361. COMPACT_SKIPPED)
  2362. testorder = 0;
  2363. if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
  2364. !zone_balanced(zone, testorder,
  2365. balance_gap, end_zone)) {
  2366. shrink_zone(zone, &sc);
  2367. reclaim_state->reclaimed_slab = 0;
  2368. nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
  2369. sc.nr_reclaimed += reclaim_state->reclaimed_slab;
  2370. total_scanned += sc.nr_scanned;
  2371. if (nr_slab == 0 && !zone_reclaimable(zone))
  2372. zone->all_unreclaimable = 1;
  2373. }
  2374. /*
  2375. * If we've done a decent amount of scanning and
  2376. * the reclaim ratio is low, start doing writepage
  2377. * even in laptop mode
  2378. */
  2379. if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
  2380. total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
  2381. sc.may_writepage = 1;
  2382. if (zone->all_unreclaimable) {
  2383. if (end_zone && end_zone == i)
  2384. end_zone--;
  2385. continue;
  2386. }
  2387. if (!zone_balanced(zone, testorder, 0, end_zone)) {
  2388. all_zones_ok = 0;
  2389. /*
  2390. * We are still under min water mark. This
  2391. * means that we have a GFP_ATOMIC allocation
  2392. * failure risk. Hurry up!
  2393. */
  2394. if (!zone_watermark_ok_safe(zone, order,
  2395. min_wmark_pages(zone), end_zone, 0))
  2396. has_under_min_watermark_zone = 1;
  2397. } else {
  2398. /*
  2399. * If a zone reaches its high watermark,
  2400. * consider it to be no longer congested. It's
  2401. * possible there are dirty pages backed by
  2402. * congested BDIs but as pressure is relieved,
  2403. * speculatively avoid congestion waits
  2404. */
  2405. zone_clear_flag(zone, ZONE_CONGESTED);
  2406. if (i <= *classzone_idx)
  2407. balanced += zone->present_pages;
  2408. }
  2409. }
  2410. /*
  2411. * If the low watermark is met there is no need for processes
  2412. * to be throttled on pfmemalloc_wait as they should not be
  2413. * able to safely make forward progress. Wake them
  2414. */
  2415. if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
  2416. pfmemalloc_watermark_ok(pgdat))
  2417. wake_up(&pgdat->pfmemalloc_wait);
  2418. if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
  2419. break; /* kswapd: all done */
  2420. /*
  2421. * OK, kswapd is getting into trouble. Take a nap, then take
  2422. * another pass across the zones.
  2423. */
  2424. if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
  2425. if (has_under_min_watermark_zone)
  2426. count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
  2427. else
  2428. congestion_wait(BLK_RW_ASYNC, HZ/10);
  2429. }
  2430. /*
  2431. * We do this so kswapd doesn't build up large priorities for
  2432. * example when it is freeing in parallel with allocators. It
  2433. * matches the direct reclaim path behaviour in terms of impact
  2434. * on zone->*_priority.
  2435. */
  2436. if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
  2437. break;
  2438. } while (--sc.priority >= 0);
  2439. out:
  2440. /*
  2441. * order-0: All zones must meet high watermark for a balanced node
  2442. * high-order: Balanced zones must make up at least 25% of the node
  2443. * for the node to be balanced
  2444. */
  2445. if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
  2446. cond_resched();
  2447. try_to_freeze();
  2448. /*
  2449. * Fragmentation may mean that the system cannot be
  2450. * rebalanced for high-order allocations in all zones.
  2451. * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
  2452. * it means the zones have been fully scanned and are still
  2453. * not balanced. For high-order allocations, there is
  2454. * little point trying all over again as kswapd may
  2455. * infinite loop.
  2456. *
  2457. * Instead, recheck all watermarks at order-0 as they
  2458. * are the most important. If watermarks are ok, kswapd will go
  2459. * back to sleep. High-order users can still perform direct
  2460. * reclaim if they wish.
  2461. */
  2462. if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
  2463. order = sc.order = 0;
  2464. goto loop_again;
  2465. }
  2466. /*
  2467. * If kswapd was reclaiming at a higher order, it has the option of
  2468. * sleeping without all zones being balanced. Before it does, it must
  2469. * ensure that the watermarks for order-0 on *all* zones are met and
  2470. * that the congestion flags are cleared. The congestion flag must
  2471. * be cleared as kswapd is the only mechanism that clears the flag
  2472. * and it is potentially going to sleep here.
  2473. */
  2474. if (order) {
  2475. int zones_need_compaction = 1;
  2476. for (i = 0; i <= end_zone; i++) {
  2477. struct zone *zone = pgdat->node_zones + i;
  2478. if (!populated_zone(zone))
  2479. continue;
  2480. /* Check if the memory needs to be defragmented. */
  2481. if (zone_watermark_ok(zone, order,
  2482. low_wmark_pages(zone), *classzone_idx, 0))
  2483. zones_need_compaction = 0;
  2484. }
  2485. if (zones_need_compaction)
  2486. compact_pgdat(pgdat, order);
  2487. }
  2488. /*
  2489. * Return the order we were reclaiming at so prepare_kswapd_sleep()
  2490. * makes a decision on the order we were last reclaiming at. However,
  2491. * if another caller entered the allocator slow path while kswapd
  2492. * was awake, order will remain at the higher level
  2493. */
  2494. *classzone_idx = end_zone;
  2495. return order;
  2496. }
  2497. static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
  2498. {
  2499. long remaining = 0;
  2500. DEFINE_WAIT(wait);
  2501. if (freezing(current) || kthread_should_stop())
  2502. return;
  2503. prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
  2504. /* Try to sleep for a short interval */
  2505. if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
  2506. remaining = schedule_timeout(HZ/10);
  2507. finish_wait(&pgdat->kswapd_wait, &wait);
  2508. prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
  2509. }
  2510. /*
  2511. * After a short sleep, check if it was a premature sleep. If not, then
  2512. * go fully to sleep until explicitly woken up.
  2513. */
  2514. if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
  2515. trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
  2516. /*
  2517. * vmstat counters are not perfectly accurate and the estimated
  2518. * value for counters such as NR_FREE_PAGES can deviate from the
  2519. * true value by nr_online_cpus * threshold. To avoid the zone
  2520. * watermarks being breached while under pressure, we reduce the
  2521. * per-cpu vmstat threshold while kswapd is awake and restore
  2522. * them before going back to sleep.
  2523. */
  2524. set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
  2525. /*
  2526. * Compaction records what page blocks it recently failed to
  2527. * isolate pages from and skips them in the future scanning.
  2528. * When kswapd is going to sleep, it is reasonable to assume
  2529. * that pages and compaction may succeed so reset the cache.
  2530. */
  2531. reset_isolation_suitable(pgdat);
  2532. if (!kthread_should_stop())
  2533. schedule();
  2534. set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
  2535. } else {
  2536. if (remaining)
  2537. count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
  2538. else
  2539. count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
  2540. }
  2541. finish_wait(&pgdat->kswapd_wait, &wait);
  2542. }
  2543. /*
  2544. * The background pageout daemon, started as a kernel thread
  2545. * from the init process.
  2546. *
  2547. * This basically trickles out pages so that we have _some_
  2548. * free memory available even if there is no other activity
  2549. * that frees anything up. This is needed for things like routing
  2550. * etc, where we otherwise might have all activity going on in
  2551. * asynchronous contexts that cannot page things out.
  2552. *
  2553. * If there are applications that are active memory-allocators
  2554. * (most normal use), this basically shouldn't matter.
  2555. */
  2556. static int kswapd(void *p)
  2557. {
  2558. unsigned long order, new_order;
  2559. unsigned balanced_order;
  2560. int classzone_idx, new_classzone_idx;
  2561. int balanced_classzone_idx;
  2562. pg_data_t *pgdat = (pg_data_t*)p;
  2563. struct task_struct *tsk = current;
  2564. struct reclaim_state reclaim_state = {
  2565. .reclaimed_slab = 0,
  2566. };
  2567. const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
  2568. lockdep_set_current_reclaim_state(GFP_KERNEL);
  2569. if (!cpumask_empty(cpumask))
  2570. set_cpus_allowed_ptr(tsk, cpumask);
  2571. current->reclaim_state = &reclaim_state;
  2572. /*
  2573. * Tell the memory management that we're a "memory allocator",
  2574. * and that if we need more memory we should get access to it
  2575. * regardless (see "__alloc_pages()"). "kswapd" should
  2576. * never get caught in the normal page freeing logic.
  2577. *
  2578. * (Kswapd normally doesn't need memory anyway, but sometimes
  2579. * you need a small amount of memory in order to be able to
  2580. * page out something else, and this flag essentially protects
  2581. * us from recursively trying to free more memory as we're
  2582. * trying to free the first piece of memory in the first place).
  2583. */
  2584. tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
  2585. set_freezable();
  2586. order = new_order = 0;
  2587. balanced_order = 0;
  2588. classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
  2589. balanced_classzone_idx = classzone_idx;
  2590. for ( ; ; ) {
  2591. bool ret;
  2592. /*
  2593. * If the last balance_pgdat was unsuccessful it's unlikely a
  2594. * new request of a similar or harder type will succeed soon
  2595. * so consider going to sleep on the basis we reclaimed at
  2596. */
  2597. if (balanced_classzone_idx >= new_classzone_idx &&
  2598. balanced_order == new_order) {
  2599. new_order = pgdat->kswapd_max_order;
  2600. new_classzone_idx = pgdat->classzone_idx;
  2601. pgdat->kswapd_max_order = 0;
  2602. pgdat->classzone_idx = pgdat->nr_zones - 1;
  2603. }
  2604. if (order < new_order || classzone_idx > new_classzone_idx) {
  2605. /*
  2606. * Don't sleep if someone wants a larger 'order'
  2607. * allocation or has tigher zone constraints
  2608. */
  2609. order = new_order;
  2610. classzone_idx = new_classzone_idx;
  2611. } else {
  2612. kswapd_try_to_sleep(pgdat, balanced_order,
  2613. balanced_classzone_idx);
  2614. order = pgdat->kswapd_max_order;
  2615. classzone_idx = pgdat->classzone_idx;
  2616. new_order = order;
  2617. new_classzone_idx = classzone_idx;
  2618. pgdat->kswapd_max_order = 0;
  2619. pgdat->classzone_idx = pgdat->nr_zones - 1;
  2620. }
  2621. ret = try_to_freeze();
  2622. if (kthread_should_stop())
  2623. break;
  2624. /*
  2625. * We can speed up thawing tasks if we don't call balance_pgdat
  2626. * after returning from the refrigerator
  2627. */
  2628. if (!ret) {
  2629. trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
  2630. balanced_classzone_idx = classzone_idx;
  2631. balanced_order = balance_pgdat(pgdat, order,
  2632. &balanced_classzone_idx);
  2633. }
  2634. }
  2635. current->reclaim_state = NULL;
  2636. return 0;
  2637. }
  2638. /*
  2639. * A zone is low on free memory, so wake its kswapd task to service it.
  2640. */
  2641. void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
  2642. {
  2643. pg_data_t *pgdat;
  2644. if (!populated_zone(zone))
  2645. return;
  2646. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  2647. return;
  2648. pgdat = zone->zone_pgdat;
  2649. if (pgdat->kswapd_max_order < order) {
  2650. pgdat->kswapd_max_order = order;
  2651. pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
  2652. }
  2653. if (!waitqueue_active(&pgdat->kswapd_wait))
  2654. return;
  2655. if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
  2656. return;
  2657. trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
  2658. wake_up_interruptible(&pgdat->kswapd_wait);
  2659. }
  2660. /*
  2661. * The reclaimable count would be mostly accurate.
  2662. * The less reclaimable pages may be
  2663. * - mlocked pages, which will be moved to unevictable list when encountered
  2664. * - mapped pages, which may require several travels to be reclaimed
  2665. * - dirty pages, which is not "instantly" reclaimable
  2666. */
  2667. unsigned long global_reclaimable_pages(void)
  2668. {
  2669. int nr;
  2670. nr = global_page_state(NR_ACTIVE_FILE) +
  2671. global_page_state(NR_INACTIVE_FILE);
  2672. if (nr_swap_pages > 0)
  2673. nr += global_page_state(NR_ACTIVE_ANON) +
  2674. global_page_state(NR_INACTIVE_ANON);
  2675. return nr;
  2676. }
  2677. unsigned long zone_reclaimable_pages(struct zone *zone)
  2678. {
  2679. int nr;
  2680. nr = zone_page_state(zone, NR_ACTIVE_FILE) +
  2681. zone_page_state(zone, NR_INACTIVE_FILE);
  2682. if (nr_swap_pages > 0)
  2683. nr += zone_page_state(zone, NR_ACTIVE_ANON) +
  2684. zone_page_state(zone, NR_INACTIVE_ANON);
  2685. return nr;
  2686. }
  2687. #ifdef CONFIG_HIBERNATION
  2688. /*
  2689. * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
  2690. * freed pages.
  2691. *
  2692. * Rather than trying to age LRUs the aim is to preserve the overall
  2693. * LRU order by reclaiming preferentially
  2694. * inactive > active > active referenced > active mapped
  2695. */
  2696. unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
  2697. {
  2698. struct reclaim_state reclaim_state;
  2699. struct scan_control sc = {
  2700. .gfp_mask = GFP_HIGHUSER_MOVABLE,
  2701. .may_swap = 1,
  2702. .may_unmap = 1,
  2703. .may_writepage = 1,
  2704. .nr_to_reclaim = nr_to_reclaim,
  2705. .hibernation_mode = 1,
  2706. .order = 0,
  2707. .priority = DEF_PRIORITY,
  2708. };
  2709. struct shrink_control shrink = {
  2710. .gfp_mask = sc.gfp_mask,
  2711. };
  2712. struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
  2713. struct task_struct *p = current;
  2714. unsigned long nr_reclaimed;
  2715. p->flags |= PF_MEMALLOC;
  2716. lockdep_set_current_reclaim_state(sc.gfp_mask);
  2717. reclaim_state.reclaimed_slab = 0;
  2718. p->reclaim_state = &reclaim_state;
  2719. nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
  2720. p->reclaim_state = NULL;
  2721. lockdep_clear_current_reclaim_state();
  2722. p->flags &= ~PF_MEMALLOC;
  2723. return nr_reclaimed;
  2724. }
  2725. #endif /* CONFIG_HIBERNATION */
  2726. /* It's optimal to keep kswapds on the same CPUs as their memory, but
  2727. not required for correctness. So if the last cpu in a node goes
  2728. away, we get changed to run anywhere: as the first one comes back,
  2729. restore their cpu bindings. */
  2730. static int __devinit cpu_callback(struct notifier_block *nfb,
  2731. unsigned long action, void *hcpu)
  2732. {
  2733. int nid;
  2734. if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
  2735. for_each_node_state(nid, N_MEMORY) {
  2736. pg_data_t *pgdat = NODE_DATA(nid);
  2737. const struct cpumask *mask;
  2738. mask = cpumask_of_node(pgdat->node_id);
  2739. if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
  2740. /* One of our CPUs online: restore mask */
  2741. set_cpus_allowed_ptr(pgdat->kswapd, mask);
  2742. }
  2743. }
  2744. return NOTIFY_OK;
  2745. }
  2746. /*
  2747. * This kswapd start function will be called by init and node-hot-add.
  2748. * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
  2749. */
  2750. int kswapd_run(int nid)
  2751. {
  2752. pg_data_t *pgdat = NODE_DATA(nid);
  2753. int ret = 0;
  2754. if (pgdat->kswapd)
  2755. return 0;
  2756. pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
  2757. if (IS_ERR(pgdat->kswapd)) {
  2758. /* failure at boot is fatal */
  2759. BUG_ON(system_state == SYSTEM_BOOTING);
  2760. pgdat->kswapd = NULL;
  2761. pr_err("Failed to start kswapd on node %d\n", nid);
  2762. ret = PTR_ERR(pgdat->kswapd);
  2763. }
  2764. return ret;
  2765. }
  2766. /*
  2767. * Called by memory hotplug when all memory in a node is offlined. Caller must
  2768. * hold lock_memory_hotplug().
  2769. */
  2770. void kswapd_stop(int nid)
  2771. {
  2772. struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
  2773. if (kswapd) {
  2774. kthread_stop(kswapd);
  2775. NODE_DATA(nid)->kswapd = NULL;
  2776. }
  2777. }
  2778. static int __init kswapd_init(void)
  2779. {
  2780. int nid;
  2781. swap_setup();
  2782. for_each_node_state(nid, N_MEMORY)
  2783. kswapd_run(nid);
  2784. hotcpu_notifier(cpu_callback, 0);
  2785. return 0;
  2786. }
  2787. module_init(kswapd_init)
  2788. #ifdef CONFIG_NUMA
  2789. /*
  2790. * Zone reclaim mode
  2791. *
  2792. * If non-zero call zone_reclaim when the number of free pages falls below
  2793. * the watermarks.
  2794. */
  2795. int zone_reclaim_mode __read_mostly;
  2796. #define RECLAIM_OFF 0
  2797. #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
  2798. #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
  2799. #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
  2800. /*
  2801. * Priority for ZONE_RECLAIM. This determines the fraction of pages
  2802. * of a node considered for each zone_reclaim. 4 scans 1/16th of
  2803. * a zone.
  2804. */
  2805. #define ZONE_RECLAIM_PRIORITY 4
  2806. /*
  2807. * Percentage of pages in a zone that must be unmapped for zone_reclaim to
  2808. * occur.
  2809. */
  2810. int sysctl_min_unmapped_ratio = 1;
  2811. /*
  2812. * If the number of slab pages in a zone grows beyond this percentage then
  2813. * slab reclaim needs to occur.
  2814. */
  2815. int sysctl_min_slab_ratio = 5;
  2816. static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
  2817. {
  2818. unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
  2819. unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
  2820. zone_page_state(zone, NR_ACTIVE_FILE);
  2821. /*
  2822. * It's possible for there to be more file mapped pages than
  2823. * accounted for by the pages on the file LRU lists because
  2824. * tmpfs pages accounted for as ANON can also be FILE_MAPPED
  2825. */
  2826. return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
  2827. }
  2828. /* Work out how many page cache pages we can reclaim in this reclaim_mode */
  2829. static long zone_pagecache_reclaimable(struct zone *zone)
  2830. {
  2831. long nr_pagecache_reclaimable;
  2832. long delta = 0;
  2833. /*
  2834. * If RECLAIM_SWAP is set, then all file pages are considered
  2835. * potentially reclaimable. Otherwise, we have to worry about
  2836. * pages like swapcache and zone_unmapped_file_pages() provides
  2837. * a better estimate
  2838. */
  2839. if (zone_reclaim_mode & RECLAIM_SWAP)
  2840. nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
  2841. else
  2842. nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
  2843. /* If we can't clean pages, remove dirty pages from consideration */
  2844. if (!(zone_reclaim_mode & RECLAIM_WRITE))
  2845. delta += zone_page_state(zone, NR_FILE_DIRTY);
  2846. /* Watch for any possible underflows due to delta */
  2847. if (unlikely(delta > nr_pagecache_reclaimable))
  2848. delta = nr_pagecache_reclaimable;
  2849. return nr_pagecache_reclaimable - delta;
  2850. }
  2851. /*
  2852. * Try to free up some pages from this zone through reclaim.
  2853. */
  2854. static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
  2855. {
  2856. /* Minimum pages needed in order to stay on node */
  2857. const unsigned long nr_pages = 1 << order;
  2858. struct task_struct *p = current;
  2859. struct reclaim_state reclaim_state;
  2860. struct scan_control sc = {
  2861. .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
  2862. .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
  2863. .may_swap = 1,
  2864. .nr_to_reclaim = max_t(unsigned long, nr_pages,
  2865. SWAP_CLUSTER_MAX),
  2866. .gfp_mask = gfp_mask,
  2867. .order = order,
  2868. .priority = ZONE_RECLAIM_PRIORITY,
  2869. };
  2870. struct shrink_control shrink = {
  2871. .gfp_mask = sc.gfp_mask,
  2872. };
  2873. unsigned long nr_slab_pages0, nr_slab_pages1;
  2874. cond_resched();
  2875. /*
  2876. * We need to be able to allocate from the reserves for RECLAIM_SWAP
  2877. * and we also need to be able to write out pages for RECLAIM_WRITE
  2878. * and RECLAIM_SWAP.
  2879. */
  2880. p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
  2881. lockdep_set_current_reclaim_state(gfp_mask);
  2882. reclaim_state.reclaimed_slab = 0;
  2883. p->reclaim_state = &reclaim_state;
  2884. if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
  2885. /*
  2886. * Free memory by calling shrink zone with increasing
  2887. * priorities until we have enough memory freed.
  2888. */
  2889. do {
  2890. shrink_zone(zone, &sc);
  2891. } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
  2892. }
  2893. nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
  2894. if (nr_slab_pages0 > zone->min_slab_pages) {
  2895. /*
  2896. * shrink_slab() does not currently allow us to determine how
  2897. * many pages were freed in this zone. So we take the current
  2898. * number of slab pages and shake the slab until it is reduced
  2899. * by the same nr_pages that we used for reclaiming unmapped
  2900. * pages.
  2901. *
  2902. * Note that shrink_slab will free memory on all zones and may
  2903. * take a long time.
  2904. */
  2905. for (;;) {
  2906. unsigned long lru_pages = zone_reclaimable_pages(zone);
  2907. /* No reclaimable slab or very low memory pressure */
  2908. if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
  2909. break;
  2910. /* Freed enough memory */
  2911. nr_slab_pages1 = zone_page_state(zone,
  2912. NR_SLAB_RECLAIMABLE);
  2913. if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
  2914. break;
  2915. }
  2916. /*
  2917. * Update nr_reclaimed by the number of slab pages we
  2918. * reclaimed from this zone.
  2919. */
  2920. nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
  2921. if (nr_slab_pages1 < nr_slab_pages0)
  2922. sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
  2923. }
  2924. p->reclaim_state = NULL;
  2925. current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
  2926. lockdep_clear_current_reclaim_state();
  2927. return sc.nr_reclaimed >= nr_pages;
  2928. }
  2929. int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
  2930. {
  2931. int node_id;
  2932. int ret;
  2933. /*
  2934. * Zone reclaim reclaims unmapped file backed pages and
  2935. * slab pages if we are over the defined limits.
  2936. *
  2937. * A small portion of unmapped file backed pages is needed for
  2938. * file I/O otherwise pages read by file I/O will be immediately
  2939. * thrown out if the zone is overallocated. So we do not reclaim
  2940. * if less than a specified percentage of the zone is used by
  2941. * unmapped file backed pages.
  2942. */
  2943. if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
  2944. zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
  2945. return ZONE_RECLAIM_FULL;
  2946. if (zone->all_unreclaimable)
  2947. return ZONE_RECLAIM_FULL;
  2948. /*
  2949. * Do not scan if the allocation should not be delayed.
  2950. */
  2951. if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
  2952. return ZONE_RECLAIM_NOSCAN;
  2953. /*
  2954. * Only run zone reclaim on the local zone or on zones that do not
  2955. * have associated processors. This will favor the local processor
  2956. * over remote processors and spread off node memory allocations
  2957. * as wide as possible.
  2958. */
  2959. node_id = zone_to_nid(zone);
  2960. if (node_state(node_id, N_CPU) && node_id != numa_node_id())
  2961. return ZONE_RECLAIM_NOSCAN;
  2962. if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
  2963. return ZONE_RECLAIM_NOSCAN;
  2964. ret = __zone_reclaim(zone, gfp_mask, order);
  2965. zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
  2966. if (!ret)
  2967. count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
  2968. return ret;
  2969. }
  2970. #endif
  2971. /*
  2972. * page_evictable - test whether a page is evictable
  2973. * @page: the page to test
  2974. *
  2975. * Test whether page is evictable--i.e., should be placed on active/inactive
  2976. * lists vs unevictable list.
  2977. *
  2978. * Reasons page might not be evictable:
  2979. * (1) page's mapping marked unevictable
  2980. * (2) page is part of an mlocked VMA
  2981. *
  2982. */
  2983. int page_evictable(struct page *page)
  2984. {
  2985. return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
  2986. }
  2987. #ifdef CONFIG_SHMEM
  2988. /**
  2989. * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
  2990. * @pages: array of pages to check
  2991. * @nr_pages: number of pages to check
  2992. *
  2993. * Checks pages for evictability and moves them to the appropriate lru list.
  2994. *
  2995. * This function is only used for SysV IPC SHM_UNLOCK.
  2996. */
  2997. void check_move_unevictable_pages(struct page **pages, int nr_pages)
  2998. {
  2999. struct lruvec *lruvec;
  3000. struct zone *zone = NULL;
  3001. int pgscanned = 0;
  3002. int pgrescued = 0;
  3003. int i;
  3004. for (i = 0; i < nr_pages; i++) {
  3005. struct page *page = pages[i];
  3006. struct zone *pagezone;
  3007. pgscanned++;
  3008. pagezone = page_zone(page);
  3009. if (pagezone != zone) {
  3010. if (zone)
  3011. spin_unlock_irq(&zone->lru_lock);
  3012. zone = pagezone;
  3013. spin_lock_irq(&zone->lru_lock);
  3014. }
  3015. lruvec = mem_cgroup_page_lruvec(page, zone);
  3016. if (!PageLRU(page) || !PageUnevictable(page))
  3017. continue;
  3018. if (page_evictable(page)) {
  3019. enum lru_list lru = page_lru_base_type(page);
  3020. VM_BUG_ON(PageActive(page));
  3021. ClearPageUnevictable(page);
  3022. del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
  3023. add_page_to_lru_list(page, lruvec, lru);
  3024. pgrescued++;
  3025. }
  3026. }
  3027. if (zone) {
  3028. __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
  3029. __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
  3030. spin_unlock_irq(&zone->lru_lock);
  3031. }
  3032. }
  3033. #endif /* CONFIG_SHMEM */
  3034. static void warn_scan_unevictable_pages(void)
  3035. {
  3036. printk_once(KERN_WARNING
  3037. "%s: The scan_unevictable_pages sysctl/node-interface has been "
  3038. "disabled for lack of a legitimate use case. If you have "
  3039. "one, please send an email to linux-mm@kvack.org.\n",
  3040. current->comm);
  3041. }
  3042. /*
  3043. * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
  3044. * all nodes' unevictable lists for evictable pages
  3045. */
  3046. unsigned long scan_unevictable_pages;
  3047. int scan_unevictable_handler(struct ctl_table *table, int write,
  3048. void __user *buffer,
  3049. size_t *length, loff_t *ppos)
  3050. {
  3051. warn_scan_unevictable_pages();
  3052. proc_doulongvec_minmax(table, write, buffer, length, ppos);
  3053. scan_unevictable_pages = 0;
  3054. return 0;
  3055. }
  3056. #ifdef CONFIG_NUMA
  3057. /*
  3058. * per node 'scan_unevictable_pages' attribute. On demand re-scan of
  3059. * a specified node's per zone unevictable lists for evictable pages.
  3060. */
  3061. static ssize_t read_scan_unevictable_node(struct device *dev,
  3062. struct device_attribute *attr,
  3063. char *buf)
  3064. {
  3065. warn_scan_unevictable_pages();
  3066. return sprintf(buf, "0\n"); /* always zero; should fit... */
  3067. }
  3068. static ssize_t write_scan_unevictable_node(struct device *dev,
  3069. struct device_attribute *attr,
  3070. const char *buf, size_t count)
  3071. {
  3072. warn_scan_unevictable_pages();
  3073. return 1;
  3074. }
  3075. static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
  3076. read_scan_unevictable_node,
  3077. write_scan_unevictable_node);
  3078. int scan_unevictable_register_node(struct node *node)
  3079. {
  3080. return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
  3081. }
  3082. void scan_unevictable_unregister_node(struct node *node)
  3083. {
  3084. device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
  3085. }
  3086. #endif