page-writeback.c 69 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276
  1. /*
  2. * mm/page-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  6. *
  7. * Contains functions related to writing back dirty pages at the
  8. * address_space level.
  9. *
  10. * 10Apr2002 Andrew Morton
  11. * Initial version
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/export.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/fs.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/slab.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/writeback.h>
  22. #include <linux/init.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/task_io_accounting_ops.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/mpage.h>
  27. #include <linux/rmap.h>
  28. #include <linux/percpu.h>
  29. #include <linux/notifier.h>
  30. #include <linux/smp.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  35. #include <linux/pagevec.h>
  36. #include <linux/timer.h>
  37. #include <trace/events/writeback.h>
  38. /*
  39. * Sleep at most 200ms at a time in balance_dirty_pages().
  40. */
  41. #define MAX_PAUSE max(HZ/5, 1)
  42. /*
  43. * Try to keep balance_dirty_pages() call intervals higher than this many pages
  44. * by raising pause time to max_pause when falls below it.
  45. */
  46. #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
  47. /*
  48. * Estimate write bandwidth at 200ms intervals.
  49. */
  50. #define BANDWIDTH_INTERVAL max(HZ/5, 1)
  51. #define RATELIMIT_CALC_SHIFT 10
  52. /*
  53. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  54. * will look to see if it needs to force writeback or throttling.
  55. */
  56. static long ratelimit_pages = 32;
  57. /* The following parameters are exported via /proc/sys/vm */
  58. /*
  59. * Start background writeback (via writeback threads) at this percentage
  60. */
  61. int dirty_background_ratio = 10;
  62. /*
  63. * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  64. * dirty_background_ratio * the amount of dirtyable memory
  65. */
  66. unsigned long dirty_background_bytes;
  67. /*
  68. * free highmem will not be subtracted from the total free memory
  69. * for calculating free ratios if vm_highmem_is_dirtyable is true
  70. */
  71. int vm_highmem_is_dirtyable;
  72. /*
  73. * The generator of dirty data starts writeback at this percentage
  74. */
  75. int vm_dirty_ratio = 20;
  76. /*
  77. * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  78. * vm_dirty_ratio * the amount of dirtyable memory
  79. */
  80. unsigned long vm_dirty_bytes;
  81. /*
  82. * The interval between `kupdate'-style writebacks
  83. */
  84. unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
  85. EXPORT_SYMBOL_GPL(dirty_writeback_interval);
  86. /*
  87. * The longest time for which data is allowed to remain dirty
  88. */
  89. unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
  90. /*
  91. * Flag that makes the machine dump writes/reads and block dirtyings.
  92. */
  93. int block_dump;
  94. /*
  95. * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  96. * a full sync is triggered after this time elapses without any disk activity.
  97. */
  98. int laptop_mode;
  99. EXPORT_SYMBOL(laptop_mode);
  100. /* End of sysctl-exported parameters */
  101. unsigned long global_dirty_limit;
  102. /*
  103. * Scale the writeback cache size proportional to the relative writeout speeds.
  104. *
  105. * We do this by keeping a floating proportion between BDIs, based on page
  106. * writeback completions [end_page_writeback()]. Those devices that write out
  107. * pages fastest will get the larger share, while the slower will get a smaller
  108. * share.
  109. *
  110. * We use page writeout completions because we are interested in getting rid of
  111. * dirty pages. Having them written out is the primary goal.
  112. *
  113. * We introduce a concept of time, a period over which we measure these events,
  114. * because demand can/will vary over time. The length of this period itself is
  115. * measured in page writeback completions.
  116. *
  117. */
  118. static struct fprop_global writeout_completions;
  119. static void writeout_period(unsigned long t);
  120. /* Timer for aging of writeout_completions */
  121. static struct timer_list writeout_period_timer =
  122. TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
  123. static unsigned long writeout_period_time = 0;
  124. /*
  125. * Length of period for aging writeout fractions of bdis. This is an
  126. * arbitrarily chosen number. The longer the period, the slower fractions will
  127. * reflect changes in current writeout rate.
  128. */
  129. #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
  130. /*
  131. * Work out the current dirty-memory clamping and background writeout
  132. * thresholds.
  133. *
  134. * The main aim here is to lower them aggressively if there is a lot of mapped
  135. * memory around. To avoid stressing page reclaim with lots of unreclaimable
  136. * pages. It is better to clamp down on writers than to start swapping, and
  137. * performing lots of scanning.
  138. *
  139. * We only allow 1/2 of the currently-unmapped memory to be dirtied.
  140. *
  141. * We don't permit the clamping level to fall below 5% - that is getting rather
  142. * excessive.
  143. *
  144. * We make sure that the background writeout level is below the adjusted
  145. * clamping level.
  146. */
  147. /*
  148. * In a memory zone, there is a certain amount of pages we consider
  149. * available for the page cache, which is essentially the number of
  150. * free and reclaimable pages, minus some zone reserves to protect
  151. * lowmem and the ability to uphold the zone's watermarks without
  152. * requiring writeback.
  153. *
  154. * This number of dirtyable pages is the base value of which the
  155. * user-configurable dirty ratio is the effictive number of pages that
  156. * are allowed to be actually dirtied. Per individual zone, or
  157. * globally by using the sum of dirtyable pages over all zones.
  158. *
  159. * Because the user is allowed to specify the dirty limit globally as
  160. * absolute number of bytes, calculating the per-zone dirty limit can
  161. * require translating the configured limit into a percentage of
  162. * global dirtyable memory first.
  163. */
  164. static unsigned long highmem_dirtyable_memory(unsigned long total)
  165. {
  166. #ifdef CONFIG_HIGHMEM
  167. int node;
  168. unsigned long x = 0;
  169. for_each_node_state(node, N_HIGH_MEMORY) {
  170. struct zone *z =
  171. &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
  172. x += zone_page_state(z, NR_FREE_PAGES) +
  173. zone_reclaimable_pages(z) - z->dirty_balance_reserve;
  174. }
  175. /*
  176. * Make sure that the number of highmem pages is never larger
  177. * than the number of the total dirtyable memory. This can only
  178. * occur in very strange VM situations but we want to make sure
  179. * that this does not occur.
  180. */
  181. return min(x, total);
  182. #else
  183. return 0;
  184. #endif
  185. }
  186. /**
  187. * global_dirtyable_memory - number of globally dirtyable pages
  188. *
  189. * Returns the global number of pages potentially available for dirty
  190. * page cache. This is the base value for the global dirty limits.
  191. */
  192. static unsigned long global_dirtyable_memory(void)
  193. {
  194. unsigned long x;
  195. x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages() -
  196. dirty_balance_reserve;
  197. if (!vm_highmem_is_dirtyable)
  198. x -= highmem_dirtyable_memory(x);
  199. return x + 1; /* Ensure that we never return 0 */
  200. }
  201. /*
  202. * global_dirty_limits - background-writeback and dirty-throttling thresholds
  203. *
  204. * Calculate the dirty thresholds based on sysctl parameters
  205. * - vm.dirty_background_ratio or vm.dirty_background_bytes
  206. * - vm.dirty_ratio or vm.dirty_bytes
  207. * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
  208. * real-time tasks.
  209. */
  210. void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
  211. {
  212. unsigned long background;
  213. unsigned long dirty;
  214. unsigned long uninitialized_var(available_memory);
  215. struct task_struct *tsk;
  216. if (!vm_dirty_bytes || !dirty_background_bytes)
  217. available_memory = global_dirtyable_memory();
  218. if (vm_dirty_bytes)
  219. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
  220. else
  221. dirty = (vm_dirty_ratio * available_memory) / 100;
  222. if (dirty_background_bytes)
  223. background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
  224. else
  225. background = (dirty_background_ratio * available_memory) / 100;
  226. if (background >= dirty)
  227. background = dirty / 2;
  228. tsk = current;
  229. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  230. background += background / 4;
  231. dirty += dirty / 4;
  232. }
  233. *pbackground = background;
  234. *pdirty = dirty;
  235. trace_global_dirty_state(background, dirty);
  236. }
  237. /**
  238. * zone_dirtyable_memory - number of dirtyable pages in a zone
  239. * @zone: the zone
  240. *
  241. * Returns the zone's number of pages potentially available for dirty
  242. * page cache. This is the base value for the per-zone dirty limits.
  243. */
  244. static unsigned long zone_dirtyable_memory(struct zone *zone)
  245. {
  246. /*
  247. * The effective global number of dirtyable pages may exclude
  248. * highmem as a big-picture measure to keep the ratio between
  249. * dirty memory and lowmem reasonable.
  250. *
  251. * But this function is purely about the individual zone and a
  252. * highmem zone can hold its share of dirty pages, so we don't
  253. * care about vm_highmem_is_dirtyable here.
  254. */
  255. return zone_page_state(zone, NR_FREE_PAGES) +
  256. zone_reclaimable_pages(zone) -
  257. zone->dirty_balance_reserve;
  258. }
  259. /**
  260. * zone_dirty_limit - maximum number of dirty pages allowed in a zone
  261. * @zone: the zone
  262. *
  263. * Returns the maximum number of dirty pages allowed in a zone, based
  264. * on the zone's dirtyable memory.
  265. */
  266. static unsigned long zone_dirty_limit(struct zone *zone)
  267. {
  268. unsigned long zone_memory = zone_dirtyable_memory(zone);
  269. struct task_struct *tsk = current;
  270. unsigned long dirty;
  271. if (vm_dirty_bytes)
  272. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
  273. zone_memory / global_dirtyable_memory();
  274. else
  275. dirty = vm_dirty_ratio * zone_memory / 100;
  276. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
  277. dirty += dirty / 4;
  278. return dirty;
  279. }
  280. /**
  281. * zone_dirty_ok - tells whether a zone is within its dirty limits
  282. * @zone: the zone to check
  283. *
  284. * Returns %true when the dirty pages in @zone are within the zone's
  285. * dirty limit, %false if the limit is exceeded.
  286. */
  287. bool zone_dirty_ok(struct zone *zone)
  288. {
  289. unsigned long limit = zone_dirty_limit(zone);
  290. return zone_page_state(zone, NR_FILE_DIRTY) +
  291. zone_page_state(zone, NR_UNSTABLE_NFS) +
  292. zone_page_state(zone, NR_WRITEBACK) <= limit;
  293. }
  294. int dirty_background_ratio_handler(struct ctl_table *table, int write,
  295. void __user *buffer, size_t *lenp,
  296. loff_t *ppos)
  297. {
  298. int ret;
  299. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  300. if (ret == 0 && write)
  301. dirty_background_bytes = 0;
  302. return ret;
  303. }
  304. int dirty_background_bytes_handler(struct ctl_table *table, int write,
  305. void __user *buffer, size_t *lenp,
  306. loff_t *ppos)
  307. {
  308. int ret;
  309. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  310. if (ret == 0 && write)
  311. dirty_background_ratio = 0;
  312. return ret;
  313. }
  314. int dirty_ratio_handler(struct ctl_table *table, int write,
  315. void __user *buffer, size_t *lenp,
  316. loff_t *ppos)
  317. {
  318. int old_ratio = vm_dirty_ratio;
  319. int ret;
  320. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  321. if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
  322. writeback_set_ratelimit();
  323. vm_dirty_bytes = 0;
  324. }
  325. return ret;
  326. }
  327. int dirty_bytes_handler(struct ctl_table *table, int write,
  328. void __user *buffer, size_t *lenp,
  329. loff_t *ppos)
  330. {
  331. unsigned long old_bytes = vm_dirty_bytes;
  332. int ret;
  333. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  334. if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
  335. writeback_set_ratelimit();
  336. vm_dirty_ratio = 0;
  337. }
  338. return ret;
  339. }
  340. static unsigned long wp_next_time(unsigned long cur_time)
  341. {
  342. cur_time += VM_COMPLETIONS_PERIOD_LEN;
  343. /* 0 has a special meaning... */
  344. if (!cur_time)
  345. return 1;
  346. return cur_time;
  347. }
  348. /*
  349. * Increment the BDI's writeout completion count and the global writeout
  350. * completion count. Called from test_clear_page_writeback().
  351. */
  352. static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
  353. {
  354. __inc_bdi_stat(bdi, BDI_WRITTEN);
  355. __fprop_inc_percpu_max(&writeout_completions, &bdi->completions,
  356. bdi->max_prop_frac);
  357. /* First event after period switching was turned off? */
  358. if (!unlikely(writeout_period_time)) {
  359. /*
  360. * We can race with other __bdi_writeout_inc calls here but
  361. * it does not cause any harm since the resulting time when
  362. * timer will fire and what is in writeout_period_time will be
  363. * roughly the same.
  364. */
  365. writeout_period_time = wp_next_time(jiffies);
  366. mod_timer(&writeout_period_timer, writeout_period_time);
  367. }
  368. }
  369. void bdi_writeout_inc(struct backing_dev_info *bdi)
  370. {
  371. unsigned long flags;
  372. local_irq_save(flags);
  373. __bdi_writeout_inc(bdi);
  374. local_irq_restore(flags);
  375. }
  376. EXPORT_SYMBOL_GPL(bdi_writeout_inc);
  377. /*
  378. * Obtain an accurate fraction of the BDI's portion.
  379. */
  380. static void bdi_writeout_fraction(struct backing_dev_info *bdi,
  381. long *numerator, long *denominator)
  382. {
  383. fprop_fraction_percpu(&writeout_completions, &bdi->completions,
  384. numerator, denominator);
  385. }
  386. /*
  387. * On idle system, we can be called long after we scheduled because we use
  388. * deferred timers so count with missed periods.
  389. */
  390. static void writeout_period(unsigned long t)
  391. {
  392. int miss_periods = (jiffies - writeout_period_time) /
  393. VM_COMPLETIONS_PERIOD_LEN;
  394. if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
  395. writeout_period_time = wp_next_time(writeout_period_time +
  396. miss_periods * VM_COMPLETIONS_PERIOD_LEN);
  397. mod_timer(&writeout_period_timer, writeout_period_time);
  398. } else {
  399. /*
  400. * Aging has zeroed all fractions. Stop wasting CPU on period
  401. * updates.
  402. */
  403. writeout_period_time = 0;
  404. }
  405. }
  406. /*
  407. * bdi_min_ratio keeps the sum of the minimum dirty shares of all
  408. * registered backing devices, which, for obvious reasons, can not
  409. * exceed 100%.
  410. */
  411. static unsigned int bdi_min_ratio;
  412. int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
  413. {
  414. int ret = 0;
  415. spin_lock_bh(&bdi_lock);
  416. if (min_ratio > bdi->max_ratio) {
  417. ret = -EINVAL;
  418. } else {
  419. min_ratio -= bdi->min_ratio;
  420. if (bdi_min_ratio + min_ratio < 100) {
  421. bdi_min_ratio += min_ratio;
  422. bdi->min_ratio += min_ratio;
  423. } else {
  424. ret = -EINVAL;
  425. }
  426. }
  427. spin_unlock_bh(&bdi_lock);
  428. return ret;
  429. }
  430. int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
  431. {
  432. int ret = 0;
  433. if (max_ratio > 100)
  434. return -EINVAL;
  435. spin_lock_bh(&bdi_lock);
  436. if (bdi->min_ratio > max_ratio) {
  437. ret = -EINVAL;
  438. } else {
  439. bdi->max_ratio = max_ratio;
  440. bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
  441. }
  442. spin_unlock_bh(&bdi_lock);
  443. return ret;
  444. }
  445. EXPORT_SYMBOL(bdi_set_max_ratio);
  446. static unsigned long dirty_freerun_ceiling(unsigned long thresh,
  447. unsigned long bg_thresh)
  448. {
  449. return (thresh + bg_thresh) / 2;
  450. }
  451. static unsigned long hard_dirty_limit(unsigned long thresh)
  452. {
  453. return max(thresh, global_dirty_limit);
  454. }
  455. /**
  456. * bdi_dirty_limit - @bdi's share of dirty throttling threshold
  457. * @bdi: the backing_dev_info to query
  458. * @dirty: global dirty limit in pages
  459. *
  460. * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
  461. * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
  462. *
  463. * Note that balance_dirty_pages() will only seriously take it as a hard limit
  464. * when sleeping max_pause per page is not enough to keep the dirty pages under
  465. * control. For example, when the device is completely stalled due to some error
  466. * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
  467. * In the other normal situations, it acts more gently by throttling the tasks
  468. * more (rather than completely block them) when the bdi dirty pages go high.
  469. *
  470. * It allocates high/low dirty limits to fast/slow devices, in order to prevent
  471. * - starving fast devices
  472. * - piling up dirty pages (that will take long time to sync) on slow devices
  473. *
  474. * The bdi's share of dirty limit will be adapting to its throughput and
  475. * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
  476. */
  477. unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
  478. {
  479. u64 bdi_dirty;
  480. long numerator, denominator;
  481. /*
  482. * Calculate this BDI's share of the dirty ratio.
  483. */
  484. bdi_writeout_fraction(bdi, &numerator, &denominator);
  485. bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
  486. bdi_dirty *= numerator;
  487. do_div(bdi_dirty, denominator);
  488. bdi_dirty += (dirty * bdi->min_ratio) / 100;
  489. if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
  490. bdi_dirty = dirty * bdi->max_ratio / 100;
  491. return bdi_dirty;
  492. }
  493. /*
  494. * Dirty position control.
  495. *
  496. * (o) global/bdi setpoints
  497. *
  498. * We want the dirty pages be balanced around the global/bdi setpoints.
  499. * When the number of dirty pages is higher/lower than the setpoint, the
  500. * dirty position control ratio (and hence task dirty ratelimit) will be
  501. * decreased/increased to bring the dirty pages back to the setpoint.
  502. *
  503. * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
  504. *
  505. * if (dirty < setpoint) scale up pos_ratio
  506. * if (dirty > setpoint) scale down pos_ratio
  507. *
  508. * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
  509. * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
  510. *
  511. * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
  512. *
  513. * (o) global control line
  514. *
  515. * ^ pos_ratio
  516. * |
  517. * | |<===== global dirty control scope ======>|
  518. * 2.0 .............*
  519. * | .*
  520. * | . *
  521. * | . *
  522. * | . *
  523. * | . *
  524. * | . *
  525. * 1.0 ................................*
  526. * | . . *
  527. * | . . *
  528. * | . . *
  529. * | . . *
  530. * | . . *
  531. * 0 +------------.------------------.----------------------*------------->
  532. * freerun^ setpoint^ limit^ dirty pages
  533. *
  534. * (o) bdi control line
  535. *
  536. * ^ pos_ratio
  537. * |
  538. * | *
  539. * | *
  540. * | *
  541. * | *
  542. * | * |<=========== span ============>|
  543. * 1.0 .......................*
  544. * | . *
  545. * | . *
  546. * | . *
  547. * | . *
  548. * | . *
  549. * | . *
  550. * | . *
  551. * | . *
  552. * | . *
  553. * | . *
  554. * | . *
  555. * 1/4 ...............................................* * * * * * * * * * * *
  556. * | . .
  557. * | . .
  558. * | . .
  559. * 0 +----------------------.-------------------------------.------------->
  560. * bdi_setpoint^ x_intercept^
  561. *
  562. * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
  563. * be smoothly throttled down to normal if it starts high in situations like
  564. * - start writing to a slow SD card and a fast disk at the same time. The SD
  565. * card's bdi_dirty may rush to many times higher than bdi_setpoint.
  566. * - the bdi dirty thresh drops quickly due to change of JBOD workload
  567. */
  568. static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
  569. unsigned long thresh,
  570. unsigned long bg_thresh,
  571. unsigned long dirty,
  572. unsigned long bdi_thresh,
  573. unsigned long bdi_dirty)
  574. {
  575. unsigned long write_bw = bdi->avg_write_bandwidth;
  576. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  577. unsigned long limit = hard_dirty_limit(thresh);
  578. unsigned long x_intercept;
  579. unsigned long setpoint; /* dirty pages' target balance point */
  580. unsigned long bdi_setpoint;
  581. unsigned long span;
  582. long long pos_ratio; /* for scaling up/down the rate limit */
  583. long x;
  584. if (unlikely(dirty >= limit))
  585. return 0;
  586. /*
  587. * global setpoint
  588. *
  589. * setpoint - dirty 3
  590. * f(dirty) := 1.0 + (----------------)
  591. * limit - setpoint
  592. *
  593. * it's a 3rd order polynomial that subjects to
  594. *
  595. * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
  596. * (2) f(setpoint) = 1.0 => the balance point
  597. * (3) f(limit) = 0 => the hard limit
  598. * (4) df/dx <= 0 => negative feedback control
  599. * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
  600. * => fast response on large errors; small oscillation near setpoint
  601. */
  602. setpoint = (freerun + limit) / 2;
  603. x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
  604. limit - setpoint + 1);
  605. pos_ratio = x;
  606. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  607. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  608. pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
  609. /*
  610. * We have computed basic pos_ratio above based on global situation. If
  611. * the bdi is over/under its share of dirty pages, we want to scale
  612. * pos_ratio further down/up. That is done by the following mechanism.
  613. */
  614. /*
  615. * bdi setpoint
  616. *
  617. * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
  618. *
  619. * x_intercept - bdi_dirty
  620. * := --------------------------
  621. * x_intercept - bdi_setpoint
  622. *
  623. * The main bdi control line is a linear function that subjects to
  624. *
  625. * (1) f(bdi_setpoint) = 1.0
  626. * (2) k = - 1 / (8 * write_bw) (in single bdi case)
  627. * or equally: x_intercept = bdi_setpoint + 8 * write_bw
  628. *
  629. * For single bdi case, the dirty pages are observed to fluctuate
  630. * regularly within range
  631. * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
  632. * for various filesystems, where (2) can yield in a reasonable 12.5%
  633. * fluctuation range for pos_ratio.
  634. *
  635. * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
  636. * own size, so move the slope over accordingly and choose a slope that
  637. * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
  638. */
  639. if (unlikely(bdi_thresh > thresh))
  640. bdi_thresh = thresh;
  641. /*
  642. * It's very possible that bdi_thresh is close to 0 not because the
  643. * device is slow, but that it has remained inactive for long time.
  644. * Honour such devices a reasonable good (hopefully IO efficient)
  645. * threshold, so that the occasional writes won't be blocked and active
  646. * writes can rampup the threshold quickly.
  647. */
  648. bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
  649. /*
  650. * scale global setpoint to bdi's:
  651. * bdi_setpoint = setpoint * bdi_thresh / thresh
  652. */
  653. x = div_u64((u64)bdi_thresh << 16, thresh + 1);
  654. bdi_setpoint = setpoint * (u64)x >> 16;
  655. /*
  656. * Use span=(8*write_bw) in single bdi case as indicated by
  657. * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
  658. *
  659. * bdi_thresh thresh - bdi_thresh
  660. * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
  661. * thresh thresh
  662. */
  663. span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
  664. x_intercept = bdi_setpoint + span;
  665. if (bdi_dirty < x_intercept - span / 4) {
  666. pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
  667. x_intercept - bdi_setpoint + 1);
  668. } else
  669. pos_ratio /= 4;
  670. /*
  671. * bdi reserve area, safeguard against dirty pool underrun and disk idle
  672. * It may push the desired control point of global dirty pages higher
  673. * than setpoint.
  674. */
  675. x_intercept = bdi_thresh / 2;
  676. if (bdi_dirty < x_intercept) {
  677. if (bdi_dirty > x_intercept / 8)
  678. pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
  679. else
  680. pos_ratio *= 8;
  681. }
  682. return pos_ratio;
  683. }
  684. static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
  685. unsigned long elapsed,
  686. unsigned long written)
  687. {
  688. const unsigned long period = roundup_pow_of_two(3 * HZ);
  689. unsigned long avg = bdi->avg_write_bandwidth;
  690. unsigned long old = bdi->write_bandwidth;
  691. u64 bw;
  692. /*
  693. * bw = written * HZ / elapsed
  694. *
  695. * bw * elapsed + write_bandwidth * (period - elapsed)
  696. * write_bandwidth = ---------------------------------------------------
  697. * period
  698. */
  699. bw = written - bdi->written_stamp;
  700. bw *= HZ;
  701. if (unlikely(elapsed > period)) {
  702. do_div(bw, elapsed);
  703. avg = bw;
  704. goto out;
  705. }
  706. bw += (u64)bdi->write_bandwidth * (period - elapsed);
  707. bw >>= ilog2(period);
  708. /*
  709. * one more level of smoothing, for filtering out sudden spikes
  710. */
  711. if (avg > old && old >= (unsigned long)bw)
  712. avg -= (avg - old) >> 3;
  713. if (avg < old && old <= (unsigned long)bw)
  714. avg += (old - avg) >> 3;
  715. out:
  716. bdi->write_bandwidth = bw;
  717. bdi->avg_write_bandwidth = avg;
  718. }
  719. /*
  720. * The global dirtyable memory and dirty threshold could be suddenly knocked
  721. * down by a large amount (eg. on the startup of KVM in a swapless system).
  722. * This may throw the system into deep dirty exceeded state and throttle
  723. * heavy/light dirtiers alike. To retain good responsiveness, maintain
  724. * global_dirty_limit for tracking slowly down to the knocked down dirty
  725. * threshold.
  726. */
  727. static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
  728. {
  729. unsigned long limit = global_dirty_limit;
  730. /*
  731. * Follow up in one step.
  732. */
  733. if (limit < thresh) {
  734. limit = thresh;
  735. goto update;
  736. }
  737. /*
  738. * Follow down slowly. Use the higher one as the target, because thresh
  739. * may drop below dirty. This is exactly the reason to introduce
  740. * global_dirty_limit which is guaranteed to lie above the dirty pages.
  741. */
  742. thresh = max(thresh, dirty);
  743. if (limit > thresh) {
  744. limit -= (limit - thresh) >> 5;
  745. goto update;
  746. }
  747. return;
  748. update:
  749. global_dirty_limit = limit;
  750. }
  751. static void global_update_bandwidth(unsigned long thresh,
  752. unsigned long dirty,
  753. unsigned long now)
  754. {
  755. static DEFINE_SPINLOCK(dirty_lock);
  756. static unsigned long update_time;
  757. /*
  758. * check locklessly first to optimize away locking for the most time
  759. */
  760. if (time_before(now, update_time + BANDWIDTH_INTERVAL))
  761. return;
  762. spin_lock(&dirty_lock);
  763. if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
  764. update_dirty_limit(thresh, dirty);
  765. update_time = now;
  766. }
  767. spin_unlock(&dirty_lock);
  768. }
  769. /*
  770. * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
  771. *
  772. * Normal bdi tasks will be curbed at or below it in long term.
  773. * Obviously it should be around (write_bw / N) when there are N dd tasks.
  774. */
  775. static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
  776. unsigned long thresh,
  777. unsigned long bg_thresh,
  778. unsigned long dirty,
  779. unsigned long bdi_thresh,
  780. unsigned long bdi_dirty,
  781. unsigned long dirtied,
  782. unsigned long elapsed)
  783. {
  784. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  785. unsigned long limit = hard_dirty_limit(thresh);
  786. unsigned long setpoint = (freerun + limit) / 2;
  787. unsigned long write_bw = bdi->avg_write_bandwidth;
  788. unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
  789. unsigned long dirty_rate;
  790. unsigned long task_ratelimit;
  791. unsigned long balanced_dirty_ratelimit;
  792. unsigned long pos_ratio;
  793. unsigned long step;
  794. unsigned long x;
  795. /*
  796. * The dirty rate will match the writeout rate in long term, except
  797. * when dirty pages are truncated by userspace or re-dirtied by FS.
  798. */
  799. dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
  800. pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
  801. bdi_thresh, bdi_dirty);
  802. /*
  803. * task_ratelimit reflects each dd's dirty rate for the past 200ms.
  804. */
  805. task_ratelimit = (u64)dirty_ratelimit *
  806. pos_ratio >> RATELIMIT_CALC_SHIFT;
  807. task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
  808. /*
  809. * A linear estimation of the "balanced" throttle rate. The theory is,
  810. * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
  811. * dirty_rate will be measured to be (N * task_ratelimit). So the below
  812. * formula will yield the balanced rate limit (write_bw / N).
  813. *
  814. * Note that the expanded form is not a pure rate feedback:
  815. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
  816. * but also takes pos_ratio into account:
  817. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
  818. *
  819. * (1) is not realistic because pos_ratio also takes part in balancing
  820. * the dirty rate. Consider the state
  821. * pos_ratio = 0.5 (3)
  822. * rate = 2 * (write_bw / N) (4)
  823. * If (1) is used, it will stuck in that state! Because each dd will
  824. * be throttled at
  825. * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
  826. * yielding
  827. * dirty_rate = N * task_ratelimit = write_bw (6)
  828. * put (6) into (1) we get
  829. * rate_(i+1) = rate_(i) (7)
  830. *
  831. * So we end up using (2) to always keep
  832. * rate_(i+1) ~= (write_bw / N) (8)
  833. * regardless of the value of pos_ratio. As long as (8) is satisfied,
  834. * pos_ratio is able to drive itself to 1.0, which is not only where
  835. * the dirty count meet the setpoint, but also where the slope of
  836. * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
  837. */
  838. balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
  839. dirty_rate | 1);
  840. /*
  841. * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
  842. */
  843. if (unlikely(balanced_dirty_ratelimit > write_bw))
  844. balanced_dirty_ratelimit = write_bw;
  845. /*
  846. * We could safely do this and return immediately:
  847. *
  848. * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
  849. *
  850. * However to get a more stable dirty_ratelimit, the below elaborated
  851. * code makes use of task_ratelimit to filter out singular points and
  852. * limit the step size.
  853. *
  854. * The below code essentially only uses the relative value of
  855. *
  856. * task_ratelimit - dirty_ratelimit
  857. * = (pos_ratio - 1) * dirty_ratelimit
  858. *
  859. * which reflects the direction and size of dirty position error.
  860. */
  861. /*
  862. * dirty_ratelimit will follow balanced_dirty_ratelimit iff
  863. * task_ratelimit is on the same side of dirty_ratelimit, too.
  864. * For example, when
  865. * - dirty_ratelimit > balanced_dirty_ratelimit
  866. * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
  867. * lowering dirty_ratelimit will help meet both the position and rate
  868. * control targets. Otherwise, don't update dirty_ratelimit if it will
  869. * only help meet the rate target. After all, what the users ultimately
  870. * feel and care are stable dirty rate and small position error.
  871. *
  872. * |task_ratelimit - dirty_ratelimit| is used to limit the step size
  873. * and filter out the singular points of balanced_dirty_ratelimit. Which
  874. * keeps jumping around randomly and can even leap far away at times
  875. * due to the small 200ms estimation period of dirty_rate (we want to
  876. * keep that period small to reduce time lags).
  877. */
  878. step = 0;
  879. if (dirty < setpoint) {
  880. x = min(bdi->balanced_dirty_ratelimit,
  881. min(balanced_dirty_ratelimit, task_ratelimit));
  882. if (dirty_ratelimit < x)
  883. step = x - dirty_ratelimit;
  884. } else {
  885. x = max(bdi->balanced_dirty_ratelimit,
  886. max(balanced_dirty_ratelimit, task_ratelimit));
  887. if (dirty_ratelimit > x)
  888. step = dirty_ratelimit - x;
  889. }
  890. /*
  891. * Don't pursue 100% rate matching. It's impossible since the balanced
  892. * rate itself is constantly fluctuating. So decrease the track speed
  893. * when it gets close to the target. Helps eliminate pointless tremors.
  894. */
  895. step >>= dirty_ratelimit / (2 * step + 1);
  896. /*
  897. * Limit the tracking speed to avoid overshooting.
  898. */
  899. step = (step + 7) / 8;
  900. if (dirty_ratelimit < balanced_dirty_ratelimit)
  901. dirty_ratelimit += step;
  902. else
  903. dirty_ratelimit -= step;
  904. bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
  905. bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
  906. trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
  907. }
  908. void __bdi_update_bandwidth(struct backing_dev_info *bdi,
  909. unsigned long thresh,
  910. unsigned long bg_thresh,
  911. unsigned long dirty,
  912. unsigned long bdi_thresh,
  913. unsigned long bdi_dirty,
  914. unsigned long start_time)
  915. {
  916. unsigned long now = jiffies;
  917. unsigned long elapsed = now - bdi->bw_time_stamp;
  918. unsigned long dirtied;
  919. unsigned long written;
  920. /*
  921. * rate-limit, only update once every 200ms.
  922. */
  923. if (elapsed < BANDWIDTH_INTERVAL)
  924. return;
  925. dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
  926. written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
  927. /*
  928. * Skip quiet periods when disk bandwidth is under-utilized.
  929. * (at least 1s idle time between two flusher runs)
  930. */
  931. if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
  932. goto snapshot;
  933. if (thresh) {
  934. global_update_bandwidth(thresh, dirty, now);
  935. bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
  936. bdi_thresh, bdi_dirty,
  937. dirtied, elapsed);
  938. }
  939. bdi_update_write_bandwidth(bdi, elapsed, written);
  940. snapshot:
  941. bdi->dirtied_stamp = dirtied;
  942. bdi->written_stamp = written;
  943. bdi->bw_time_stamp = now;
  944. }
  945. static void bdi_update_bandwidth(struct backing_dev_info *bdi,
  946. unsigned long thresh,
  947. unsigned long bg_thresh,
  948. unsigned long dirty,
  949. unsigned long bdi_thresh,
  950. unsigned long bdi_dirty,
  951. unsigned long start_time)
  952. {
  953. if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
  954. return;
  955. spin_lock(&bdi->wb.list_lock);
  956. __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
  957. bdi_thresh, bdi_dirty, start_time);
  958. spin_unlock(&bdi->wb.list_lock);
  959. }
  960. /*
  961. * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
  962. * will look to see if it needs to start dirty throttling.
  963. *
  964. * If dirty_poll_interval is too low, big NUMA machines will call the expensive
  965. * global_page_state() too often. So scale it near-sqrt to the safety margin
  966. * (the number of pages we may dirty without exceeding the dirty limits).
  967. */
  968. static unsigned long dirty_poll_interval(unsigned long dirty,
  969. unsigned long thresh)
  970. {
  971. if (thresh > dirty)
  972. return 1UL << (ilog2(thresh - dirty) >> 1);
  973. return 1;
  974. }
  975. static long bdi_max_pause(struct backing_dev_info *bdi,
  976. unsigned long bdi_dirty)
  977. {
  978. long bw = bdi->avg_write_bandwidth;
  979. long t;
  980. /*
  981. * Limit pause time for small memory systems. If sleeping for too long
  982. * time, a small pool of dirty/writeback pages may go empty and disk go
  983. * idle.
  984. *
  985. * 8 serves as the safety ratio.
  986. */
  987. t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
  988. t++;
  989. return min_t(long, t, MAX_PAUSE);
  990. }
  991. static long bdi_min_pause(struct backing_dev_info *bdi,
  992. long max_pause,
  993. unsigned long task_ratelimit,
  994. unsigned long dirty_ratelimit,
  995. int *nr_dirtied_pause)
  996. {
  997. long hi = ilog2(bdi->avg_write_bandwidth);
  998. long lo = ilog2(bdi->dirty_ratelimit);
  999. long t; /* target pause */
  1000. long pause; /* estimated next pause */
  1001. int pages; /* target nr_dirtied_pause */
  1002. /* target for 10ms pause on 1-dd case */
  1003. t = max(1, HZ / 100);
  1004. /*
  1005. * Scale up pause time for concurrent dirtiers in order to reduce CPU
  1006. * overheads.
  1007. *
  1008. * (N * 10ms) on 2^N concurrent tasks.
  1009. */
  1010. if (hi > lo)
  1011. t += (hi - lo) * (10 * HZ) / 1024;
  1012. /*
  1013. * This is a bit convoluted. We try to base the next nr_dirtied_pause
  1014. * on the much more stable dirty_ratelimit. However the next pause time
  1015. * will be computed based on task_ratelimit and the two rate limits may
  1016. * depart considerably at some time. Especially if task_ratelimit goes
  1017. * below dirty_ratelimit/2 and the target pause is max_pause, the next
  1018. * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
  1019. * result task_ratelimit won't be executed faithfully, which could
  1020. * eventually bring down dirty_ratelimit.
  1021. *
  1022. * We apply two rules to fix it up:
  1023. * 1) try to estimate the next pause time and if necessary, use a lower
  1024. * nr_dirtied_pause so as not to exceed max_pause. When this happens,
  1025. * nr_dirtied_pause will be "dancing" with task_ratelimit.
  1026. * 2) limit the target pause time to max_pause/2, so that the normal
  1027. * small fluctuations of task_ratelimit won't trigger rule (1) and
  1028. * nr_dirtied_pause will remain as stable as dirty_ratelimit.
  1029. */
  1030. t = min(t, 1 + max_pause / 2);
  1031. pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
  1032. /*
  1033. * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
  1034. * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
  1035. * When the 16 consecutive reads are often interrupted by some dirty
  1036. * throttling pause during the async writes, cfq will go into idles
  1037. * (deadline is fine). So push nr_dirtied_pause as high as possible
  1038. * until reaches DIRTY_POLL_THRESH=32 pages.
  1039. */
  1040. if (pages < DIRTY_POLL_THRESH) {
  1041. t = max_pause;
  1042. pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
  1043. if (pages > DIRTY_POLL_THRESH) {
  1044. pages = DIRTY_POLL_THRESH;
  1045. t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
  1046. }
  1047. }
  1048. pause = HZ * pages / (task_ratelimit + 1);
  1049. if (pause > max_pause) {
  1050. t = max_pause;
  1051. pages = task_ratelimit * t / roundup_pow_of_two(HZ);
  1052. }
  1053. *nr_dirtied_pause = pages;
  1054. /*
  1055. * The minimal pause time will normally be half the target pause time.
  1056. */
  1057. return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
  1058. }
  1059. /*
  1060. * balance_dirty_pages() must be called by processes which are generating dirty
  1061. * data. It looks at the number of dirty pages in the machine and will force
  1062. * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
  1063. * If we're over `background_thresh' then the writeback threads are woken to
  1064. * perform some writeout.
  1065. */
  1066. static void balance_dirty_pages(struct address_space *mapping,
  1067. unsigned long pages_dirtied)
  1068. {
  1069. unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
  1070. unsigned long bdi_reclaimable;
  1071. unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
  1072. unsigned long bdi_dirty;
  1073. unsigned long freerun;
  1074. unsigned long background_thresh;
  1075. unsigned long dirty_thresh;
  1076. unsigned long bdi_thresh;
  1077. long period;
  1078. long pause;
  1079. long max_pause;
  1080. long min_pause;
  1081. int nr_dirtied_pause;
  1082. bool dirty_exceeded = false;
  1083. unsigned long task_ratelimit;
  1084. unsigned long dirty_ratelimit;
  1085. unsigned long pos_ratio;
  1086. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1087. unsigned long start_time = jiffies;
  1088. for (;;) {
  1089. unsigned long now = jiffies;
  1090. /*
  1091. * Unstable writes are a feature of certain networked
  1092. * filesystems (i.e. NFS) in which data may have been
  1093. * written to the server's write cache, but has not yet
  1094. * been flushed to permanent storage.
  1095. */
  1096. nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
  1097. global_page_state(NR_UNSTABLE_NFS);
  1098. nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
  1099. global_dirty_limits(&background_thresh, &dirty_thresh);
  1100. /*
  1101. * Throttle it only when the background writeback cannot
  1102. * catch-up. This avoids (excessively) small writeouts
  1103. * when the bdi limits are ramping up.
  1104. */
  1105. freerun = dirty_freerun_ceiling(dirty_thresh,
  1106. background_thresh);
  1107. if (nr_dirty <= freerun) {
  1108. current->dirty_paused_when = now;
  1109. current->nr_dirtied = 0;
  1110. current->nr_dirtied_pause =
  1111. dirty_poll_interval(nr_dirty, dirty_thresh);
  1112. break;
  1113. }
  1114. if (unlikely(!writeback_in_progress(bdi)))
  1115. bdi_start_background_writeback(bdi);
  1116. /*
  1117. * bdi_thresh is not treated as some limiting factor as
  1118. * dirty_thresh, due to reasons
  1119. * - in JBOD setup, bdi_thresh can fluctuate a lot
  1120. * - in a system with HDD and USB key, the USB key may somehow
  1121. * go into state (bdi_dirty >> bdi_thresh) either because
  1122. * bdi_dirty starts high, or because bdi_thresh drops low.
  1123. * In this case we don't want to hard throttle the USB key
  1124. * dirtiers for 100 seconds until bdi_dirty drops under
  1125. * bdi_thresh. Instead the auxiliary bdi control line in
  1126. * bdi_position_ratio() will let the dirtier task progress
  1127. * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
  1128. */
  1129. bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
  1130. /*
  1131. * In order to avoid the stacked BDI deadlock we need
  1132. * to ensure we accurately count the 'dirty' pages when
  1133. * the threshold is low.
  1134. *
  1135. * Otherwise it would be possible to get thresh+n pages
  1136. * reported dirty, even though there are thresh-m pages
  1137. * actually dirty; with m+n sitting in the percpu
  1138. * deltas.
  1139. */
  1140. if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
  1141. bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
  1142. bdi_dirty = bdi_reclaimable +
  1143. bdi_stat_sum(bdi, BDI_WRITEBACK);
  1144. } else {
  1145. bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
  1146. bdi_dirty = bdi_reclaimable +
  1147. bdi_stat(bdi, BDI_WRITEBACK);
  1148. }
  1149. dirty_exceeded = (bdi_dirty > bdi_thresh) &&
  1150. (nr_dirty > dirty_thresh);
  1151. if (dirty_exceeded && !bdi->dirty_exceeded)
  1152. bdi->dirty_exceeded = 1;
  1153. bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
  1154. nr_dirty, bdi_thresh, bdi_dirty,
  1155. start_time);
  1156. dirty_ratelimit = bdi->dirty_ratelimit;
  1157. pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
  1158. background_thresh, nr_dirty,
  1159. bdi_thresh, bdi_dirty);
  1160. task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
  1161. RATELIMIT_CALC_SHIFT;
  1162. max_pause = bdi_max_pause(bdi, bdi_dirty);
  1163. min_pause = bdi_min_pause(bdi, max_pause,
  1164. task_ratelimit, dirty_ratelimit,
  1165. &nr_dirtied_pause);
  1166. if (unlikely(task_ratelimit == 0)) {
  1167. period = max_pause;
  1168. pause = max_pause;
  1169. goto pause;
  1170. }
  1171. period = HZ * pages_dirtied / task_ratelimit;
  1172. pause = period;
  1173. if (current->dirty_paused_when)
  1174. pause -= now - current->dirty_paused_when;
  1175. /*
  1176. * For less than 1s think time (ext3/4 may block the dirtier
  1177. * for up to 800ms from time to time on 1-HDD; so does xfs,
  1178. * however at much less frequency), try to compensate it in
  1179. * future periods by updating the virtual time; otherwise just
  1180. * do a reset, as it may be a light dirtier.
  1181. */
  1182. if (pause < min_pause) {
  1183. trace_balance_dirty_pages(bdi,
  1184. dirty_thresh,
  1185. background_thresh,
  1186. nr_dirty,
  1187. bdi_thresh,
  1188. bdi_dirty,
  1189. dirty_ratelimit,
  1190. task_ratelimit,
  1191. pages_dirtied,
  1192. period,
  1193. min(pause, 0L),
  1194. start_time);
  1195. if (pause < -HZ) {
  1196. current->dirty_paused_when = now;
  1197. current->nr_dirtied = 0;
  1198. } else if (period) {
  1199. current->dirty_paused_when += period;
  1200. current->nr_dirtied = 0;
  1201. } else if (current->nr_dirtied_pause <= pages_dirtied)
  1202. current->nr_dirtied_pause += pages_dirtied;
  1203. break;
  1204. }
  1205. if (unlikely(pause > max_pause)) {
  1206. /* for occasional dropped task_ratelimit */
  1207. now += min(pause - max_pause, max_pause);
  1208. pause = max_pause;
  1209. }
  1210. pause:
  1211. trace_balance_dirty_pages(bdi,
  1212. dirty_thresh,
  1213. background_thresh,
  1214. nr_dirty,
  1215. bdi_thresh,
  1216. bdi_dirty,
  1217. dirty_ratelimit,
  1218. task_ratelimit,
  1219. pages_dirtied,
  1220. period,
  1221. pause,
  1222. start_time);
  1223. __set_current_state(TASK_KILLABLE);
  1224. io_schedule_timeout(pause);
  1225. current->dirty_paused_when = now + pause;
  1226. current->nr_dirtied = 0;
  1227. current->nr_dirtied_pause = nr_dirtied_pause;
  1228. /*
  1229. * This is typically equal to (nr_dirty < dirty_thresh) and can
  1230. * also keep "1000+ dd on a slow USB stick" under control.
  1231. */
  1232. if (task_ratelimit)
  1233. break;
  1234. /*
  1235. * In the case of an unresponding NFS server and the NFS dirty
  1236. * pages exceeds dirty_thresh, give the other good bdi's a pipe
  1237. * to go through, so that tasks on them still remain responsive.
  1238. *
  1239. * In theory 1 page is enough to keep the comsumer-producer
  1240. * pipe going: the flusher cleans 1 page => the task dirties 1
  1241. * more page. However bdi_dirty has accounting errors. So use
  1242. * the larger and more IO friendly bdi_stat_error.
  1243. */
  1244. if (bdi_dirty <= bdi_stat_error(bdi))
  1245. break;
  1246. if (fatal_signal_pending(current))
  1247. break;
  1248. }
  1249. if (!dirty_exceeded && bdi->dirty_exceeded)
  1250. bdi->dirty_exceeded = 0;
  1251. if (writeback_in_progress(bdi))
  1252. return;
  1253. /*
  1254. * In laptop mode, we wait until hitting the higher threshold before
  1255. * starting background writeout, and then write out all the way down
  1256. * to the lower threshold. So slow writers cause minimal disk activity.
  1257. *
  1258. * In normal mode, we start background writeout at the lower
  1259. * background_thresh, to keep the amount of dirty memory low.
  1260. */
  1261. if (laptop_mode)
  1262. return;
  1263. if (nr_reclaimable > background_thresh)
  1264. bdi_start_background_writeback(bdi);
  1265. }
  1266. void set_page_dirty_balance(struct page *page, int page_mkwrite)
  1267. {
  1268. if (set_page_dirty(page) || page_mkwrite) {
  1269. struct address_space *mapping = page_mapping(page);
  1270. if (mapping)
  1271. balance_dirty_pages_ratelimited(mapping);
  1272. }
  1273. }
  1274. static DEFINE_PER_CPU(int, bdp_ratelimits);
  1275. /*
  1276. * Normal tasks are throttled by
  1277. * loop {
  1278. * dirty tsk->nr_dirtied_pause pages;
  1279. * take a snap in balance_dirty_pages();
  1280. * }
  1281. * However there is a worst case. If every task exit immediately when dirtied
  1282. * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
  1283. * called to throttle the page dirties. The solution is to save the not yet
  1284. * throttled page dirties in dirty_throttle_leaks on task exit and charge them
  1285. * randomly into the running tasks. This works well for the above worst case,
  1286. * as the new task will pick up and accumulate the old task's leaked dirty
  1287. * count and eventually get throttled.
  1288. */
  1289. DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
  1290. /**
  1291. * balance_dirty_pages_ratelimited - balance dirty memory state
  1292. * @mapping: address_space which was dirtied
  1293. *
  1294. * Processes which are dirtying memory should call in here once for each page
  1295. * which was newly dirtied. The function will periodically check the system's
  1296. * dirty state and will initiate writeback if needed.
  1297. *
  1298. * On really big machines, get_writeback_state is expensive, so try to avoid
  1299. * calling it too often (ratelimiting). But once we're over the dirty memory
  1300. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  1301. * from overshooting the limit by (ratelimit_pages) each.
  1302. */
  1303. void balance_dirty_pages_ratelimited(struct address_space *mapping)
  1304. {
  1305. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1306. int ratelimit;
  1307. int *p;
  1308. if (!bdi_cap_account_dirty(bdi))
  1309. return;
  1310. ratelimit = current->nr_dirtied_pause;
  1311. if (bdi->dirty_exceeded)
  1312. ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
  1313. preempt_disable();
  1314. /*
  1315. * This prevents one CPU to accumulate too many dirtied pages without
  1316. * calling into balance_dirty_pages(), which can happen when there are
  1317. * 1000+ tasks, all of them start dirtying pages at exactly the same
  1318. * time, hence all honoured too large initial task->nr_dirtied_pause.
  1319. */
  1320. p = &__get_cpu_var(bdp_ratelimits);
  1321. if (unlikely(current->nr_dirtied >= ratelimit))
  1322. *p = 0;
  1323. else if (unlikely(*p >= ratelimit_pages)) {
  1324. *p = 0;
  1325. ratelimit = 0;
  1326. }
  1327. /*
  1328. * Pick up the dirtied pages by the exited tasks. This avoids lots of
  1329. * short-lived tasks (eg. gcc invocations in a kernel build) escaping
  1330. * the dirty throttling and livelock other long-run dirtiers.
  1331. */
  1332. p = &__get_cpu_var(dirty_throttle_leaks);
  1333. if (*p > 0 && current->nr_dirtied < ratelimit) {
  1334. unsigned long nr_pages_dirtied;
  1335. nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
  1336. *p -= nr_pages_dirtied;
  1337. current->nr_dirtied += nr_pages_dirtied;
  1338. }
  1339. preempt_enable();
  1340. if (unlikely(current->nr_dirtied >= ratelimit))
  1341. balance_dirty_pages(mapping, current->nr_dirtied);
  1342. }
  1343. EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
  1344. void throttle_vm_writeout(gfp_t gfp_mask)
  1345. {
  1346. unsigned long background_thresh;
  1347. unsigned long dirty_thresh;
  1348. for ( ; ; ) {
  1349. global_dirty_limits(&background_thresh, &dirty_thresh);
  1350. dirty_thresh = hard_dirty_limit(dirty_thresh);
  1351. /*
  1352. * Boost the allowable dirty threshold a bit for page
  1353. * allocators so they don't get DoS'ed by heavy writers
  1354. */
  1355. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  1356. if (global_page_state(NR_UNSTABLE_NFS) +
  1357. global_page_state(NR_WRITEBACK) <= dirty_thresh)
  1358. break;
  1359. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1360. /*
  1361. * The caller might hold locks which can prevent IO completion
  1362. * or progress in the filesystem. So we cannot just sit here
  1363. * waiting for IO to complete.
  1364. */
  1365. if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
  1366. break;
  1367. }
  1368. }
  1369. /*
  1370. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  1371. */
  1372. int dirty_writeback_centisecs_handler(ctl_table *table, int write,
  1373. void __user *buffer, size_t *length, loff_t *ppos)
  1374. {
  1375. proc_dointvec(table, write, buffer, length, ppos);
  1376. return 0;
  1377. }
  1378. #ifdef CONFIG_BLOCK
  1379. void laptop_mode_timer_fn(unsigned long data)
  1380. {
  1381. struct request_queue *q = (struct request_queue *)data;
  1382. int nr_pages = global_page_state(NR_FILE_DIRTY) +
  1383. global_page_state(NR_UNSTABLE_NFS);
  1384. /*
  1385. * We want to write everything out, not just down to the dirty
  1386. * threshold
  1387. */
  1388. if (bdi_has_dirty_io(&q->backing_dev_info))
  1389. bdi_start_writeback(&q->backing_dev_info, nr_pages,
  1390. WB_REASON_LAPTOP_TIMER);
  1391. }
  1392. /*
  1393. * We've spun up the disk and we're in laptop mode: schedule writeback
  1394. * of all dirty data a few seconds from now. If the flush is already scheduled
  1395. * then push it back - the user is still using the disk.
  1396. */
  1397. void laptop_io_completion(struct backing_dev_info *info)
  1398. {
  1399. mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
  1400. }
  1401. /*
  1402. * We're in laptop mode and we've just synced. The sync's writes will have
  1403. * caused another writeback to be scheduled by laptop_io_completion.
  1404. * Nothing needs to be written back anymore, so we unschedule the writeback.
  1405. */
  1406. void laptop_sync_completion(void)
  1407. {
  1408. struct backing_dev_info *bdi;
  1409. rcu_read_lock();
  1410. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
  1411. del_timer(&bdi->laptop_mode_wb_timer);
  1412. rcu_read_unlock();
  1413. }
  1414. #endif
  1415. /*
  1416. * If ratelimit_pages is too high then we can get into dirty-data overload
  1417. * if a large number of processes all perform writes at the same time.
  1418. * If it is too low then SMP machines will call the (expensive)
  1419. * get_writeback_state too often.
  1420. *
  1421. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  1422. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  1423. * thresholds.
  1424. */
  1425. void writeback_set_ratelimit(void)
  1426. {
  1427. unsigned long background_thresh;
  1428. unsigned long dirty_thresh;
  1429. global_dirty_limits(&background_thresh, &dirty_thresh);
  1430. global_dirty_limit = dirty_thresh;
  1431. ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
  1432. if (ratelimit_pages < 16)
  1433. ratelimit_pages = 16;
  1434. }
  1435. static int __cpuinit
  1436. ratelimit_handler(struct notifier_block *self, unsigned long action,
  1437. void *hcpu)
  1438. {
  1439. switch (action & ~CPU_TASKS_FROZEN) {
  1440. case CPU_ONLINE:
  1441. case CPU_DEAD:
  1442. writeback_set_ratelimit();
  1443. return NOTIFY_OK;
  1444. default:
  1445. return NOTIFY_DONE;
  1446. }
  1447. }
  1448. static struct notifier_block __cpuinitdata ratelimit_nb = {
  1449. .notifier_call = ratelimit_handler,
  1450. .next = NULL,
  1451. };
  1452. /*
  1453. * Called early on to tune the page writeback dirty limits.
  1454. *
  1455. * We used to scale dirty pages according to how total memory
  1456. * related to pages that could be allocated for buffers (by
  1457. * comparing nr_free_buffer_pages() to vm_total_pages.
  1458. *
  1459. * However, that was when we used "dirty_ratio" to scale with
  1460. * all memory, and we don't do that any more. "dirty_ratio"
  1461. * is now applied to total non-HIGHPAGE memory (by subtracting
  1462. * totalhigh_pages from vm_total_pages), and as such we can't
  1463. * get into the old insane situation any more where we had
  1464. * large amounts of dirty pages compared to a small amount of
  1465. * non-HIGHMEM memory.
  1466. *
  1467. * But we might still want to scale the dirty_ratio by how
  1468. * much memory the box has..
  1469. */
  1470. void __init page_writeback_init(void)
  1471. {
  1472. writeback_set_ratelimit();
  1473. register_cpu_notifier(&ratelimit_nb);
  1474. fprop_global_init(&writeout_completions);
  1475. }
  1476. /**
  1477. * tag_pages_for_writeback - tag pages to be written by write_cache_pages
  1478. * @mapping: address space structure to write
  1479. * @start: starting page index
  1480. * @end: ending page index (inclusive)
  1481. *
  1482. * This function scans the page range from @start to @end (inclusive) and tags
  1483. * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
  1484. * that write_cache_pages (or whoever calls this function) will then use
  1485. * TOWRITE tag to identify pages eligible for writeback. This mechanism is
  1486. * used to avoid livelocking of writeback by a process steadily creating new
  1487. * dirty pages in the file (thus it is important for this function to be quick
  1488. * so that it can tag pages faster than a dirtying process can create them).
  1489. */
  1490. /*
  1491. * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
  1492. */
  1493. void tag_pages_for_writeback(struct address_space *mapping,
  1494. pgoff_t start, pgoff_t end)
  1495. {
  1496. #define WRITEBACK_TAG_BATCH 4096
  1497. unsigned long tagged;
  1498. do {
  1499. spin_lock_irq(&mapping->tree_lock);
  1500. tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
  1501. &start, end, WRITEBACK_TAG_BATCH,
  1502. PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
  1503. spin_unlock_irq(&mapping->tree_lock);
  1504. WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
  1505. cond_resched();
  1506. /* We check 'start' to handle wrapping when end == ~0UL */
  1507. } while (tagged >= WRITEBACK_TAG_BATCH && start);
  1508. }
  1509. EXPORT_SYMBOL(tag_pages_for_writeback);
  1510. /**
  1511. * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
  1512. * @mapping: address space structure to write
  1513. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1514. * @writepage: function called for each page
  1515. * @data: data passed to writepage function
  1516. *
  1517. * If a page is already under I/O, write_cache_pages() skips it, even
  1518. * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
  1519. * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
  1520. * and msync() need to guarantee that all the data which was dirty at the time
  1521. * the call was made get new I/O started against them. If wbc->sync_mode is
  1522. * WB_SYNC_ALL then we were called for data integrity and we must wait for
  1523. * existing IO to complete.
  1524. *
  1525. * To avoid livelocks (when other process dirties new pages), we first tag
  1526. * pages which should be written back with TOWRITE tag and only then start
  1527. * writing them. For data-integrity sync we have to be careful so that we do
  1528. * not miss some pages (e.g., because some other process has cleared TOWRITE
  1529. * tag we set). The rule we follow is that TOWRITE tag can be cleared only
  1530. * by the process clearing the DIRTY tag (and submitting the page for IO).
  1531. */
  1532. int write_cache_pages(struct address_space *mapping,
  1533. struct writeback_control *wbc, writepage_t writepage,
  1534. void *data)
  1535. {
  1536. int ret = 0;
  1537. int done = 0;
  1538. struct pagevec pvec;
  1539. int nr_pages;
  1540. pgoff_t uninitialized_var(writeback_index);
  1541. pgoff_t index;
  1542. pgoff_t end; /* Inclusive */
  1543. pgoff_t done_index;
  1544. int cycled;
  1545. int range_whole = 0;
  1546. int tag;
  1547. pagevec_init(&pvec, 0);
  1548. if (wbc->range_cyclic) {
  1549. writeback_index = mapping->writeback_index; /* prev offset */
  1550. index = writeback_index;
  1551. if (index == 0)
  1552. cycled = 1;
  1553. else
  1554. cycled = 0;
  1555. end = -1;
  1556. } else {
  1557. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  1558. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  1559. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  1560. range_whole = 1;
  1561. cycled = 1; /* ignore range_cyclic tests */
  1562. }
  1563. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1564. tag = PAGECACHE_TAG_TOWRITE;
  1565. else
  1566. tag = PAGECACHE_TAG_DIRTY;
  1567. retry:
  1568. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1569. tag_pages_for_writeback(mapping, index, end);
  1570. done_index = index;
  1571. while (!done && (index <= end)) {
  1572. int i;
  1573. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  1574. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1575. if (nr_pages == 0)
  1576. break;
  1577. for (i = 0; i < nr_pages; i++) {
  1578. struct page *page = pvec.pages[i];
  1579. /*
  1580. * At this point, the page may be truncated or
  1581. * invalidated (changing page->mapping to NULL), or
  1582. * even swizzled back from swapper_space to tmpfs file
  1583. * mapping. However, page->index will not change
  1584. * because we have a reference on the page.
  1585. */
  1586. if (page->index > end) {
  1587. /*
  1588. * can't be range_cyclic (1st pass) because
  1589. * end == -1 in that case.
  1590. */
  1591. done = 1;
  1592. break;
  1593. }
  1594. done_index = page->index;
  1595. lock_page(page);
  1596. /*
  1597. * Page truncated or invalidated. We can freely skip it
  1598. * then, even for data integrity operations: the page
  1599. * has disappeared concurrently, so there could be no
  1600. * real expectation of this data interity operation
  1601. * even if there is now a new, dirty page at the same
  1602. * pagecache address.
  1603. */
  1604. if (unlikely(page->mapping != mapping)) {
  1605. continue_unlock:
  1606. unlock_page(page);
  1607. continue;
  1608. }
  1609. if (!PageDirty(page)) {
  1610. /* someone wrote it for us */
  1611. goto continue_unlock;
  1612. }
  1613. if (PageWriteback(page)) {
  1614. if (wbc->sync_mode != WB_SYNC_NONE)
  1615. wait_on_page_writeback(page);
  1616. else
  1617. goto continue_unlock;
  1618. }
  1619. BUG_ON(PageWriteback(page));
  1620. if (!clear_page_dirty_for_io(page))
  1621. goto continue_unlock;
  1622. trace_wbc_writepage(wbc, mapping->backing_dev_info);
  1623. ret = (*writepage)(page, wbc, data);
  1624. if (unlikely(ret)) {
  1625. if (ret == AOP_WRITEPAGE_ACTIVATE) {
  1626. unlock_page(page);
  1627. ret = 0;
  1628. } else {
  1629. /*
  1630. * done_index is set past this page,
  1631. * so media errors will not choke
  1632. * background writeout for the entire
  1633. * file. This has consequences for
  1634. * range_cyclic semantics (ie. it may
  1635. * not be suitable for data integrity
  1636. * writeout).
  1637. */
  1638. done_index = page->index + 1;
  1639. done = 1;
  1640. break;
  1641. }
  1642. }
  1643. /*
  1644. * We stop writing back only if we are not doing
  1645. * integrity sync. In case of integrity sync we have to
  1646. * keep going until we have written all the pages
  1647. * we tagged for writeback prior to entering this loop.
  1648. */
  1649. if (--wbc->nr_to_write <= 0 &&
  1650. wbc->sync_mode == WB_SYNC_NONE) {
  1651. done = 1;
  1652. break;
  1653. }
  1654. }
  1655. pagevec_release(&pvec);
  1656. cond_resched();
  1657. }
  1658. if (!cycled && !done) {
  1659. /*
  1660. * range_cyclic:
  1661. * We hit the last page and there is more work to be done: wrap
  1662. * back to the start of the file
  1663. */
  1664. cycled = 1;
  1665. index = 0;
  1666. end = writeback_index - 1;
  1667. goto retry;
  1668. }
  1669. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  1670. mapping->writeback_index = done_index;
  1671. return ret;
  1672. }
  1673. EXPORT_SYMBOL(write_cache_pages);
  1674. /*
  1675. * Function used by generic_writepages to call the real writepage
  1676. * function and set the mapping flags on error
  1677. */
  1678. static int __writepage(struct page *page, struct writeback_control *wbc,
  1679. void *data)
  1680. {
  1681. struct address_space *mapping = data;
  1682. int ret = mapping->a_ops->writepage(page, wbc);
  1683. mapping_set_error(mapping, ret);
  1684. return ret;
  1685. }
  1686. /**
  1687. * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
  1688. * @mapping: address space structure to write
  1689. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1690. *
  1691. * This is a library function, which implements the writepages()
  1692. * address_space_operation.
  1693. */
  1694. int generic_writepages(struct address_space *mapping,
  1695. struct writeback_control *wbc)
  1696. {
  1697. struct blk_plug plug;
  1698. int ret;
  1699. /* deal with chardevs and other special file */
  1700. if (!mapping->a_ops->writepage)
  1701. return 0;
  1702. blk_start_plug(&plug);
  1703. ret = write_cache_pages(mapping, wbc, __writepage, mapping);
  1704. blk_finish_plug(&plug);
  1705. return ret;
  1706. }
  1707. EXPORT_SYMBOL(generic_writepages);
  1708. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  1709. {
  1710. int ret;
  1711. if (wbc->nr_to_write <= 0)
  1712. return 0;
  1713. if (mapping->a_ops->writepages)
  1714. ret = mapping->a_ops->writepages(mapping, wbc);
  1715. else
  1716. ret = generic_writepages(mapping, wbc);
  1717. return ret;
  1718. }
  1719. /**
  1720. * write_one_page - write out a single page and optionally wait on I/O
  1721. * @page: the page to write
  1722. * @wait: if true, wait on writeout
  1723. *
  1724. * The page must be locked by the caller and will be unlocked upon return.
  1725. *
  1726. * write_one_page() returns a negative error code if I/O failed.
  1727. */
  1728. int write_one_page(struct page *page, int wait)
  1729. {
  1730. struct address_space *mapping = page->mapping;
  1731. int ret = 0;
  1732. struct writeback_control wbc = {
  1733. .sync_mode = WB_SYNC_ALL,
  1734. .nr_to_write = 1,
  1735. };
  1736. BUG_ON(!PageLocked(page));
  1737. if (wait)
  1738. wait_on_page_writeback(page);
  1739. if (clear_page_dirty_for_io(page)) {
  1740. page_cache_get(page);
  1741. ret = mapping->a_ops->writepage(page, &wbc);
  1742. if (ret == 0 && wait) {
  1743. wait_on_page_writeback(page);
  1744. if (PageError(page))
  1745. ret = -EIO;
  1746. }
  1747. page_cache_release(page);
  1748. } else {
  1749. unlock_page(page);
  1750. }
  1751. return ret;
  1752. }
  1753. EXPORT_SYMBOL(write_one_page);
  1754. /*
  1755. * For address_spaces which do not use buffers nor write back.
  1756. */
  1757. int __set_page_dirty_no_writeback(struct page *page)
  1758. {
  1759. if (!PageDirty(page))
  1760. return !TestSetPageDirty(page);
  1761. return 0;
  1762. }
  1763. /*
  1764. * Helper function for set_page_dirty family.
  1765. * NOTE: This relies on being atomic wrt interrupts.
  1766. */
  1767. void account_page_dirtied(struct page *page, struct address_space *mapping)
  1768. {
  1769. if (mapping_cap_account_dirty(mapping)) {
  1770. __inc_zone_page_state(page, NR_FILE_DIRTY);
  1771. __inc_zone_page_state(page, NR_DIRTIED);
  1772. __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
  1773. __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1774. task_io_account_write(PAGE_CACHE_SIZE);
  1775. current->nr_dirtied++;
  1776. this_cpu_inc(bdp_ratelimits);
  1777. }
  1778. }
  1779. EXPORT_SYMBOL(account_page_dirtied);
  1780. /*
  1781. * Helper function for set_page_writeback family.
  1782. * NOTE: Unlike account_page_dirtied this does not rely on being atomic
  1783. * wrt interrupts.
  1784. */
  1785. void account_page_writeback(struct page *page)
  1786. {
  1787. inc_zone_page_state(page, NR_WRITEBACK);
  1788. }
  1789. EXPORT_SYMBOL(account_page_writeback);
  1790. /*
  1791. * For address_spaces which do not use buffers. Just tag the page as dirty in
  1792. * its radix tree.
  1793. *
  1794. * This is also used when a single buffer is being dirtied: we want to set the
  1795. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  1796. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  1797. *
  1798. * Most callers have locked the page, which pins the address_space in memory.
  1799. * But zap_pte_range() does not lock the page, however in that case the
  1800. * mapping is pinned by the vma's ->vm_file reference.
  1801. *
  1802. * We take care to handle the case where the page was truncated from the
  1803. * mapping by re-checking page_mapping() inside tree_lock.
  1804. */
  1805. int __set_page_dirty_nobuffers(struct page *page)
  1806. {
  1807. if (!TestSetPageDirty(page)) {
  1808. struct address_space *mapping = page_mapping(page);
  1809. struct address_space *mapping2;
  1810. if (!mapping)
  1811. return 1;
  1812. spin_lock_irq(&mapping->tree_lock);
  1813. mapping2 = page_mapping(page);
  1814. if (mapping2) { /* Race with truncate? */
  1815. BUG_ON(mapping2 != mapping);
  1816. WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
  1817. account_page_dirtied(page, mapping);
  1818. radix_tree_tag_set(&mapping->page_tree,
  1819. page_index(page), PAGECACHE_TAG_DIRTY);
  1820. }
  1821. spin_unlock_irq(&mapping->tree_lock);
  1822. if (mapping->host) {
  1823. /* !PageAnon && !swapper_space */
  1824. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  1825. }
  1826. return 1;
  1827. }
  1828. return 0;
  1829. }
  1830. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  1831. /*
  1832. * Call this whenever redirtying a page, to de-account the dirty counters
  1833. * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
  1834. * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
  1835. * systematic errors in balanced_dirty_ratelimit and the dirty pages position
  1836. * control.
  1837. */
  1838. void account_page_redirty(struct page *page)
  1839. {
  1840. struct address_space *mapping = page->mapping;
  1841. if (mapping && mapping_cap_account_dirty(mapping)) {
  1842. current->nr_dirtied--;
  1843. dec_zone_page_state(page, NR_DIRTIED);
  1844. dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1845. }
  1846. }
  1847. EXPORT_SYMBOL(account_page_redirty);
  1848. /*
  1849. * When a writepage implementation decides that it doesn't want to write this
  1850. * page for some reason, it should redirty the locked page via
  1851. * redirty_page_for_writepage() and it should then unlock the page and return 0
  1852. */
  1853. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  1854. {
  1855. wbc->pages_skipped++;
  1856. account_page_redirty(page);
  1857. return __set_page_dirty_nobuffers(page);
  1858. }
  1859. EXPORT_SYMBOL(redirty_page_for_writepage);
  1860. /*
  1861. * Dirty a page.
  1862. *
  1863. * For pages with a mapping this should be done under the page lock
  1864. * for the benefit of asynchronous memory errors who prefer a consistent
  1865. * dirty state. This rule can be broken in some special cases,
  1866. * but should be better not to.
  1867. *
  1868. * If the mapping doesn't provide a set_page_dirty a_op, then
  1869. * just fall through and assume that it wants buffer_heads.
  1870. */
  1871. int set_page_dirty(struct page *page)
  1872. {
  1873. struct address_space *mapping = page_mapping(page);
  1874. if (likely(mapping)) {
  1875. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  1876. /*
  1877. * readahead/lru_deactivate_page could remain
  1878. * PG_readahead/PG_reclaim due to race with end_page_writeback
  1879. * About readahead, if the page is written, the flags would be
  1880. * reset. So no problem.
  1881. * About lru_deactivate_page, if the page is redirty, the flag
  1882. * will be reset. So no problem. but if the page is used by readahead
  1883. * it will confuse readahead and make it restart the size rampup
  1884. * process. But it's a trivial problem.
  1885. */
  1886. ClearPageReclaim(page);
  1887. #ifdef CONFIG_BLOCK
  1888. if (!spd)
  1889. spd = __set_page_dirty_buffers;
  1890. #endif
  1891. return (*spd)(page);
  1892. }
  1893. if (!PageDirty(page)) {
  1894. if (!TestSetPageDirty(page))
  1895. return 1;
  1896. }
  1897. return 0;
  1898. }
  1899. EXPORT_SYMBOL(set_page_dirty);
  1900. /*
  1901. * set_page_dirty() is racy if the caller has no reference against
  1902. * page->mapping->host, and if the page is unlocked. This is because another
  1903. * CPU could truncate the page off the mapping and then free the mapping.
  1904. *
  1905. * Usually, the page _is_ locked, or the caller is a user-space process which
  1906. * holds a reference on the inode by having an open file.
  1907. *
  1908. * In other cases, the page should be locked before running set_page_dirty().
  1909. */
  1910. int set_page_dirty_lock(struct page *page)
  1911. {
  1912. int ret;
  1913. lock_page(page);
  1914. ret = set_page_dirty(page);
  1915. unlock_page(page);
  1916. return ret;
  1917. }
  1918. EXPORT_SYMBOL(set_page_dirty_lock);
  1919. /*
  1920. * Clear a page's dirty flag, while caring for dirty memory accounting.
  1921. * Returns true if the page was previously dirty.
  1922. *
  1923. * This is for preparing to put the page under writeout. We leave the page
  1924. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  1925. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  1926. * implementation will run either set_page_writeback() or set_page_dirty(),
  1927. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  1928. * back into sync.
  1929. *
  1930. * This incoherency between the page's dirty flag and radix-tree tag is
  1931. * unfortunate, but it only exists while the page is locked.
  1932. */
  1933. int clear_page_dirty_for_io(struct page *page)
  1934. {
  1935. struct address_space *mapping = page_mapping(page);
  1936. BUG_ON(!PageLocked(page));
  1937. if (mapping && mapping_cap_account_dirty(mapping)) {
  1938. /*
  1939. * Yes, Virginia, this is indeed insane.
  1940. *
  1941. * We use this sequence to make sure that
  1942. * (a) we account for dirty stats properly
  1943. * (b) we tell the low-level filesystem to
  1944. * mark the whole page dirty if it was
  1945. * dirty in a pagetable. Only to then
  1946. * (c) clean the page again and return 1 to
  1947. * cause the writeback.
  1948. *
  1949. * This way we avoid all nasty races with the
  1950. * dirty bit in multiple places and clearing
  1951. * them concurrently from different threads.
  1952. *
  1953. * Note! Normally the "set_page_dirty(page)"
  1954. * has no effect on the actual dirty bit - since
  1955. * that will already usually be set. But we
  1956. * need the side effects, and it can help us
  1957. * avoid races.
  1958. *
  1959. * We basically use the page "master dirty bit"
  1960. * as a serialization point for all the different
  1961. * threads doing their things.
  1962. */
  1963. if (page_mkclean(page))
  1964. set_page_dirty(page);
  1965. /*
  1966. * We carefully synchronise fault handlers against
  1967. * installing a dirty pte and marking the page dirty
  1968. * at this point. We do this by having them hold the
  1969. * page lock at some point after installing their
  1970. * pte, but before marking the page dirty.
  1971. * Pages are always locked coming in here, so we get
  1972. * the desired exclusion. See mm/memory.c:do_wp_page()
  1973. * for more comments.
  1974. */
  1975. if (TestClearPageDirty(page)) {
  1976. dec_zone_page_state(page, NR_FILE_DIRTY);
  1977. dec_bdi_stat(mapping->backing_dev_info,
  1978. BDI_RECLAIMABLE);
  1979. return 1;
  1980. }
  1981. return 0;
  1982. }
  1983. return TestClearPageDirty(page);
  1984. }
  1985. EXPORT_SYMBOL(clear_page_dirty_for_io);
  1986. int test_clear_page_writeback(struct page *page)
  1987. {
  1988. struct address_space *mapping = page_mapping(page);
  1989. int ret;
  1990. if (mapping) {
  1991. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1992. unsigned long flags;
  1993. spin_lock_irqsave(&mapping->tree_lock, flags);
  1994. ret = TestClearPageWriteback(page);
  1995. if (ret) {
  1996. radix_tree_tag_clear(&mapping->page_tree,
  1997. page_index(page),
  1998. PAGECACHE_TAG_WRITEBACK);
  1999. if (bdi_cap_account_writeback(bdi)) {
  2000. __dec_bdi_stat(bdi, BDI_WRITEBACK);
  2001. __bdi_writeout_inc(bdi);
  2002. }
  2003. }
  2004. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  2005. } else {
  2006. ret = TestClearPageWriteback(page);
  2007. }
  2008. if (ret) {
  2009. dec_zone_page_state(page, NR_WRITEBACK);
  2010. inc_zone_page_state(page, NR_WRITTEN);
  2011. }
  2012. return ret;
  2013. }
  2014. int test_set_page_writeback(struct page *page)
  2015. {
  2016. struct address_space *mapping = page_mapping(page);
  2017. int ret;
  2018. if (mapping) {
  2019. struct backing_dev_info *bdi = mapping->backing_dev_info;
  2020. unsigned long flags;
  2021. spin_lock_irqsave(&mapping->tree_lock, flags);
  2022. ret = TestSetPageWriteback(page);
  2023. if (!ret) {
  2024. radix_tree_tag_set(&mapping->page_tree,
  2025. page_index(page),
  2026. PAGECACHE_TAG_WRITEBACK);
  2027. if (bdi_cap_account_writeback(bdi))
  2028. __inc_bdi_stat(bdi, BDI_WRITEBACK);
  2029. }
  2030. if (!PageDirty(page))
  2031. radix_tree_tag_clear(&mapping->page_tree,
  2032. page_index(page),
  2033. PAGECACHE_TAG_DIRTY);
  2034. radix_tree_tag_clear(&mapping->page_tree,
  2035. page_index(page),
  2036. PAGECACHE_TAG_TOWRITE);
  2037. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  2038. } else {
  2039. ret = TestSetPageWriteback(page);
  2040. }
  2041. if (!ret)
  2042. account_page_writeback(page);
  2043. return ret;
  2044. }
  2045. EXPORT_SYMBOL(test_set_page_writeback);
  2046. /*
  2047. * Return true if any of the pages in the mapping are marked with the
  2048. * passed tag.
  2049. */
  2050. int mapping_tagged(struct address_space *mapping, int tag)
  2051. {
  2052. return radix_tree_tagged(&mapping->page_tree, tag);
  2053. }
  2054. EXPORT_SYMBOL(mapping_tagged);