mlock.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619
  1. /*
  2. * linux/mm/mlock.c
  3. *
  4. * (C) Copyright 1995 Linus Torvalds
  5. * (C) Copyright 2002 Christoph Hellwig
  6. */
  7. #include <linux/capability.h>
  8. #include <linux/mman.h>
  9. #include <linux/mm.h>
  10. #include <linux/swap.h>
  11. #include <linux/swapops.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/mempolicy.h>
  14. #include <linux/syscalls.h>
  15. #include <linux/sched.h>
  16. #include <linux/export.h>
  17. #include <linux/rmap.h>
  18. #include <linux/mmzone.h>
  19. #include <linux/hugetlb.h>
  20. #include "internal.h"
  21. int can_do_mlock(void)
  22. {
  23. if (capable(CAP_IPC_LOCK))
  24. return 1;
  25. if (rlimit(RLIMIT_MEMLOCK) != 0)
  26. return 1;
  27. return 0;
  28. }
  29. EXPORT_SYMBOL(can_do_mlock);
  30. /*
  31. * Mlocked pages are marked with PageMlocked() flag for efficient testing
  32. * in vmscan and, possibly, the fault path; and to support semi-accurate
  33. * statistics.
  34. *
  35. * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
  36. * be placed on the LRU "unevictable" list, rather than the [in]active lists.
  37. * The unevictable list is an LRU sibling list to the [in]active lists.
  38. * PageUnevictable is set to indicate the unevictable state.
  39. *
  40. * When lazy mlocking via vmscan, it is important to ensure that the
  41. * vma's VM_LOCKED status is not concurrently being modified, otherwise we
  42. * may have mlocked a page that is being munlocked. So lazy mlock must take
  43. * the mmap_sem for read, and verify that the vma really is locked
  44. * (see mm/rmap.c).
  45. */
  46. /*
  47. * LRU accounting for clear_page_mlock()
  48. */
  49. void clear_page_mlock(struct page *page)
  50. {
  51. if (!TestClearPageMlocked(page))
  52. return;
  53. mod_zone_page_state(page_zone(page), NR_MLOCK,
  54. -hpage_nr_pages(page));
  55. count_vm_event(UNEVICTABLE_PGCLEARED);
  56. if (!isolate_lru_page(page)) {
  57. putback_lru_page(page);
  58. } else {
  59. /*
  60. * We lost the race. the page already moved to evictable list.
  61. */
  62. if (PageUnevictable(page))
  63. count_vm_event(UNEVICTABLE_PGSTRANDED);
  64. }
  65. }
  66. /*
  67. * Mark page as mlocked if not already.
  68. * If page on LRU, isolate and putback to move to unevictable list.
  69. */
  70. void mlock_vma_page(struct page *page)
  71. {
  72. BUG_ON(!PageLocked(page));
  73. if (!TestSetPageMlocked(page)) {
  74. mod_zone_page_state(page_zone(page), NR_MLOCK,
  75. hpage_nr_pages(page));
  76. count_vm_event(UNEVICTABLE_PGMLOCKED);
  77. if (!isolate_lru_page(page))
  78. putback_lru_page(page);
  79. }
  80. }
  81. /**
  82. * munlock_vma_page - munlock a vma page
  83. * @page - page to be unlocked
  84. *
  85. * called from munlock()/munmap() path with page supposedly on the LRU.
  86. * When we munlock a page, because the vma where we found the page is being
  87. * munlock()ed or munmap()ed, we want to check whether other vmas hold the
  88. * page locked so that we can leave it on the unevictable lru list and not
  89. * bother vmscan with it. However, to walk the page's rmap list in
  90. * try_to_munlock() we must isolate the page from the LRU. If some other
  91. * task has removed the page from the LRU, we won't be able to do that.
  92. * So we clear the PageMlocked as we might not get another chance. If we
  93. * can't isolate the page, we leave it for putback_lru_page() and vmscan
  94. * [page_referenced()/try_to_unmap()] to deal with.
  95. */
  96. void munlock_vma_page(struct page *page)
  97. {
  98. BUG_ON(!PageLocked(page));
  99. if (TestClearPageMlocked(page)) {
  100. mod_zone_page_state(page_zone(page), NR_MLOCK,
  101. -hpage_nr_pages(page));
  102. if (!isolate_lru_page(page)) {
  103. int ret = SWAP_AGAIN;
  104. /*
  105. * Optimization: if the page was mapped just once,
  106. * that's our mapping and we don't need to check all the
  107. * other vmas.
  108. */
  109. if (page_mapcount(page) > 1)
  110. ret = try_to_munlock(page);
  111. /*
  112. * did try_to_unlock() succeed or punt?
  113. */
  114. if (ret != SWAP_MLOCK)
  115. count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  116. putback_lru_page(page);
  117. } else {
  118. /*
  119. * Some other task has removed the page from the LRU.
  120. * putback_lru_page() will take care of removing the
  121. * page from the unevictable list, if necessary.
  122. * vmscan [page_referenced()] will move the page back
  123. * to the unevictable list if some other vma has it
  124. * mlocked.
  125. */
  126. if (PageUnevictable(page))
  127. count_vm_event(UNEVICTABLE_PGSTRANDED);
  128. else
  129. count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  130. }
  131. }
  132. }
  133. /**
  134. * __mlock_vma_pages_range() - mlock a range of pages in the vma.
  135. * @vma: target vma
  136. * @start: start address
  137. * @end: end address
  138. *
  139. * This takes care of making the pages present too.
  140. *
  141. * return 0 on success, negative error code on error.
  142. *
  143. * vma->vm_mm->mmap_sem must be held for at least read.
  144. */
  145. static long __mlock_vma_pages_range(struct vm_area_struct *vma,
  146. unsigned long start, unsigned long end,
  147. int *nonblocking)
  148. {
  149. struct mm_struct *mm = vma->vm_mm;
  150. unsigned long addr = start;
  151. int nr_pages = (end - start) / PAGE_SIZE;
  152. int gup_flags;
  153. VM_BUG_ON(start & ~PAGE_MASK);
  154. VM_BUG_ON(end & ~PAGE_MASK);
  155. VM_BUG_ON(start < vma->vm_start);
  156. VM_BUG_ON(end > vma->vm_end);
  157. VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
  158. gup_flags = FOLL_TOUCH | FOLL_MLOCK;
  159. /*
  160. * We want to touch writable mappings with a write fault in order
  161. * to break COW, except for shared mappings because these don't COW
  162. * and we would not want to dirty them for nothing.
  163. */
  164. if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
  165. gup_flags |= FOLL_WRITE;
  166. /*
  167. * We want mlock to succeed for regions that have any permissions
  168. * other than PROT_NONE.
  169. */
  170. if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
  171. gup_flags |= FOLL_FORCE;
  172. return __get_user_pages(current, mm, addr, nr_pages, gup_flags,
  173. NULL, NULL, nonblocking);
  174. }
  175. /*
  176. * convert get_user_pages() return value to posix mlock() error
  177. */
  178. static int __mlock_posix_error_return(long retval)
  179. {
  180. if (retval == -EFAULT)
  181. retval = -ENOMEM;
  182. else if (retval == -ENOMEM)
  183. retval = -EAGAIN;
  184. return retval;
  185. }
  186. /**
  187. * mlock_vma_pages_range() - mlock pages in specified vma range.
  188. * @vma - the vma containing the specfied address range
  189. * @start - starting address in @vma to mlock
  190. * @end - end address [+1] in @vma to mlock
  191. *
  192. * For mmap()/mremap()/expansion of mlocked vma.
  193. *
  194. * return 0 on success for "normal" vmas.
  195. *
  196. * return number of pages [> 0] to be removed from locked_vm on success
  197. * of "special" vmas.
  198. */
  199. long mlock_vma_pages_range(struct vm_area_struct *vma,
  200. unsigned long start, unsigned long end)
  201. {
  202. int nr_pages = (end - start) / PAGE_SIZE;
  203. BUG_ON(!(vma->vm_flags & VM_LOCKED));
  204. /*
  205. * filter unlockable vmas
  206. */
  207. if (vma->vm_flags & (VM_IO | VM_PFNMAP))
  208. goto no_mlock;
  209. if (!((vma->vm_flags & VM_DONTEXPAND) ||
  210. is_vm_hugetlb_page(vma) ||
  211. vma == get_gate_vma(current->mm))) {
  212. __mlock_vma_pages_range(vma, start, end, NULL);
  213. /* Hide errors from mmap() and other callers */
  214. return 0;
  215. }
  216. /*
  217. * User mapped kernel pages or huge pages:
  218. * make these pages present to populate the ptes, but
  219. * fall thru' to reset VM_LOCKED--no need to unlock, and
  220. * return nr_pages so these don't get counted against task's
  221. * locked limit. huge pages are already counted against
  222. * locked vm limit.
  223. */
  224. make_pages_present(start, end);
  225. no_mlock:
  226. vma->vm_flags &= ~VM_LOCKED; /* and don't come back! */
  227. return nr_pages; /* error or pages NOT mlocked */
  228. }
  229. /*
  230. * munlock_vma_pages_range() - munlock all pages in the vma range.'
  231. * @vma - vma containing range to be munlock()ed.
  232. * @start - start address in @vma of the range
  233. * @end - end of range in @vma.
  234. *
  235. * For mremap(), munmap() and exit().
  236. *
  237. * Called with @vma VM_LOCKED.
  238. *
  239. * Returns with VM_LOCKED cleared. Callers must be prepared to
  240. * deal with this.
  241. *
  242. * We don't save and restore VM_LOCKED here because pages are
  243. * still on lru. In unmap path, pages might be scanned by reclaim
  244. * and re-mlocked by try_to_{munlock|unmap} before we unmap and
  245. * free them. This will result in freeing mlocked pages.
  246. */
  247. void munlock_vma_pages_range(struct vm_area_struct *vma,
  248. unsigned long start, unsigned long end)
  249. {
  250. unsigned long addr;
  251. lru_add_drain();
  252. vma->vm_flags &= ~VM_LOCKED;
  253. for (addr = start; addr < end; addr += PAGE_SIZE) {
  254. struct page *page;
  255. /*
  256. * Although FOLL_DUMP is intended for get_dump_page(),
  257. * it just so happens that its special treatment of the
  258. * ZERO_PAGE (returning an error instead of doing get_page)
  259. * suits munlock very well (and if somehow an abnormal page
  260. * has sneaked into the range, we won't oops here: great).
  261. */
  262. page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
  263. if (page && !IS_ERR(page)) {
  264. lock_page(page);
  265. munlock_vma_page(page);
  266. unlock_page(page);
  267. put_page(page);
  268. }
  269. cond_resched();
  270. }
  271. }
  272. /*
  273. * mlock_fixup - handle mlock[all]/munlock[all] requests.
  274. *
  275. * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
  276. * munlock is a no-op. However, for some special vmas, we go ahead and
  277. * populate the ptes via make_pages_present().
  278. *
  279. * For vmas that pass the filters, merge/split as appropriate.
  280. */
  281. static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
  282. unsigned long start, unsigned long end, vm_flags_t newflags)
  283. {
  284. struct mm_struct *mm = vma->vm_mm;
  285. pgoff_t pgoff;
  286. int nr_pages;
  287. int ret = 0;
  288. int lock = !!(newflags & VM_LOCKED);
  289. if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
  290. is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
  291. goto out; /* don't set VM_LOCKED, don't count */
  292. pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
  293. *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
  294. vma->vm_file, pgoff, vma_policy(vma));
  295. if (*prev) {
  296. vma = *prev;
  297. goto success;
  298. }
  299. if (start != vma->vm_start) {
  300. ret = split_vma(mm, vma, start, 1);
  301. if (ret)
  302. goto out;
  303. }
  304. if (end != vma->vm_end) {
  305. ret = split_vma(mm, vma, end, 0);
  306. if (ret)
  307. goto out;
  308. }
  309. success:
  310. /*
  311. * Keep track of amount of locked VM.
  312. */
  313. nr_pages = (end - start) >> PAGE_SHIFT;
  314. if (!lock)
  315. nr_pages = -nr_pages;
  316. mm->locked_vm += nr_pages;
  317. /*
  318. * vm_flags is protected by the mmap_sem held in write mode.
  319. * It's okay if try_to_unmap_one unmaps a page just after we
  320. * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
  321. */
  322. if (lock)
  323. vma->vm_flags = newflags;
  324. else
  325. munlock_vma_pages_range(vma, start, end);
  326. out:
  327. *prev = vma;
  328. return ret;
  329. }
  330. static int do_mlock(unsigned long start, size_t len, int on)
  331. {
  332. unsigned long nstart, end, tmp;
  333. struct vm_area_struct * vma, * prev;
  334. int error;
  335. VM_BUG_ON(start & ~PAGE_MASK);
  336. VM_BUG_ON(len != PAGE_ALIGN(len));
  337. end = start + len;
  338. if (end < start)
  339. return -EINVAL;
  340. if (end == start)
  341. return 0;
  342. vma = find_vma(current->mm, start);
  343. if (!vma || vma->vm_start > start)
  344. return -ENOMEM;
  345. prev = vma->vm_prev;
  346. if (start > vma->vm_start)
  347. prev = vma;
  348. for (nstart = start ; ; ) {
  349. vm_flags_t newflags;
  350. /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
  351. newflags = vma->vm_flags | VM_LOCKED;
  352. if (!on)
  353. newflags &= ~VM_LOCKED;
  354. tmp = vma->vm_end;
  355. if (tmp > end)
  356. tmp = end;
  357. error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
  358. if (error)
  359. break;
  360. nstart = tmp;
  361. if (nstart < prev->vm_end)
  362. nstart = prev->vm_end;
  363. if (nstart >= end)
  364. break;
  365. vma = prev->vm_next;
  366. if (!vma || vma->vm_start != nstart) {
  367. error = -ENOMEM;
  368. break;
  369. }
  370. }
  371. return error;
  372. }
  373. static int do_mlock_pages(unsigned long start, size_t len, int ignore_errors)
  374. {
  375. struct mm_struct *mm = current->mm;
  376. unsigned long end, nstart, nend;
  377. struct vm_area_struct *vma = NULL;
  378. int locked = 0;
  379. int ret = 0;
  380. VM_BUG_ON(start & ~PAGE_MASK);
  381. VM_BUG_ON(len != PAGE_ALIGN(len));
  382. end = start + len;
  383. for (nstart = start; nstart < end; nstart = nend) {
  384. /*
  385. * We want to fault in pages for [nstart; end) address range.
  386. * Find first corresponding VMA.
  387. */
  388. if (!locked) {
  389. locked = 1;
  390. down_read(&mm->mmap_sem);
  391. vma = find_vma(mm, nstart);
  392. } else if (nstart >= vma->vm_end)
  393. vma = vma->vm_next;
  394. if (!vma || vma->vm_start >= end)
  395. break;
  396. /*
  397. * Set [nstart; nend) to intersection of desired address
  398. * range with the first VMA. Also, skip undesirable VMA types.
  399. */
  400. nend = min(end, vma->vm_end);
  401. if (vma->vm_flags & (VM_IO | VM_PFNMAP))
  402. continue;
  403. if (nstart < vma->vm_start)
  404. nstart = vma->vm_start;
  405. /*
  406. * Now fault in a range of pages. __mlock_vma_pages_range()
  407. * double checks the vma flags, so that it won't mlock pages
  408. * if the vma was already munlocked.
  409. */
  410. ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
  411. if (ret < 0) {
  412. if (ignore_errors) {
  413. ret = 0;
  414. continue; /* continue at next VMA */
  415. }
  416. ret = __mlock_posix_error_return(ret);
  417. break;
  418. }
  419. nend = nstart + ret * PAGE_SIZE;
  420. ret = 0;
  421. }
  422. if (locked)
  423. up_read(&mm->mmap_sem);
  424. return ret; /* 0 or negative error code */
  425. }
  426. SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
  427. {
  428. unsigned long locked;
  429. unsigned long lock_limit;
  430. int error = -ENOMEM;
  431. if (!can_do_mlock())
  432. return -EPERM;
  433. lru_add_drain_all(); /* flush pagevec */
  434. down_write(&current->mm->mmap_sem);
  435. len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
  436. start &= PAGE_MASK;
  437. locked = len >> PAGE_SHIFT;
  438. locked += current->mm->locked_vm;
  439. lock_limit = rlimit(RLIMIT_MEMLOCK);
  440. lock_limit >>= PAGE_SHIFT;
  441. /* check against resource limits */
  442. if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
  443. error = do_mlock(start, len, 1);
  444. up_write(&current->mm->mmap_sem);
  445. if (!error)
  446. error = do_mlock_pages(start, len, 0);
  447. return error;
  448. }
  449. SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
  450. {
  451. int ret;
  452. down_write(&current->mm->mmap_sem);
  453. len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
  454. start &= PAGE_MASK;
  455. ret = do_mlock(start, len, 0);
  456. up_write(&current->mm->mmap_sem);
  457. return ret;
  458. }
  459. static int do_mlockall(int flags)
  460. {
  461. struct vm_area_struct * vma, * prev = NULL;
  462. unsigned int def_flags = 0;
  463. if (flags & MCL_FUTURE)
  464. def_flags = VM_LOCKED;
  465. current->mm->def_flags = def_flags;
  466. if (flags == MCL_FUTURE)
  467. goto out;
  468. for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
  469. vm_flags_t newflags;
  470. newflags = vma->vm_flags | VM_LOCKED;
  471. if (!(flags & MCL_CURRENT))
  472. newflags &= ~VM_LOCKED;
  473. /* Ignore errors */
  474. mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
  475. }
  476. out:
  477. return 0;
  478. }
  479. SYSCALL_DEFINE1(mlockall, int, flags)
  480. {
  481. unsigned long lock_limit;
  482. int ret = -EINVAL;
  483. if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
  484. goto out;
  485. ret = -EPERM;
  486. if (!can_do_mlock())
  487. goto out;
  488. if (flags & MCL_CURRENT)
  489. lru_add_drain_all(); /* flush pagevec */
  490. down_write(&current->mm->mmap_sem);
  491. lock_limit = rlimit(RLIMIT_MEMLOCK);
  492. lock_limit >>= PAGE_SHIFT;
  493. ret = -ENOMEM;
  494. if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
  495. capable(CAP_IPC_LOCK))
  496. ret = do_mlockall(flags);
  497. up_write(&current->mm->mmap_sem);
  498. if (!ret && (flags & MCL_CURRENT)) {
  499. /* Ignore errors */
  500. do_mlock_pages(0, TASK_SIZE, 1);
  501. }
  502. out:
  503. return ret;
  504. }
  505. SYSCALL_DEFINE0(munlockall)
  506. {
  507. int ret;
  508. down_write(&current->mm->mmap_sem);
  509. ret = do_mlockall(0);
  510. up_write(&current->mm->mmap_sem);
  511. return ret;
  512. }
  513. /*
  514. * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
  515. * shm segments) get accounted against the user_struct instead.
  516. */
  517. static DEFINE_SPINLOCK(shmlock_user_lock);
  518. int user_shm_lock(size_t size, struct user_struct *user)
  519. {
  520. unsigned long lock_limit, locked;
  521. int allowed = 0;
  522. locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  523. lock_limit = rlimit(RLIMIT_MEMLOCK);
  524. if (lock_limit == RLIM_INFINITY)
  525. allowed = 1;
  526. lock_limit >>= PAGE_SHIFT;
  527. spin_lock(&shmlock_user_lock);
  528. if (!allowed &&
  529. locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
  530. goto out;
  531. get_uid(user);
  532. user->locked_shm += locked;
  533. allowed = 1;
  534. out:
  535. spin_unlock(&shmlock_user_lock);
  536. return allowed;
  537. }
  538. void user_shm_unlock(size_t size, struct user_struct *user)
  539. {
  540. spin_lock(&shmlock_user_lock);
  541. user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  542. spin_unlock(&shmlock_user_lock);
  543. free_uid(user);
  544. }